高一数学必修一单元测试题

合集下载

高一数学必修一第一章测试题

高一数学必修一第一章测试题

高一数学必修一第一章测试题一、选择题1.C.{1,2,3,4,5}2.D.a≤23.A.y=(x)24.D.[-1,2]5.C.2m6.B.2二、填空题7.328.[3,6)9.k≥210.{(x,y)|-1≤y≤2-x2+2x。

y≥2x+1}11.f(2)=-2.x=4三、解答题12.1) A(BC)={x|x∈Z。

|x|≤6.3≤x≤6 or x=1}2) AC={3,4,5,6}A(BC)={x|x∈Z。

|x|≤6.3≤x≤6 or x=1}={(x,y)|-6≤x≤-3 or1≤x≤6.-2≤y≤2}13.Ⅰ) 函数f(x)为偶函数。

证明:对于任意x∈R,有f(-x)=(-x)2-2|-x|=x2-2|x|=f(x),即f(x)为偶函数。

Ⅱ) 函数f(x)在(-1,0)上单调递增,在(0,1)上单调递减。

证明:当x∈(-1,0)时,f(x)=x2+2x,f'(x)=2x+2>0,故f(x)在(-1,0)上单调递增;当x∈(0,1)时,f(x)=x2-2x,f'(x)=2x-2<0,故f(x)在(0,1)上单调递减。

14.f(x)=x2+2ax+2,f'(x)=2x+2a当x=-a时,f'(x)=0,故f(x)在x=-a处取得极小值,且f(-5)=f(5),故f(x)在x=5处也取得极小值。

由于f(x)为开口向上的抛物线,故当x∈[-5,-a)或(x,a]时,f(x)单调递增;当x∈[-a,a]时,f(x)单调递减;当x∈(a,5]时,f(x)单调递增。

综上可得,f(x)在[-5,-a)∪(a,5]上单调递增,在[-a,a]上单调递减。

1.当a=-1时,求函数f(x)=a-1/(x^2+1)的最大值和最小值。

2.求实数a的取值范围,使得函数y=f(x)=a-1/(x^2+1)在区间[-5,5]上是单调函数。

3.求证:不管a为何实数,函数f(x)=a-1/(x^2+1)总是为增函数。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

