高中数学必修1复习卷含答案(C)
人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
苏教版高中数学选择性必修第一册第1章 直线与方程 单元测试卷(含答案)
苏教版高中数学选择性必修第一册第1章直线与方程单元测试卷(满分150分,时间120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两平行线x +y -1=0与2x +2y -7=0之间的距离是()A .32B .322C .542D .62.已知直线l 经过点P (2,1),且与直线2x +3y +1=0垂直,则直线l 的方程是()A .2x +3y -7=0B .3x +2y -8=0C .2x -3y -1=0D .3x -2y -4=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a 的值是()A .1B .-1C .-2或-1D .-2或14.直线x cos α+3y +2=0的倾斜角的取值范围是()A .π6,,5π6B .0,π6∪5π6,C .0,5π6D .π6,5π65.若直线x +ny +3=0与直线nx +9y +9=0平行,则实数n 的值为()A .3B .-3C .1或3D .3或-36.若直线y =kx +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A -12,B -16,C D -12,+∞7.已知直线l :x -y -1=0,直线l 1:2x -y -2=0.若直线l 2与直线l 1关于直线l 对称,则直线l 2的方程是()A .x -2y +1=0B .x -2y -1=0C.x+y-1=0D.x+2y-1=08.数学家欧拉在其所著的《三角形几何学》一书中提出:“任意三角形的外心、重心、垂心在同一条直线上.”后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(4,0)或(-4,0)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.截距相等的直线都可以用方程xa+ya=1表示B.方程x+my-2=0(m∈R)能表示与y轴平行的直线C.经过点P(1,1)且倾斜角为θ的直线方程为y-1=tanθ(x-1)D.经过点P1(x1,y1),P2(x2,y2)的直线方程为(y2-y1)(x-x1)-(x2-x1)(y-y1)=010.若直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直,则实数a的值是() A.-3B.1C.-1D.311.光线自点(2,4)射入,经倾斜角为135°的直线l:y=kx+1反射后经过点(5,0),则反射光线还经过()A B.点(14,1)C.点(13,2)D.点(13,1)12.下列m的值中,不能使三条直线4x-y=4,mx-y=0和2x+3my=4构成三角形的有()A.4B.-6C.-1D.23三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分、第二个空3分.13.若直线l的倾斜角α满足4sinα=3cosα,且它在x轴上的截距为3,则直线l的方程是________________.14.无论实数k取何值,直线(k+2)x+(k-3)y+k-3=0都恒过定点,则该定点的坐标为________.15.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和直线l 2:x -3y +10=0截得的线段的中点恰好为P ,则直线l 的方程为________,此时被截得的线段长为________.16.已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且点Q (4,0)到动直线l 0的最大距离为3,则12a +2c的最小值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)有下列3个条件:①l ′与l 平行且过点(-1,3);②l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4;③l ′是l 绕原点旋转180°而得到的直线.从中任选1个,补充到下面的问题中并解答.问题:已知直线l 的方程为3x +4y -12=0,且________,求直线l ′的方程.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知△ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求△ABC 的面积.19.(12分)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 不经过第二象限,求实数a 的取值范围;(2)若直线l 与x 轴、y 轴分别交于点M ,N ,求△MON (O 为坐标原点)面积的最小值及此时直线l 的方程.20.(12分)已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 是直角梯形(点A ,B ,C ,D 按逆时针方向排列).21.(12分)在平面直角坐标系中,点A (2,3),B (1,1),直线l :x +y +1=0.(1)在直线l 上找一点C 使得AC +BC 最小,并求这个最小值和点C 的坐标;(2)在直线l 上找一点D 使得|AD -BD |最大,并求这个最大值和点D 的坐标.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0,直线l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求实数a 的值.(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5?若能,求点P 的坐标,若不能,请说明理由.参考答案与解析综合测试第1章直线与方程1.C 提示方程x +y -1=0可化为2x +2y -2=0,所以两平行线之间的距离为|-2-(-7)|22+22=5422.D 提示由题意知k l =-1-23=32,故直线l 的方程为y -1=32(x -2),即3x -2y -4=0 3.D 提示由题意知a ≠0.当x =0时,y =a +2;当y =0时,x =a +2a .因此a +2a=a +2,解得a =-2或a =14.B 提示直线的斜率k =-33cos α∈-33,33.设直线的倾斜角为θ,则-33≤tan θ≤33,所以0≤θ≤π6或5π6≤θ<π5.B 提示由题意知1n =n9,解得n =±3.当n =3时,3x +9y +9=0,即x +3y +3=0,两直线重合(舍去)6.B 提示=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.因为直线y =kx +2k +1与直线y=-12x +20,0,解得-16<k <127.B 提示因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知点(0,-2)在l 1上,设其关于l的对称点为(x ,y )-y -22-1=0,1,=-1,=-1,所以点(1,0),(-1,-1)在l 2上,从而可得l 2的方程为x -2y -1=08.A提示设C (m ,n ).由重心坐标公式得△ABC线的方程得2+m 3-4+n3+2=0,整理得m -n +4=0①.易得边AB 的中点为(1,2),k AB =4-00-2=-2,所以边AB 的垂直平分线的方程为y -2=12(x -1),即x -2y +3=0.-2y +3=0,-y +2=0,=-1,=1,所以△ABC 的外心为(-1,1),则(m +1)2+(n -1)2=32+12=10,整理得m 2+n 2+2m -2n =8②.联立①②解得m =-4,n=0或m =0,n =4.当m =0,n =4时,点B ,C 重合,应舍去,所以顶点C 的坐标是(-4,0)9.BD 提示对于A ,若直线过原点,横、纵截距都为0,则不能用方程x a +ya =1表示,所以A 不正确;对于B ,当m =0时,与y 轴平行的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,不能用y -1=tan θ(x -1)表示,所以C 不正确;对于D ,设P (x ,y )是经过点P 1(x 1,y 1),P 2(x 2,y 2)的直线上的任意一点,根据P 1P 2∥P 1P 可得(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0,所以D 正确.故选BD 10.AB 提示若两直线垂直,则a (a -1)+(1-a )(2a +3)=0,即a 2+2a -3=0,解得a =-3或a =1.故选AB 11.AD提示由题意得k =tan135°=-1.设点(2,4)关于直线l :y =-x +1的对称点为(m ,n ),则1,=-m +22+1,=-3,=-1,所以反射光线所在直线的方程为y =0-(-1)5-(-3)·(x -5)=18(x -5).当x =13时,y =1;当x =14时,y =98.故反射光线过点(13,1)12.ACD 提示①当l 1:4x -y =4平行于l 2:mx -y =0时,m =4;②当l 1:4x -y =4平行于l 3:2x +3my =4时,m =-16;③当l 2:mx -y =0平行于l 3:2x +3my =4时,3m 2+2=0,无解;④当三条直线经过同一个点时,把直线l 1与l 22x +3my =4中得84-m +12m 24-m -4=0,解得m =-1或23.综上,满足条件的m 为4或-16或-1或2313.3x -4y-9=0提示因为4sin α=3cos α,所以tan α=34,从而直线l 的方程为y =34(x -3),即3x -4y -9=014.(0,-1)提示方程(k +2)x +(k -3)y +k -3=0可化为k (x +y +1)+2x -3y-3=0x -3y -3=0,+y +1=0,解得=0,=-115.x +4y -4=0217提示设l 1与l 的交点为A (a,8-2a ),则由题意知点A 关于点P 的对称点B (-a,2a -6)在l 2上,把点B 的坐标代入l 2的方程中得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0.易求得两交点分别为(-4,2),(4,0),所以截得的线段长为21716.94提示因为动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又点Q (4,0)到动直线l 0的最大距离为3,所以(4-1)2+(0+m )2=3,解得m =0,所以a +c =2.又a >0,c >0,所以12a +2c =12(a +c+c 2a +=94,当且仅当c =2a =43,即c =43,a =23时等号成立17.选择条件①:因为直线l :3x +4y -12=0,所以k l =-34.因为l ′∥l ,所以k l ′=k l =-34,从而直线l ′:y =-34(x +1)+3,即3x +4y -9=0选择条件②:因为l ′⊥l ,所以k l ′=43.设l ′在x 轴上的截距为b ,则l ′在y 轴上的截距为-43b .由题意可知S =12|b |·|-43b |=4,解得b =±6,所以直线l ′:y =43(x +6)或y =43(x -6)选择条件③:因为l ′是l 绕原点旋转180°而得到的直线,所以l ′与l 关于原点对称.任取点(x 0,y 0)在l 上,设其在l ′上的对称点为(x ,y ),所以x =-x 0,y =-y 0,从而-3x -4y -12=0,因此直线l ′:3x +4y +12=018.(1)因为k BC =7-(-1)3-(-1)=2,所以k AD =-12,从而边BC 上的高AD 所在直线的方程为y -5=-12(x +1),即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为y -35-3=x -1-1-1,即y =-x +4(3)由题意知边BC 所在直线的方程为y -(-1)7-(-1)=x -(-1)3-(-1),即2x -y +1=0,BC =(3+1)2+(7+1)2=45,所以点A 到直线BC 的距离h =|2×(-1)-5+1|22+1=655,从而△ABC 的面积=12BC ·h =1219.(1)直线l 的方程可化为y =-(a +1)x +a +2.因为l 不过第二象限,所以(a +1)≥0,+2≤0,解得a ≤-2,从而a 的取值范围为(-∞,-2](2)直线l 的方程可化为y =-(a +1)x +a +2,所以OM =|a +2a +1|,ON =|a +2|,从而S △MON =12OM ·ON =12(a +2)2|a +1|=|a +1|+2,当且仅当|a +1|=1|a+1|,即a =0时等号成立,因此△MON 面积的最小值为2,此时直线l 的方程为x +y -2=0(第20题)20.设所求点D 的坐标为(x ,y ).如图,由于k AB =3,k BC =0,所以k AB ·k BC =0≠-1,即AB 与BC 不垂直.①若BC ⊥CD ,AD ⊥CD .因为k BC =0,所以直线CD 的斜率不存在,从而有x =3.又k AD =k BC ,所以y -3x =0,即y =3,此时AB 与CD 不平行,故所求点D 的坐标为(3,3).②若AD ⊥AB ,AD ⊥CD .因为k AD =y -3x,k CD =y x -3,又AD ⊥AB ,所以y -3x ·3=-1.又AB∥CD ,所以yx -3=3.=185,=95,此时AD与BC 不平行,故所求点D综上可知,使四边形ABCD 为直角梯形的点D 的坐标可以为(3,3)21.(1)设点A 关于直线l 的对称点为A ′(x ,y )1,+y+32+1=0,=-4,=-3,即A ′(-4,-3),所以直线A ′B 的方程为y +31+3=x +41+44x -5y +1=0.当C 为直线4x -5y +1=0与直线x +y +1=0的交点时,AC +BCx -5y +1=0,+y +1=0,=-23=-13所以-23,-AC +BC 的最小值为A ′B =(1+4)2+(1+3)2=41(2)由题意知直线AB 的方程为y -31-3=x -21-2,即2x -y -1=0.当D 为直线2x -y -1=0与直线x +y +1=0的交点时,|AD -BD |x -y -1=0,+y +1=0,=0,=-1,所以D (0,-1),从而|AD -BD |的最大值为AB =(2-1)2+(3-1)2=522.(1)直线l 2的方程可化为2x -y -12=0,所以两条平行线l 1与l 2间的距离d =7510,即|a +12|5=7510,亦即|a +12|=72.又a >0,解得a =3(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·|c +12|5,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y0+4=0或3x 0+2=0.由于点P 在第一象限,所以3x 0+2=0x 0-y 0+132=0,0-2y 0+4=0,0=-3,0=12(舍去);联立x 0-y 0+116=0,0-2y 0+4=0,0=19,0=3718.所以存在点P。
【北师大版】高中数学必修1:全册配套同步习题(打包37份,含答案)
