08函数的奇偶性与周期性

合集下载

函数的奇偶性、单调性、周期性

函数的奇偶性、单调性、周期性

一. 函数的奇偶性
2.对函数奇偶性的理解 . (1)函数的奇偶性是函数在整个定义域上的性质,是函 )函数的奇偶性是函数在整个定义域上的性质, 数的整体性质. 数的整体性质 (2)函数奇偶性中对定义域内任意一个 ,都有 (-x) = )函数奇偶性中对定义域内任意一个x,都有f - f (x),f (-x) = -f (x)的实质是:函数的定义域关于原点 的实质是: , - 的实质是 对称,这是函数具备奇偶性的必要条件. 对称,这是函数具备奇偶性的必要条件 函数的奇偶性是 其相应图象特殊的对称性的反映. 其相应图象特殊的对称性的反映
A.关于原点对称 A.关于原点对称 C.关于y C.关于y轴对称 关于
B.关于直线y B.关于直线y=-x对称 关于直线 D.关于直线y D.关于直线y=x对称 关于直线
解析: 解析:
由于定义域为( 由于定义域为(-2,2)关于原点对称,又 关于原点对称,
f(x)=-f(-x),故函数为奇函数,图象关于原点对称. )=),故函数为奇函数,图象关于原点对称. 故函数为奇函数
例3:(2008·山东)函数y=ln cos x (2008·山东)函数y 山东
(−
π
2
<x<
π
2
)
的图象是 (A )
解析: 解析:
为偶函数, y=ln cos x为偶函数,且函数图象在 [ 0 , π )上单
2
调递减. 调递减.
若函数f 的导函数 若函数 (x)的导函数 f ′(x) 在D上的函数 上的函数
值为正,则称 上为增函数; 值为正 则称y = f (x)在D上为增函数; 则称 在 上为增函数
四.函数的单调性
2. 函数单调性的等价定义

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数都有f(-x)=f(x),那么函数f(x)就叫做偶函数图象特征关于原点对称关于y轴对称2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)(6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×)(8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1] (1)下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .x x e e y --= 解析:对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D , ∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数,故选D. 答案:D(2)下列函数中为偶函数的是( )A .y =1x B .y =lg|x | C .y =(x -1)2 D .y =2x解析:根据奇、偶函数的定义,可得A 是奇函数,B 是偶函数,C ,D 为非奇非偶函数. 答案:B(3)函数f (x )=3-x 2+x 2-3,则( )A .不具有奇偶性B .只是奇函数C .只是偶函数D .既是奇函数又是偶函数 解析:由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数. 答案:D[方法引航] 判断函数的奇偶性的三种重要方法 (1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y 轴)对称. (3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x1+x;(2)f(x)=lg1-x1+x.解:(1)要使函数有意义,则1-x1+x≥0,解得-1<x≤1,显然f(x)的定义域不关于原点对称,∴f(x)既不是奇函数,也不是偶函数.(2)由1-x1+x>0⇒-1<x<1,定义域关于原点对称.又f(-x)=lg 1+x1-x=lg1)11(-+-xx=-lg1-x1+x=-f(x),f(-x)≠f(x).故原函数是奇函数.考点二函数的周期性及应用命题点1.周期性的简单判断2.利用周期性求函数值[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1)解析:y=sin x与y=sin(x+1)的周期T=2π,B的周期T=π,C项y=sin|x|是偶函数,x∈(0,+∞)与x∈(-∞,0)图象不重复,无周期.答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4∴f(-2 017)=1,f(2 019)=-1,∴f(-2 017)+f(2 019)=0. 答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log2(x+1),求f(-2 017)+f(2 019)的值.解:由f(x+2)=f(x),∴T=2∴f(2 019)=f(1)=log22=1,f(-2 017)=f(2 017)=f(1)=1,∴f(-2 017)+f(2 019)=2.考点三函数奇偶性的综合应用命题点1.已知奇偶性求参数2.利用奇偶性、单调性求解不等式3.利用奇偶性求解析式或函数值[例3](1)若函数f(x)=2x-a是奇函数,则使f(x)>3成立的x的取值范围为() A.(-∞,-1)B.(-1,0) C.(0,1) D.(1,+∞)解析:因为函数y=f(x)为奇函数,所以f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a.化简可得a=1,则2x+12x-1>3,即2x+12x-1-3>0,即2x+1-3(2x-1)2x-1>0,故不等式可化为2x-22x-1<0,即1<2x<2,解得0<x<1,故选C. 答案:C(2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且)21(f =25.①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0.解:①∵在x ∈(-1,1)上f (x )为奇函数,∴f (0)=0,即b =0,∴f (x )=ax1+x 2. 又∵)21(f =25,∴a21+14=25.解得,a =1.∴f (x )=x 1+x 2,经检验适合题意. ②证明:由f ′(x )=1+x 2-2x 2(1+x 2)2=1-x 2(1+x 2)2.x ∈(-1,1)时,1-x 2>0,∴f ′(x )>0 ∴f (x )在(-1,1)上为增函数.③由f (t -1)+f (t )<0,得f (t -1)<-f (t ),即f (t -1)<f (-t ).∴⎩⎨⎧-1<t -1<1-1<-t <1t -1<-t得0<t <12.(3)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x ) 解析:当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x <0时, f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ). 答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 解析:a -1+2a =0,∴a =13.f (x )=ax 2+bx 为偶函数,则b =0,∴a +b =13. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且)21(f =0,则满足f (x )<0的x 的集合为( )A.),2()21,(+∞⋃-∞∪(2,+∞)B.)1,21(∪(1,2)C.)21,0(∪(2,+∞)D.)1,21(∪(2,+∞)解析:选C.由题意可得f =f<0=)21(f ,又f (x )在[0,+∞)上递减,所以>12,即x >12或x <-12,解得0<x <12或x >2,所以满足不等式f<0的x 的集合为)21,0(∪(2,+∞).3.已知函数f (x )=-x +log 21-x 1+x +1,则)21()21(-+f f 的值为( )A .2B .-2C .0D .2log 213 解析:选A.由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则)21(f -1+)21(-f -1=0,所以)21()21(-+f f =2.[方法探究]“多法并举”解决抽象函数性质问题[典例] (2017·山东泰安模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析]第一步:f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.(赋值法):令x=y=0,∴f(0)=0.令x+y=0,∴y=-x,∴f(0)=f(x)+f(-x).∴f(-x)=-f(x),∴f(x)为奇函数.第二步:∵f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,∴f(x)在[0,1]上为增函数.第三步:由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)⇒f(x+4)=f(x),(代换法)∴周期T=4,即f(x)为周期函数.第四步:f(x+2)=-f(x)⇒f(-x+2)=-f(-x).(代换法)又∵f(x)为奇函数,∴f(2-x)=f(x),∴关于x=1对称.第五步:由f(x)在[0,1]上为增函数,又关于x=1对称,∴[1,2]上为减函数.(对称法)第六步:由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).(赋值法)[答案]①②③④[回顾反思]此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.2.(2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,)21()21(-=+x f x f .则f (6)=( )A .-2B .-1C .0D .2解析:选D.由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.3.(2016·高考四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则)25(-f +f (1)=________.解析:综合运用函数的奇偶性和周期性进行变换求值. ∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0.∵f (x )=4x ,x ∈(0,1),∴)25(-f =)21()21()225(f f f -=-=+-=-4⨯12=-2.∴)25(-f +f (1)=-2.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )= -x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.答案:15.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则)23(f =________.解析:由已知易得)21(-f =12)21(42=+-⨯-,又由函数的周期为2,可得)23(f =)21(-f =1. 答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.因为y =x 2是偶函数,y =sin x 是奇函数,y =cos x 是偶函数,所以A 选项为奇函数,B 选项为偶函数;C 选项中函数图象是把对数函数y =ln x 的图象在x 轴下方部分翻折到x 轴上方,其余部分的图象保持不变,故为非奇非偶函数;D 选项为指数函数y =x )21(,是非奇非偶函数.2.下列函数中既不是奇函数也不是偶函数的是( )A .y =2|x |B .y =lg(x +x 2+1)C .x x y -+=22D .y =lg1x +1解析:选D.选项D 中函数定义域为(-1,+∞),不关于原点对称,故y =lg 1x +1不是奇函数也不是偶函数,选项A 为偶函数,选项B 为奇函数,选项C 为偶函数.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( ) A .-1 B .1 C .-2 D .2解析:选A.由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( ) A .-2 B .0 C .1 D .2 解析:选A.当x >0时,f (x )=x 2+1x , ∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则)25(f =( )A .0B .1 C.12 D .-1解析:选D.因为f (x )是周期为3的周期函数,所以)25(f =)21()321(-=+-f f =4×2)21(--2=-1,故选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 解析:f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x ), ∴f (5)=f (1)=-5,∴f (f (5))=f (-5)=f (3)=1f (1)=-15. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________.解析:由f (x +3)=f (x )得函数f (x )的周期T =3,则f (2 017)=f (1)=f (-2),又f (x )是定义在R 上的偶函数,所以f (2 017)=f (2)=1. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 解析:由题意可知h (x )+g (x )=e x +x ①,用-x 代替x 得h (-x )+g (-x )=e -x -x ,因为h (x )为奇函数,g (x )为偶函数,所以 -h (x )+g (x )=x e x -- ②.由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式. 解:设x ∈(0,+∞),∴-x ∈(-∞,0),∴f (-x )=x lg(2+x ), ∵f (x )为奇函数,f (-x )=-f (x ),∴-f (x )=x lg(2+x ),∴f (x )=-x lg(2+x ). 又∵当x =0时,f (0)=0,适合f (x )=-x lg(2+x ) ∴f (x )=⎩⎨⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)10.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围. 解:(1)函数f (x )的定义域为{x |x ≠0}, 当a =0时,f (x )=x 2(x ≠0),显然为偶函数;当a ≠0时,f (1)=1+a ,f (-1)=1-a ,因此f (1)≠f (-1),且f (-1)≠-f (1),所以函数f (x )=x 2+a x (x ≠0)既不是奇函数,也不是偶函数.(2)f ′(x )=2x -a x 2=2x 3-a x 2,当a ≤0时,f ′(x )>0,则f (x )在[2,+∞)上是增函数;当a >0时,令f ′(x )=2x 3-a x 2≥0,解得x ≥32a ,由f (x )在[2,+∞)上是增函数,可知32a ≤2,解得0<a ≤16.综上,实数a 的取值范围是(-∞,16].B 组 能力突破1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的 ( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件解析:选A.f (x )在R 上为奇函数⇒f (0)=0;f (0)=0f (x )在R 上为奇函数,如f (x )=x 2,故选A. 2.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=x x a a --+2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174 D .a 2解析:选B.∵f (x )为奇函数,g (x )为偶函数,∴f (-2)=-f (2),g (-2)=g (2)=a ,∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D.由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )是以8为周期的周期函数.f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).4.定义在R 上的函数f (x ),对任意x 均有f (x )=f (x +2)+f (x -2)且f (2 016)=2 016,则f (2 028)=________.解析:∵x ∈R ,f (x )=f (x +2)+f (x -2),∴f (x +4)=f (x +2)-f (x )=-f (x -2),∴f (x +6)=-f (x ),∴f (x +12)=f (x ),则函数f (x )是以12为周期的函数.又∵f (2 016)=2 016,∴f (2 028)=f (2 028-12)=f (2 016)=2 016.答案:2 0165.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有)()()(2121x f x f x x f +=⋅.(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。

