2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)
五年级希望杯近四年一、二试试题及答案解析
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--=2、9个13相乘,积的个位数字是________.3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______.4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个.5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米.图16、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个.7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米.8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是 .(π取3.14)9、循环小数0.0142857的小数部分的前2015位数字之和是 .10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体.11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab + cde =1079,则a +b +c +d +e =15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个.17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个.18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是 分.19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.①②③20、今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在岁.第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题一.填空题(每小题5分,共60分)1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____. 【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, 因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分).5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种).6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.7.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值是_____.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得: 3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______. 【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,,()224503k k ≤位上的数;第n 次删除后剩余第2,22,23n n n ⨯⨯位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x 小时,则逆水航行()3-x 小时,根据题意列方程得:()843x x =-,解得:1x =,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1, 图中面积为1的三角形有16个; 面积为2的三角形有44+8=24⨯(个); 面积为4的三角形有44+4=20⨯(个); 面积为8的三角形4+4=8(个); 面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).cm 和5cm . 乙直角三角形的两条直角边边分别为6cm 和2cm .求图中阴影部分的面积.图2【解析】如下图所示,延长CP 与DF 垂直于F ,DF 与AH 交于E ,由于ABCD 为平行四边形,则直角三角形CFD 与甲三角形相等,直角三角形AED 与乙三角形相等,阴影部分的面积为直角三角形CFD 与直角三角形AED 面积之和减去长方形EFPH ,可得EF =5-2=3cm ,EH =8-6=2cm ,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米).16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数. 【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则苹果 1 0 1 0 1 0 香蕉 0 0 1 0 0 12人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图1cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图216. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
希望杯第一届至第十届五年级试题与答案
10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
五年级下册数学竞赛试题-第一节 定义新运算(寒假专版)-全国通用(无答案)
第一节定义新运算【知识要点】说起运算,同学们马上就会想到我们课堂上学过的加、减、乘、除四则运算,并且还能熟练地说出这些运算的一些运算性质和运算定律。
当然,对于什么样的问题该用加法或减法、乘法还是除法计算更是烂熟于胸。
其实,在加、减、乘、除四则运算之外,还有其他多种法则的运算。
我们这一讲里将要学习的“新运算”,就是用*、△、☆、⊙等多种符号,按照一定的关系,临时规定的一种新的运算程序(新运算)。
学习“定义新运算”,关键是要深刻理解运算符号的新规定,严格按照规定的法则运算,最后达到解决问题的目的。
【典型例题】例1 设a,b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。
试计算:5△6;(7△6)△4的值。
例2 有两个数是A、B,A△B表A与B的平均数。
、(1)已知A△6=17,求A。
(2)如果已知4△B=2,求B。
例3 规定x △y =32x+y x y x ⨯+,那么3△4= 。
例4 如果2*3=2+3+4,5*4=5+6+7+8,按此规律计算:3*5;5*3例5 有一个运算符号⊗,使A ,B (A ,B 表示两个数)满足定义A ⊗B=A ×B-b,2⊗3=4,试按此规律计算(3⊗5)+(7⊗9)例6 x 、y 是两个数,x*y=ax-by,已知4*2=6;6*3=9,计算7*5-2*1=?【小试锋芒】1.设a,b都表示数,规定a△b=6×a-2×b。