第一章集合1集合的含义与表示第1课时集合的含义课时过关·能力提升1给出下列说法:①地球周围的行星能构成一个集合;②实数中不是有理数的所有数能构成一个集合;③集合A为{1,2,3},集合B为{1,3,2},是不同的集合.其中正确的个数是()A.0B.1C.2D.3解析:①是错误的,因为“周围”是个模糊的概念,不满足集合元素的确定性.②是正确的,虽然满足条件的数有无数多个,但任给一个元素都能判断出其是否属于这个集合.③是错误的,因为集合中的元素是无序的.答案:B2已知集合M中的元素满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉MB.-11∈MC.3k2-1∈MD.-34∉M解析:A错,当k=0时,-1∈M;B错,若3k-1=-11,则k=-∉Z;C正确,因为3k2-1=3k-1,解得k=0或k=1,满足条件;D错,当k=-10时,-34∈M.故选C.答案:C3集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).下列选项中元素与集合的关系都正确的是()A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B答案:C4已知集合A含有两个元素a-3和2a-1,若a∈A,则实数a的值是()A.-3B.0或1C.1D.-1解析:由于a∈A,则a=a-3或a=2a-1.若a=a-3,则有-3=0,不成立;若a=2a-1,则a=1,此时集合A 中的两个元素是-2,1,符合题意.答案:C5已知集合M中含有3个元素0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1解析:由-解得x≠0且x≠-1.故选C.-答案:C6集合A中有3个元素1,2,3,集合B中有2个元素4,5,设集合M中的元素x满足x=a+b,a ∈A,b∈B,则M中元素的个数为()A.3B.4C.5D.6解析:因为集合A为1,2,3,集合B为4,5,集合M中的元素满足x=a+b,a∈A,b∈B,所以a+b的值可能为1+4=5,1+5=6,2+4=6,2+5=7,3+4=7,3+5=8,所以集合M中的元素有5,6,7,8,共4个,故选B.答案:B7若已知-5是x2-ax-5=0的根,集合M中的元素为方程x2-4x-a=0的根,则集合M中所有元素之和为.解析:把-5代入方程x2-ax-5=0,得a=-4,将a=-4代入方程x2-4x-a=0得x2-4x+4=0,故集合M中的元素即为2.因此所有元素之和为2.答案:28设a,b为非零实数,则x=的所有值组成的集合中的元素为.解析:当a<0,b<0时,ab>0,则x=-1-1+1=-1;当a<0,b>0时,ab<0,则x=-1+1-1=-1;当a>0,b>0时,ab>0,则x=1+1+1=3;当a>0,b<0时,ab<0,则x=1-1-1=-1.故x=-1或x=3.所以由x的所有值构成的集合中的元素为-1,3.答案:-1,39已知集合A的元素满足条件x=m+n,n,m∈Z.,x2=-,判断x1,x2与集合A之间的关系;(1)设x1=-(2)任取x3,x4∈A,判断x3+x4与集合A之间的关系.=-,∴x1∉A,解(1)∵x1=-∵x2=-=-1+2,∴x2∈A.(2)x3,x4∈A,设x3=m1+n1,x4=m2+n2(m1,n1,m2,n2∈Z).则x3+x4=m1+n1+m2+n2=(m1+m2)+(n1+n2),∵m1,n1,m2,n2∈Z,∴m1+m2,n1+n2∈Z,∴x3+x4∈A.10设集合A的元素为2,3,a2+2a-3,集合B的元素为|a+3|,2.已知5∈A,且5∉B,求a的值.解∵5∈A,∴a2+2a-3=5,解得a=2或a=-4.又5∉B,∴|a+3|≠5,解得a≠2,且a≠-8.∴a=-4.★11已知方程ax2-3x-4=0的解组成的集合为A.(1)若A中有两个元素,求实数a的取值范围.(2)若A中至多有一个元素,求实数a的取值范围.解(1)因为A中有两个元素,所以方程ax2-3x-4=0有两个不等的实数根,所以即a>-且a≠0.所以实数a的取值范围为a>-,且a≠0.(2)当a=0时,由-3x-4=0得x=-;当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,则Δ=9+16a=0,即a=-;若关于x的方程无实数根,则Δ=9+16a<0,即a<-,故所求的a的取值范围是a≤-或a=0.∈A.★12已知集合A的元素全为实数,且满足当a∈A时,-(1)若2∈A,则A中一定还有哪些元素?(2)0是不是集合A中的元素?请你设计一个实数a∈A,再求出A中的所有元素.(3)根据(1)(2),你能得出什么结论?,计算可得,解(1)当2∈A时,依次代入-=-3∈A,-=-∈A,--∈A,=2∈A,……-结果循环出现,故A中一定还有-3,-.(2)0不是集合A中的元素.若0∈A,则-=1∈A,而此时-没有意义,与条件-∈A矛盾,故0不是集合A中的元素.若a=3,则集合A的元素为3,-2,-.(3)根据(1)(2)可得出如下结论:A中不含0,1,-1;若a∈A,则其负倒数也属于A.第2课时集合的表示课时过关·能力提升1集合{1,3,5,7,9}用描述法表示应是()A.{x|x是不大于9的非负奇数}B.{x|x≤9,x∈N}C.{x|1≤x≤9,x∈Z}D.{x|0≤x≤9,x∈N}解析:B,D只说明集合中的元素是小于等于9的自然数;C只说明集合中的元素是小于等于9的正整数,B,C,D都没指明是奇数,所以只有A正确,故选A.答案:A2已知集合M={x∈N+|-≤x≤},则下列说法中正确的是()A.M是空集B.∈MC.该集合是有限集D.1∉M解析:由已知得M={1},因此M是有限集.答案:C3下列集合中,含义不同于另外三个集合的是()A.{x|x=1}B.{x|x2=1}C.{1}D.{y|(y-1)2=0}答案:B4由方程组--的解组成的集合是()A.(1,1)B.{1}C.{(1,1)}D.{1,1}解析:由--解得方程组的解组成的集合是{(1,1)},故选C.答案:C★5若P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任何一个解析:由题意知,P为偶数集,Q为奇数集,R是除以4余1的数构成的集合,是奇数的一部分,而a+b是奇数与偶数之和,仍为奇数,故选B.答案:B6下列集合中不是空集的是()A.{x|x<0且x>1}B.{x∈N|x2-2=0}C.{x∈R|x2-x+1=0}D.{(x,y)|x2+y2=0}解析:A选项中集合是空集;B选项中,由x2-2=0得x=± ∉N,所以是空集;C选项中判别式Δ=1-4=-3<0,方程无解,所以是空集;只有D选项不是空集,是集合{(0,0)},故选D.答案:D7下列命题中正确的是(只填序号).①0∈{⌀};②由1,2,3组成的集合可表示为{1,2,3},也可表示为{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:①中的{⌀}中的元素为⌀,所以0∉{⌀},故①不正确;由元素的无序性可知②正确;③中的集合不满足互异性,故③不正确;④中的集合不能用列举法表示,故④不正确.答案:②8给出下列说法:①在直角坐标平面内,第一、三象限的点的集合为{(x,y)|xy>0};②方程-+|y+2|=0的解集为{-2,2};③集合{(x,y)|y=1-x}与{x|y=1-x}是同一集合.其中正确序号是.解析:在直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x,y),故①正确;方程-+|y+2|=0等价于-即-解为有序实数对(2,-2),即解集为{(2,-2)}或-,故②不正确;集合{(x,y)|y=1-x}的代表元素是(x,y),集合{x|y=1-x}的代表元素是x,一个是实数对,一个是实数,故这两个集合不相同.③不正确,综上所述,只有①正确.答案:①9已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x2+1,x∈A},则集合B用列举法表示是.解析:易求集合A={-2,-1,0,1,2},则集合B={(-2,5),(-1,2),(0,1),(1,2),(2,5)}.答案:{(-2,5),(-1,2),(0,1),(1,2),(2,5)}10用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点组成的集合.分析::题目中要求用列举法表示集合,需先辨析集合中元素的特征及满足的性质,再一一列举出满足条件的元素.解(1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.(2)方程x2=x的实数解是x=0或x=1,所以方程的实数解组成的集合为{0,1}.(3)将x=0代入y=2x+1,得y=1,即交点是(0,1),故直线y=2x+1与y轴的交点组成的集合是{(0,1)}.11若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集.(2)试写出一个含3个元素的可倒数集.解(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A=或-或等.★12对于a,b∈N+,现规定:a*b=与的奇偶性相同与的奇偶性不同集合M={(a,b)|a*b=36,a,b∈N+}.(1)用列举法表示a,b奇偶性不同时的集合M;(2)当a与b的奇偶性相同时,集合M中共有多少个元素?解(1)当a,b的奇偶性不同时,a*b=a×b=36,则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a与b的奇偶性相同时,a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b的奇偶性相同时,这样的元素共有35个.2集合的基本关系课时过关·能力提升1已知集合A={x|-1<x<2},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.B⊈A解析:由A={x|-1<x<2},而B={x|-1<x<1},作数轴如图,故B⫋A.答案:B2已知集合A={1,2},B={1,2,3,4,5},且A⫋M⊆B.则符合条件的集合M的个数为()A.6B.7C.8D.不确定解析:∵A⫋M,∴M中一定含有A的全部元素1,2,且至少含有一个不属于A的元素.又M⊆B,∴M中除有1,2外,还有3,4,5中的1个,2个或3个,故M的个数即为{3,4,5}的非空子集,有7个.答案:B3集合M={-1,0,1}和N={x|x2+x=0}的关系用Venn图可表示为()解析:∵M={-1,0,1},N={0,-1},∴N⫋M,故选B.答案:B4若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.4解析:由B⊆A,知x2=3或x2=x,解得x=±或x=0或x=1.当x=1时集合A,B都不满足元素的互异性,故x=1舍去.答案:C5已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512B.256C.255D.254答案:C★6设集合M=∈,N=+∈,则()A.M=NB.M⫋NC.M⫌ND.M⊈N解析:∵集合M中,x=(k∈Z),集合N中,x=(k∈Z),∴M中的x表示的奇数倍,N中的x表示的整数倍.∴M⫋N.答案:B7已知集合A=--,B={(x,y)|y=3x+b},若A⊆B,则实数b=.解析:由已知A={(0,2)},因为A⊆B,所以2=3×0+b,解得b=2.答案:28设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},则M与P的关系为.答案:M=P9已知A={x|x2-4=0},B={x|ax-6=0},且B是A的子集.(1)求a的取值集合M;(2)写出集合M的所有非空真子集.解(1)由已知得A={2,-2},∵B⊆A,∴B=⌀或{2}或{-2}.①当B=⌀时,方程ax-6=0无解,得a=0;②当B={2}时,方程ax-6=0的解为x=2,得2a-6=0,所以a=3;③当B={-2}时,方程ax-6=0的解为x=-2,得-2a-6=0,所以a=-3.∴a的取值集合M={0,3,-3}.(2)M={0,3,-3}的非空真子集为{0},{3},{-3},{0,3},{0,-3},{3,-3}.10已知集合A={2,4,6,8,9},B={1,2,3,5,8},非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;其各元素都减2后,则变为B的一个子集,求集合C.解逆向操作,A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中,所以C中元素只能是4或7.所以C={4}或{7}或{4,7}.★11已知集合A={x|0<x-a≤5},B=-.(1)若A⊆B,求实数a的取值范围.(2)若B⊆A,求实数a的取值范围.(3)集合A与B能否相等?若能,求出a的值;若不能,请说明理由.解A={x|a<x≤a+5},B=-.(1)若A⊆B,则-解得∴0≤a≤1,即所求a的取值范围是0≤a≤1.(2)若B⊆A,则-≥6,或-即a≤-12或∴a≤-12.即所求a的取值范围是a≤-12.(3)若A=B,即{x|a<x≤a+5}=-,∴-即不可能同时成立.∴A≠B.§3集合的基本运算3.1交集与并集课时过关·能力提升1已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中的元素个数为()A.5B.4C.3D.2答案:D2若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1B.-1C.1或-1D.1或-1或0解析:∵A∪B=A,∴B⊆A.当B=⌀时,m=0;当B={-1}时,m=-1;当B={1}时,m=1.故选D.答案:D3已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的Venn图如图,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个解析:M={x|-1≤x≤3},阴影部分所示的集合为M∩N={1,3}.故阴影部分所示的集合中共有2个元素.答案:B4已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4B.3C.2D.1解析:联立两集合中的函数关系式由x+y=1得x=1-y,代入x2+y2=1得y2-y=0即y(y-1)=0,解得y=0或y=1,把y=0代入x2+y2=1解得x=1,把y=1代入x2+y2=1解得x=0,所以方程组的解为或有两组解,则A∩B的元素个数为2.故选C.答案:C5已知集合A={1,2,3},B∩A={3},B∪A={1,2,3,4,5},则集合B的子集的个数为()A.6B.7C.8D.9答案:C6设集合A={(x,y)|y=x2-1},B={(x,y)|y=3x-3},则A∩B=.解析:A∩B=--=或={(1,0),(2,3)}.答案:{(1,0),(2,3)}7已知集合A={x|x≤-2,或x>5},B={x|1<x≤m},若A∩B={x|5<x≤7},则m=.解析:将集合A和集合A∩B用数轴表示出来,如图,要使A∩B={x|5<x≤7},则B={x|1<x≤m}={x|1<x≤7}.∴m=7.答案:78某班共有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.解析:设两者都喜欢的有x人,则只喜欢篮球的有(15-x)人,只喜欢乒乓球的有(10-x)人.故(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12.答案:129已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求满足下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.解(1)∵9∈A∩B,且9∈B,∴9∈A,∴2a-1=9或a2=9,解得a=5或a=±3.检验,知a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B,∴由(1)知,a=5或a=-3.检验,知a=-3.10已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.分析::由A∪B=A,得B⊆A,则有B=⌀,或B≠⌀,因此对集合B分类讨论.解∵A∪B=A,∴B⊆A.又A={x|-2≤x≤5}≠⌀,∴B=⌀或B≠⌀.当B=⌀时,有m+1>2m-1,∴m<2.当B≠⌀时,如图,由数轴可得解得2≤m≤3.综上可得,实数m的取值范围是{m|m≤3}.★11为完成一项实地测量任务,夏令营的同学们成立了一支测绘队,需要24人参加测量,20人参加计算,16人参加绘图.测绘队的成员中有许多同学是多面手:其中在参加两项工作的人中,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图;另有一些人三项工作都参加了.请问这个测绘队至少有多少人?解由题意可得,测量目前有8+6=14人参加,一共需要24人,所以还差10人;计算目前有8+4=12人参加,一共需要20人,所以还差8人;绘图目前有6+4=10人参加,一共需要16人,所以还差6人,若三项都参加的有x(x≤6)人,则只参加测量的有(10-x)人,只参加计算的有(8-x)人,只参加绘图的有(6-x)人,所以总人数就是x+8+6+4+(10-x)+(8-x)+(6-x)=42-2x≥30,当且仅当x=6时等号成立.由以上分析:可知,三项都参加的有6人时,测绘队总人数最少,且最少为30人.答:这个测绘队至少有30人.★12已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,求实数a,m.分析:根据并集、交集的性质转化为B⊆A,C⊆A,而A={1,2},从而转化为B,C中的方程的根的问题,注意运用分类讨论的思想方法.解由x2-3x+2=0,得x=1或x=2,故A={1,2},因为A∪B=A,所以B⊆A,故B有四种情况:⌀,{1},{2},{1,2}.因为x2-ax+a-1=(x-1)[x-(a-1)],所以必有1∈B,因此a-1=1或a-1=2,解得a=2或a=3.又因为A∩C=C,所以C⊆A,故C有四种情况:⌀,{1},{2},{1,2}.①若C=⌀,则关于x的方程x2-mx+2=0没有实数根,由Δ=m2-8<0,得-2<m<2;②若C={1},则关于x的方程x2-mx+2=0有两个相等的实数根为1,所以很显然不成立;③若C={2},同②,也不成立;④若C={1,2},则解得m=3.综上所述,a=2或a=3;m=3或-2<m<2.3.2全集与补集课时过关·能力提升1已知集合A,B,C为非空集合,M=A∩C,N=B∩C,P=M∪N,则一定有()A.C∩P=CB.C∩P=PC.C∩P=C∪PD.C∩P=⌀答案:B2已知集合U={x|x是小于6的正整数},A={1,2},B∩(∁U A)={4},则∁U(A∪B)=() A.