高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。

本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。

需要WORD 电子文档的同学,可以入群领取。

1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。

①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。

()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

《分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f/函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= "7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2=8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2 , )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

(完整版)函数的奇偶性与周期性

(完整版)函数的奇偶性与周期性

函数的奇偶性与周期性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数都有f(-x)=f(x),那么函数f(x)就叫做偶函数图象特征关于原点对称关于y轴对称2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)(6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×)(8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1] (1)下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .x x e e y --= 解析:对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D , ∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数,故选D. 答案:D(2)下列函数中为偶函数的是( )A .y =1x B .y =lg|x | C .y =(x -1)2 D .y =2x解析:根据奇、偶函数的定义,可得A 是奇函数,B 是偶函数,C ,D 为非奇非偶函数. 答案:B(3)函数f (x )=3-x 2+x 2-3,则( )A .不具有奇偶性B .只是奇函数C .只是偶函数D .既是奇函数又是偶函数 解析:由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数. 答案:D[方法引航] 判断函数的奇偶性的三种重要方法 (1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y 轴)对称. (3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x1+x;(2)f(x)=lg1-x1+x.解:(1)要使函数有意义,则1-x1+x≥0,解得-1<x≤1,显然f(x)的定义域不关于原点对称,∴f(x)既不是奇函数,也不是偶函数.(2)由1-x1+x>0⇒-1<x<1,定义域关于原点对称.又f(-x)=lg 1+x1-x=lg1)11(-+-xx=-lg1-x1+x=-f(x),f(-x)≠f(x).故原函数是奇函数.考点二函数的周期性及应用命题点1.周期性的简单判断2.利用周期性求函数值[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1)解析:y=sin x与y=sin(x+1)的周期T=2π,B的周期T=π,C项y=sin|x|是偶函数,x∈(0,+∞)与x∈(-∞,0)图象不重复,无周期.答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4∴f(-2 017)=1,f(2 019)=-1,∴f(-2 017)+f(2 019)=0. 答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log2(x+1),求f(-2 017)+f(2 019)的值.解:由f(x+2)=f(x),∴T=2∴f(2 019)=f(1)=log22=1,f(-2 017)=f(2 017)=f(1)=1,∴f(-2 017)+f(2 019)=2.考点三函数奇偶性的综合应用命题点1.已知奇偶性求参数2.利用奇偶性、单调性求解不等式3.利用奇偶性求解析式或函数值[例3](1)若函数f(x)=2x-a是奇函数,则使f(x)>3成立的x的取值范围为() A.(-∞,-1)B.(-1,0) C.(0,1) D.(1,+∞)解析:因为函数y=f(x)为奇函数,所以f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a.化简可得a=1,则2x+12x-1>3,即2x+12x-1-3>0,即2x+1-3(2x-1)2x-1>0,故不等式可化为2x-22x-1<0,即1<2x<2,解得0<x<1,故选C. 答案:C(2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且)21(f =25.①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0.解:①∵在x ∈(-1,1)上f (x )为奇函数,∴f (0)=0,即b =0,∴f (x )=ax1+x 2. 又∵)21(f =25,∴a21+14=25.解得,a =1.∴f (x )=x 1+x 2,经检验适合题意. ②证明:由f ′(x )=1+x 2-2x 2(1+x 2)2=1-x 2(1+x 2)2.x ∈(-1,1)时,1-x 2>0,∴f ′(x )>0 ∴f (x )在(-1,1)上为增函数.③由f (t -1)+f (t )<0,得f (t -1)<-f (t ),即f (t -1)<f (-t ).∴⎩⎨⎧-1<t -1<1-1<-t <1t -1<-t得0<t <12.(3)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x ) 解析:当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x <0时, f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ). 答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 解析:a -1+2a =0,∴a =13.f (x )=ax 2+bx 为偶函数,则b =0,∴a +b =13. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且)21(f =0,则满足f (x )<0的x 的集合为( )A.),2()21,(+∞⋃-∞∪(2,+∞)B.)1,21(∪(1,2)C.)21,0(∪(2,+∞)D.)1,21(∪(2,+∞)解析:选C.由题意可得f =f<0=)21(f ,又f (x )在[0,+∞)上递减,所以>12,即x >12或x <-12,解得0<x <12或x >2,所以满足不等式f<0的x 的集合为)21,0(∪(2,+∞).3.已知函数f (x )=-x +log 21-x 1+x +1,则)21()21(-+f f 的值为( )A .2B .-2C .0D .2log 213 解析:选A.由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则)21(f -1+)21(-f -1=0,所以)21()21(-+f f =2.[方法探究]“多法并举”解决抽象函数性质问题[典例] (2017·山东泰安模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析]第一步:f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.(赋值法):令x=y=0,∴f(0)=0.令x+y=0,∴y=-x,∴f(0)=f(x)+f(-x).∴f(-x)=-f(x),∴f(x)为奇函数.第二步:∵f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,∴f(x)在[0,1]上为增函数.第三步:由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)⇒f(x+4)=f(x),(代换法)∴周期T=4,即f(x)为周期函数.第四步:f(x+2)=-f(x)⇒f(-x+2)=-f(-x).(代换法)又∵f(x)为奇函数,∴f(2-x)=f(x),∴关于x=1对称.第五步:由f(x)在[0,1]上为增函数,又关于x=1对称,∴[1,2]上为减函数.(对称法)第六步:由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).(赋值法)[答案]①②③④[回顾反思]此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.2.(2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,)21()21(-=+x f x f .则f (6)=( )A .-2B .-1C .0D .2解析:选D.由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.3.(2016·高考四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则)25(-f +f (1)=________.解析:综合运用函数的奇偶性和周期性进行变换求值. ∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0.∵f (x )=4x ,x ∈(0,1),∴)25(-f =)21()21()225(f f f -=-=+-=-4⨯12=-2.∴)25(-f +f (1)=-2.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )= -x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.答案:15.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则)23(f =________.解析:由已知易得)21(-f =12)21(42=+-⨯-,又由函数的周期为2,可得)23(f =)21(-f =1. 答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.因为y =x 2是偶函数,y =sin x 是奇函数,y =cos x 是偶函数,所以A 选项为奇函数,B 选项为偶函数;C 选项中函数图象是把对数函数y =ln x 的图象在x 轴下方部分翻折到x 轴上方,其余部分的图象保持不变,故为非奇非偶函数;D 选项为指数函数y =x )21(,是非奇非偶函数.2.下列函数中既不是奇函数也不是偶函数的是( )A .y =2|x |B .y =lg(x +x 2+1)C .x x y -+=22D .y =lg1x +1解析:选D.选项D 中函数定义域为(-1,+∞),不关于原点对称,故y =lg 1x +1不是奇函数也不是偶函数,选项A 为偶函数,选项B 为奇函数,选项C 为偶函数.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( ) A .-1 B .1 C .-2 D .2解析:选A.由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( ) A .-2 B .0 C .1 D .2 解析:选A.当x >0时,f (x )=x 2+1x , ∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则)25(f =( )A .0B .1 C.12 D .-1解析:选D.因为f (x )是周期为3的周期函数,所以)25(f =)21()321(-=+-f f =4×2)21(--2=-1,故选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 解析:f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x ), ∴f (5)=f (1)=-5,∴f (f (5))=f (-5)=f (3)=1f (1)=-15. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________.解析:由f (x +3)=f (x )得函数f (x )的周期T =3,则f (2 017)=f (1)=f (-2),又f (x )是定义在R 上的偶函数,所以f (2 017)=f (2)=1. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 解析:由题意可知h (x )+g (x )=e x +x ①,用-x 代替x 得h (-x )+g (-x )=e -x -x ,因为h (x )为奇函数,g (x )为偶函数,所以 -h (x )+g (x )=x e x -- ②.由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式. 解:设x ∈(0,+∞),∴-x ∈(-∞,0),∴f (-x )=x lg(2+x ), ∵f (x )为奇函数,f (-x )=-f (x ),∴-f (x )=x lg(2+x ),∴f (x )=-x lg(2+x ). 又∵当x =0时,f (0)=0,适合f (x )=-x lg(2+x ) ∴f (x )=⎩⎨⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)10.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围. 解:(1)函数f (x )的定义域为{x |x ≠0}, 当a =0时,f (x )=x 2(x ≠0),显然为偶函数;当a ≠0时,f (1)=1+a ,f (-1)=1-a ,因此f (1)≠f (-1),且f (-1)≠-f (1),所以函数f (x )=x 2+a x (x ≠0)既不是奇函数,也不是偶函数.(2)f ′(x )=2x -a x 2=2x 3-a x 2,当a ≤0时,f ′(x )>0,则f (x )在[2,+∞)上是增函数;当a >0时,令f ′(x )=2x 3-a x 2≥0,解得x ≥32a ,由f (x )在[2,+∞)上是增函数,可知32a ≤2,解得0<a ≤16.综上,实数a 的取值范围是(-∞,16].B 组 能力突破1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的 ( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件解析:选A.f (x )在R 上为奇函数⇒f (0)=0;f (0)=0f (x )在R 上为奇函数,如f (x )=x 2,故选A. 2.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=x x a a --+2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174 D .a 2解析:选B.∵f (x )为奇函数,g (x )为偶函数,∴f (-2)=-f (2),g (-2)=g (2)=a ,∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D.由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )是以8为周期的周期函数.f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).4.定义在R 上的函数f (x ),对任意x 均有f (x )=f (x +2)+f (x -2)且f (2 016)=2 016,则f (2 028)=________.解析:∵x ∈R ,f (x )=f (x +2)+f (x -2),∴f (x +4)=f (x +2)-f (x )=-f (x -2),∴f (x +6)=-f (x ),∴f (x +12)=f (x ),则函数f (x )是以12为周期的函数.又∵f (2 016)=2 016,∴f (2 028)=f (2 028-12)=f (2 016)=2 016.答案:2 0165.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有)()()(2121x f x f x x f +=⋅.(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。