1.1集合的概念专项练习解析版一、单选题1.若1∈{x ,x 2},则x =( )A .1B .1-C .0或1D .0或1或1- 【答案】B【分析】根据元素与集合关系分类讨论,再验证互异性得结果【详解】根据题意,若1∈{x ,x 2},则必有x =1或x 2=1,进而分类讨论:∈、当x =1时,x 2=1,不符合集合中元素的互异性,舍去,∈、当x 2=1,解可得x =-1或x =1(舍),当x =-1时,x 2=1,符合题意,综合可得,x =-1,故选B .【点睛】本题考查元素与集合关系以及集合中元素互异性,考查基本分析求解能力,属基础题.2.已知集合A ={a ,|a |,a -2},若2∈A ,则实数a 的值为( )A .-2B .2C .4D .2或4 【答案】A【分析】根据元素和集合的关系以及集合元素的互异性确定正确选项.【详解】依题意2A ∈,若2a =,则2=a ,不满足集合元素的互异性,所以2a ≠; 若2=a ,则2a =-或2a =(舍去),此时{}2,2,4A =--,符合题意;若22a -=,则4a =,而4a =,不满足集合元素的互异性,所以4a ≠.综上所述,a 的值为2-.故选:A【点睛】本小题主要考查元素与集合的关系,考查集合元素的互异性,属于基础题.3.下列关系中,正确的有( ) ∈1R 2;5Q ;∈3N ;∈2Q ∈.A .1个B .2个C .3个D .4个【分析】根据元素与集合之间的关系判断可得答案.【详解】12|3|3-=是非负整数,2是有理数.因此,∈∈∈∈正确,故选:D .4.考查下列每组对象,能组成一个集合的是( )∈一中高一年级聪明的学生;∈直角坐标系中横、纵坐标相等的点;∈不小于3的正整数;值.A .∈∈B .∈∈C .∈∈D .∈∈ 【答案】C【分析】利用集合中的元素满足确定性判断可得出结论.【详解】∈“一中高一年级聪明的学生”的标准不确定,因而不能构成集合;∈“直角坐标系中横、纵坐标相等的点”的标准确定,能构成集合;∈“不小于3的正整数”的标准确定,能构成集合;”的标准不确定,不能构成集合.故选:C.5.下列各组对象不能构成集合的是( )A .参加运动会的学生B 的正整数C .2022年高考数学试卷上的难题D .所有有理数【答案】C【分析】根据集合的基本概念辨析即可.【详解】解:对于A 选项,参加运动会的学生,是确定的,没有重复的,所以能构成集合;对于B 对于C 选项,2022年高考数学试卷上的难题,多难的题才算是难题,有一定的不确定性,不符合集合中元素的确定性,故不能构成集合;对于D 选项,所有有理数,所研究的有理数,是确定的,没有重复的,所以能构成集合;故选:C.6.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( ) A .1B .1或12-C .12-D .1-或12-【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-.故选:C.7.已知集合A ={x |ax 2﹣3x +2=0}只有一个元素,则实数a 的值为( )A .98B .0C .98或0D .1【答案】C 【分析】根据a 是否为0分类讨论.【详解】0a =时,2{|320}{}3A x x =-+==,满足题意; 0a ≠时,980a ∆=-=,98a =,此时294|320}83A x x x ⎧⎧⎫=-+==⎨⎨⎬⎩⎭⎩,满足题意. 所以0a =或98.故选:C二、多选题8.已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=A BB .()1,2A ∈C .1B ∉D .2A ∈【答案】CD 【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∈{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∈2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∈(1,2)B ∈,(1,2)A ∉,故B 错误.故选:CD .9.下列选项正确的有( )A .()R Q π∈B .13Q ∈C .0*N ∈D 4Z【答案】ABD【分析】根据常见集合的意义和元素的性质可判断各选项中的属于关系是否成立,从而可得正确的选项.【详解】因为π为无理数,故()R Q π∈,故A 正确. 因为13为有理数,故13Q ∈,故B 正确. 因为*N 为正整数集,但*0N ∉,故C 不正确.2=Z ,故D 成立.故选:ABD.【点睛】考查常见集合的表示,注意正确区分各字母表示的常见集合,不要混淆,本题属于基础题.10.下列各组中M 、P 表示不同..集合的是( ) A .{3,1}M =-,{13}P =-,B .{}{(31)},(1,3)M P ==, C .{}21,R M y y x x ==+∈,{}t t 1P =≥D .{}21,R M y y x x ==-∈,2{(,)|1,R}P x y y x x ==-∈【答案】BD【分析】根据集合相等的概念依次分析各选项即可得答案.【详解】选项A 中,根据集合的无序性可知M P =;选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,{}t t 1P =≥=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有y 组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合,故M P ≠.故选:BD .11.下列四个命题:其中不正确的命题为( )A .{}0是空集B .若N a ∈,则N a -∉;C .集合{}2R 210x x x ∈-+=有一个元素 D .集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是有限集. 【答案】ABD【分析】根据空集的定义可判断A ;根据元素与集合的关系可判断B ;解方程求出集合中的元素可判断C ;x 为正整数的倒数时,都有6N x∈可判断D ,进而可得正确选项. 【详解】对于A :{}0含有一个元素0,所以{}0不是空集,故选项A 不正确;对于B :当0a =时,N a ∈,则N a -∈,故选项B 不正确;对于C :{}(){}{}22R 210R 101x x x x x ∈-+==∈-==只有一个元素,故选项C 正确; 对于D :Q 表示有理数,包括整数和分数,比如x 为正整数的倒数时,都有6N x∈,所以集合6Q N x x ⎧⎫∈∈⎨⎬⎩⎭是无限集,故选项D 不正确;故选:ABD.三、填空题12.已知集合{}1,2,A m =,{}13,B n =,,若A B =,则m n +=_______. 【答案】5【分析】由集合的性质,即元素的无序性和互异性可得3,2m n ==,得5m n +=.【详解】根据集合的元素具有无序性和互异性可得,3,2m n ==,所以5m n +=.故答案为:5.【点睛】(1)集合A B =的充要条件是A B ⊆,且A B ⊇;(2)集合由三个性质:确定性,互异性和无序性.13.若{}221,,2a a ∈-,则=a ______.【答案】2-【分析】结合集合的互异性来求得a .【详解】若2a =,则222a -=,不满足互异性,所以2a ≠.若222,2a a -==-或2a =(舍去),所以2a =-.故答案为:2-四、解答题14.已知集合{}222,1,A a a a =+-,{}20,7,5B a a =--,且5A ∈,求集合B .【答案】{}0,7,1B =【分析】根据题意,结合集合中元素的确定性与互异性,分类讨论即可求解.意;若2a =-,则26a a -=,此时{}2,5,6A =,{}0,7,1B =.而当25a a -=时,集合B 中250a a --=,根据互异性可知,不满足题意.综上,{}0,7,1B =.15.已知集合{}2210,A x ax x a R =++=∈, (1)若A 只有一个元素,试求a 的值,并求出这个元素;(2)若A 是空集,求a 的取值范围;(3)用列举法表示集合A .【答案】(1)见解析(2)1a >(3)见解析【分析】(1)分为0a =和0a ≠两种情形即可;(2)根据方程无解时,440a ∆=-<即可得结果;(3)根据(1)(2)的结果结合求根公式即可得结果.【详解】(1)∈0a =时,12A ⎧⎫=-⎨⎬⎩⎭满足题意; ∈0a ≠时,要使A 只有一个元素,则需:440a ∆=-=,即1a =,此时{}1A =-.综上:0a =时,12A ⎧⎫=-⎨⎬⎩⎭;1a =时,{}1A =-. (2)∈A =∅,0a =显然不合题意,∈440a ∆=-<,即1a >∈1a >时,A =∅.(3)由(2)得,当1a >时,方程2210ax x ++=无解,即A =∅,由(1)得0a =时,方程210x +=的解为12x =-,即12A ⎧⎫=-⎨⎬⎩⎭; 当1a =时,方程2210x x ++=的解为=1x -,即{}1A =-.当1a <时,由求根公式得2210ax x ++=的解为1x =2x =,即A =⎪⎪⎩⎭综上可得:当1a >时,A =∅;当0a =时,12A ⎧⎫=-⎨⎬⎩⎭,当1a =时,{}1A =-;当1a <时,A =⎪⎪⎩⎭. 【点睛】考查了用描述法表示集合,含有参数一元二次方程的解,分类讨论思想的应用,属于中档题。

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。

A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。

A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。

A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。

A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。

答案:-1/42.-13的绝对值是________。

答案:133.已知-5<x<4,那么|x+7|的取值范围是________。

答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。

答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。

解:由条件可得:x<2y≤4z≤20故x<20。

2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。

解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。

3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。

减轻后的体重为58-7.25=50.75kg。

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案

高一数学必修1第一章测试题及答案高一第一章测试题(一)一.选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设集合 $A=\{x\in Q|x>-1\}$,则()A。