{3,5} B.{3,4}C.{2,3}D.{2,4}解析:U={1,2,3,4,5},∵B∩(∁U A)={4},∴4∈B.∴∁U(A∪B)={3,5}.答案:A3已知全集为U,集合M,N满足M∪N=U,则下列关系中一定正确的是()A.N⊆∁U MB.M∩N=⌀C.∁U M⊆ND.(∁U M)∪(∁U N)=U解析:借助Venn图易知选C.答案:C4已知全集U={1,2,3,4,5},若A={x|x2-3x+2=0},B={x|x=2a,a∈A}.则集合∁U(A∪B)中元素的个数为()A.1B.2C.3D.4解析:∵A={1,2},B={2,4},∴A∪B={1,2,4}.∴∁U(A∪B)={3,5},共有2个元素.答案:B★5设全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},且B∩(∁U A)≠⌀,则k 的取值范围是()A.k<0或k>2B.2<k<3C.0<k<3D.-1<k<2解析:由题意知,∁U A={x|1<x<3},且k<k+1,故B≠⌀.又B∩(∁U A)≠⌀,结合图形,故k需满足解得0<k<3.答案:C6已知全集U=R,集合A={x|x≥0},B={y|y>1},则∁U A与∁U B的关系是.解析:由全集、补集的概念,得∁U A={x|x<0},∁U B={y|y≤1},显然∁U A⫋∁U B.答案:∁U A⫋∁U B7设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=⌀,则实数m的取值范围为.解析:∵A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=⌀,∴-m≤-2,即m≥2,∴m的取值范围是{m|m≥2}.答案:{m|m≥2}8已知U为实数集,集合M={x|0<x<2},N={x|y=-},则M∩(∁U N)=.解析:N={x|x-1≥0}={x|x≥1},∁U N={x|x<1},则M∩(∁U N)={x|0<x<1}.答案:{x|0<x<1}9已知集合A={x|4≤x<6},B={x|3<x<15},求:(1)A∪B;(2)(∁R A)∩B.解(1)A∪B={x|4≤x<6}∪{x|3<x<15}={x|3<x<15}.(2)∵∁R A={x|x<4,或x≥6},∴(∁R A)∩B={x|3<x<4,或6≤x<15}.10已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足(∁R A)∩B={2},A∩(∁R B)={4},求实数a,b的值.解由条件(∁R A)∩B={2}和A∩(∁R B)={4},知2∈B,但2∉A;4∈A,但4∉B.-将x=2和x=4分别代入B,A两集合中的方程得即-解得a=,b=-即为所求.★11已知A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0,a∈R}.若B∪A≠A,求实数a的取值范围.分析:本题主要考查补集思想的应用,解题的关键是从求解问题的反面考虑,采用“正难则反”的解题策略.解设B∪A=A,则B⊆A,又因为A={x|x2-2x-8=0}={-2,4},所以集合B有以下三种情况:①当B=⌀时,Δ=a2-4(a2-12)<0,即a2>16,所以a<-4或a>4;②当B是单元素集时,Δ=a2-4(a2-12)=0,所以a=-4或a=4.若a=-4,则B={2}⊈A;若a=4,则B={-2}⊆A;③当B={-2,4}时,-2,4是关于x的方程x2+ax+a2-12=0的两个根,所以----所以a=-2.综上可得,B∪A=A时,a的取值范围为a<-4或a=-2或a≥4.所以B∪A≠A的实数a的取值范围为-4≤a<4,且a≠-2.第一章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5)D.[2,5]答案:D2已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}解析:易得B={-1,2},则A∩B={2},故选B.答案:B3设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.⌀解析:由题意得∁U A={3,4,5},故选B.答案:B4已知集合M={1,2,3},N={2,3,4},则()A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}解析:由集合的交集、并集及子集的概念,可知M∩N={2,3}.答案:C5设全集U=R,集合A=-,B={x|x2-x-6=0},则阴影部分所表示的集合是()A.{3}B.{-2}C.{3,-2}D.{⌀}解析:由Venn图可知阴影部分对应的集合为B∩(∁U A),∵集合A=-={3},B={x|x2-x-6=0}={-2,3},∴B∩(∁U A)={-2},故选B.答案:B6设集合A={a,b},集合B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}解析:由题意A∩B={2},可得a=1,b=2,则集合A={1,2},集合B={2,5}.A∪B={1,2}∪{2,5}={1,2,5},故选D.答案:D7已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.⌀解析:∵A⊇B,∴a-1≤3,且a+2≥5.∴3≤a≤4.故选B.答案:B8已知集合A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}解析:因为A∩B={3},所以3∈A,又因为∁U B∩A={9},所以9∈A,所以选D.除此之外,本题也可以用Venn图的方法帮助理解,Venn图如图.答案:D9已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析:∵A∪B={x|x≤0,或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.答案:D10经统计知,某小区有小汽车的家庭有35家,有电动自行车的家庭有65家,既有小汽车又有电动自行车的家庭有20家,则小汽车和电动自行车至少有一种的家庭数为() A.60 B.80 C.100 D.120解析:∵某小区有小汽车的家庭有35家,有电动自行车的家庭有65家,既有小汽车又有电动自行车的家庭有20家,∴画出Venn图,结合图形知,小汽车和电动自行车至少有一种的家庭数为15+20+45=80,故选B.答案:B11若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1B.-1C.1或-1D.1或-1或0解析:当m=0时,B=⌀,满足A∪B=A,即m=0;当m≠0时,B=,由A∪B=A,得=1或-1,即m=1或-1.故m=1或-1或0.答案:D12设I={1,2,3,4},A与B是I的子集,若A∩B={1,3},则称(A,B)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(A,B)与(B,A)是两个不同的“理想配集”)()A.4B.8C.9D.16解析:对子集A分类讨论:当A是两元素集{1,3}时,B可以为{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4种结果;当A是三元素集{1,2,3}时,B可以取{1,3,4},{1,3},共2种结果;当A是三元素集{1,3,4}时,B可以为{1,2,3},{1,3},共2种结果;当A是四元素集{1,2,3,4}时,此时B取{1,3},有1种结果.综上所述,共有4+2+2+1=9种结果,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案:填在题中的横线上)13若2∉{x|x-a<0},则实数a的取值集合是.解析:由题意知,{x|x-a<0}={x|x<a},∵2∉{x|x-a<0},∴a≤2,∴实数a的取值集合是{a|a≤2}.答案:{a|a≤2}14已知集合M={2},N={x|2x-a=0},且M∩N=N,则实数a=.解析:N=,∵M∩N=N,∴N⊆M.∴∈{2},即=2.∴a=4.答案:415已知集合A={x,y},B={2,2y},若A=B,则x+y=.解析:当x=2,y=2y时,x=2,y=0,则x+y=2;当x=2y,y=2时,x=4,y=2,则x+y=6.答案:2或616已知集合A={x|x≤-2,或x>1},B={x|2a-3<x<a+1},若A∪B=R,则a的取值范围是.解析:∵集合A={x|x≤-2,或x>1},B={x|2a-3<x<a+1},且A∪B=R,--∴解得0<a≤,∴a的范围是0<a≤.答案:0<a≤三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(10分)设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6}.求(1)A∪(B∩C);(2)A∩[∁A(B∪C)].解(1)由题意知,A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0},∴A∩[∁A(B∪C)]={-6,-5,-4,-3,-2,-1,0}.18(12分)已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.解(1)由题意知B={x|x≥2},∴A∩B={x|2≤x<3}.(2)由题意知C=-,∵B∪C=C,∴B⊆C.∴-<2,∴a>-4.19(12分)设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.(1)若B⊆A,求实数a的取值范围;(2)若a=1,求A∪B,(∁U A)∩B.解(1)B=且,又B⊆A,∴a≤.(2)若a=1,则A={x|1≤x≤2},此时A∪B={x|1≤x≤2}∪=.由∁U A={x|x<1,或x>2},得(∁U A)∩B={x|x<1,或x>2}∩.20(12分)已知全集U=R,集合A={x|2x+a>0},B={x|x<-1,或x>3}.(1)当a=2时,求集合A∩B,A∪B;(2)若A∩(∁U B)=⌀,求实数a的取值范围.解由2x+a>0得x>-,即A=-.(1)当a=2时,A={x|x>-1}.∴A∩B={x|x>3}.A∪B={x|x≠-1}.(2)∵B={x|x<-1,或x>3},∴∁U B={x|-1≤x≤3}.又A∩(∁U B)=⌀,∴-≥3,解得a≤-6.∴实数a的取值范围是(-∞,-6].21(12分)已知集合A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A⊆(A∩B),求实数m的取值范围.解(1)∵A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16},若A∩B=⌀, 则当A=⌀时,符合题意,此时2m+1>3m-5,所以m<6.当A≠⌀时,---所以6≤m≤7.综上所述,m≤7.(2)∵A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16},且A⊆(A∩B), ∴A为空集或A为B的非空子集.则2m+1>3m-5或---或-解得m<6或m>.22(12分)设数集M=,N=-,且M,N都是集合U={x|0≤x≤1}的子集,定义“b-a”为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.解在数轴上表示出集合M与N,可知当m=0且n=1,或n-=0且m+=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N=,“长度”为;当m=且n=时,M∩N=,“长度”为.综上,M∩N的“长度”的最小值为.第二章函数§1生活中的变量关系§2对函数的进一步认识2.1函数概念课时过关·能力提升1已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()-A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}答案:D2函数f(x)=(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]解析:由x2+1≥1,得0<≤1,故函数f(x)的值域为(0,1].答案:B3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有()A.0个B.1个C.2个D.0个或多个解析:函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点个数有1个,故选B.答案:B4已知等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系为y=10-2x,则此函数的定义域为()A.RB.{x|x>0}C.{x|0<x<5}D.解析:∵等腰三角形的周长为10,∴-<x<5.-答案:D5已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表,则方程g(f(x))=x的解集为()x 1 2 3A.{1}B.{2}C.{3}D.⌀解析:当x=1时,g(f(1))=g(2)=2,不符合题意;当x=2时,g(f(2))=g(3)=1,不符合题意;当x=3时,g(f(3))=g(1)=3,符合题意.故选C.答案:C★6若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的值是()A.a=-1或a=3B.a=-1C.a=3D.a不存在解析:因为函数f(x)的定义域和值域都为R,所以函数f(x)为一次函数,即---解得a=-1.故选B.答案:B7函数y=的定义域是.解析:要使该函数有意义,则x+2≥0,故x≥-2.答案:{x|x≥-2}8已知集合M={x|y=x2+1},集合N={y|y=x2+1},则M∩N=.解析:∵M=R,N={y|y≥1},∴M∩N={y|y≥1}.答案:{y|y≥1}9函数f(x)=(--2)0+-的定义域是.答案:{x|x>1,且x≠5}10已知函数f(x)=.(1)求f(2);(2)求函数f(x)的值域.解(1)f(2)=.(2)f(x)=-=1-,又≠0,∴1-≠1,∴f(x)≠1,故函数f(x)的值域是(-∞,1)∪(1,+∞).11若f{f[f(x)]}=27x+26,求一次函数f(x)的解析式.解设f(x)=ax+b(a≠0),则f[f(x)]=a2x+ab+b,f{f[f(x)]}=a(a2x+ab+b)+b=a3x+a2b+ab+b,所以解得则f(x)=3x+2.★12已知函数f(x)=.(1)求f(2)与f,f(3)与f.(2)由(1)中求得的结果,你能发现f(x)与f的关系吗?并证明你的发现.(3)求f(1)+f(2)+f(3)+…+f(2 016)+f+f+…+f.解(1)∵f(x)=,∴f(2)=,f,f(3)=,f.(2)由(1)中的结果发现f(x)+f=1.证明如下:f(x)+f==1.(3)f(1)=.由(2)知f(2)+f=1,f(3)+f=1,…f(2 016)+f=1,∴原式=…=2 015+.个2.2函数的表示法第1课时函数的三种表示方法课时过关·能力提升1已知函数f(x),g(x)分别由下表给出:则f(g(1))=()A.2B.1C.3D.不确定解析:由已知得g(1)=3,所以f(g(1))=f(3)=1.答案:B2去年国庆长假期间,某日8时至16时累计参观故宫人数的折线图如图所示,那么在8时~9时,9时~10时,…,15时~16时的八个时段中,入宫人数最多的时段是()A.8时~9时B.11时~12时C.13时~14时D.15时~16时解析:结合函数图像可知,在8时~9时,9时~10时,…,15时~16时的八个时段中,图像变化最快的,增加得最快的是11时~12时之间,故选B.答案:B,则当x≠0,且x≠1时,f(x)=()3若f-A. B.-C.D.-1-答案:B4下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x解析:因为f(2x)=|2x|=2|x|=2f(x),所以A满足要求;因为f(2x)=2x-|2x|=2(x-|x|)=2f(x),所以B满足要求;因为f(2x)=2x+1≠2(x+1)=2f(x),所以C不满足要求;因为f(2x)=-2x=2f(x),所以D满足要求.故选C.答案:C5若函数y=f(x)的定义域是[0,2],则函数y=f(2x-1)的定义域是()A.[0,1]B.[0,2]C.D.[-1,3]解析:因为函数y=f(x)的定义域是[0,2],即0≤x≤2,所以0≤2x-1≤2,解得≤x≤.因此y=f(2x-1)的定义域是.答案:C6已知函数g(x)=1-2x,f[g(x)]=-(x≠0),则f(0)等于()A.-3B.-C.D.3解析:令g(x)=1-2x=0,则x=,则f(0)=-=3.故选D.答案:D7函数f(n)对任意实数n满足条件f(n+3)=,若f(1)=6,则f(7)的值为.解析:由f(n+3)=得,f(7)==f(1)=6.答案:6★8若2f(x)+f=2x+(x≠0),则f(2)=.