2023年高考数学一轮复习考点微专题(新高考地区专用) 考向08函数的奇偶性周期性与对称性(解析版)

2023年高考数学一轮复习考点微专题(新高考地区专用) 考向08函数的奇偶性周期性与对称性(解析版)

考向08 函数的奇偶性、周期性与对称性【2022年新高考全国Ⅰ卷】(多选题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( ) A .(0)0f = B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC. 【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.【2022年新高考全国II 卷】已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .1.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶; 奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数 2.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数3.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.4.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-. (2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(1)如果一个奇函数()f x 在原点处有定义,即(0)f 有意义,那么一定有(0)0f =. (2)如果函数()f x 是偶函数,那么()(||)f x f x =.2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性3.函数周期性常用结论对()f x 定义域内任一自变量的值x : (1)若()()f x a f x +=-,则2(0)T a a =>. (2)若1()()f x a f x +=,则2(0)T a a =>. (3)若1()()f x a f x +=-,则2(0)T a a =>. 4.对称性的三个常用结论(1)若函数()y f x a =+是偶函数,则函数()y f x =的图象关于直线x a =对称.(2)若对于R 上的任意x 都有(2)()f a x f x -=或()(2)f x f a x -=+,则()y f x =的图象关于直线x a =对称.(3)若函数()y f x b =+是奇函数,则函数()y f x =的图象关于点(,0)b 中心对称. 5.两个奇偶函数四则运算的性质 (1)两个奇函数的和仍为奇函数; (2)两个偶函数的和仍为偶函数; (3)两个奇函数的积是偶函数; (4)两个偶函数的积是偶函数;(5)一个奇函数与一个偶函数的积是奇函数。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性一、知识梳理1.函数的奇偶性奇偶性,定义,图象特点偶函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数,关于y 轴对称奇函数,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数,关于原点对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、基础自测1.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)等于( A ) A .-2 B .0 C .1 D .2解析 f (-1)=-f (1)=-(1+1)=-2.2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( B )A .-13 B.13 C.12 D .-12解析 依题意b =0,且2a =-(a -1),∴a =13,则a +b =13. 3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( A ) A .-2 B .2 C .-98 D .98解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数,∴f (2 015)=f (503×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2,即f (2 015)=-2.4.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x的取值范围是__(-1,0)∪(1,+∞)__.解析 画草图,由f (x )为奇函数知:f (x )>0的x 的取值范围为(-1,0)∪(1,+∞).三、题型解析题型一 判断函数的奇偶性例1 判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x; (3)f (x )=4-x 2|x +3|-3. 思维启迪 确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3.∴f (x )的定义域为{-3,3},关于原点对称. 又f (3)+f (-3)=0,f (3)-f (-3)=0.即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数.(2)由⎩⎪⎨⎪⎧ 1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称.∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0. ∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x. ∴f (x )=-f (-x ),∴f (x )是奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x)-f (-x )=0(偶函数))是否成立.判断下列函数的奇偶性:(1)f (x )=lg (1-x 2)|x -2|-2; (2)f (x )=⎩⎪⎨⎪⎧ x 2+2(x >0)0(x =0)-x 2-2(x <0).解 (1)由⎩⎪⎨⎪⎧1-x 2>0|x -2|-2≠0,得定义域为(-1,0)∪(0,1),f (x )=lg (1-x 2)-(x -2)-2=-lg (1-x 2)x . ∵f (-x )=-lg[1-(-x )2]-x =-lg (1-x 2)-x=-f (x ).∴f (x )为奇函数.(2)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x );当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x );当x =0时,f (0)=0,也满足f (-x )=-f (x ).故该函数为奇函数.题型二 函数周期性的应用例2 (1)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当 -1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 015)等于 ( B )A .335B .336C .1 678D .2 012(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=__2.5__.思维启迪 (1)f (x )的周期性已知,可以通过一个周期内函数值的变化情况求和.(2)通过题意先确定函数的周期性.解析 (1)利用函数的周期性和函数值的求法求解.∵f (x +6)=f (x ),∴T =6.∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1,∴f (1)+f (2)+…+f (2 010)=1×2 0106=335. 而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1.∴f (1)+f (2)+…+f (2 015)=335+1=336.(2)由已知,可得f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4. ∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5).∵2≤2.5≤3,由题意,得f (2.5)=2.5.∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法(1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( A )A .-1B .1C .-2D .2 (2)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52等于 ( A ) A .-12 B .-14 C.14D.12解析 (1)由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.(2)∵f (x )是周期为2的奇函数,∴f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12 =-2×12×⎝⎛⎭⎫1-12=-12. 题型三 函数性质的综合应用例3 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积;(3)写出(-∞,+∞)内函数f (x )的单调区间.思维启迪 可以先确定函数的周期性,求f (π);然后根据函数图象的对称性、周期性画出函数图象,求图形面积、写单调区间.解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数,∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得:f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).故知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. (3)函数f (x )的单调递增区间为[4k -1,4k +1] (k ∈Z ),单调递减区间为[4k +1,4k +3] (k ∈Z ).思维升华 关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题,体现了转化思想.(1)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( A )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23 (2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( D )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析 (1)偶函数满足f (x )=f (|x |),根据这个结论,有f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13, 进而转化为不等式|2x -1|<13,解这个不等式即得x 的取值范围是⎝⎛⎭⎫13,23. (2)由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).四、易错点分析:忽视函数的定义域致误例4 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =___±1__.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1.(2)本题易出现以下错误由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误.解析 (1)∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ). 由f (-x )+f (x )=0可得k 2=1,∴k =±1.(2) 画出f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ), 则⎩⎪⎨⎪⎧ 1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①抓住对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并还是交五、方法与技巧1.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;(2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.3.若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x )(a 是常数且a ≠0),则f (x )是一个周期为2a 的周期函数. 失误与防范 1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )是奇函数,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0).对于偶函数的判断以此类推.3.分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.课堂训练一、选择题1.定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( C )A .4B .3C .2D .1解析 由奇函数的定义可知y =x 3,y =2sin x 为奇函数.2.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( A )A .-3B .-1C .1D .3解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.3.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 解析 由题意知f (x )为偶函数,所以f (-2)=f (2),又x ∈[0,+∞)时,f (x )为减函数,且3>2>1,∴f (3)<f (2)<f (1),即f (3)<f (-2)<f (1)4.定义两种运算:a ⊗b =a 2-b 2,a ⊗b =(a -b )2,则f (x )=x 2-(x ⊗2)是 ( A ) A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 解析 因为2⊗x =4-x 2,x ⊗2=(x -2)2, 所以f (x )=4-x 22-(x -2)2=4-x 22-(2-x )=4-x 2x , 该函数的定义域是[-2,0)∪(0,2],且满足f (-x )=-f (x ).故函数f (x )是奇函数.5.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( B ) A .2 B.154 C.174 D .a 2解析 ∵f (x )为奇函数,g (x )为偶函数,∴f (-2)=-f (2),g (-2)=g (2)=a ,∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154. 二、填空题6.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )解析 ∵f (x )为奇函数,x >0时,f (x )=x +1,∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.7.已知奇函数f (x )=⎩⎪⎨⎪⎧3x +a (x ≥0),g (x )(x <0),则g (-2)的值为__-8__. 解析 ∵f (x )是奇函数,∴f (0)=30+a =0,∴a =-1,∴当x ≥0时,f (x )=3x -1,故g (-2)=-f (2)=-(32-1)=-8.8.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 015)=___14__. 解析 方法一 令x =1,y =0时,4f (1)·f (0)=f (1)+f (1),解得f (0)=12, 令x =1,y =1时,4f (1)·f (1)=f (2)+f (0),解得f (2)=-14, 令x =2,y =1时,4f (2)·f (1)=f (3)+f (1),解得f (3)=-12, 依次求得f (4)=-14,f (5)=14,f (6)=12,f (7)=14,f (8)=-14,f (9)=-12,… 可知f (x )是以6为周期的函数,∴f (2 015)=f (335×6+5)=f (5)=14. 方法二 ∵f (1)=14,4f (x )·f (y )=f (x +y )+f (x -y ),∴构造符合题意的函数f (x )=12cos π3x , ∴f (2 015)=12cos ⎝⎛⎭⎫π3×2 015=14. 三、解答题9.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2). 又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ).从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.(2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x .故x ∈[-1,0]时,f (x )=--x . x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4. 从而,x ∈[-5,-4]时,函数f (x )=--x -4.10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. 课后训练1.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 013)+f (2 015)的值为( C ) A .-1 B .1 C .0 D .无法计算解析 由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,∴g (-x )=-g (x ),f (-x )=f (x ),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 013)=f (1),f (2 015)=f (3)=f (-1),又∵f (1)=f (-1)=g (0)=0,∴f (2 013)+f (2 015)=0.2.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是 ( C )A .a <-1或a ≥23B .a <-1C .-1<a ≤23D .a ≤23解析 函数f (x )为奇函数,则f (1)=-f (-1).由f (1)=-f (-1)≥1,得f (-1)≤-1;函数的最小正周期T =3,则f (-1)=f (2),由2a -3a +1≤-1,解得-1<a ≤23. 3.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是__①②__.解析 在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,则f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;在区间[-1,1]上,f(x)的最大值为f(1)=f(-1)=2,f(x)的最小值为f(0)=1,故③错误.4.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解之得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.5.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.解(1)∵f(1)=0,且f(x)在[0,7]上只有f(1)=f(3)=0,又∵f(2-x)=f(2+x),令x=-3,f(-1)=f(5)≠0,∴f(-1)≠f(1),且f(-1)≠-f(1).∴f(x)既不是奇函数,也不是偶函数.(2)f(10+x)=f[2+8+x]=f[2-(8+x)]=f(-6-x)=f[7-(13+x)]=f[7+13+x]=f(20+x),∴f(x)以10为周期.又f(x)的图象关于x=7对称知,f(x)=0在(0,10)上有两个根,则f(x)=0在(0,2 005]上有201×2=402个根;在[-2 005,0]上有200×2=400个根;因此f(x)=0在闭区间上共有802个根.。

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。

高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。

本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。

需要WORD 电子文档的同学,可以入群领取。

1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。

①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。

()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。

08 第二章 第三节 第1课时 函数的奇偶性、周期性、对称性

08 第二章 第三节 第1课时 函数的奇偶性、周期性、对称性

第1课时
应用1
n=(
函数的奇偶性、周期性、对称性
必备知识
提升“四能”
课时质量评价
)
B.1

D.4
C
核心考点
已知函数f (x)=x3+x+m是定义在区间[-2-n,2n]上的奇函数,则m+
A.0
C.2
落实“四基”
解析:由已知得-2-n+2n=0且f (0)=0,所以n=2,m=0,此时f (x)=x3
2
D.f (x)=ex-e-x
)
BC 解析:对于A,f (x)=x3+1,定义域为R,f (1)=2,f (-1)=0,故f (x)为非
奇非偶函数;对于B,f (x)=ln |x|,定义域为(-∞,0)∪(0,+∞),f (-x)=ln |
π
-x|=ln |x|,故f (x)为偶函数;对于C,f (x)=sin x+ =cos x,故f (x)为偶函
,定义域不关于原点
x+2
对称,不是奇函数.
第1课时
函数的奇偶性、周期性、对称性
必备知识
落实“四基”
核心考点
ex-e-x
(3)(多选题)设函数f (x)=
,则下列结论正确的有(
2
A.|f (x)|是偶函数

C.f (x)|f (x)|是奇函数

提升“四能”
课时质量评价
)
B.-f (x)是奇函数

D.f (|x|)f (x)是偶函数
【常用结论】
1.函数奇偶性的2个常用结论
(1)如果一个奇函数f (x)在原点处有定义,即f (0)有意义,那么一定有f (0)=0;如
果函数f (x)是偶函数,那么f (x)=f (|x|).