$\varnothing \in A$ B。

$2\in A$ C。

$2\in A$ D。

$\{2\}\subseteq A$2.已知集合 $A$ 到 $B$ 的映射 $f:x\rightarrow y=2x+1$,那么集合 $A$ 中元素 $2$ 在 $B$ 中对应的元素是:A。

$2$ B。

$5$ C。

$6$ D。

$8$3.设集合 $A=\{x|1<x<2\},B=\{x|x<a\}$。

若 $A\subseteq B$,则 $a$ 的范围是()A。

$a\geq 2$ B。

$a\leq 1$ C。

$a\geq 1$ D。

$a\leq 2$4.函数 $y=2x-1$ 的定义域是()A。

$(,\infty)$ B。

$[。

\infty)$ C。

$(-\infty,)$ D。

$(-\infty,]$5.全集 $U=\{0,1,3,5,6,8\}$,集合 $A=\{1,5,8\},B=\{2\}$,则集合 $B$ 为()A。

$\{0,2,3,6\}$ B。

$\{0,3,6\}$ C。

$\{2,1,5,8\}$ D。

$\varnothing$6.已知集合 $A=\{x-1\leq x<3\},B=\{x^2<x\leq 5\}$,则$A\cap B$ 为()A。

$(2,3)$ B。

$[-1,5]$ C。

$(-1,5)$ D。

$(-1,5]$7.下列函数是奇函数的是()A。

$y=x$ B。

$y=2x-3$ C。

$y=x^2$ D。

$y=|x|$8.化简:$(\pi-4)+\pi=$()A。

$4$ B。

$2\pi-4$ C。

$2\pi-4$ 或 $4$ D。

$4-2\pi$9.设集合 $M=\{-2\leq x\leq 2\},N=\{y\leq y\leq 2\}$,给出下列四个图形,其中能表示以集合 $M$ 为定义域,$N$ 为值域的函数关系的是()无法呈现图片,无法回答)10.已知$f(x)=g(x)+2$,且$g(x)$ 为奇函数,若$f(2)=3$,则 $f(-2)=$A。

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。

答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。

答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

高一数学必修1单元试卷1及答案

高一数学必修1单元试卷1及答案

高一数学(必修1)单元测试1班级________姓名________一.选择题(5’×3)1.集合S ={a,b,c}中的3个元素是△ABC 的三边长,则△ABC 一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.集合M ={(x,y)|xy<0,x ∈R,y ∈R}是 ( )A.第一,三象限内的点集B.第二,四象限内的点集C.负实数集D.实数集3.设S 是全集,集合M,N ⊆S,则图中阴影部分可表 示为( )A.(M ∪N)∩S (M∩N)B. (M ∪N)∩S (M ∪N)C. (M∩N)∪S (M ∪N)D. (M∩N)∪S (M∩N) 二.填空题(5’×8)4.有以下语句:①全体平行四边形;②我校的所有高个子同学;③小于2的所有整数;④高一数学课本中的所有难题;⑤所有无理数;⑥高一年级16岁以下的同学.其中不能构成一个集合的有______________.(填写所有正确的序号)5.在下列五种写法中:①{0}∈{0,1,2};②φ{0};③0∈φ;④{0,1,2}⊆{1,2,0};⑤0 ∩φ=φ.错误的写法有__个.6.已知全集I ={x|-2<x<9,x ∈N *},A ={3,4,5},B ={1,3,6},那么{2,7,8}可用I,A,B 表示为____________.7.已知下列各组集合:①M ={(1,2)},P ={(2,1)};②M ={(2,3)},P ={2,3};③M ={3,4},P ={4,3};④M ={0},P =φ,其中M =P 的是__________.8.满足关系{1}⊆B {1,2,3,4}的集合B 有_____个,9.若集合S ={x|18-x ∈N,且x ∈Z},则S = (用列举法表示). 10.若A ={x|ax 2+3x+1=0}中有且只有一个元素,则a 值为 ___ (写出所有可能值).11.设U 是全集,非空集合P,Q 满足P Q U,若求含P,Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是 .12.在某班50名学生中,有篮球爱好者30人,排球爱好者32人,则既爱好篮球又爱好排球的同学最少有 人,最多有 人.三.解答题(13’×2+14’)13. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且A∩B=φ,求m的取值范围.14.若全集U={x|x是不大于30的质数},A,B U,且A∩U B={5,13,23},(U A)∩B={11,19,29},(U A)∩(U B)={3,7},求集合A,B15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B≠φ且A∩C=φ,求a的值.高一数学(必修1)单元测试1答案一.选择题: DBA二.填空题 4.②④ 5.3 6.(I A)∩(I B)或I(A∪B) 7.③8.7 9.{2,3,5,9}10.0,9411.P∩(U Q) 12.12 30三.解答题13. m<2或m>4 14.A={2,5,13,17,23} B={2,11,17,19,29} 15.a=-2。

(完整word版)人教版高中数学必修一第一章单元测试(含

(完整word版)人教版高中数学必修一第一章单元测试(含

第3题图高中数学《必修一》第一章教学质量检测卷一、选择题(将选择题的答案填入下面的表格.本大题共10小题,每小题5分,共50分。

)题号12345678910答案1、下列各组对象中不能构成集合的是( )A、佛冈中学高一(20)班的全体男生B、佛冈中学全校学生家长的全体C、李明的所有家人D、王明的所有好朋友( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4},则图中的阴影部分表示的集合为( )的值是 ( )A、3B、1 C. 0 D。