答案:9如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),那么f的值等于.解析:由函数f(x)的图像,知f(1)=2,f(3)=1,则f=f(1)=2.答案:210求下列函数的解析式:(1)已知f(x+1)=x2-3x+2,求f(x);(2)已知f(1-x)=-,求f(x).解(1)∵f(x+1)=x2-3x+2=(x+1)2-5x+1=(x+1)2-5(x+1)+6,∴f(x)=x2-5x+6.(2)令1-x=t,则x=1-t.又1-x2≥0,∴-1≤x≤1,∴0≤1-x≤2,即0≤t≤2.∴f(t)=---(0≤t≤2).∴f(x)=-(0≤x≤2).★11已知函数f(x)=(a,b为常数,且a≠0),满足f(2)=1,且f(x)=x有唯一解,(1)求函数y=f(x)的解析式.(2)求f(f(-3))的值.解(1)∵f(2)=1,∴=1,即2a+b=2.①又f(x)=x有唯一解,即=x有唯一解,∴ax2+(b-1)x=0有两个相等的实数根,∴Δ=(b-1)2=0,∴b=1,代入①得a=,∴f(x)=.=6,(2)由(1)知f(-3)=--故f(f(-3))=f(6)=.★12已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0)与f(1)的值;(2)求证:f=-f(x);(3)若f(2)=p,f(3)=q(p,q均为常数),求f(36).(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)证明令a=,b=x,得f(1)=f+f(x)=0,即f=-f(x).(3)解令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q.令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.第2课时分段函数课时过关·能力提升1已知f(x)=则f(f(f(-3)))=()A.0B.πC.π+1D.2π解析:因为-3<0,所以f(-3)=0,所以f(f(-3))=f(0)=π,又π>0,所以f(f(f(-3)))=f(π)=π+1.答案:C2函数f(x)=x+的图像是()解析:f(x)=-故选C.答案:C3某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km为1.6元(不足1 km,按1 km计费),若出租车行驶在不需等待的公路上,则出租车的费用y(元)与行驶的里程x(km)之间的函数图像大致为()解析:由题意,当0<x≤3时,y=10;当3<x≤4时,y=11.6;当4<x≤5时,y=13.2;……当n-1<x≤n时,y=10+(n-3)×1.6,故选C.答案:C4已知f(x)=则f+f-等于() A.-2 B.4 C.2 D.-4答案:B5已知f(x)=g(x)=3-2x,则f(g(2))=() A.-3 B.-2 C.3 D.-1解析:因为g(x)=3-2x,所以g(2)=3-2×2=-1<0,所以f(g(2))=f(-1)=-1+4=3.答案:C6拟定从甲地到乙地通话m min的话费y(元)满足y=其中[m]是不超过m的最大整数,如[3.74]=3,从甲地到乙地通话5.2 min的话费是()A.3.71元B.4.24元C.4.77元D.7.95元解析:f(5.2)=1.06×(0.5×[5.2]+2)=4.77.答案:C7若函数f(x)=则f(-3)=.解析:f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=f(1+2)=f(3)=2×3=6.答案:6若f(1-a)=f(1+a),则a的值为.8已知实数a≠0,函数f(x)=--答案:---9已知函数f(x)=(1)求f-,f,f的值;(2)作出函数f(x)的简图;(3)求函数f(x)的值域.分析:给出的函数是分段函数,应注意在不同的自变量取值范围内函数有不同的解析式.(1)根据自变量的值所在的区间,选用相应的关系式求函数值.(2)函数f(x)在不同区间上的关系式都是常见的基本初等函数,因而可利用常见函数的图像完成作图.(3)函数的值域是各段函数值的集合的并集.解函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)∵-1≤x<0时,f(x)=-x,∴f-=--.∵0≤x<1时,f(x)=x2,∴f.∵1≤x≤2时,f(x)=x,∴f.(2)在同一平面直角坐标系中分段画出函数f(x)的图像,如图.(3)由(2)中函数f(x)的图像可知,函数的值域为[0,2].★10某市范围内住宅电话通话费为前3 min 0.20元,以后每分0.10元(不足3 min按3 min计,以后不足1 min按1 min 计).(1)在直角坐标系内,画出一次通话在6 min内(包括6 min)的通话费y(元)关于通话时间t(min)的函数图像;(2)如果一次通话t min(t>0),写出通话费y(元)关于通话时间t(min)的函数关系式(可用[t]表示不小于t的最小整数).解(1)如图:(2)由(1)知,话费与时间t的关系是分段函数,当0<t≤3时,话费为0.2元;当t>3时,话费应为[0.2+([t]-3)×0.1]元,所以y=-★11已知函数的图像由两条射线及开口向下的抛物线的一部分(包括端点)组成,如图,试求函数的解析式.解设左射线所在直线的解析式为y=kx+b,因为点(1,1),(0,2)在直线上,故由得-所以左射线的解析式为y=-x+2(x<1).同理可得右射线的解析式为y=x-2(x>3).再设抛物线的解析式为y=a(x-2)2+2,因为点(1,1)在此抛物线上,所以a+2=1,a=-1,所以中间抛物线的解析式为y=-(x-2)2+2=-x2+4x-2,1≤x≤3.综上所述,所求函数的解析式为y=----2.3映射课时过关·能力提升1映射f:A→B,在f作用下A中元素(x,y)与B中元素(x-1,3-y)对应,则与B中元素(0,1)对应的A中元素是()A.(-1,2)B.(0,3)C.(1,2)D.(-1,3)2下列从集合A到集合B的对应中为映射的是()A.A=B=N+,对应关系f:x→y=|x-3|B.A=R,B={0,1},对应关系f:x→y=C.A={x|x>0},B={y|y∈R},对应关系f:x→y=±D.A=Z,B=Q,对应关系f:x→y=答案:B3集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满足f(a)+f(b)=0,那么这样的映射f:A→B的个数为()A.2B.3C.5D.8解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.答案:B4已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原像分别是5和9,则6在f下的像是()A.3B.4C.5D.6解析:因为3和7的原像分别是5和9,所以解得-即f:x→y=x-2,所以当x=6时,y=6-2=4,故选B.答案:B5已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的像,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是() A.4 B.5 C.6 D.7解析:对应关系是f:a→|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.6若A到B的映射f:x→3x-1,B到C的映射g:y→,则A到C的映射h:x→.解析:由题意,得y=3x-1,.--故h:x→.-答案:-7设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素对应B中的元素3.解析:对应关系为f:n→2n+n,根据2n+n=3,可得n=1.答案:18设a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为.解析:∵f:x→x,∴M=N,∴=0,a=1,b=0.故a+b=1.答案:19设f,g都是由A到A的映射(其中A={1,2,3}),其对应关系如下表:设a=g(f(3)),b=g(g(2)),c=f(g(f(1))).试判断a,b,c的大小关系.解∵a=g(f(3))=g(1)=2,b=g(g(2))=g(1)=2,c=f(g(f(1)))=f(g(2))=f(1)=2,∴a=b=c.10设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y).(1)求A中元素(-1,2)的像;(2)求B中元素(-1,2)的原像.解(1)A中元素(-1,2)在B中对应的元素为(-1-2,-1+2),即A中元素(-1,2)的像为(-3,1).(2)设A中元素(x,y)与B中元素(-1,2)对应,则由--解得所以B中元素(-1,2)的原像为.11已知从集合A到集合B={0,1,2,3}的映射f:x→-,试问集合A中的元素最多有几个?写出元素最多时的集合A.解∵f:x→-是从集合A到集合B的映射,∴A中每一个元素在集合B中都有像.令-=0,则该方程无解,故0没有原像.分别令-=1,2,3可得x=±2,±,±.故集合A中的元素最多为6个,即A=---.★12设映射f:A→B,其中A=B={(x,y)|x,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).(1)求A中元素(3,4)的像.(2)求B中元素(5,10)的原像.(3)A中是否存在这样的元素(a,b)使它的像仍是它本身?若有,求出这个元素;反之,说明理由.解(1)因为所以--所以集合A中元素(3,4)的像是(2,23).(2)因为--所以所以集合B中元素(5,10)的原像是(2,1).(3)因为--即--解得所以存在元素使它的像仍是它本身.§3函数的单调性第1课时函数单调性的定义与判断课时过关·能力提升1设函数f(x)在区间(a,b),(c,d)上是增加的,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不能确定答案:D2若y=f(x)是R上的增函数,且f(2m)<f(9-m),则实数m的取值范围是()A.(3,+∞)B.(-∞,3)C.(-∞,0)D.(-3,3)。
人教版高中一年级数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+=,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅ 8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、1625 9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a >10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >> 11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对 12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ;14、函数y =的定义域为 ;15、若2x <,3x -的值是 ; 16、100lg 20log 25+= 。
【人教版】高中数学必修一期末试卷(附答案)
一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.计算log 916·log 881的值为( ) A .18B .118C .83D .387.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14,8.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( )A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1C .-3或2D .-1或211.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃12.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .1二、填空题13.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________. 14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.17.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数.23.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间.25.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.26.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <.故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误.由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.7.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.11.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a ≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭.故选:A.【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集. 12.C解析:C【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++, ,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素.故选:C【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.二、填空题13.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos ,1()21,1x x f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个故答案为:5【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =, 故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.17.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =,令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2)【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域.【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-.【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣ 解析:12(,]23由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)2160500,080281001680,80x x xyx xx⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】 (1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.24.(1)32x x⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可; (2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可.【详解】 解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221x x -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x ⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞, 设245u x x =--,35log y u =, 因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间, 因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增,所以函数()f x 的单调减区间为()5,+∞【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k =-与区间()0,4端点的大小关系得出实数k 的取值范围;(3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n =⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a b b a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+ (2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k =- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k <-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭ (3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132 132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =- 4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围.26.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