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的重要概念,用于描述自然界和社会现象中的各种关系。

在数学中,函数的奇偶性和周期性是两个常见的性质,它们描述了函数图像的对称性和重复性。

本文将深入探讨函数的奇偶性和周期性,并说明它们在数学和实际问题中的应用。

一、函数的奇偶性函数的奇偶性是指函数在坐标轴上的对称性质。

具体而言,对于定义域内的任意 x 值,如果函数 f(-x) = f(x) 对于所有 x 成立,那么函数就是偶函数;如果函数 f(-x) = -f(x) 对于所有 x 成立,那么函数就是奇函数。

以数学中常见的函数 y = x^2 和 y = x^3 为例,前者是偶函数,后者是奇函数。

通过将 x 值取负,我们可以验证它们的对称性。

对于偶函数 y = x^2,有 f(-x) = (-x)^2 = x^2 = f(x);对于奇函数 y = x^3,有 f(-x) = (-x)^3 = -x^3 = -f(x)。

函数的奇偶性不仅仅是一种几何上的对称性,还可以对函数的性质进行推理和证明。

例如,奇函数与奇函数相加、相减或与偶函数相乘的结果仍然是奇函数;而偶函数与偶函数相加、相减或与奇函数相乘的结果仍然是偶函数。

二、函数的周期性函数的周期性是指函数图像在特定区间内的重复性质。

具体而言,如果存在一个正数 T,对于定义域内的所有 x,有 f(x + T) = f(x) 成立,那么函数就是周期函数,而 T 则是函数的周期。

常见的周期函数包括三角函数(如正弦函数和余弦函数)、指数函数和对数函数等。

例如,正弦函数具有周期2π,即sin(x + 2π) = sin(x);指数函数 e^x 则是自变量连续取整数时的周期函数,即 e^(x + 1) = e^x。

周期函数在数学和物理中有广泛的应用。

例如,三角函数可以用来描述物体的振动、电流的变化和天体运动等。

周期函数的性质使得我们能够准确地描述和预测这些现象。

结语函数的奇偶性和周期性是数学中常见且重要的概念。

函数的奇偶性与周期性知识点与经典例题

函数的奇偶性与周期性知识点与经典例题

函数的奇偶性与周期性知识点和经典试题本节知识点详解:1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.重要结论:1.函数奇偶性的四个重要结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(4)奇函数的图像在对称的区间上单调性相同,偶函数在对称的区间上单调性相反。

(5)运算性质①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.2.函数周期性的三个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)3.函数对称性的三个常用结论(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称;(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y =f(x)关于点(b,0)中心对称.经典选题一、判断题:判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)函数y=x2,x∈(0,+∞)是偶函数.()(2)偶函数图象不一定过原点,奇函数的图象一定过原点.()(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.()(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(5)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.答案:(1)×(2)×(3)√(4)√(5)√二、选择题:1.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b 的值是()A.-13 B.13 C.12D.-12答案:B2.下列函数为奇函数的是()A.y=2x-12x B.y=x3sin xC.y=2cos x+1 D.y=x2+2x答案:A3.下列函数为奇函数的是()A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x答案:D4.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( )A .y =x 2B .y =-x 3C .y =-ln|x |D .y =2x答案:C5.(高考全国Ⅰ卷)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案:C6.已知定义在R 上的奇函数f (x )满足f (x +1)=f (x ),当0<x <12时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-54=( )A .- 2B .-22C .-1 D.22 答案:A7. 已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A .-3B .-54 C.54 D .3 答案:A8.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案:C9.定义在R 上的奇函数f (x )满足f (x +2)=-1f (x ),且在(0,1)上f (x )=3x ,则f (log 354)=( )A.32B.23 C .-32 D .-23 答案:C10.已知f (x )是定义在实数集R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=-x 2,则f ⎝ ⎛⎭⎪⎫132=( )A .-94B .-14 C.14 D.94 答案:D11. (理科)(2015·高考新课标卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ 答案:A12.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2) 答案:A13.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 答案:B14.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 答案:D三、填空题1. (2017·高考全国Ⅱ卷)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)= ________ . 答案:122.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 ________ .答案:(-1,0)∪(1,+∞)3. (2015·高考全国Ⅰ卷)若函数f (x )=x ln (x +a +x 2)为偶函数,则a = ________ .答案:14.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )= ________ .答案:⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <05.已知函数y =f (x )是R 上的偶函数,且在[0,+∞)上是增函数,若f (a )≥f (2),则实数a 的取值范围是 __________ .答案: {a |a ≥2或a ≤-2}。

第08讲 函数的奇偶性及周期性(解析版)

第08讲 函数的奇偶性及周期性(解析版)