-18、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(—2),f题号一二151617181920总分得分10、在集合{a,b,c,d}上定义两种运算和如下:A.a B.b C.c D.d二、填空题(本大题共4小题,每小题5分,共20分)的定义域为在区间[0,4]的最大值是B是 .16上是减函数。

其中真命题的序号是 (把你认为正确的命题的序号都填上)。

三、解答题(本大题6小题,共80分。

解答时应写出文字说明、证明过程或演算步骤).15、(本题满分12分)已知集合a的取值范围.16、(本题满分1217、(本题满分1418、 (本题满分14分)已知函(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.19、(本题满分1420、 (本题满分14高中数学《必修一》第一章教学质量检测卷参考答案一、选择题题号12345678910答案D D B C C A A B A C二、填空题12、-1 13、 14、①②三、解答题15、解:(1)A∪B={x∣2<x<10}……………..4分(2)(C R A)∩B={ x∣2〈x〈3或7≤x<10}...。

..。

.。

.。

.。

..。

...。

8分(3)a≥7.。

..。

.。

.。

..。

12分16.解:.2分证明:的定义域是,定义域关于原点对称…………….4分内任取一个x,则有。

高一数学必修一第一章测试题及答案

高一数学必修一第一章测试题及答案

高中数学必修1检测题一、选择题: 每小题5分, 12个小题共60分 1. 已知全集 )等于 ( )A. {2, 4, 6}B. {1, 3, 5}C. {2, 4, 5}D. {2, 5}2.已知集合 , 则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A. 1个B. 2个C. 3个D. 4个3.若 能构成映射, 下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A.1个B.2个C.3个D.4个4、如果函数 在区间 上单调递减, 则实数 的取值范围是( ) A. B. C. D. 5.下列各组函数是同一函数的是 ( )①()f x =()g x =f(x)=x与()g x = ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A.①② B.①③ C.③④ D.①④A. (-1, 0)B. (0, 1)C. (1, 2)D. (2, 3)7. 若 ( )A. B. C. D.8、 若定义运算 , 则函数 的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R 9. 函数 上的最大值与最小值的和为3, 则 ( ) A. B. 2 C. 4 D.10.下列函数中,在 上为增函数的是... )A. B、A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型12.下列所给4个图象中, 与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久, 发现自己把作业本忘在家里了, 于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶, 只是在途中遇到一次交通堵塞, 耽搁了一些时间; (3)我出发后, 心情轻松, 缓缓行进, 后来为了赶时间开始加速。

高一数学必修一第一单元测试卷

高一数学必修一第一单元测试卷

高一数学必修一第一单元测试卷一、选择题(每题5分,共60分)1. 设集合A = {xx > - 1},B={x2 < x < 2},则A∩ B = ( )A. {xx > - 2}B. {xx > - 1}C. {x1 < x < 2}D. {x2 < x < - 1}2. 已知集合A={0,1,2},B = {yy = 2x,x∈ A},则A∪ B = ( )A. {0,1,2}B. {0,2,4}C. {0,1,2,4}D. {0,1,2,3,4}3. 若集合A = {xx^2-3x + 2 = 0},则集合A的子集个数为( )A. 1B. 2C. 3D. 44. 设全集U=R,集合M={xx≥slant1},N = {x0≤slant x < 5},则(∁_UM)∪ N=( )A. {xx < 5}B. {x0≤slant x < 1}C. {xx≥slant0}D. {x0 < x < 5}5. 下列函数中,与函数y = x相同的函数是( )A. y=√(x^2)B. y = (√(x))^2C. y=frac{x^2}{x}D. y=log_aa^x(a > 0,a≠1)6. 函数y=√(2 - x)+(1)/(x - 1)的定义域是( )A. (-∞,2]B. (-∞,1)∪(1,2]C. (1,2]D. [2,+∞)7. 已知函数f(x)=x + 1,x≤slant0 x^2,x > 0,则f(f(-1)) = ( )A. 0B. 1C. 2D. 48. 若函数y = f(x)的图象关于y轴对称,且f(2)=3,则f(-2)=( )A. -3B. 3C. -2D. 29. 函数y = x^2-2x - 3在区间[0,3]上的值域为( )A. [- 4,0]B. [-4,-3]C. [-3,0]D. [0,3]10. 设函数f(x)=ax^2+bx + c(a≠0),若f(0)=f(2),则( )A. f(1)>f(-1)B. f(1)C. f(1)=f(-1)D. f(1)与f(-1)的大小关系不能确定。