人教版高中数学必修一第一章《集合与函数》检测习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
高中数学必修1第三章检测含答案
第三章《函数的应用》复习测试题(一)一、选择题1.(2012北京)函数的零点个数为( ).A.0B.1C.2D.3考查目的:考查函数零点的概念、函数的单调性和数形结合思想.答案:B.解析:(方法1):令得,,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.2.(2010天津)函数的零点所在的一个区间是( ).A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)考查目的:考查函数零点的存在性定理.答案:B解析:∵,,∴答案选B.3.(2009福建)若函数的零点与的零点之差的绝对值不超过0.25,则可以是( ).A. B.C. D.考查目的:考查函数零点的概念和零点存在性定理.答案:A.解析:的零点为,的零点为,的零点为,的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ).1.95 3.00 3.94 5.10 6.120.97 1.59 1.98 2.35 2.61A. B. C.D .考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.答案:D.解析:通过检验可知,只有函数较为接近,故答案选D.5.已知函数,,的零点分别为,,则的大小关系是( ).A. B.C. D.考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.答案:C.解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).A. B. C.D.考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.答案:B.解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.综上得,必有,故选B.(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.二、填空题7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为元(用数字作答).考查目的:考查分段函数在解决实际问题中的应用.答案:.解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为,这两部分电费之和为(元).8.(2009山东)若函数有两个零点,则实数的取值范围是__________.考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.答案:.解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.9.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,则2013年预计经营总收入为________万元.考查目的:考查增长率模型在实际问题中的应用和读题审题能力.答案:1300.解析:设年平均增长率为,则,∴,∴2013年预计经营总收入为×=1300(万元).10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.答案:.解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.答案:.解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为.。
高中数学必修一三角函数复习题(附答案)
三角函数复习题1.已知角θ的终边经过点P(4,m),且sinθ=35,则m等于 ( )A.−3B.3C.163D.±32.已知角的终边在直线y=−3x上,则sinα值为3.已知sinθ=1−a1+a ,cosθ=3a−11+a若θ为第二象限角,则tanθ的值是4.已知−π<x<0,sin x+cos x=15.则:(1)sin x−cos x的值为(2) 的值为5.函数在区间上的最小值是6.已知定义在实数集上的偶函数在区间上单调递增,且若是的一个内角,且满足,则的取值范围为7.若函数的图像经过点,则其图像一定经过点( )A. B. C. D.8.下列关于函数的说法正确的是①是以为周期的函数:②当且仅当时,函数取得最小值③的称轴为为直线④当时,9.将函数的图像向右平移个周期后,所得图像称应的函数解析式为 ( )A. B.C. D.10.已知则( )A. B. C. D.11.化简:12.已知扇形的周长为20,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?13.设函数(1)求函数的最小正周期(2)求函数在上的最大值.参考答案1.B 由得,且,解得,故选B.易错提示:可得,解题时要充分分析求解参数得范围.2.答案解析:设角的终边上 任意一点为,则,当,是第四象限角,此时,当,是第四象限角,此时,综上,.3答案解析: 因为,所以,解得或当时,,不是第二象限角舍去当时,,是第二象限角,符合题意,所以.4.答案 (1)(2)解析(1)由,两边平方得,所以,因为,所以 所以,又,所以(2)联立方程组,解得,,5.答案解析: ,由,知,令则,所以在上单调递增,在上单调递 ,所以6.答案解析:偶函数在区间上单调递增,所以在区间上单调递 .所以,所以,所以,,所以且,因为A是 的一个内角,所以,,所以7.答案 C解析: 由A错,B错C正确,D错误8.答案 ①②④解析:做出的图像,由图可知①②④正确.9.答案 D 函数的最小正周期为 ,所得图像的解析式为10.答案 A解析:11.解:12.解13.解。
人教版高中数学必修一专题复习及参考答案
人教版高中数学必修一专题复习及参考答案知识架构第一讲集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;①两个集合的交集:= ;A B {}x x A x B ∈∈且②两个集合的并集: =;A B {}x x A x B ∈∈或③设全集是U,集合,则A U ⊆U C A ={}x x U x A ∈∉且{|B x x ={|B x x =★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点:1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性,在解题过程中最易被忽视,因此要对结果进行检验;2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如、、等的差别,如果对集合中代表元素认识不清,将导致求解错误:{})(x f y x ={})(x f y y ={})(),(x f y y x =问题:已知集合( ) 221,1,9432x y x y M x N y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N= A. ;B.;C. ;D. Φ{})2,0(),0,3([]3,3-{}3,2[错解]误以为集合表示椭圆,集合表示直线,由于这直线过椭圆的两个顶点,于是错选B M 14922=+y x N 123=+y x [正解] C ; 显然,,故{}33≤≤-=x x M R N =]3,3[-=N M(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。
3.集合间的关系的几个重要结论(1)空集是任何集合的子集,即A ⊆φ(2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若,,则B A ⊆C B ⊆C A ⊆4.集合的运算性质(1)交集:①;②;③;④,⑤;A B B A =A A A = φφ= A A B A ⊆ B B A ⊆ B A A B A ⊆⇔=(2)并集:①;②;③;④,⑤;A B B A =A A A = A A =φ A B A ⊇ B B A ⊇ A B A B A ⊆⇔=(3)交、并、补集的关系①;φ=A C A U U A C A U =②;)()()(B C A C B A C U U U =)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年江西理)定义集合运算:.设{}|,,A B z z xy x A y B *==∈∈{}{}1,2,0,2A B ==,则集合的所有元素之和为()A B *A .0;B .2;C .3;D .6[解题思路]根据的定义,让在中逐一取值,让在中逐一取值,在值就是的元素A B *x A y B xy A B *[解析]:正确解答本题,必需清楚集合中的元素,显然,根据题中定义的集合运算知=,故应选择D A B *A B *{}4,2,0【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)
高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。
c>bc c.若。
>b,则。
+c>b+cl I B.若α>b,则-〉-a D D.着。
>b,则。
2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。
+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。
÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。
在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。
高一数学必修一经典高难度测试题含答案
高中数学必修1复习测试题(难题版)1.设5log 31=a ,513=b ,3.051⎪⎭⎫⎝⎛=c ,则有( )A .a b c <<B .c b a <<C .c a b <<D .b c a <<2.已知定义域为R 的函数)(x f 在),4(∞+上为减函数,且函数()y f x =的对称轴为4x =,则( )A .)3()2(f f >B .)5()2(f f >C .)5()3(f f >D .)6()3(f f >3.函数lg y x = 的图象是( )4.下列等式能够成立的是( )A .ππ-=-3)3(66B =C =34()x y =+5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<-B .)1()23()2(-<-<f f fC .)23()1()2(-<-<f f fD .)2()23()1(f f f <-<-6.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 A . ()(2)f x x x =-+ B .()||(2)f x x x =- C .()(||2)f x x x =- D. ()||(||2)f x x x =-7.已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞解: 先求函数定义域: 由2-ax >0,得ax <2, 又a 是对数的底数,∴a >0且a≠1.∴x <.由递减区间[0,1]应在定义域内,可得>1,∴a <2.又2-ax 在x ∈[0,1]上是减函数,∴在区间[0,1]上也是减函数.由复合函数单调性可知a >1, ∴1<a <2.8.已知(31)4,1()log ,1aa x a x f x x x -+<=>⎧⎨⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )A (0,1)B 1(0,)3C 11[,)73D 1[,1)79.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当x ∈[1,0]-时()1xf x ⎛⎫= ⎪,则2(log 8)f 等于 ( )A . 3B . 18C . 2-D . 210.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )11.已知f(x)= ⎩⎨⎧>≤+)0(2)0(12x x x x 若()10f x =,则x = .12.1x≤,则x 的取值范围是____________13. 设函数()x f 在)2,0(上是增函数,函数()2+x f 是偶函数,则()1f 、⎪⎭⎫ ⎝⎛25f 、⎪⎭⎫⎝⎛27f 的大小关系是.___________14.若f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的增区间是.∵函数f(x)=(a-2)x2+(a-1)x+3是偶函数,∴a-1=0∴f(x)=-x2+3,其图象是开口方向朝下,以y轴为对称轴的抛物线故f(x)的增区间(-∞,0]故答案为:(-∞,0]15.已知函数f(x)=2|x+1|+ax(x∈R).(1)证明:当a>2时,f(x)在R上是增函数.(2)若函数f(x)存在两个零点,求a的取值范围.15.(1)证明:化简f (x )=⎩⎨⎧1221 ≥22<-,-)-(-,+)+(x x a x x a 因为a >2,所以,y 1=(a +2)x +2 (x ≥-1)是增函数,且y 1≥f (-1)=-a ;另外,y 2=(a -2)x -2 (x <-1)也是增函数,且y 2<f (-1)=-a .所以,当a >2时,函数f (x )在R 上是增函数.(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩⎨⎧0022<-)<-)(+(a a a 解得a 的取值范围是(0,2).16.试用定义讨论并证明函数11()()22ax f x a x +=≠+在(),2-∞-上的单调性17.已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
高中数学人教版必修1专题复习—对数与对数函数(含答案)
必修1专题复习——对数与对数函数1.23log 9log 4⨯=( ) A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .14 3.已知222125log 5,log 7,log 7a b ===则 ( ) A .3a b - B .3a b - C .3a bD .3ab4.552log 10log 0.25+=( ) A .0 B .1 C .2 D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数y =A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+2111.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆ 12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( ) A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<< 15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,xa y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D . 21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
人教版高中数学选择性必修第一册-第1章-空间向量与立体几何-章末检测卷(含答案)