第8讲 函数的奇偶性及周期性【基础巩固】1.(2022·湖南·长沙一中模拟预测)已知()f x 是定义在R 上的奇函数,且 (2)()f x f x += ,当()01x ∈,时,()31x f x =-,则3(log 4)f =( ) A .54-B .54C .59-D .59【答案】A 【解析】(2)()f x f x +=,()f x ∴是周期为2的函数3334(log 4)(log 42)(log )9f f f ∴=-=又()f x 是定义在R 上的奇函数 333499(log )(log )(log )944f f f ∴=-=-当()01x ∈,时,()31x f x =- 39log 43995(log )(31)(1)444f ∴-=--=--=-故选:A2.(2022·重庆南开中学模拟预测)函数()2sin 1xf x x =+的图像大致为( ) A . B .C .D .【答案】A【解析】解:()f x 的定义域为R ,()()2sin 1xf x f x x --==-+,所以()f x 为奇函数,排除CD 选项.当()0,x π∈时,sin 0x >,()0f x >,由此排除B 选项. 故选:A3.(2022·海南海口·二模)已知函数()f x 是定义在R 上的奇函数,函数()()2g x x f x =-的图象关于直线2x =对称,若()11f -=-,则()3g =( ) A .5 B .1C .1-D .5-【答案】B【解析】因为()g x 的图象关于2x =对称,则()()22g x x f x +=+是偶函数,()()()222g x x f x x f x -=--=-,且()()22g x x f x +=+,所以,()()22x f x x f x -=+对任意的x ∈R 恒成立,所以,()()22f x f x -=+, 因为()11f -=-且()f x 为奇函数,所以,()()()()3212111f f f f =+=-=--=, 因此,()()()332311g f f =-==. 故选:B.4.(2022·江苏江苏·二模)已知()f x 是定义域为R 的偶函数,f (5.5)=2,g (x )=(x -1)()f x .若g (x +1)是偶函数,则5()0.g -=( )A .-3B .-2C .2D .3【答案】D【解析】()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =-, 即()()()()112x f x x f x -=--,即()()20f x f x +-=,()f x ∴关于()1,0对称,又f (x )是定义域为R 的偶函数,∴()()()22f x f x f x =--=--,∴f (x -4)=f [(x -2)-2]=-f (x -2)=-[-f (x )]=f (x ),即f (x -4)=f (x ),()f x ∴周期为4,∴()()()()5.5 1.5 2.5 2.52f f f f ==-==,()()()0.5 2.5 1.5 2.53g g f ∴-===.故选:D.5.(2022·湖南·雅礼中学二模)函数()f x 的定义域为R ,若()1f x +是奇函数,()1f x -是偶函数,则( ) A .()f x 是奇函数 B .()3f x +是偶函数 C .()30f = D .()()3f x f x =+【答案】B【解析】因为()1f x +是奇函数,∴()()11f x f x +=--+, ∴()1f x -是偶函数,∴()()11f x f x -=--,即()()13f x f x +=--,()()()()1340f x f x f x f x ∴--+=--⇒++=,则()()()84f x f x f x +=-+=,即周期为8; 另一方面()()()511f x f x f x +=-+=-+, ∴()()33f x f x +=-+,即()3f x +是偶函数. 故选:B.6.(2022·辽宁·抚顺市第二中学三模)函数()21y f x =-是R 上的奇函数,函数()y f x =图像与函数()y g x =关于y x =-对称,则()()g x g x +-=( ) A .0 B .-1C .2D .1【答案】C【解析】函数()21y f x =-是R 上的奇函数,则()()2121f x f x =---- 设21x t -=,则()()2f f t t =---,则函数()y f x =的图像关于点()1,0-对称 函数()y f x =图像与函数()y g x =关于y x =-对称, 所以函数()y g x =的图像关于()0,1对称,所以()()2g x g x +-= 故选:C7.(2022·重庆八中模拟预测)定义域为R 的偶函数()f x ,满足(0)1f =-.设()(1)()g x x f x =-,若(1)g x +是偶函数,则(2022)g =( )A .2022-B .2021-C .2021D .2022【答案】C【解析】∴()(1)()g x x f x =-,∴(()1)1x g f x x =++,又()1g x +为偶函数, ∴()1(1)x x xf xf --=++,即()(11)x x f f --=++, ∴(2)()f x f x +=--,又()f x 是定义域为R 偶函数, ∴()()()()()2,42f x f x f x f x f x +=-+=-+=, ∴()f x 周期为4,又(0)1f =-, ∴(2022)(2)(0)1f f f ==-=, ∴2021(2022)202(20212)f g ==. 故选:C.8.(2022·湖北·华中师大一附中模拟预测)已知定义在D 的上函数()f x 满足下列条件:∴函数()f x 为偶函数,∴存在00x >,()f x 在0[,)x +∞上为单调函数. 则函数()f x 可以是( ) A .2ln(1)()x x f x ++=B .()sin(2π)(22)x x f x x -=-C .()3log (01)a f x x ax a =-<<D .2()ln(e )ln(e )f x x x x =+-+【答案】C【解析】对于A ,()f x 定义域为{}0x x ≠,222lnln(1)1()()x x x x f x f x -++++-===-,即()f x 为奇函数,A 不是; 对于B ,()f x 定义域为R ,由()0f x =得(Z)2k x k =∈,即对任意的正整数k ,2k都是()f x 的零点,显然不能满足条件∴,B 不是;对于C ,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x a ≠()f x 定义域为{|0x x ≠且}x a ≠±,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,满足条件∴,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得3a x =,令3()u g x x ax ==-,当x a ()0g x '>,即()g x 在(,)a +∞上为增函数,而01a <<,log a u 在()0,∞+上为减函数,因此()f x 在(,)a +∞上为减函数, 即存在00x a ,()f x 在0[,)x +∞上为减函数,满足条件∴,C 是; 对于D ,()f x 定义域为(e,e)-,不能满足条件∴,D 不是. 故选:C9.(多选)(2022·辽宁沈阳·三模)已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25xf xg x x x +=--,则下列说法正确的有( )A .()01g =B .()g x 在[]0,1上单调递减C .()1101g x -关于直线1101=x 对称D .()g x 的最小值为1【答案】ACD【解析】由题,将x -代入()()2022sin 25+=--x f x g x x x 得()()()()2022sin 25x f x g x x x --+-=----,因为(),()f x g x 分别是定义在R 上的奇函数和偶函数,所以可得()()2022sin 25x f x g x x x --+=++,将该式与题干中原式联立可得()202220222x xg x -+=. 对于A :()0020222022012g -+==,故A 正确;对于B :由()01g =,()1120222022112g -+=>,所以()g x 不可能在在[]0,1上单调递减,故B 错误;对于C : ()g x 为偶函数,关于y 轴对称,(1101)-g x 表示()g x 向右平移1101个单位,故(1101)-g x 关于1101=x 对称,故C 正确;对于D :根据基本不等式()112022122022xx g x ⎛⎫=+≥ ⎪⎝⎭,当且仅当0x =时取等,故D 正确. 故选:ACD10.(多选)(2022·广东·潮州市瓷都中学三模)定义在R 上的偶函数()f x 满足()()22f x f x +=-,当[]0,2x ∈时,()2f x x =-,设函数()()226x g x e x --=-<<,则正确的是( )A .函数()f x 图像关于直线2x =对称B .函数()f x 的周期为6C .()71f =-D .()f x 和()g x 的图像所有交点横坐标之和等于8 【答案】AD 【解析】()()22f x f x +=-,∴函数()f x 图像关于直线2x =对称,故A 正确;又()f x 为偶函数,()()22(2)f x f x f x +=-=-,所以函数()f x 的周期为4,故B 错误;由周期性和对称性可知,()7(3)(1)1f f f ===,故C 错误; 做出()f x 与()g x 的图像,如下:由图可知,当26x -<<时,()f x 与()g x 共有4个交点,()f x 与()g x 均关于直线2x =对称,所以交点也关于直线2x =对称,则有1234+248x x x x ++=⨯=,故D 正确. 故选:AD.11.(2022·湖南·长郡中学模拟预测)已知函数()3()22x xf x x a -=⋅+是奇函数,则=a __________. 【答案】1【解析】设()22x x g x a -=⋅+,因为()3()f x x g x =⋅是奇函数,所以()()33()()g x x f x x f x x g -=-=-=-⋅⋅-,即()()2222x x x x g x g x a a ---=⇒⋅+=⋅+,整理得到()(1)220x xa ---=,故1a =.故答案为:1.12.(2022·山东烟台·三模)若()()()2ln 1f x g x x =⋅-为奇函数,则()g x 的表达式可以为()g x =___________.【答案】x ,sin x ,1x,3x ,等(答案不唯一)【解析】由()()()2ln 1f x g x x =⋅-为奇函数,则有()()f x f x -=-即()()()()22ln 1ln 1g x x g x x -⋅-=-⋅-恒成立则()()g x g x -=-,则()g x 为奇函数则()g x 的表达式可以为()g x x =或()1g x x=或()sin g x x =等 故答案为:x ,sin x ,1x,3x ,等 13.(2022·江苏·南京市天印高级中学模拟预测)已知()f x 是定义在R 上的函数,若对任意x ∈R ,都有(8)()(4)f x f x f +=+,且函数(2)f x -的图像关于直线2x =对称,(2)3f =,则(2022)f =_______.【答案】3【解析】因为函数(2)f x -的图像关于直线2x =对称,所以函数()f x 的图像关于直线0x =对称,即函数()f x 是偶函数,则有()()f x f x =-; 因为对任意x ∈R ,都有(8)()(4)f x f x f +=+, 令4x =-,得()()()()()4844440f f f f f -+=-+⇒-==,所以对任意x ∈R ,都有()(8)()(4)f x f x f f x +=+=,即函数()f x 的周期为8, 则()()()()()()202225286668223f f f f f f =⨯+==-=-==, 故答案为:3.14.(2022·山东·胜利一中模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意R x ∈恒成立,又函数()9f x +的图象关于点(9,0)-对称,且(1)2022f =,则(45)f =_________. 【答案】2022-【解析】因为函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意R x ∈恒成立,所以令1x =-,即(2)(2)9(2)f f f =+,解得(2)0f =,所以(3)(1)f x f x +=-对任意R x ∈恒成立,又函数()9f x +的图象关于点(9,0)-对称,将函数()9f x +向右平移9个单位得到()f x , 所以()f x 关于点(0,0),即()f x 为R 上的奇函数,所以()()f x f x =--, 又(3)(1)f x f x +=-对任意R x ∈恒成立,令3x x =--,得()(4)f x f x -=+, 即()(4)f x f x -=+,再令4x x =+,得(+4)(8)f x f x -=+,分析得()(8)f x f x =+, 所以函数()f x 的周期为8,因为(1)2022f =,所以在(3)(1)f x f x +=-中, 令0x =,得(3)(1)2022f f ==,所以()()()(45)683332022f f f f =⨯-=-=-=-. 故答案为:2022-.15.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式. 【解】依题意,函数()f x 是奇函数,()g x 是偶函数, ()()()()11()()1111()()11f x g x f x g x x x f x g x f x g x x x ⎧⎧+=+=⎪⎪⎪⎪--⇒⎨⎨⎪⎪-+-=-+=⎪⎪----⎩⎩ 解得()2()11x f x x x =≠±-,()()2111g x x x =-≠±. 16.(2022·北京·高三专题练习)设a 为实数,已知函数()()1R 21xaf x x =-∈+是奇函数. (1)求a 的值;(2)判断()f x 在R 上的单调性,并给出证明;(3)解关于x 的不等式()()21540f x x f x -++-<.【解】(1)解:因为函数()()1R 21x af x x =-∈+为奇函数,则()()f x f x -=-, 即()()()222212121221xxx x x x a a a a f x f x --⎡⎤⋅⎢⎥-+=--=-+++++⎢⎥⎣⎦()1222021x xa a +=-=-=+,解得2a =.(2)证明:由(1)可得()2121xf x =-+,则函数()f x 为R 上的增函数,理由如下:任取1x 、2R x ∈且12x x <,则21220x x >>,则()()()()()121212122222211021212121x x x x x x f x f x -⎛⎫⎛⎫-=---=< ⎪ ⎪++++⎝⎭⎝⎭,即()()12f x f x <, 因此,函数()f x 为R 上的增函数.(3)解:因为函数()f x 为R 上的奇函数且为增函数,由()()21540f x x f x -++-<可得()()()215445f x x f x f x -+<--=-,则2145x x x -+<-,即2560x x -+<,解得23x <<,因此,不等式()()21540f x x f x -++-<的解集为()2,3.【素养提升】1.(2022·湖北省仙桃中学模拟预测)已知(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-,则2(|log |)0f x <的解集为( )A .2[(1,2] B .2(2) C .2((1,2) D .2(2,)+∞ 【答案】C【解析】因为(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-;所以当0x =时,()0f x =;当0x >时,则0x -<,所以()312()8log f x x x -=-+.因为()y f x =是奇函数,所以()()312()8log f x f x x x -=-=-+,所以()3128log f x x x =-.即当0x >时,()3128log f x x x =-.综上所述:()()3123128log ,00,08log ,0x x x f x x x x x ⎧+-<⎪⎪==⎨⎪->⎪⎩. 令2log t x =,则2log 0t x =≥,所以不等式2(|log |)0f x <可化为:()00f t t <⎧⎨≥⎩. 当0=t 时,()0f t =不合题意舍去.当0t >时,对于()3128log f x x x =-. 因为3y x =在()0,+∞上递增,12log y x =-在()0,+∞上递增,所以()3128log f x x x =-在()0,+∞上递增.又3121118log 0222f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以由()00f t t <⎧⎨≥⎩可解得:102t <<,即210log 2x <<,解得:2((1,2)x ∈.故选:C2.(2022·天津·南开中学模拟预测)已知可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集为( ) A .ππ,26⎛⎫-- ⎪⎝⎭B .π,06⎛⎫- ⎪⎝⎭C .ππ,24⎛⎫-- ⎪⎝⎭D .π,04⎛⎫- ⎪⎝⎭【答案】D【解析】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则()()cos sin 0xf x f x x '+>则函数()sin xf x 在π0,2⎛⎫⎪⎝⎭上单调递增,又可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数则()sin xf x 是ππ,22⎛⎫- ⎪⎝⎭上的偶函数,且在π,02⎛⎫- ⎪⎝⎭单调递减,由πππ222ππ22x x ⎧-<+<⎪⎪⎨⎪-<-<⎪⎩,可得π,02x ⎛⎫∈- ⎪⎝⎭,则ππ0,22x ⎛⎫+∈ ⎪⎝⎭,π0,2x ⎛⎫-∈ ⎪⎝⎭则π,02x ⎛⎫∈- ⎪⎝⎭时,不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭可化为()()ππsin sin 22x f x x f x ⎛⎫⎛⎫+⋅+>-⋅- ⎪ ⎪⎝⎭⎝⎭又由函数()sin xf x 在π0,2⎛⎫⎪⎝⎭上单调递增,且π0,2x ⎛⎫-∈ ⎪⎝⎭,ππ0,22x ⎛⎫+∈ ⎪⎝⎭,则有ππ022x x >+>->,解之得π04x -<<故选:D3.(多选)(2022·江苏泰州·模拟预测)已知定义在R 上的单调递增的函数()f x 满足:任意x ∈R ,有()()112f x f x -++=,()()224f x f x ++-=,则( )A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,f x Tf xD .存在非零实数c ,使得任意x ∈R ,()1f x cx -≤ 【答案】ABD【解析】对于A ,令1x t =-,则()()22f t f t +-=,即()()22f x f x +-=, 又()()224f x f x ++-=,()()()()()242422f x f x f x f x ∴+=--=--=+; 令0x =得:()()112f f +=,()()224f f +=,()11f ∴=,()22f =, 则由()()22f x f x +=+可知:当x ∈Z 时,()f x x =,A 正确; 对于B ,令1x t =+,则()()22f t f t -++=,即()()22f x f x -++=,()()()()()2224222f x f x f x f x ∴-=-+=---=--,由A 的推导过程知:()()22f x f x -=-,()()()22f x f x f x ∴-=--=-,B 正确; 对于C ,()f x 为R 上的增函数,∴当0T >时,x T x +>,则()()f x T f x +>;当0T <时,x T x +<,则()()f x T f x +<,∴不存在非零实数T ,使得任意x ∈R ,f x Tf x ,C 错误;对于D ,当1c =时,()()f x cx f x x -=-;由()()112f x f x -++=,()()224f x f x ++-=知:()f x 关于()1,1,()2,2成中心对称,则当a Z ∈时,(),a a 为()f x 的对称中心; 当[]0,1x ∈时,()f x 为R 上的增函数,()00f =,()11f =,()[]0,1f x ∴∈,()1f x x ∴-≤;由图象对称性可知:此时对任意x ∈R ,()1f x cx -≤,D 正确. 故选:ABD.4.(多选)(2022·广东·深圳市光明区高级中学模拟预测)若()f x 图像上存在两点A ,B 关于原点对称,则点对[],A B 称为函数()f x 的“友情点对”(点对[],A B 与[],B A 视为同一个“友情点对”).若()e ex x x f x x =+,且20212022a =,20222021b =,()()cos Z c k k π=∈,则( )A .()f x 有无数个“友情点对”B .()f x 恰有2个“友情点对”C .()()()f a f b f c <<D .()()()f b f c f a << 【答案】AD【解析】因为R x ∈, ()()e e e e x x x x x x f x x x f x ---⎛⎫-=-+=-+=- ⎪⎝⎭,所以()f x 是奇函数, 所以()f x 图像上存在无数对A ,B 关于原点对称,即()f x 有无数个“友情点对”; 又因为()2e 111()e e ,e e x x x x xx x x f x x x R ++--'=+=+∈,令()2()e 11x g x x x =++-, 则()2()e 321x g x x '=+-,令()2()e 321x h x x =+-,则()2()e 84x h x x '=+,当0x ≥时,()0h x '≥,所以()h x 是增函数,()()020h x h ≥=>,即()0g x '>, 所以当0x ≥时()g x 是增函数,()(0)20g x g ≥=>,所以()0f x '>,()f x 在0x ≥上是增函数,因为()f x 是奇函数,所以()f x 在R x ∈上是增函数,因为202120222021a =>,指数函数2021x y =为增函数,所以1a >,因为020221202220212022b =<=<,指数函数2022x y =为增函数,所以01b <<, 由()()cos Z c k k π=∈可得1c =,故b c a <<所以()()()f b f c f a <<.故选:AD.5.(2022·江苏·高三专题练习)已知奇函数()f x 在区间(),0∞-上是增函数,且()21f -=-,()10f =,当0x >,0y >时,都有()()()f xy f x f y =+,则不等式()3log 10f x +<的解集为______.【答案】()()1114,22,1,1,242⎛⎫⎛⎫--⋃--⋃⋃ ⎪ ⎪⎝⎭⎝⎭【解析】不等式3log |()1|0f x +<等价为0|()1|1f x <+<,即0()11f x <+<或1()10f x -<+<,即1()0f x -<<或2()1f x -<<-,()f x 是奇函数,且(2)1,(1)0f f -=-=,(2)1,(1)0f f ∴=-=, 故11(1)(2)(2)()022f f f f =⨯=+= ,则1()12f =- , 11111()()()()242222f f f f =⨯=+=-, (4)(4)(2)(2)2f f f f -=-=--=- ,又奇函数()f x 在区间(,0)-∞上是增函数 ,故()f x 在区间(0,)+∞上也是增函数, 故1()0f x -<<即(2)()(1)f f x f -<<-或1()()(1)2f f x f <<, 此时1(2,1)(,1)2x ∈-- ; 而2()1f x -<<-即(4)()(2)f f x f -<<- 或11()()()42f f x f <<, 此时11(4,2)(,)42x ∈-- ; 故不等式()3log 10f x +<的解集为()()1114,22,1,1,242⎛⎫⎛⎫--⋃--⋃⋃ ⎪ ⎪⎝⎭⎝⎭, 故答案为:()()1114,22,1,1,242⎛⎫⎛⎫--⋃--⋃⋃ ⎪ ⎪⎝⎭⎝⎭6.(2022·山东潍坊·一模)已知定义在R 上的函数()f x 满足()()0f x f x +-=,且(1)f x +为偶函数,当01x ≤≤时,()f x x =x 的方程|()|(||)f x f x ax +=有4个不同实根,则实数a 的取值范围是______.【答案】2222(,)(,)5995--⋃ 【解析】依题意,()()R,x f x f x ∀∈-=-,当01x ≤≤时,()f x x =10x ≤≤-时,()()f x f x x =--=--又(1)f x +为偶函数,即(1)(1)-+=+f x f x ,即()(2)f x f x =-,当12x ≤≤,即021x ≤-≤时,()2f x x =-,当23x ≤≤,即120x -≤-≤时,()(2)f x x =---因此,当[1,3]x ∈-时,,10,01()2,122,23x x x x f x x x x x ⎧---≤<⎪≤<⎪=⎨-≤<⎪--≤≤⎩, 显然有(2)()()(2)(2)f x f x f x f x f x +=-=-=--=-,于是得()f x 是周期为4的周期函数,当02x ≤≤时,()01f x ≤≤,当24x ≤≤时,()10f x -≤≤,令()|()|(||)g x f x f x =+,则()|()|(||)|()|(||)|()|(||)()g x f x f x f x f x f x f x g x -=-+-=-+=+=,函数()g x 是R 上的偶函数,()y g x =的图象关于y 轴对称,讨论0x ≥的情况,再由对称性可得0x ≤的情况,当0x ≥时,()|()|(||)|()|()g x f x f x f x f x =+=+,则02x ≤≤时,()2()g x f x =,当24x ≤≤时,()0g x =,当[4,44],N x k k k ∈+∈时,函数()y g x =的图象、性质与[0,4]x ∈的的图象、性质一致, 关于x 的方程|()|(||)f x f x ax +=有4个不同实根,即直线y ax =与()y g x =的图象有4个公共点,当0x ≥时,函数()y g x =的部分图象如图,观察图象知,当直线y ax =过原点(0,0)及点(9,2),即29a =时,直线29y x =与()y g x =的图象有5个公共点,当直线y ax =过原点(0,0)及点(5,2),即25a =时,直线25y x =与()y g x =的图象有3个公共点, 当直线29y x =绕原点逆时针旋转到直线25y x =时,旋转过程中的每个位置的直线y ax =(不含边界)与()y g x =的图象总有4个公共点,于是得,当0x ≥时,关于x 的方程|()|(||)f x f x ax +=有4个不同实根,有2295a <<, 由对称性知,当0x ≤时,关于x 的方程|()|(||)f x f x ax +=有4个不同实根,有2259a -<<-, 所以实数a 的取值范围是:2222(,)(,)5995--⋃. 故答案为:2222(,)(,)5995--⋃。