高一数学必修一第一单元测试试卷

高一数学必修一第一单元测试试卷

高一数学必修一第一单元测试试卷一、选择题(每题4分,共20分)。

1.以下哪个加减乘除组合正确()。

A.3-2+4×2B.3+2×4-2C.3+2-2÷4D.3-2÷4+2。

2.下列函数中,关于x的最高次幂为2的函数为()。

A.y=3xB.y=x^3C.y=2x+1D.y=x^2+1。

3.下列各数中,属于实数范围的是()。

A.√2B.-∞C.-1/2D.9i。

4.直线3x-2y+3=0和直线2x-3y+4=0的位置关系是()。

A.平行B.重合C.相交D.垂直。

二、填空题(每题4分,共16分)。

5.(3的2次方)÷(-6的3次方)的结果是________________。

6.已知向量a=(2,-3),b=(1,2),两向量的夹角为________________。

7. 直线ax+by+c=0的斜率为________________。

8. 已知函数y=ax^2+bx+c,其中a=2,b=-3,c=6,x=-2时,y的值为________________。

三、解答题(每题6分,共36分)。

9.(5-x)^2=49,求x的值。

解:设(5-x)^2=49,函数两边同时平方根,得:5-x=±7,所以x=5±7。

即:x=12;x=-2。

10.已知直线3x+2y+4=0,求该直线斜率及与直线4x+3y-2=0的位置关系。

解:设直线3x+2y+4=0。

斜率:m1=2/3。

设直线4x+3y-2=0。

斜率:m2=-3/4。

由斜率的乘积等于-1可知,两直线垂直。

人教版高一数学必修一第一章单元检测试题及答案

人教版高一数学必修一第一章单元检测试题及答案

高一数学第一章会合与函数观点单元检测试题一、选择题:共12题每题 5分共60分1.已知函数的图象以以下图所示,则函数的图象为2.以下各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于随意的当时 ,都有则称函数在上为非减函数 .设函数的上为非减函数 ,且知足以下三个条件 :①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.2 -4x+6(x∈ [1,5)) 的值域是5.函数 f(x)=xA.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单一 ,则实数的取值范围为A. B.C. D.7.定义运算:a*b =,如 1* 2=1,则函数 f(x)=2x* 2-x的值域为B.(0,+∞)C.(0,1]D.[1,+∞)8.已知会合 E={x| 2 -x≥ 0},若 FE,则会合 F 能够是A.{x|x <1}B.{x|x >2}C.{x|x >3}D.{x| 1<x<3}9.已知偶函数f(x)在区间 [0,+ ∞)上单一递加 ,则知足 f(2x-1)<f()的 x 的取值范围是 ()A.(,)B.[,)C.(,)D.[,)10.某队伍练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知会合和会合,则两个集合间的关系是A. B. C.,P 互不包括二、填空题:共4题每题 5分共 20分13.已知函数f(x)=a﹣ x2(1 ≤x≤2)与的图象上存在对于轴对称的点,则实数的取值范围是.14.设会合M ={x| 0≤x≤2},N={y| 0≤y≤2}给.出以下四个图,此中能组成从会合M 到会合 N 的函数关系的是.15.给出以下二次函数,将其图象画在同一平面直角坐标系中,则图象的张口按从小到大的次序摆列为.(1) f(x)=- x2;(2)f(x)= (x+5)2;(3) f(x)= x2-6;(4) f(x)=-5(x-8)2+9.16.若函数的图像对于y 轴对称,则的单一减区间为.三、解答题:共6题共 70分17.(此题10分)假如对函数f(x)定义域内随意的x1,x2都有 |f (x1 )-f(x2)| ≤|x 1-x2| 建立 ,就称函数 f(x)是定义域上的“缓和函数”.(1)判断函数 f(x)=x2-x,x∈ [0,1] 能否为“缓和函数”;(2) 若函数 f(x)是闭区间 [0,1] 上的“缓和函数”,且 f(0)=f(1),证明 :对随意的x1,x2∈ [0,1], 都有|f (x1)-f(x2 )| ≤建立 .(注 :可参照绝对值的基天性质①|ab| ≤|a||b| ,② |a+b| ≤|a|+|b| )18.(此题12分)记函数的定义域为会合,会合.(1)求和;(2) 若,务实数的取值范围.19.(此题12分)设全集U={x|0< x<9,且 x∈Z},会合 S={1,3,5},T={3,6},求 :(1) S∩T;(2).20.(此题12分)已知函数f(x)=.(1)用定义证明 f(x)在区间 [1,+ ∞)上是增函数 ;(2)求该函数在区间 [2,4] 上的最大值与最小值 .21.(此题12 分 )定义在非零实数集上的函数对随意非零实数满足 :,且当时.(Ⅰ)求及的值;(Ⅱ )求证 :是偶函数;(Ⅲ )解不等式 :.22.(此题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2) 证明 :函数 f(x)=x3+x 在 R 上是增函数 .参照答案【分析】本试题主要考察函数的图象.依据题意,因为函数图象可知,函数在y 轴右边图象在x 轴上方,在y 轴左边的图象在x 轴的下方,而函数在x>0时图象保持不变,所以清除C,D,对于选项A,因为在时偶函数,故在y 轴左边的图象与y 轴右边的图象对于y 轴对称,应选 B.【备注】无【分析】此题主要考察相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数 ;B.这两个函数的定义域不一样 ,所以这两个函数不是相等函数 ;C. 这两个函数的定义域、值域与对应关系均同样 ,所以这两个函数为相等函数 ;D.这两个函数的定义域不一样 ,所以这两个函数不是相等函数 .【备注】无【分析】此题主要考察新定义问题、函数的性质及其综合应用.由题意 ,令x=0,由=可得由可得令则= 同理=====令则==同理==== . 非减函数的性质:当时 ,都有.因为所以所以= .【备注】无【分析】此题主要考察分段函数的最值问题.由题意,函数的图象以下图:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无【分析】 f(x)=x2-4x+6=(x-2)2+2.