第一章空间向量与立体几何章末检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =()A .{0}B .{1}C .{1,2}D .{0,1,2}2.已知集合U ={1,2,3,4,5,6,7},A ={x |3≤x ≤7,x ∈N },则∁U A =()A .{1,2}B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}3.已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A .3B .4C .7D .84.若存在量词命题“∃x ∈R ,x 2-3x +5≤0”,则其否定是()A .∃x ∈R ,x 2-3x +5≥0B .∃x ∈R ,x 2-3x +5>0C .∀x ∈R ,x 2-3x +5≥0D .∀x ∈R ,x 2-3x +5>05.若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是()A .b ≥2B .1<b ≤2C .b ≤1D .b <16.已知集合M ={x |x 2=1},N ={x |ax =1},若N ⊆M ,则实数a 的取值集合为()A .{1}B .{-1,1}C .{1,0}D .{1,-1,0}7.已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为()A .1B .2C .3D .1或28.已知条件p :4x -m <0,q :1≤3-x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为()A .{m |m ≥8}B .{m |m >8}C .{m |m >-4}D .{m |m ≥-4}二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列选项中的两个集合相等的是()A .P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z }B .P ={x |x =2n -1,n ∈N *},Q ={x |x =2n +1,n ∈N *}C .P ={x |x 2-x =0},Q ={xx =1+(-1)n 2,n ∈Z }D .P ={y |y =x +1},Q ={(x ,y )|y =x +1}10.对任意实数a ,b ,c ,下列命题是真命题的有()A .“a =b ”是“ac =bc ”的充要条件B .“a >b ”是“a 2>b 2”的充分条件C .“a <5”是“a <3”的必要条件D .“a +5是无理数”是“a 是无理数”的充要条件11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是()A .{0,1}B .{0,2}C .{0,3}D .{1,2}12.我们把含有有限个元素的集合A 叫做有限集,用card(A )表示有限集合A 中元素的个数.例如,A ={x ,y ,z },则card(A )=3.若非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,则下列说法正确的是()A .M ∪N =MB .M ∩N =NC .M ∪N =ND .M ∩N =∅三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.14.命题“∃x ∈R ,使得x 2+2x +5=0”的否定是___________________________.15.已知集合A ={-2,3,4,6},集合B ={3,a ,a 2},若B ⊆A ,则实数a =________;若A ∩B ={3,4},则实数a =________.(本题第一空2分,第二空3分)16.若x ∈A ,则1x∈A ,就称A 是“伙伴关系集合”,集合M 1,0,12,2,空子集中“伙伴关系集合”的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知集合U ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求(1)A ∩B ;(2)A ∪B ;(3)(∁U A )∩(∁U B ).18.(12分)已知集合P ={2,x ,y },Q ={2x ,2,y 2},且P =Q ,求x ,y 的值.19.(12分)写出下列命题的否定,并判断它们的真假.(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)存在一个实数x ,使得x 2+x +1≤0.20.(12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B ={x |1<x <2},求实数m 的值;(3)若A ∩B =∅,求实数m 的取值范围.21.(12分)设集合A ={x |-1≤x ≤2},集合B ={x |2m <x <1}.(1)若B ≠∅,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围;(2)若B ∩(∁R A )中只有一个整数,求实数m 的取值范围.22.(12分)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a -1<x <2a +3},B ={x |-7≤x ≤4},若________,求实数a 的取值范围.1.已知集合A ={1,2,3,4,5,6},则满足B ∪A =A 的非空集合B 的个数为()A .31B .63C .64D .622.设集合A ={x |1<x ≤2},B ={x |x <a },若A ∪B =B ,则a 的取值范围是()A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}3.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于()A .NB .MC .RD .∅4.已知表示集合A ={x |x >-2}和B ={x |x <3}关系的Venn 图如图所示,则阴影部分所表示的集合为()A .{x |-2<x <3}B .{x |x ≤-2}C .{x |x ≥3}D .{x |x <3}5.已知非空集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}.(1)若a =3,求(∁R P )∩Q ;(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},问是否存在实数a,b同时满足B A,A∩C=C?若存在,求出a,b的所有值;若不存在,请说明理由.第一章空间向量与立体几何章末检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =()A .{0}B .{1}C .{1,2}D .{0,1,2}答案C解析由题意得A ={x |x ≥1},B ={0,1,2},所以A ∩B ={1,2}.故选C.2.已知集合U ={1,2,3,4,5,6,7},A ={x |3≤x ≤7,x ∈N },则∁U A =()A .{1,2}B .{3,4,5,6,7}C .{1,3,4,7}D .{1,4,7}答案A解析由题意知A ={3,4,5,6,7},所以∁U A ={1,2}.故选A.3.已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A .3B .4C .7D .8答案D解析由题意知,B ={0,1,2},则集合B 的子集的个数为23=8.故选D.4.若存在量词命题“∃x ∈R ,x 2-3x +5≤0”,则其否定是()A .∃x ∈R ,x 2-3x +5≥0B .∃x ∈R ,x 2-3x +5>0C .∀x ∈R ,x 2-3x +5≥0D .∀x ∈R ,x 2-3x +5>0答案D5.若集合A ={x |1<x <2},B ={x |x >b ,b ∈R },则A ⊆B 的一个充分不必要条件是()A .b ≥2B .1<b ≤2C .b ≤1D .b <1答案D解析由A ⊆B 得b ≤1,结合选项知A ⊆B 的一个充分不必要条件为b <1.6.已知集合M ={x |x 2=1},N ={x |ax =1},若N ⊆M ,则实数a 的取值集合为()A .{1}B .{-1,1}C .{1,0}D .{1,-1,0}答案D解析由已知得M ={-1,1},当a =0时,N =∅,满足N ⊆M ;当a ≠0时,由1a =-1得a =-1,满足条件;由1a=1得a =1,满足条件.所以实数a 的取值集合为{-1,0,1}.故选D.7.已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为()A .1B .2C .3D .1或2答案B解析当a =1时,B 中元素均为无理数,A ∩B =∅;当a =2时,B ={1,2},A ∩B ={1,2}≠∅;当a =3时,B =∅,则A ∩B =∅.故a 的值为2.故选B.8.已知条件p :4x -m <0,q :1≤3-x ≤4,若p 是q 的一个必要不充分条件,则实数m 的取值范围为()A .{m |m ≥8}B .{m |m >8}C .{m |m >-4}D .{m |m ≥-4}答案B解析由4x -m <0,得x <m 4,由1≤3-x ≤4,得-1≤x ≤2.∵p 是q 的一个必要不充分条件,∴m 4>2,即m >8.故选B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列选项中的两个集合相等的是()A .P ={x |x =2n ,n ∈Z },Q ={x |x =2(n +1),n ∈Z }B .P ={x |x =2n -1,n ∈N *},Q ={x |x =2n +1,n ∈N *}C .P ={x |x 2-x =0},Q ={xx =1+(-1)n 2,n ∈Z }D .P ={y |y =x +1},Q ={(x ,y )|y =x +1}答案AC解析对于A ,P ,Q 都表示所有偶数组成的集合,所以P =Q ;对于B ,P 是由所有正奇数组成的集合,Q 是由所有大于1的正奇数组成的集合,所以P ≠Q ;对于C ,P ={0,1},当n 为奇数时,x =1+(-1)n 2=0,当n 为偶数时,x =1+(-1)n 2=1,所以Q ={0,1},P =Q ;对于D ,集合P 表示数集,而集合Q 表示点集,所以P ≠Q .故选AC.10.对任意实数a ,b ,c ,下列命题是真命题的有()A .“a =b ”是“ac =bc ”的充要条件B .“a >b ”是“a 2>b 2”的充分条件C .“a <5”是“a <3”的必要条件D .“a +5是无理数”是“a 是无理数”的充要条件答案CD解析对于A ,因为a =b 时ac =bc 成立,ac =bc ,c =0时a =b 不一定成立,所以“a =b ”是“ac =bc ”的充分不必要条件,故A 错;对于B ,a =-1,b =-2时,a >b ,a 2<b 2,a =-2,b =1时,a 2>b 2,a <b ,所以“a >b ”是“a 2>b 2”的既不充分也不必要条件,故B 错;对于C ,因为“a <3”时一定有“a <5”成立,所以“a <5”是“a <3”的必要条件,故C 正确;对于D ,“a +5是无理数”是“a 是无理数”的充要条件,故D 正确.故选CD.11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是()A .{0,1}B .{0,2}C .{0,3}D .{1,2}答案BD12.我们把含有有限个元素的集合A 叫做有限集,用card(A )表示有限集合A 中元素的个数.例如,A ={x ,y ,z },则card(A )=3.若非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,则下列说法正确的是()A .M ∪N =MB .M ∩N =NC .M ∪N =ND .M ∩N =∅答案ABC解析非空集合M ,N 满足card(M )=card(N ),且M ⊆N ,即M ,N 元素个数相同,且M ⊆N ,∴M =N ,∴A 、B 、C 正确.又∵M ,N 是非空集合,∴M ∩N ≠∅,D 不对.故选ABC.三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.答案6解析由已知得,B ={3,7,9,15},所以A ∪B ={1,3,4,7,9,15},所以集合A ∪B 中元素的个数为6.14.命题“∃x ∈R ,使得x 2+2x +5=0”的否定是___________________________.答案∀x ∈R ,都有x 2+2x +5≠015.已知集合A ={-2,3,4,6},集合B ={3,a ,a 2},若B ⊆A ,则实数a =________;若A ∩B ={3,4},则实数a =________.(本题第一空2分,第二空3分)答案-22或4解析∵集合A ={-2,3,4,6},集合B ={3,a ,a 2},B ⊆A ,∴a =-2.∵A ∩B ={3,4},∴a =4或a 2=4,∴a =2或4(a =-2时不符合题意).16.若x ∈A ,则1x∈A ,就称A 是“伙伴关系集合”,集合M1,0,12,2,空子集中“伙伴关系集合”的个数是________.答案3解析“伙伴关系集合”有3个:{-1}1,12,四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知集合U ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求(1)A ∩B ;(2)A ∪B ;(3)(∁U A )∩(∁U B ).解析(1)A ∩B ={x |3≤x <5}.(2)A ∪B ={x |2≤x <7}.(3)∁U A ={x |1<x <2或5≤x ≤7},∁U B ={x |1<x <3或x =7},(∁U A )∩(∁U B )={x |1<x <2或x =7}.18.(12分)P ={2,y },Q ={2x ,2,y 2},且P =Q ,求x,y 的值.解析∵P =Q=2x ,=y 2=y 2,=2x ,=0,=0或1=0,=0=14,=12.由元素的互异性可知x ≠y ,故x =0,y =1或x =14,y =12.19.(12分)写出下列命题的否定,并判断它们的真假.(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)存在一个实数x ,使得x 2+x +1≤0.解析(1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,因为綈p 是真命题,所以原命题是一个假命题.(2)这一命题的否定形式是綈p :“对所有实数x ,都有x 2+x +1>0”.利用配方法可以证得綈p 是一个真命题,所以原命题是一个假命题.20.(12分)已知集合A ={x |1<x <3},集合B={x |2m <x <1-m }.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B ={x |1<x <2},求实数m 的值;(3)若A ∩B =∅,求实数m 的取值范围.解析(1)由A ⊆B -m >2m,m ≤1,-m ≥3,解得m ≤-2,即实数m 的取值范围为{m |m ≤-2}.(2)m ≤1,-m =2≤12,=-1,∴m =-1.(3)由A ∩B =∅,得当2m ≥1-m ,即m ≥13时,B =∅,符合题意;当2m <1-m ,即m <13时,需<13,-m ≤1<13,m ≥3,得0≤m <13或m 无解,即0≤m <13.综上知m ≥0,即实数m 的取值范围为{m |m ≥0}.21.(12分)设集合A ={x |-1≤x ≤2},集合B ={x |2m <x <1}.(1)若B ≠∅,且“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围;(2)若B ∩(∁R A )中只有一个整数,求实数m 的取值范围.解析(1)由题意知B ≠∅且B A ,∵A ={x |-1≤x ≤2},∴-1≤2m <1⇒-12≤m <12.(2)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1或x >2}.①当m <12时,B ={x |2m <x <1},若B ∩(∁R A )中只有一个整数,则-3≤2m <-2,得-32≤m <-1;②当m ≥12时,不符合题意.综上,m 的取值范围是-32≤m <-1.22.(12分)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a -1<x <2a +3},B ={x |-7≤x ≤4},若________,求实数a 的取值范围.解析若选择①A ∩B =∅,则当A =∅,即a -1≥2a +3,即a ≤-4时,满足题意;当a >-4>-4,a +3≤-7>-4,-1≥4,解得a ≥5.综上可知,实数a 的取值范围是{a |a ≤-4或a ≥5}.若选择②A ∩(∁R B )=A ,则A 是∁R B 的子集,∁R B ={x |x <-7或x >4},当a -1≥2a +3,即a ≤-4时,A =∅,满足题意;当a >-4>-4,a +3≤-7>-4,-1≥4,解得a ≥5.