初中数学知识归纳函数的奇偶性与函数的周期性

初中数学知识归纳函数的奇偶性与函数的周期性

初中数学知识归纳函数的奇偶性与函数的周期性初中数学知识归纳:函数的奇偶性与函数的周期性函数是初中数学中的重要概念之一,它描述了数学关系中的变化规律。

在数学中,函数的奇偶性和周期性是函数性质的两个重要方面。

下面将对函数的奇偶性和周期性进行归纳和讲解。

一、函数的奇偶性函数的奇偶性是指函数图像关于坐标轴的对称性。

考察一个函数关于原点对称,可以分成以下两种情况:1. 偶函数:若对于函数 f(x) 成立 f(-x) = f(x),则称函数 f(x) 为偶函数。

也就是说,如果把函数的自变量取相反数,函数的值不发生改变。

常见的偶函数有:幂函数 x^n (n 为偶数)、三角函数 cos(x)、指数函数 e^x 和常数函数等。

举例说明:考虑函数 f(x) = x^2,我们可以验证 f(-x) = (-x)^2 = x^2 = f(x)。

所以函数 f(x) 是一个偶函数。

2. 奇函数:若对于函数 f(x) 成立 f(-x) = -f(x),则称函数 f(x) 为奇函数。

也就是说,如果把函数的自变量取相反数,函数的值相反数乘以-1。

常见的奇函数有:幂函数 x^n (n 为奇数)、三角函数 sin(x)、反比例函数 1/x 等。

举例说明:考虑函数 f(x) = x^3,我们可以验证 f(-x) = (-x)^3 = -x^3 = -f(x)。

所以函数 f(x) 是一个奇函数。

函数的奇偶性可以通过以下方法进行验证:- 将函数关于原点对称,若图像可以完全重合,则函数是偶函数;- 将函数关于原点对称,若图像可以对称映射,但不重合,则函数是奇函数;- 通过函数的表达式进行推导与验证。

二、函数的周期性函数的周期性是指函数图像在水平方向上的重复性。

一个函数称为周期函数,如果在定义域内存在一个正数 T,对于任意的 x,函数满足f(x+T) = f(x)。

常见的周期函数有:正弦函数 sin(x)、余弦函数 cos(x)、正切函数tan(x) 等。

函数的奇偶性和周期性

函数的奇偶性和周期性

函数的奇偶性和周期性知识回顾1.函数的奇偶性的定义:① 对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-〔或0)()(=+-x f x f 〕,则称)(x f 为奇函数. 奇函数的图象关于原点对称。

② 对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-〔或0)()(=--x f x f 〕,则称)(x f 为偶函数. 偶函数的图象关于y 轴对称。

③ 通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)1. 函数的周期性命定义:对于函数)(x f ,如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期。

注:①若0)(=x f ,则)(x f 既是奇函数又是偶函数,若)0()(≠=m m x f ,则)(x f 是偶函数;②若)(x f 是奇函数且在0=x 处有定义,则0)0(=f ③若在函数)(x f 的定义域内有)()(m f m f ≠-,则可以断定)(x f 不是偶函数,同样,若在函数)(x f 的定义域内有)()(m f m f -≠-,则可以断定)(x f 不是奇函数。