∵ f(x)图象的对称轴是直线x=2,∴ f(x)在 [1,2] 上单一递减 ,在 (2,5)上单调递加 ,∴ f(x)的值域是 [2,11).应选 B.【备注】无【分析】此题主要考察二次函数.依题意,函数在区间上单一,则函数的对称轴或,得或,应选 C.【备注】无【分析】此题主要考察在新式定义的前提下函数值域的求解.依据题目定义知f(x)=2x* 2-x=,联合图象知其值域为(0,1]. 应选 C.【备注】无【分析】由题意知E={x| 2-x≥0}={x|x ≤2},FE,察看选项知应选A.【备注】无【分析】偶函数 f(x)在区间 [0,+ ∞)上单一递加 ,所以函数f(x)在区间 (-∞,0]上单一递减 .因为 f(x)是偶函数 ,所以 f(-x)=f(x), 则 f(- )= f( ).由 f(2x-1)<f( )得①或② ,解①得≤x<,解②得<x< .综上可得<x< ,故 x 的取值范围是( , ).【备注】无【分析】此题主要考察二次函数.依题意,依据二次函数得性质,函数的张口向下,对称轴为,故炮弹在发射后最高,应选 C.【备注】无【分析】此题主要考察函数的分析式与求值.因为,设,则,所以,因为,所以,解得,应选 B.【备注】无【分析】无【备注】无【分析】此题主要考察二次函数的图像与性质,考察了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1 ≤x ≤ 2)与的图象上存在对于轴对称的点,所以函数f(x)=a ﹣x2(1 ≤x≤ 2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为 D.【备注】无14.④【分析】图①中函数的定义域是[0,1]; 图②中函数的定义域是[-1,2];图③中对随意的x∈ (0,2],其对M 到会合N 的函数,图④知足题意.应的y 值不独一.故①②③均不可以组成从会合【备注】无15.(4)(3)(2)(1)【分析】因为二次函数y=ax2+bx+c(a≠ 0)的图象在同一平面直角坐标系中|a| 越小 ,图象张口越大 ,又|- |<| |<|| <|- 5| ,所以图象张口按从小到大的次序摆列为(4)(3)(2)(1).【备注】无16.【分析】此题考察函数的图象. 若函数的图像对于y 轴对称,则 a=0,,.所以 f(x)的单一减区间为【备注】无17.(1)对随意的x1,x2∈ [0,1], 有 -1≤x1+x2-1≤ 1,即|x 1+x2 -1| ≤ 1.进而 |f (x1)-f(x2)| =| ( -x1 )-(-x2)| =|x 1 -x2||x 1+x2-1| ≤|x 1 -x2| ,所以函数f(x)=x2-x,x∈ [0,1] 是“缓和函数”.(2)当 |x 1-x2| < 时,由已知 ,得|f (x1)-f(x2)| ≤|x 1-x2| < ;当|x 1-x2| ≥时 ,因为 x1,x2∈[0,1], 不如设 0≤x1<x2≤ 1,所以 x2-x1≥.因为 f(0)=f(1),所以 |f (x1)-f(x2)| =|f (x1)-f(0)+f(1)-f(x2)|≤|f (x1)-f(0)|+|f (1) -f(x2 )|≤|x 1-0|+| 1-x2|=x1 -x2+1≤- +1= .所以对随意的x1,x2∈ [0,1], 都有 |f (x1)-f(x2)| ≤建立 .【分析】无【备注】无18.由条件可得 A{ x | x 2},(1)={ x | 2x3}, A B{ x | x 3} ;(2)C { x | x p} ,由可得p2 .【分析】此题考察函数的定义域与会合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行剖析即可得出结论.【备注】与不等式相关的会合运算或会合之间的关系问题往常能够借助数轴进行求解.={1,2,3,4,5,6,7,8}(1)S∩T={3}(2)S∪ T={1,3,5,6}={2,4,7,8}【分析】此题主要考察会合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解.【备注】无20.(1)任取 x1 ,x2∈ [1,+ ∞且), x1<x2,则f(x1)-f(x2)=-=.∵1≤x1<x2,∴ x1-x2<0,(x1+1)(x2+1)>0,∴f(x 1)-f(x2)<0,即 f(x1)<f(x 2),∴函数 f(x)在区间 [1,+ ∞)上是增函数 .(2)由 (1)知函数 f(x)在区间 [2,4] 上是增函数 ,∴f(x) max=f(4)== ,f(x)min=f(2)== .【分析】无【备注】无21.(1)f(1)=0,f(-1)=0;(2)f(-x)=f(x)+f(-1)=f(x)∴ f(-x)=f(x),所以函数是偶函数 ;(3)据题意可知,222222f(2)+f(x-1/2)= f(2x -1) ≤0∴-1≤2x-1<0 或0< 2x -1≤1∴0≤x< 1/2 或< x ≤ 1,所以不等式的解集为【分析】此题主要考察特别函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令 x=1与 x=—1即可求出结果 ;(2)利用函数奇偶性的定义即可证明;(3)依据题意与f(1)=0,f(-1)=0 ,原不等式可化为-1≤2x-1< 0 或0<2x2-1≤1而后求解即可 .【备注】无22.(1)设 x1,x2是(-∞ ,0)上的随意两个实数,且 x1<x2,则 f(x1)-f(x2)= -.因为 x1,x2∈ (-∞ ,0)所以 x1x2>0,又因为 x1 <x2,所以 x2-x1>0,则>0.于是 f(x1)-f(x2)>0,即 f(x1)>f(x2).所以函数f(x)= 在 (-∞,0)上是减函数 .(2)设 x1,x2是 R 上的随意两个实数,且 x1<x2,则 x2-x1>0,而 f(x2)-f(x1)=( +x2)-( +x1)=(x2-x1)( +x2x1+ )+(x2-x1)=(x2-x1)( +x2x1+ +1) =(x2-x1)[(x2+ )2+ +1].因为 (x2+ )2+ +1>0,x2-x1 >0,所以 f(x2)-f(x1)>0,即 f(x2)>f(x1).所以函数 f(x)=x3+x 在 R 上是增函数 .【分析】用定义证明函数f(x)在给定区间 D 上的单一性的一般步骤 :①取值——任取 x1 ,x2∈D,且x1<x2 ;②作差——f(x1)-f(x2);③变形——经过因式分解、配方、通分、有理化等方法,向有益于判断差值的符号的方向变形;④定号——判断 f(x1)-f(x2)的正负 ;⑤下结论——指出函数 f(x)在给定区间D 上的单一性 .【备注】无。