试计算3△42.设a,b都表示数,规定a△b=3×a+2×b试计算:(5△6)△7;5△(6△7)3. 规定:6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234。
求:7*54.如果2*4=24÷(2+4),按此规律计算3*6;6*3;5.M,N是两个数,M*N=Mx-N÷2,2*4=7,计算:(6*4)-(4*6)6.a,b表示2个数,a↓b=a×b+a-b,a↑b=a×b-a+b;计算:5↑(8↓4)7.数学符号!n(读作n的阶乘)的意义规定为:从1开始n个连续自然数的乘积,也就是说,!123(1)=⨯⨯==⨯⨯⨯=。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
小学四年级希望杯数学竞赛第一届至十一届全部试题与答案
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
“希望杯”全国数学邀请赛真题(五年级)最完善版
第一届小学“希望杯”五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比2/3大,比3/4小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
(完整版)全国四年级希望杯数学竞赛全部试题与答案
第一届小学“希望杯”数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
“希望杯”全国数学邀请赛真题五年级.docx
“希望杯” 全国数学邀请赛真题(五年级)第一届小学“希望杯”五年级第 1 试一、填空题1.计算= _______ 。
2.将 1、 2、3、 4、 5、 6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若和它的反序数+=139,则=_______ 。
6.三位数的差被 99 除,商等于 _______ 与 _______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图 2 中,正方形有 _______ 个,三角形有 _______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第 (4) 块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长 13 厘米,这个正方形的面积是平方厘米。
10. 六位自然数 1082□□能被 12 整除,末两位数有种情况。
11. 右边的除法算式中,商数是。
第1页共87页12.比 2/3 大,比 3/4 小的分数有无穷多个,请写出三个:。
、B、C、D、E 五位同学进行乒乓球循环赛,比赛进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C赛了 2 场, D赛了1场,这时, E 赛了场。
14. 观察 5*2 = 5+55= 60,7*4 = 7+77+ 777+ 7777= 8638,推知 9*5 的值是。
15. 警察查找一辆肇事汽车的车牌号,一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍刚好比后两位数少 2‖。
警察此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得 1 分。
希望杯第1-10届五年级数学试题及答案
第一届小学“希望杯”全国数学邀请赛五年级第1试2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
五年级数学希望杯试题
第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷ =______。
2.对不为零的自然数a ,b ,c ,规定新运算“☆”:☆(a ,b ,c )= ,则☆(1,2,3)=______。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a ,b ,c 是三个连续自然数,其中a 是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是______。
6.当p 和p ³+5都是质数时, +5=______.7.下列四个图形是由四个简单图形A 、B 、C 、D (线段和正方形)组合(记为*)而成。
则图中①~④中表示A*D 的是______。
(填序号)8.下面四幅图形中不是轴对称图形的是______。
(填序号)9.小华用相同的若干个小正方形摆成一个立体(如图)。
从上面看这个立体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正方形共有______个。
11.下图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是______厘米。
12.图中的熊猫图案的阴影部分的面积是______平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14) 13.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有一副扑克牌中(去掉大、小王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是______千米/时。
希望杯第1-9届五年级数学试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第2试一、填空题1.计算:=________ 。
2.一个四位数,给它加上小数点后比原数小2003.4,这个四位数是________ 。
3.六位数2003□□能被99整除,它的最后两位数是__________ 。
4.如图,两个正方形的边长分别是6厘米和2厘米,阴影部分的面积是________平方厘米。
5.用1元、5元、10元、50元、100元人民币各一张,2元、20元人民币各两张,在不找钱的情况下,最多可以支付_____种不同的款额。
6.桌面上4枚硬币向上的一面都是“数字”,另一面都是“国徽”,如果每次翻转3枚硬币,至少_____次可使向上的一面都是“国徽”。
7.向电脑输入汉字,每个页面最多可输入1677个五号字。
现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。
每次复制和粘贴为1次操作,要使整修页面都排满五号字,至少需要_____次操作。
8.图2中的每个小方格都是面积为1的正方形,面积为2的矩形有_____个。
9.由于潮汐的长期作用,月球自转周期与绕地球公转周期恰好相同,这使得月球总是以相同的一面对着我们。
在地球上最多能看到50%的月球面积,从一张月球照片中最多能看到_____50%的月球面积。
(填“大于”、“小于”或“等于”)10.三个武术队进行擂台赛,每队派6名选手,先由两队各出1名选手上擂台比武,负者下台,不再上台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的又一位选手上台……继续下去。