综上可得,实数a 的取值范围是{a |a ≤-4或a ≥5}.若选择③A ∩B =A ,则A ⊆B ,当a -1≥2a +3,即a ≤-4时,A =∅,满足题意;当a >-4-1≥-7,a +3≤4,解得-4<a ≤12.综上可知,实数a 1.已知集合A ={1,2,3,4,5,6},则满足B ∪A =A 的非空集合B 的个数为()A .31B .63C .64D .62答案B解析∵A ∪B =A ,∴B ⊆A ,∵A ={1,2,3,4,5,6},∴满足A ∪B =A 的非空集合B 的个数为26-1=63.2.设集合A ={x |1<x ≤2},B ={x |x <a },若A ∪B =B ,则a 的取值范围是()A .{a |a ≥1}B .{a |a ≤1}C .{a |a ≥2}D .{a |a >2}答案D解析由A ∪B =B 得A ⊆B ,又A ={x |1<x ≤2},B ={x |x <a },故a >2.3.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于()A .NB .MC .RD .∅答案A解析M ={x |y =x 2-2}=R ,N ={y |y =x 2-2}={y |y ≥-2},故M ∩N =N .4.已知表示集合A ={x |x >-2}和B ={x |x <3}关系的Venn 图如图所示,则阴影部分所表示的集合为()A .{x |-2<x <3}B .{x |x ≤-2}C .{x |x ≥3}D .{x |x <3}答案B解析∵A ={x |x >-2},B ={x |x <3},∴A ∪B =R .设U =R ,则∁U A ={x |x ≤-2},∴题图中阴影部分所表示的集合为(∁U A )∩B ={x |x ≤-2}.5.已知非空集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}.(1)若a =3,求(∁R P )∩Q ;(2)若“x ∈P ”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.解析因为P 是非空集合,所以2a +1≥a +1,即a ≥0.(1)当a =3时,P ={x |4≤x ≤7},∁R P ={x |x <4或x >7},Q ={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)“x ∈P ”是“x ∈Q ”的充分不必要条件,即P Q ,+1≥-2,a +1≤5,≥0,且a +1≥-2和2a +1≤5的等号不能同时取得,解得0≤a ≤2,即实数a 的取值范围为{a |0≤a ≤2}.6.已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},问是否存在实数a ,b 同时满足B A ,A ∩C =C ?若存在,求出a ,b 的所有值;若不存在,请说明理由.解析∵A ={x |x 2-3x +2=0}={1,2},B ={x |(x -1)[x -(a -1)]=0},又B A ,∴a -1=1,即a =2.∵A ∩C =C ,∴C ⊆A ,则C 中的元素有以下三种情况:(1)若C =∅,即方程x 2-bx +2=0无实根,∴Δ=b 2-8<0,-22<b <22,符合题意.(2)若C ={1}或C ={2},即方程x 2-bx +2=0有两个相等的实根,∴Δ=b 2-8=0,b =±22,此时C ={2}或C ={-2},不符合题意,舍去.(3)若C ={1,2},则b =1+2=3,而两根之积恰好等于2,符合题意.故同时满足B A ,A ∩C =C 的实数a ,b 存在,a =2,-22<b <22或b =3.。
2020-2021学年高中数学新教材人教版必修一期末复习题目
18.(本小题满分12分)已知集合A={x|-2<x<4},B={x|-1<x≤5},U=R.(1)求A∩B,A∪B;(2)求(∁R A)∩B.19.(本小题满分12分)设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A={x∈Z|-2≤x≤5},求A的非空真子集的个数;(2)若A∩B=B,求实数m的取值范围.20.(本小题满分12分)设集合A={x|x2-3x+2=0},B={x|ax =1}.“x∈B”是“x∈A”的充分不必要条件,试求满足条件的实数a组成的集合.21.(本小题满分12分)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围.22.(本小题满分12分)设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若-1∈B,求a的值;(2)若B⊆A,求a的值.16.已知集合A={x|1<x<3},B={x|-1<x<m+2},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是m≥1.解析:因为x∈B成立的一个充分不必要条件是x∈A,所以A⫋B,所以m+2≥3,所以m≥1.四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算过程)17.(10分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除;(2)对任意非零实数x1,x2,若x1<x2,则>;(3)对任意的x∈R,x2+x+1=0都成立;(4)∃x∈R,使得x2+1=0.解:(1)存在量词命题.因为99既能被11整除,又能被9整除,所以是真命题.(2)全称量词命题.存在x1=-1,x2=1,x1<x2,但<,所以是假命题.(3)全称量词命题.因为存在x=0使x2+x+1=0不成立,故是假命题.(4)存在量词命题.因为对任意x∈R,x2+1>0,所以是假命题.18.(12分)已知命题p:3a<m<4a(a>0),命题q:1<m<,且q是p 的必要不充分条件,求实数a的取值范围.解:因为q是p的必要不充分条件,所以p⇒q,q⇒/p,从而有或解得≤a≤.所以实数a的取值范围是≤a≤.19.(12分)设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判断集合A与B的关系;(2)若B⊆A,求实数a的值.解:(1)A={3,5},当a=时,由已知可得B={5},所以B是A的真子集.(2)当B=⌀时,满足B⊆A,此时a=0;当B≠⌀时,集合B=,又因为B⊆A,所以=3或=5,解得a=或a=.综上,a的值为0或或.20.(12分)已知集合A={x|1<x<6},B={x|2<x<10},C={x|5-a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆B,求实数a的取值范围.解:(1)因为A={x|1<x<6},B={x|2<x<10},所以A∪B={x|1<x<10},∁R A={x|x≤1,或x≥6},所以(∁R A)∩B={x|6≤x<10}.(2)因为C⊆B,①当C=⌀时,满足题意,此时有5-a≥a,所以a≤;②当C≠⌀时,则有解得<a≤3.所以a的取值范围是a≤3.21.(12分)已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多只有一个元素,求a的取值范围.解:(1)若A是空集,则方程ax2-3x+2=0无解,此时Δ=9-8a<0,即a>.(2)若A中只有一个元素,则方程ax2-3x+2=0有且只有一个实根,当a=0时方程为一元一次方程,满足条件.当a≠0,此时Δ=9-8a=0,解得:a=.所以a=0或a=.若a=0,则有A=,若a=,则有A=.(3)若A中至多只有一个元素,则A为空集,或有且只有一个元素.由(1),(2)得满足条件的a的取值范围是a=0或a≥.22.(12分)设全集是实数集R,集合A=x≤x≤2,B={x|x-a<0}.(1)当a=1时,分别求A∩B与A∪B;(2)若A⊆B,求实数a的取值范围;(3)若(∁R A)∩B=B,求实数a的最大值.解:(1)当a=1时,B={x|x<1},所以A∩B=,A∪B={x|x≤2}.(2)因为A⊆B,所以a>2,所以实数a的取值范围为a>2.(3)因为(∁R A)∩B=B,所以B⊆∁R A.又因为∁R A=,所以a≤,所以实数a的最大值为.2020-2021学年高中数学新教材人教版必修一 第一章集合与常用逻辑用语 单元测试1.解析:A ={-1,0,1,2},B ={x |0≤x <2},∴A ∩B ={0,1}.故选C.答案:C2.解析:由题意得,B ={1,4,7,10},所以A ∩B ={1,4}. 答案:D 3.解析:由存在量词命题的否定为全称量词命题,可得命题“∃x 0∈(0,+∞),x 20+1≤2x 0”的否定为“∀x ∈(0,+∞),x 2+1>2x ”,故选A.答案:A4.解析:联立A 与B 中方程得:⎩⎪⎨⎪⎧y =3x -2,y =x +4,消去y 得:3x -2=x +4,解得:x =3, 把x =3代入得:y =9-2=7,∴方程组的解为⎩⎪⎨⎪⎧x =3,y =7,∵A ={(x ,y )|y =3x -2},B ={(x ,y )|y =x +4}, ∴A ∩B ={(3,7)},故选B. 答案:B5.解析:全集U ={0,1,2,3},∁U A ={0,2},则A ={1,3},故集合A 的真子集共有22-1=3个.故选A.答案:A6.解析:∵x >1,∴x 3>1.又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件,故选C.答案:C7.解析:由P ∪M =P ,可知M ⊆P ,即a ∈P ,因为集合P ={x |-1≤x ≤1},所以-1≤a ≤1.答案:C8.解析:∵b a 为分式,∴a ≠0,∵⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},∴b a =0,即b =0,∴{a,0,1}={a 2,a,0},∴当⎩⎪⎨⎪⎧a 2=1,a =a时,a =-1或a =1,当a =1时,即得集合{1,0,1},不符合元素的互异性,故舍去,当a =-1时,即得集合{-1,0,1},满足.当⎩⎪⎨⎪⎧a =1a 2=a时,a =1,即得集合{1,0,1},不符合元素的互异性,故舍去,综上,a =-1, b =0.∴a 2 019+b 2 019=(-1)2 019+02 019=-1,故选C. 答案:C9.解析:10以内的质数组成的集合是{2,3,5,7},故A 正确;由集合中元素的无序性知{1,2,3}和{3,1,2}表示同一集合,故B 正确;方程x 2-2x +1=0的所有解组成的集合是{1},故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.答案:CD10.解析:∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8}, ∴B ∩C ={1,8}∴A ⊆(B ∩C )⇒A ⊆(1,8),故选AC. 答案:AC 11.解析:根据venn 图,可直接得出结果.由venn 图可知,ABCD 都是充要条件.故选ABCD. 答案:ABCD 12.解析:A 中,-1∈B,1∈B ,但是-1-1=-2∉B ,B 不是“完美集”,故A 说法不正确;B 中,有理数集满足“完美集”的定义,故B 说法正确;C 中,0∈A ,x 、y ∈A ,∴0-y =-y ∈A ,那么x -(-y )=x +y ∈A ,故C 说法正确;D 中,对任意一个“完美集”A ,任取x 、y ∈A ,若x 、y 中有0或1时,显然xy ∈A ,若x 、y 均不为0、1,而1xy =12xy +12xy =1(x +y )2-x 2-y 2+1(x +y )2-x 2-y 2,x 、x -1∈A ,那么1x -1-1x =1x (x -1)∈A ,∴x (x -1)∈A , 进而x (x -1)+x =x 2∈A .同理,y 2∈A ,则x 2+y 2∈A ,(x +y )2∈A ,∴2xy =(x +y )2-(x 2+y 2)∈A .∴1(x +y )2-x 2-y 2∈A ,结合前面的算式,知xy ∈A ,故D 说法正确;故选:BCD. 答案:BCD13.解析:因为A ={x |-1<x <2},B ={x |x >0},所以A ∩B ={x |0<x <2},(∁R B )∪A ={x |x <2}.答案:{x |0<x <2} {x |x <2} 14.答案:必要不充分15.解析:因为集合A ={m +2,2m 2+m },且3∈A ,所以⎩⎪⎨⎪⎧ m +2=3,2m 2+m ≠3,或⎩⎪⎨⎪⎧2m 2+m =3,m +2≠3.解得m =-32. 答案:-3216.解析:由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立. 当N ≠∅时,由下图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值范围是{t |t ≤2}. 答案:{t |t ≤2}17.解析:(1)由于命题中含有全称量词“任意的”,因而是全称量词命题;又由于“任意的”的否定为“存在一个”,因此,綈p :存在一个x ∈R ,使x 2+x +1≠0成立,即“∃x ∈R ,使x 2+x +1≠0成立”;(2)由于“∃x ∈R ”表示存在一个实数x ,即命题中含有存在量词“存在一个”,因而是存在量词命题;又由于“存在一个”的否定为“任意一个”,因此,綈p :对任意一个x 都有x 2+2x +5≤0,即“∀x ∈R ,x 2+2x +5≤0”.18.解析:(1)由题意,集合A ={x |-2<x <4},B ={x |-1<x ≤5}, 所以A ∩B ={x |-1<x <4},A ∪B ={x |-2<x ≤5}.(2)由题意,可得∁R A ={x |x ≤-2或x ≥4},所以(∁R A )∩B ={x |4≤x ≤5}.19.解析:(1)∵A ={-2,-1,0,1,2,3,4,5},∴A 的非空真子集有28-2=254(个).(2)∵A ∩B =B ,∴B ⊆A .当B =∅时,m +1>2m -1,∴m <2;当B ≠∅时,⎩⎪⎨⎪⎧ m +1≤2m -1,m +1≥-2,2m -1≤5,∴⎩⎪⎨⎪⎧ m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.综上可知,实数m 的取值范围是{m |m ≤3}.20.解析:∵A ={x |x 2-3x +2=0}={1,2},又“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12. 21.解析:x 2-x -2>0的解集是{x |x >2或x <-1},由4x +p <0得x <-p 4.要想使x <-p 4时,x >2或x <-1成立,必须有-p 4≤-1,即p ≥4.所以p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.22.解析:(1)由题意,因为-1∈B ,即x =-1是方程x 2+2(a +1)x +a 2-1=0的根,可得1-2(a +1)+a 2-1=0,即a 2-2a -2=0,解得a =1±3;(2)由题意,集合A ={x |x 2+4x =0}={0,-4},因为B ⊆A ,可得①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或{-4}时,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={x |x 2=0}={0}满足题意;③当B ={0,-4}时,则⎩⎪⎨⎪⎧ -2(a +1)=-4a 2-1=0,解得a =1, 综上可得,a =1或a ≤-1.。
新教材人教B版高中数学必修第一册第二章 等式与不等式 练习(2)(解析版)