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)

第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)

高一数学必修一第一章测试题(含答案)满分150分,考试时间120分钟第I 卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合{1,2,3}A =,{2,4}B =,则()U C A B ⋃为 ( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2. 集合},{b a 的子集有 ( ) A .2个B .3个C .4个D .5个3. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A ∩B=( ) A .(4,3)- B .(4,2]-C .(,2]-∞D .(,3)-∞4. 已知函数xx f -=21)(的定义域为M ,2)(+=x x g 的定义域为N ,则=⋂N M () A.{}2-≥x xB.{}2<x xC.{}22<<-x xD. {}22<≤-x x 5. 下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x=D .||y x x =6. 若函数1)12(2+-+=x a x y 在(]2-,∞上是减函数,则实数a 的取值范围是 ( )A. ),23[+∞-B. ]23,(--∞C. ),23[+∞ D .]23,(-∞7. 设函数211()21x x f x x x ⎧+≤⎪=⎨>⎪⎩,则((3))f f =( )A .15B .3C .23D .1398.下列各组函数中,与x x f =)(是同一个函数的是( )A .=)(x g x2x B .2)()(x x g = C .2)(x x g =D .33)(x x g =9.设)(x f 是定义在R 上的任意一个增函数,)()()(x f x f x G --=,则)(x G 必定为( )A .增函数且为奇函数B .增函数且为偶函数C .减函数且为奇函数D .减函数且为偶函数10.设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f ( ) A .-3B .-1C .1D .311.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2m in{)(2x x x f -=的最大值是 ( )A .2-B .1C .1-D .212.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又(2)f 0=,则不等式0)(<x xf 的解集为 ( )A. (2,0)(2,)-+∞B .(,2)(0,2)-∞-C .(,2)(2,)-∞-+∞D .)2,0()0,2( -第II 卷二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是14. 已知()5412-+=-x x x f ,则()x f 的表达式是15. 已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________16. 若函数5)12(+-=x a y 是减函数,则a 的取值范围是三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数q px x x f ++=2)(且满足0)2()1(==-f f ,求函数)(x f 的解析式.18. (本小题满分12分)已知全集U =R ,集合M ={x |x ≤3},N ={x |x <1},求M ∪N ,(∁U M )∩N ,(∁U M )∪(∁U N ).19. (本小题满分12分)函数)(x f 是R 上的偶函数,且当0>x 时,函数解析式为12)(-=xx f (1) 求)1(-f 的值;(2) 求当0<x 时,函数的解析式.20.(本小题满分12分)已知全集U =R ,集合A ={y |y =3-x 2,x ∈R ,且x ≠0},集合B 是函数xx y -+-=522的定义域,集合C ={x |5-a <x <a }. (1)求集合A ∪(∁U B )(结果用区间表示); (2)若C ⊆(A ∩B ),求实数a 的取值范围.21.(本小题满分12分)已知函数f(x)=2x+1 x+1(1)判断函数在区间[)∞+,1上的单调性,并用定义证明你的结论;(2)求该函数在区间[]4,1上的最大值与最小值.22.(本小题满分12分)已知函数f(x)=1+x-|x| 4.(1)用分段函数的形式表示函数f(x);(2)在平面直角坐标系中画出函数f(x)的图象;(3)在同一平面直角坐标系中,再画出函数g(x)=1x(x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)>1x的解集.答案一、选择题 CCBDD BDDAA BD二、填空题13.已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是 -214. 已知()5412-+=-x x x f ,则()x f 的表达式是 x x 62+ 15. 已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =________..{3,9}16. 若函数5)12(+-=x a y 是减函数,则a 的取值范围是 .⎪⎭⎫ ⎝⎛∞-21,三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数q px x x f ++=2)(且满足0)2()1(==-f f ,求函数)(x f 的解析式. 解:因0)2()1(==-f f所以024,01=++=+-q p q p 得2.1-=-=q p所以2)(2--=x x x f 20. (本小题满分12分)已知全集U =R ,集合M ={x |x ≤3},N ={x |x <1},求M ∪N , (∁U M )∩N ,(∁U M )∪(∁U N ).解:由题意得M ∪N ={x |x ≤3}, ∁U M ={x |x >3},∁U N ={x |x ≥1}, 则(∁U M )∩N ={x |x >3}∩{x |x <1}=Ø,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}21. (本小题满分12分)函数)(x f 是R 上的偶函数,且当0>x 时,函数解析式为12)(-=xx f (1) 求)1(-f 的值;(2) 求当0<x 时,函数的解析式. 解:(1)1)1()1(==-f f(2)设0,0>-<x x 则,因)(x f 是R 上的偶函数,12)()(--=-=xx f x f20.(本小题满分12分)已知全集U =R ,集合A ={y |y =3-x 2,x ∈R ,且x ≠0},集合B 是函数y =x -2+25-x的定义域,集合C ={x |5-a <x <a }. (1)求集合A ∪(∁U B )(结果用区间表示); (2)若C ⊆(A ∩B ),求实数a 的取值范围.解:(1)由已知得A ={x |x <3},B ={x |2≤x <5}, ∴∁U B ={x |x <2,或x ≥5},∴A ∪(∁U B )={x |x <3,或x ≥5}=(-∞,3)∪5,+∞). (2)由(1)知A ∩B ={x |2≤x <3},当C =∅时,满足C ⊆(A ∩B ),此时5-a ≥a ,解得a ≤52; 当C ≠∅时,要满足C ⊆(A ∩B ), 则⎩⎪⎨⎪⎧5-a <a ,5-a ≥2,a ≤3,解得52<a ≤3.综上可得a ≤3.21.(本小题满分12分)已知函数f (x )=2x +1x +1,(1)判断函数在区间[)∞+,1上的单调性,并用定义证明你的结论; (2)求该函数在区间[]4,1上的最大值与最小值.解:(1)函数f (x )在[)∞+,1上是增函数. 任取x 1,x 2∈[)∞+,1,且x 1<x 2,f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1-x 2<0,(x 1+1)(x 2+1)>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[)∞+,1上是增函数. (2)由(1)知函数f (x )在[]4,1上是增函数,最大值f (4)=95,最小值f (1)=32.22.(本小题满分12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x );(2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.解:(1)当x ≥0时,f (x )=1+x -x4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.。