2.奇偶函数图象的对称性(1) 若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x=对称; (2) 若)(x b f y +=是奇函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;3.函数的周期性(1)函数值之和等于零型,即函数)(0)()(b a x b f x a f ≠=+++ 对于定义域中任意x 满足)(0)()(b a x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=(2)函数图象有a x =,)(b a b x ≠=两条对称轴型函数图象有a x =,)(b a b x ≠=两条对称轴,即)()(x a f x a f -=+,)()(x b f x b f -=+,得)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=(3) 两个函数值之积等于1±,即函数值互为倒数或负倒数型若)(1)()(b a b x f a x f ≠=+⋅+,则得)]22()2[()2(a b a x f a x f -++=+,函数)(x f 的周期是a b T 22-=;同理若)(1)()(b a b x f a x f ≠-=+⋅+,则)(x f 的周期是)(2a b T -=(4) 分式递推型,即函数)(x f 满足)()(1)(1)(b a b x f b x f a x f ≠+-++=+ 由)()(1)(1)(b a b x f b x f a x f ≠+-++=+得)2(1)2(b x f a x f +-=+,进而得 1)2()2(-=+⋅+b x f a x f ,由前面的结论得)(x f 的周期是)(4a b T -=考点一 判断函数的奇偶性及其应用 题型1:判断有解析式的函数的奇偶性[例1] 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|;(2)f (x )=(x -1)·xx -+11; (3)2|2|1)(2-+-=x x x f ;(4)⎩⎨⎧>+<-=).0()1(),0()1()(x x x x x x x f[解析] (1)函数的定义域x ∈(-∞,+∞),对称于原点.∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-(|x +1|-|x -1|)=-f (x ),∴f (x )=|x +1|-|x -1|是奇函数.(2)由xx -+11≥0,得-1≤x <1,其定义域关于原点不对称,f (x )不是奇函数不是偶函数. (3)f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )= 2212-+-x x =x x 21-,∴f (-x )=x x ---2)(1=-xx 21-=-f (x ) 故f (x )为奇函数.(4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0).当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数.注:○1定义域具有对称性 ( 即若奇函数或偶函数的定义域为D, 则D x ∈时D x ∈-) 是一个函数为奇函数或偶函数的必要条件○2分段函数的奇偶性一般要分段证明.③判断函数的奇偶性应先求定义域再化简函数解析式.题型2:证明抽象函数的奇偶性[例2] 定义在区间)1,1(-上的函数f (x )满足:对任意的)1,1(,-∈y x ,都有)1()()(xyy x f y f x f ++=+. 求证f (x )为奇函数; [解析]令x = y = 0,则f (0) + f (0) = )0()0100(f f =++ ∴ f (0) = 0 令x ∈(-1, 1) ∴-x ∈(-1, 1) ∴ f (x ) + f (-x ) = f (21x xx --) = f (0) = 0∴ f (-x ) =-f (x )∴ f (x ) 在(-1,1)上为奇函数[练习] 1.设函数()()()a x x x f ++=12为奇函数,则=a ___________。

函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用

函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用

函数的奇偶性与周期性函数的奇偶性和周期性的判断与应用函数是数学中的重要概念之一,它描述了不同数值之间的关系。

在研究函数时,我们可以通过判断其奇偶性和周期性来更深入地了解其性质和应用。

本文将探讨函数的奇偶性与周期性以及判断和应用的方法。

一、函数的奇偶性在数学中,一个函数被称为奇函数,当且仅当对于任意x的取值,f(-x) = -f(x)。

换句话说,奇函数在坐标原点(0,0)处对称。

而如果一个函数满足对于任意x的取值,f(-x) = f(x),则被称为偶函数。

换句话说,偶函数关于坐标原点(0,0)对称。

如何判断一个函数的奇偶性呢?我们可以采取以下方法:1. 利用函数的表达式来判断。

如果函数表达式中的x为奇次幂的情况下,其对应的系数均为负号,那么该函数就是奇函数;如果函数表达式中的x为偶次幂的情况下,其对应的系数均为正号,那么该函数就是偶函数。

例如,函数f(x) = x^3满足f(-x) = -f(x),因此是奇函数。

而函数g(x) = x^2则满足f(-x) = f(x),因此是偶函数。

2. 利用函数的图像来判断。

对于奇函数,其图像是关于原点对称的,也就是左右对称;而对于偶函数,其图像是关于y轴对称的,也就是上下对称。

通过观察函数的图像,我们可以判断其奇偶性。

函数的奇偶性在实际应用中具有重要作用。

例如,奇函数的性质使得在计算积分时,可以简化计算过程。

而偶函数在对称性的应用中,可以帮助我们更好地理解函数的行为。

二、周期性函数的奇偶性和周期性判断与应用周期性函数在数学和自然科学中广泛应用。

周期性函数是指函数在某个区间内满足f(x) = f(x+T),其中T为正常数,称为函数的周期。

对于周期性函数,我们可以利用奇偶性和图像的规律来进行判断和应用。

1. 奇偶性的判断:对于周期性函数,如果其满足f(x) = f(-x),那么它是偶函数;如果其满足f(x) = -f(-x),那么它是奇函数。

2. 周期性的判断:对于周期性函数,我们可以通过观察函数的图像来确定其周期。

函数的周期性与奇偶性判断

函数的周期性与奇偶性判断

函数的周期性与奇偶性判断在数学中,函数的周期性和奇偶性是两个重要的性质,它们可以帮助我们更好地理解和分析函数的行为。

本文将详细介绍函数的周期性和奇偶性,以及如何判断一个函数是否具有这些性质。

一、函数的周期性周期性是指函数在一定的区间内,以相同的规律不断重复。

如果函数f(x)满足以下条件,则称其具有周期性:f(x + T) = f(x),其中T为正实数。

换句话说,如果对于函数f(x)的任意x值,都有f(x + T) = f(x),那么函数f(x)就是周期函数,其中T称为函数的周期。

常见的周期函数有正弦函数、余弦函数等。

例如,正弦函数sin(x)的周期是2π,即对于任意x,都有sin(x + 2π) = sin(x)。

而余弦函数cos(x)的周期也是2π。

判断一个函数是否具有周期性,可以通过观察函数的图像或使用数学方法来确定。

例如,对于三角函数来说,我们可以观察函数的波形是否在一定区间内不断重复。

对于其他类型的函数,我们可以使用数学方法来求解函数的周期。

二、函数的奇偶性奇偶性是指函数在坐标系中关于原点对称。

具体而言,如果函数f(x)满足以下条件,则称其具有奇偶性:奇函数:f(-x) = -f(x),即函数关于原点对称。

偶函数:f(-x) = f(x),即函数关于y轴对称。

对于奇函数来说,当x取正值时,函数值与对应的负值相等但符号相反。

而对于偶函数来说,无论x为正值还是负值,函数值都相等。

常见的奇函数有正弦函数sin(x),而常见的偶函数有余弦函数cos(x)。

例如,对于正弦函数sin(x),我们可以观察函数的图像是否关于原点对称,即是否在y轴上下对称。

而对于余弦函数cos(x),我们可以观察函数的图像是否关于y轴对称。

判断一个函数是否具有奇偶性,可以使用函数的性质来进行推导。

例如,对于三角函数来说,我们可以根据函数的定义和性质来判断其奇偶性。

对于其他类型的函数,我们可以使用函数的表达式进行分析。

三、函数周期性和奇偶性的应用函数的周期性和奇偶性在数学和物理中有广泛的应用。

2024年高考数学高频考点题型总结一轮复习 函数的基本性质Ⅱ-奇偶性、周期性和对称性(基础+重难点)

2024年高考数学高频考点题型总结一轮复习 函数的基本性质Ⅱ-奇偶性、周期性和对称性(基础+重难点)

2024年高考数学高频考点题型归纳与方法总结第08讲函数的基本性质Ⅱ-奇偶性、周期性和对称性(精练)【A组在基础中考查功底】一、单选题....【答案】A【分析】首先判断函数的奇偶性,再代入计算)π和2f π⎛⎫⎪⎝⎭的值即可得到正确答案【详解】因为()()2cos cos sin f x x x x x f x -=+=,且函数定义域为R ,关于原点对称,所以是偶函数,其图象关于y 轴对称,排除)22πcosππsinπππ=+=-<2πππππcos sin 22222⎛⎫=+= ⎪⎝⎭故选:A.2023·高三课时练习)设f 上的偶函数,且()f x 在[0,1的解集为().1,12⎛⎫ ⎪⎝⎭11,2⎛⎫-- ⎪⎝⎭111,,122⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭.111,,122⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U【答案】C【解析】由函数为偶函数可将不等式化为12f ⎛⎫⎪⎝⎭,即可利用单调性求解【详解】 ()f x 是定义在(11122f f ⎛⎛⎫-= ⎪⎝ ⎪⎝⎭⎭⎫=,则不等式()1f x <为()f x <12⎫⎪⎭,()x 在[)0,1上是严格减函数,12>,解得12x <-或x >)1,1,故不等式的解集为11,2⎛⎫-- ⎪⎝⎭二、多选题9.(2023·全国·高三专题练习)已知定义在R 上的奇函数()f x 的图象连续不断,且满足()()2f x f x +=,则以下结三、填空题11.(2023秋·吉林长春·高三长春市第二中学校考期末)设()y f x =是定义在R 上的奇函数,且()()2f x f x +=-,又当[]0,1x ∈时,()2f x x =,则()25.5f 的值为______.【答案】1【分析】由已知可得函数的周期为4,然后根据函数解析式结合周期性奇偶性可求得结果.【详解】因为()()2f x f x +=-,所以()()42f x f x +=-+,所以()()4f x f x +=,所以()y f x =的周期为4,因为()y f x =是定义在R 上的奇函数,当[]0,1x ∈时,()2f x x =,所以()()25.546 1.5f f =⨯+()1.5f =()0.52f =-+()0.5f =--()0.5f =20.51=⨯=,故答案为:112.(2023·全国·高三对口高考)已知函数()y f x =,x ∈R ,()y f x =是奇函数,且当0x ≥时,()32x f x x a =++,则0x <时,()f x =________.【答案】321x x --+【分析】由奇函数性质得1a =-,再根据奇函数求解析式即可.【详解】解:因为()f x 为R 上的奇函数,当0x ≥时,()32xf x x a =++,所以()0010f a =++=,解得1a =-.【B 组在综合中考查能力】一、单选题A .()sin 2e e x xx xf x -=-C .()cos 2e ex xx xf x -=-【答案】A【分析】根据给定的函数图象特征,利用函数的奇偶性排除【详解】对于B ,[2,0)(0,2]x ∈-⋃,f 对于C ,[2,0)(0,2]x ∈-⋃,()x f x --=对于D ,[2,0)(0,2]x ∈-⋃,cos (1)e e f =-对于A ,[2,0)(0,2]x ∈-⋃,()x f x --=且()1sin 210e ef -=>-,A 符合题意.故选:由(6)()f x f x -=②,得()f x 的图象关于直线3x =对称;由①②可得:(6)(2)f x f x -=--,即(4)()f x f x +=-,所以()(4)f x f x =--,故(4)(4)f x f x +=-,所以函数()f x 的周期8T =;所以(5)(1)20,(12)(4)(2)4f f a b f f f ==+====-,即1a b +=-,联立201a b a b +=⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,故2()22x f x x =-.所以()32(2023)(1)(3)22310f f f =-=-=--⨯=.故选:A.二、多选题三、填空题四、解答题【C 组在创新中考查思维】一、单选题1.(2023·辽宁·校联考二模)设函数()f x 在(),-∞+∞上满足()()22f x f x -=+,()()55f x f x -=+,且在闭区间[]0,5上只有()()130f f ==,则方程()0f x =在闭区间[]2020,2020-上的根的个数().A .1348B .1347C .1346D .1345【答案】B【分析】根据周期函数性质可知,只需求出一个周期里的根的个数,可求得()f x 在[]2,7上的零点个数,再分区间[)2022,2-和[]0,2020讨论即可.【详解】()f x 在R 上满足(2)(2)f x f x -=+,(5)(5)f x f x -=+,()f x 关于直线2x =和直线5x =对称,()(4)f x f x ⇒=-,()(10)f x f x =-,(4)(10)f x f x ⇒-=-,二、多选题三、填空题四、解答题。