第二章 等式与不等式提升训练一、选择题1.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0【答案】C【解析】由c <b <a 且ac <0,知a >0,c <0,而b 的取值不确定,当b =0时,C 不成立.2.若a >0,b >0,且a 2+3b 2=6,则ab 的最大值为( )A .1 B.2 C. 3D .2 【答案】C【解析】因为6=a 2+3b 2≥23ab ,所以ab ≤3,当且仅当a 2=3b 2,即a =3,b =1时等号成立,故选C.3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <QB .P =QC .P ≥QD .P ≤Q 【答案】C【解析】因为m >1,所以P =m +4m -1=m -1+4m -1+1≥2(m -1)·4m -1+1=5=Q ,当且仅当m -1=4m -1,即m =3时等号成立,故选C.4.不等式1+x >11-x的解集为( ) A .{x |x >0}B .{x |x ≥1}C .{x |x >1}D .{x |x >1或x =0} 【答案】C【解析】不等式可化为1+x -11-x >0,通分得-x 21-x >0,即x 2x -1>0, 因为x 2>0,所以x -1>0,即x >1.故选C.5.下列命题中,一定正确的是( )A .若a >b 且1a >1b,则a >0,b <0 B .若a >b ,b ≠0,则a b >1C .若a >b 且a +c >b +d ,则c >dD .若a >b 且ac >bd ,则c >d【答案】A【解析】A 正确,若ab >0,则a >b 与1a >1b 不能同时成立;B 错,如取a =1,b =-1时,有a b =-1<1;C 错,如a =5,b =1,c =1,d =2时,有a +c >b +d ,c <d ;D 错,取a =-1,b =-2,则a >b ,令c =-3,d =-1,有ac >bd ,c <d .6.不等式14-5x -x 2<0的解集为( )A .{x |-7<x <2}B .{x |x <-7或x >2}C .{x |x >2}D .{x |x <-7} 【答案】B【解析】原不等式等价于x 2+5x -14>0,所以(x +7)·(x -2)>0,即x <-7或x >2,故选B.7.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)【答案】B【解析】①当x -2>0,即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4.②当x -2<0,即x <2时,原不等式等价于(x -2)2≤4,解得0≤x <2.8.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1B .-1C .2D .3【答案】B 【解析】把⎩⎪⎨⎪⎧x =2,y =1代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3.所以a -b =-1,故选B. 9.已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最大值是( ) A.63 B .-233C.433D .-433 【答案】D【解析】不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据根与系数的关系,可得:x 1x 2=3a 2,x 1+x 2=4a ,那么x 1+x 2+a x 1x 2=4a +13a, 因为a <0,所以-⎝⎛⎭⎫4a +13a ≥24a ×13a =433,即4a +13a ≤-433, 故x 1+x 2+a x 1x 2的最大值为-433,故选D. 二、填空题10.如果a >b ,ab >0,那么1a 与1b 的大小关系是________. 【答案】1a < 1b【解析】因为a >b ,ab >0,所以a ab >b ab ,即1b >1a. 11.已知x =1是不等式k 2x 2-6kx +8<0的解,则k 的取值范围是________.【答案】2<k <4【解析】x =1是不等式k 2x 2-6kx +8<0的解,把x =1代入不等式,得k 2-6k +8<0,解得2<k <4.12.若a ∈R ,则a 2+14a 2+5的最小值为________.【答案】6【解析】a 2+14a 2+5=(a 2+5)+9a 2+5=a 2+5+9a 2+5≥2a 2+5·9a 2+5=6,当且仅当a 2+5=9a 2+5,即a =±2时等号成立.13.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 【答案】47【解析】由a +b =1,知13a +2+13b +2=3b +2+3a +2(3a +2)(3b +2)=79ab +10,又ab ≤⎝⎛⎭⎫a +b 22=14(当且仅当a =b =12时等号成立),所以9ab +10≤494,所以79ab +10≥47. 三、解答题14.设集合A ={x |4-x 2>0},B ={x |-x 2-2x +3>0}.(1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a ,b 的值.【答案】(1)A ∩B ={x |-2<x <1}(2)a=4,b=6【解析】(1)A ={x |4-x 2>0}={x |-2<x <2},B ={x |-x 2-2x +3>0}={x |-3<x <1},故A ∩B ={x |-2<x <1}. (2)因为2x 2+ax +b <0的解集为B ={x |-3<x <1},所以-3和1为方程2x 2+ax +b =0的两个根.所以有⎩⎪⎨⎪⎧2×(-3)2-3a +b =0,2×12+a +b =0,解得⎩⎪⎨⎪⎧a =4,b =-6. 15.已知正数x ,y 满足1x +9y=1. (1)求xy 的最小值;(2)求x +2y 的最小值.【答案】(1)36 .(2)19+6 2.【解析】(1)由1=1x +9y ≥21x ·9y ,得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9x y≥19+22y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.16.已知y =x 2-2x -8,若对一切x >2,均有y ≥(m +2)x -m -15,求实数m 的取值范围.【答案】m ≤2.【解析】当x >2时,y ≥(m +2)x -m -15恒成立,所以x 2-2x -8≥(m +2)x -m -15在x >2时恒成立,则x 2-4x +7≥m (x -1)在x >2时恒成立.所以对一切x >2,均有不等式x 2-4x +7x -1≥m 成立. 又x 2-4x +7x -1=(x -1)+4x -1-2 ≥2(x -1)×4x -1-2=2(当且仅当x =3时等号成立). 所以实数m 的取值范围是m ≤2.17.某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起,包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞收入50万元.(1)问捕捞几年后总利润最大,最大是多少?(2)问捕捞几年后平均利润最大,最大是多少?【答案】(1)捕捞10年后总利润最大,最大是102万元 (2)捕捞7年后平均利润最大,最大是12万元【解析】(1)设该船捕捞n 年后的总利润为y 万元.则y =50n -98-⎣⎡⎦⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102.所以当捕捞10年后总利润最大,最大是102万元.(2)年平均利润为y n=-2⎝⎛⎭⎫n +49n -20≤-2(2n ·49n -20)=12,当且仅当n =49n ,即n =7时等号成立.所以当捕捞7年后平均利润最大,最大是12万元.18.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.【答案】见解析【解析】(1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两个根分别为2和-1a. ①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅; ③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.。
(word完整版)高一数学必修一试题含答案,推荐文档
11. 下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A. 一次函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为 ( )
1 我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;
D、(4)(1)(2)
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题 4 小题,每小题 5 分,共 20 分. 把正确答案填在题中横线上.
13.函数 y x 4 的定义域为
.
x 2
14. 若 f (x) 是一次函数, f [ f (x)] 4x 1且,则 f (x) =
.
15. 已知幂函数 y f (x) 的图象过点(2, 2),则f (9)
.
16. 若一次函数 f (x) ax b 有一个零点 2,那么函数 g(x) bx2 ax 的零点是
.
三、解答题:本大题共 5 小题,共 56 分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题 10 分)
已知集合 A {x | a 1 x 2a 1} , B {x | 0 x 1},若 A B ,求实数 a 的取值范围。
A、1 个
B、2 个
C、3 个
D、4 个
4、如果函数 f (x) x2 2(a 1)x 2 在区间, 4上单调递减,那么实数a 的取值范围是
(
)
A、 a ≤ 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1复习卷( C)考号 班级 姓名一、选择题(1)若集合A={1,3,x},B={1,2x },A ∪B={1,3,x},则满足条件的实数x 的个数有( )(A ) 1个 (B ) 2个 (C )3个 (D ) 4个(2)集合M={(x ,y )| x >0,y >0},N={(x ,y )| x+y >0,xy >0}则( )(A )M=N (B )M N (C )MN (D )M ⋂N=∅(3)下列图象中不能表示函数的图象的是 ( )y y yo x x o x o x(A ) (B ) (C ) (D) (4)若函数y=f (x )的定义域是[2,4],则y=f (12log x )的定义域是( )(A ) [12,1] (B ) [4,16] (C )[116,14] (D )[2,4 ] (5)函数201|1|()()22x f x x x -=-++的定义域为( )(A )1(2,)2- (B )(-2,+∞) (C )11(2,)(,)22-⋃+∞ (D )1(,)2+∞(6)设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是( )(A )()f π>(3)f ->(2)f - (B )()f π>(2)f ->(3)f - (C )()f π<(3)f -<(2)f - (D )()f π<(2)f -<(3)f - (7)0.7log 0.8a =, 1.1log 0.9b =,0.91.1c =,那么( )(A )a <b <c (B )a <c <b (C )b <a <c (D )c <a <b(8)已知函数3(10)()[(5)](10)n n f n f f n n -≥⎧=⎨+<⎩,其中n ∈N ,则f (8)=( ) C(A )6 (B )7 (C ) 2 (D )4(9)某工厂今年前五个月每月生产某种产品的数量C (件)关于时间t (月)的函数图象如图所示,则这个工厂对这种产品来说( ) O 一二 三 四五 t (A )一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少 (B )一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平 (C )一至三月每月生产数量逐月增加,四、五两月均停止生产 (D )一至三月每月生产数量不变,四、五两月均停止生产(10)若函数f (x )和g (x )都为奇函数,函数F (x )=af (x )+bg (x )+3在(0,+∞)上有最大值10,则F (x )在(-∞,0)上有( )(A ) 最小值 -10 (B )最小值 -7 (C )最小值 -4 (D )最大值 -10 (11)若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) (A )12 (B )2 (C )22(D )2 (12)如果二次函数f (x )=3x 2+bx+1在(-∞,]13-上是减函数,在[13-,+∞)上是增函数,则f (x )的最小值为( )(A )1112- (B )23- (C )1112(D )23二、填空题(13)函数213log log y x=()的定义域为 . (14)若集合M={x| x 2+x-6=0},N={x| kx+1=0},且N ⊆M ,则k 的可能值组成的集合为 .(15)设函数2211222x x f x x x x x +≤-⎧⎪=-⎨⎪≥⎩()()(〈〈)(),若f (x )=3,则x= . (16)有以下4个命题:①函数f (x )= a x (a >0且a ≠1)与函数g (x )=log a a x (a >0且a ≠1)的定义域相同;②函数f(x)=x3与函数g(x)=3 x的值域相同;③函数f(x)=(x-1)2与g(x)=2x -1在(0,+∞)上都是增函数;④如果函数f(x)有反函数f -1(x),则f(x+1)的反函数是f -1(x+1).其中∙∙∙不正确的题号为.三、解答题(17)计算下列各式(Ⅰ)2lg2lg5lg201+-()(Ⅱ)4160.2503432162322428200549-⨯+--⨯--()()()()(18)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,2483f x x x=-+-(). (Ⅰ)求f(x)在R上的表达式;(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).(19)已知二次函数f (x )图象过点(0,3),它的图象的对称轴为x = 2, 且f (x )的两个零点的平方和为10,求f (x )的解析式.(20) 已知函数21log 1xf x x+=-() ,(x ∈(- 1,1). (Ⅰ)判断f (x )的奇偶性,并证明;(Ⅱ)判断f (x )在(- 1,1)上的单调性,并证明.(21)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。
把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。
现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?2009届六安二中必修1复习卷( C)一、选择题CADCC ACBBC AD二、填空题(13)(0,1)(14){0,12-,13}(15)3(16)②③④三、解答题(17)解:(Ⅰ)原式=lg22+(1- lg2)(1+lg2)—1=lg22+1- lg22- 1=0(Ⅱ)原式=1411113633224447(23)(22)42214⨯+⨯-⨯-⨯-=22×33+2 —7—2—1 =100(18)解:(Ⅰ)设x<0,则- x>0,22()4()8()3483f x x x x x-=--+--=---∵f(x)是偶函数,∴f(-x)=f(x)∴x<0时,2()483f x x x=---所以22224834(1)1(0) ()4834(1)1(0)x x x xf xx x x x⎧⎧-+---+≥⎪⎪==⎨⎨----++<⎪⎪⎩⎩(Ⅱ)y=f(x)开口向下,所以y=f(x)有最大值f(1)=f(-1)=1函数y=f (x )的单调递增区间是(-∞,-1]和[0,1]单调递减区间是 [-1,0]和[1,+∞)(19)解:设f (x )= ax 2+bx+c (a ≠0)因为f (x )图象过点(0,3),所以c =3 又f (x )对称轴为x=2, ∴ 2ba-=2即b= - 4a 所以2()43(0)f x ax ax a =-+≠ 设方程2430(0)ax ax a -+=≠的两个实根为 x 1,x 2, 则2212121234,,10x x x x x x a+==+= ∴2221212126()216x x x x x x a +=+-=-,所以61610a-= 得a=1,b= - 4 所以2()43f x x x =-+ (20)证明:(Ⅰ)122221()111()log log log ()log ()1()111x x x xf x f x x x x x-+--++-====-=---+--又x ∈(-1,1),所以函数f (x )是奇函数 (Ⅱ)设 -1<x <1,△x=x 2- x 1>0211221222211211(1)(1)()()log log log 11(1)(1)x x x x y f x f x x x x x ++-+=-=-=--+- 因为1- x 1>1- x 2>0;1+x 2>1+x 1>0 所以1212(1)(1)1(1)(1)x x x x -+>+-所以12212(1)(1)log 0(1)(1)x x y x x -+=>+-所以函数21()log 1xf x x+=-在(- 1,1)上是增函数 (21)(Ⅰ)设购买人数为n 人,羊毛衫的标价为每件x 元,利润为y 元,则(0),0300,300300n kx b k k b b k n k x =+<=+=-∴=-即,()210030020010000100300]y x k x k x k x =--=--∈()()(),(,∵k <0,∴x=200时,y max = - 10000k ,即商场要获取最大利润,羊毛衫的标价应定为每件200元. (Ⅱ)由题意得,k (x- 100)(x- 300)= - 10000k 〃75%22400300007500400375000x x x x ∴-+=-∴-+=12250)(150)0250,150x x x x ∴--=∴==(所以,商场要获取最大利润的75%,每件标价为250元或150元.。