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案

高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省聿怀中学高一数学模块一第二章单元测试试题06.10.25
说明:本试题测试时间为50分钟,满分100分
一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )
(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b <<
3、函数 的定义域为
( )
(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3)
(D )(1,2)∪(2,3)
4、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576)
100
x (B )y =(0.9576)100x
(C )y =( )x (D )y =1-(0.0424)100
x
5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )
(A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( )
(A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=
7、函数 与 ( )在同一坐标系中的图像只可能是( )
; ; ; 。

8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212
()()f x f x x x -->0;
④1212()()()2
2
x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是
(A ) ①④ (B ) ②④ (C )②③ (D )①③
8、(1~3班做)已知⎩⎨
⎧≥<+-=1
,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 100
9576
.02
131
x
a y =x y a log -=1,0≠>a a 且)
34(log 1)(22-+-=
x x x f
(A )(0,1)
(B )1(0,)3
(C )11[,)73
(D )1[,1)7
二、填空题(本大题共4小题,每小题5分,共20分) 9、 函数)5lg()(-=x x f 的定义域是 . 10、求值:013
31
2log log 12(0.7)0.252
-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .
12、设,0.(),0.
x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________
三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤) 13、求log 2.56.25+lg
100
1
+ln e +3log 122+的值. 14、已知m >1,试比较(lg m )0.9
与(lg m )0
.8
的大小.
15、已知()(01)x
x
f x a a
a a -=+>≠且
(Ⅰ)证明函数f ( x )的图象关于
y 轴对称;(4分 )
(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)
(4~10班做)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为2
5,求此时a 的值. (4分)
(1~3班做)(Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为2
5,求此时a 的值. (4分)
聿怀中学高一数学模块一第二章单元测试答题卷
班级 座号 姓名 得分
二、填空题(本大题共4小题,每小题5分,共20分)
9、 ;10、 ;11、 ;12、 . 三、解答题 (第12题7分,13题10分、14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)
13、 14、 15、
聿怀中学高一数学模块一第二章单元测试参考答案
一、选择题 DBDA CCAC 7、取a =2和a = 作图筛选得A
8、解:依题意,有0?a ?1且3a -1?0,解得0?a ?13
,又当x ?1时,(3a -1)x +4a ?7a -1,当x ≥1时,
log a x ≤0,所以7a -1?0解得a ?17
故选C
2
1
二、填空题
8、 ;9、 4 ;10、 ;11、 .
11、设这个幂函数的解析式为 ,将
(3, )代入得2
1=α 12、.【解析】1ln 2111
(())(ln )222
g g g e ===.
三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤) 12、解: 原式=2-2+ ln e +6
log 22
…………3分
= +6 …………5分
=2
1
6 …………7分
14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1 三种情形讨论(lg m )0
.9
与(lg m )0
.8
的大小.…………2分
①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分 ②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分
③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分
15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分
∵x ∈R …………2分 由)()(x f a a a a
x f x x x x
=+=+=--- …………3分
∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分
(Ⅱ)证明:设210x x <<,则
12()()f x f x -=2
12111111
12211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=
-+-=+-+ (1)当a >1时,
由0<12x x <,则x 1+x 2>0,则01
>x a
、02>x a 、21x x a a <、121>+x x a ;
12()()f x f x -<0即12()()f x f x <;
(2)当0<a <1时,
由0<12x x <,则x 1+x 2>0,则01
>x a
、02>x a 、21x x a a >、1021<<+x x a ;
12()()f x f x -<0即12()()f x f x <;
所以,对于任意a (10≠>a a
且),f (x )在(0,)+∞上都为增函数.
(4~10班做)(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;
由于函数f (x )的最大值为2
5,则f (2)= 2
5
)
5,(-∞2
1
x y =21
α
x y =2
1213
即2
5
122
=
+
a a
,解得2=a ,或22=a (1~3班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;
则当x ∈[-2,-1]时,函数f (x )为减函数 由于函数f (x )的最大值为2
5,则f (-2)= 2
5

2512
2
=+a a
,解得2=a ,或22=a。

相关文档
最新文档