第08讲 函数的奇偶性、周期性 高考数学大一轮复习核心题型 易错重难点专项突破(新高考版)

第08讲 函数的奇偶性、周期性 高考数学大一轮复习核心题型 易错重难点专项突破(新高考版)
注意
对于分段函数奇偶性的判断,要分段判断 f (- x )= f ( x )或 f (- x )=- f ( x )
是否成立,只有当所有区间都满足相同关系时,才能判断该分段函数的奇偶性.
角度1 判断函数的奇偶性
例1 (1)[全国卷Ⅰ]设函数 f ( x ), g ( x )的定义域都为R,且 f ( x )是奇函数, g ( x )是偶函
−1

−1
ex
+e- x ,所以 a -1=±1,解得 a =0(舍去)或 a =2,故选D.
解法二


f ( x )= = (−1) − , f ( x )是偶函数,又 y = x 是奇函数,所以
−1


y =e( a -1) x -e- x 是奇函数,故 a -1=1,即 a =2,故选D.
A. (0,+∞)
B. (-∞,-4)
C. (-4,0)
D. (-∞,-4)∪(0,+∞)

定义域为{ x | x ≠0}, f ( x )是奇函数,在定义域上不具有单调性,故D错误.故选
C.
2.[2023南京市、盐城市一模]若函数 f ( x )= x 3+ bx 2+ cx + d 满足 f (1- x )+ f (1+ x )
=0对一切实数 x 恒成立,则不等式 f '(2 x +3)< f '( x -1)的解集为(
图像特征 关于 y轴
对称
f(-x)=-f(x) ,则称y=f(x)为奇函数
关于 原点
对称
2.函数的周期性
(1)周期函数
非零常数
一般地,对于函数f(x),如果存在一个
T,使得对定义
域内的 每一个x

函数的奇偶性、周期性与对称性

函数的奇偶性、周期性与对称性

f ( x ) ,那么函数 f ( x )就叫做奇函数
关于 原点

对称

知识点二 函数的周期性
1. 周期函数
设函数 f ( x )的定义域为 D ,如果存在一个非零常数 T ,使得对每一个 x
∈ D 都有 x + T ∈ D ,且
f ( x ± T )= f ( x )
函数,非零常数 T 为这个函数的周期.

考点四
函数的对称性及其应用
◉角度(一) 利用函数的对称性求函数值问题
例4
已知定义在R上的函数 f ( x ),对任意 x ∈R,都有 f ( x +6)=
f ( x )+ f (3)成立,若函数 y = f ( x +1)的图象关于直线 x =-1对称,
则 f (2 025)=( A
)
A. 0
B. 2 013
∴ f (- x )= f ( x )对于任意 x ∈R都成立,
∴ f (-1)= f (1),即2-| a -3|=2-| a +3|,
解得 a =0.
D )
4. 已知函数 f ( x )是定义在R上的周期为4的奇函数,若 f (1)=1,则
f (2 023)= -1
.

因为函数 f (方法总结
跟踪训练
2. (2023·新高考Ⅱ卷)若 f ( x )=( x + a )ln
A. -1
2−1
为偶函数,则 a =(
2+1
B. 0
D. 1
f (- x )=(- x + a )ln
−2−1
2+1
2−1
= (- x + a )ln
=( x - a )ln
.
−2+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.奇函数 f(x) 在[3, 7]上是增函数, 在[3, 6]上的最大值为 8, 最小值为 -1, 则 2f(-6)+f(-3) 的值为( D ) A. 5 B. -5 C. -13 D. -15 6.奇函数 f(x) 在[-1, 0]上是减函数, , 是锐角三角形的两 个内角, 且 , 则下列不等式中正确的是( D ) A. f(cos)>f(cos) B. f(sin)>f(sin) C. f(cos)<f(cos) D. f(sin)<f(cos) 7.已知 f(x) 的图象关于直线 x=a 对称, 又关于点 (m, n) 对称, 其中 ma. 求证 f(x) 是以 4(a-m) 为周期的周期函数. 证: 由已知, f(x)=f(2a-x), 且 f(x)+f(2m-x)=2n, ∴ f[4(a-m)+x]=f[2a-(4m-2a-x)] =f(4m-2a-x)=f[2m-(2a+x-2m)] =2n-f(2a+x-2m)=2n-f[2a-(2m-x)] =2n-f(2m-x)=2n-[2n-f(x)]=f(x). ∴f(x) 是以 4(a-m) 为周期的周期函数.
课堂练习
1.设 f(x)(x∈R)是以 3 为周期的奇函数, 且 f(1)>1, f(2)=a, 则( D ) A. a>2 B. a<-2 C. a>1 D. a<-1 2.已知奇函数 f(x) 在 x>0 时的表达式为 f(x)=2x - 1 , 则当 2 1 时有( x<- 4 B ) A. f(x)>0 B. f(x)<0 C. f(x)+f(-x)<0 D. f(x)+f(-x)>0 4- x2 3.函数 f(x)= |x-2| 的奇偶性是( C ) A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 4.已知 y=f(x-1) 是偶函数, 则 y=f(x) 的图象关于( A ) A.直线 x+1=0 对称 B.直线 x-1=0 对称 C.直线 x- 1 =0 对称 D. y 轴对称 2
二、简单性质
1.奇函数的图象关于原点对称, 反之成立! 偶函数的图象关于 y 轴对称. 2.单调性: 奇函数在关于原点对称的区间上单调性相同;
偶函数在关于原点对称的区间上单调性相反.
3.奇函数: f(0)=0(0 在定义域中), 偶函数: f(x)=f(|x|).
三、函数奇偶性的判定方法
1.根据定义判定: 首先看函数的定义域是否关于原点对称, 若不对称, 则函数 是非奇非偶函数;若对称, 再判定 f(-x)=f(x) 或 f(-x)=-f(x) 是否成立. 有时判定 f(-x)=±f(x) 比较困难, 可考虑判定 f(-x) f(x)=0 f(x) 或判定 f(-x) =1. 2.利用定理, 借助函数的图象判定: 3.性质法判定: 在公共定义域内, 两奇函数之积(商)为偶函数; 两偶函数之积(商)也为偶函数; 一奇一偶函数之积(商)为奇函数. (注意取商时分母不为零!)
一、函数的奇偶性
1.若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x)=f(x), 则 称 f(x) 为偶函数. 2.若对于函数 f(x) 定义域内任意一个 x, 都有 f(-x)=-f(x), 则 称 f(x) 为奇函数. 3.若函数 f(x) 不具有上述性质, 则称 f(x) 不具有奇偶性; 若 函数同时具有上述两条性质, 则 f(x) 既是奇函数, 又是偶函数. 例: 函数 f(x)=0(x∈D, D关于原点对称)是既奇又偶函数.
2.(1)设函数 f(x) 的定义域关于原点对称, 判断下列函数的奇 偶性: ①F(x)= 1 [f(x)+f(-x)]; ②G(x)= 1 [f(x)-f(-x)]; 2 2 偶函数 奇函数 (2)试将函数 y=2x 表示为一个奇函数与一个偶函数的和. y= 1 (2x-2-x)+ 1 (2x+2-x) 2 2 3.设f(x)与g(x)分别为奇函数和偶函数, 若f(x)-g(x)=( 1 )x, 比 2 较 f(1)、g(0)、g(-2) 的大小. f(x)= 1 (2-x-2x), g(x)=- 1(2-x+2x). 2 2 f(1)>g(0)>g(-2) 4.设函数 f(x) 的定义域关于原点对称, 且满足: ① 存在正常 f(x1)f(x2)+1 数 a, 使 f(a)=1; ② f(x1- x2)= . 求证: (1) f(x) 是奇函 f(x2)-f(x1) 数; (2) f(x) 是周期函数, 并且有一个周期为 4a. f(a+x)=12 , f(2a+x)=- 1 , f(4a+x)=f(x). f(x)+1 f(x)
五、典型例题
1.判断下列函数的奇偶性: (1+2x)2 (2) f(x)=lg(x+ x2+1); (1) f(x)= 2x ; 偶函数 奇函数 1+x (3) f(x)=log2( 1-x2 + x2-1 +1); (4) f(x)=(1-x) 1-x ; 既奇又偶函数 非奇非偶函数 2) lg(1-x 1 (5) f(x)= ; 奇函数 (6) f(x)=x( 3x-1 + 1 Biblioteka . 偶函数 2 |x+3|-3
四、函数的周期性
如果存在一个非零常数 T, 使得对于函数定义域内的任意 x, 都有 f(x+T)=f(x), 则称函数 f(x) 为周期函数, T 为函数的一个周 期. 若f(x)的周期中, 存在一个最小的正数, 则称它为函数的最小 正周期. 若周期函数 f(x) 的最小正周期为 T, 则 f(x)(0) 也为周 期函数, 且最小正周期为 T . ||
5.已知定义在 R 上的函数 y=f(x) 满足 f(2+x)=f(2-x), 且 f(x) 是偶函数, 当 x∈[0, 2]时, f(x)=2x-1, 求 x∈[-4, 0]时 f(x) 的表 2x+7 ≤-2) 达式. f(x)= -2x-1 (-4≤x≤0) (-2<x 6.若对任意的 x∈R, 都有 f(a+x)=f(a-x), 且 f(b+x)=f(b-x), 其 中 b>a. 则 f(x) 是以 2(b-a) 为周期的周期函数.
相关文档
最新文档