当有两个队的选手全部被击败时,余下的队即获胜。
这时最少要进行_____场比武。
11.两种饮水器若干个,一种容量12升水,另一种容量15升水。
153升水恰好装满这些饮水器,其中15升容量的_____个。
12.跳水比赛中,由10位评委评分,规定:最后得分是去掉1个最高分和1个最低分后的平均数。
10位评委给甲、乙两位选手打出的平均数是9.75和9.76,其中最高分和最低分的平均数分别昌9.83和9.84,那么最后得分_____高。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)
2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题1.(3分)2006+200.6+20.06+2.006+994+99.4+9.94+0.994=_________.2.(3分)(2013•北京模拟)2006×2008×(+)=_________.3.(3分)÷+0.2=_________.(结果写成分数形式)4.(3分)规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=_________.5.(3分)如果a=,b=,那么a,b中较大的数是_________.6.(3分)1+2+3+…+2006被7除,余数是_________.7.(3分)□、△分别代表两个数,并且□﹣△=10,,那么□=_________.8.(3分)某品牌的家用电冰箱的冷冻室的温度是零下18℃,冷藏室比冷冻室的温度高22℃,则冷藏室的温度是_________℃.9.(3分)如果某商品涨价20%,销售量将减少,那么涨价后的销售金额和涨价前的销售金额相比较,_________.(填“变得大了”、“变得小了”或“没有变化”)10.(3分)(2013•北京模拟)小明和小刚各有玻璃弹球若干个.小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多.”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一.”小明和小刚共有玻璃弹球_________个.11.(3分)和为15的两个非零自然数共有_________对.12.(3分)大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小数等于_________.13.(3分)用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有_________个.14.(3分)(2013•北京模拟)如图,三个图形的周长相等,则a:b:c=_________.15.(3分)由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是_________.16.(3分)(2013•北京模拟)将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是_________.17.(3分)在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为_________分.18.(3分)(2007•北塘区)如图,飞镖靶分成5个部分,从外到内得分依次是1,3,5,7,9.某人掷了4支飞镖,全部击中圆靶,且4次得分不全相等.他至少得_________分,最多得_________分19.(3分)(2013•北京模拟)小红为班里买了33个笔记本.班长发现购物单上没有标明单价,总金额的字迹模糊,只看到9□.口3元,班长问小红用了多少钱,小红只记得不超过95元,她实际用了_________元.20.(3分)(2013•北京模拟)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后_________秒相遇.21.(3分)一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的多一些,比少一些.按这样的运法,他运完这批货物最少共要运_________次,最多共要运_________次.22.(3分)有一位探险家,计划用6天的时间徒步横穿沙漠,如果搬运工人和探险家每人最多只能携带1个人4天所需的食物和水,那么这个探险家至少要雇用_________名工人.23.(3分)(2013•北京模拟)甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,莱客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是_________.24.(3分)一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的1倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中的在乙工地工作.一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天.这批工人有_________人.2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题1.(3分)2006+200.6+20.06+2.006+994+99.4+9.94+0.994=3333.2.(3分)(2013•北京模拟)2006×2008×(+)=2.()3.(3分)÷+0.2=.(结果写成分数形式)0.,=,0.+,×,,故答案为:4.(3分)规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=3B+2A.5.(3分)如果a=,b=,那么a,b中较大的数是b.=﹣;,6.(3分)1+2+3+…+2006被7除,余数是3.7.(3分)□、△分别代表两个数,并且□﹣△=10,,那么□=50.=8.(3分)某品牌的家用电冰箱的冷冻室的温度是零下18℃,冷藏室比冷冻室的温度高22℃,则冷藏室的温度是4℃.9.(3分)如果某商品涨价20%,销售量将减少,那么涨价后的销售金额和涨价前的销售金额相比较,没有变化.(填“变得大了”、“变得小了”或“没有变化”))10.(3分)(2013•北京模拟)小明和小刚各有玻璃弹球若干个.小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多.”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一.”小明和小刚共有玻璃弹球16个.11.(3分)和为15的两个非零自然数共有7对.12.(3分)大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小数等于1985.94.13.(3分)用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有2个.14.(3分)(2013•北京模拟)如图,三个图形的周长相等,则a:b:c=4:3:2.a=b=、c=15.(3分)由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是64.16.(3分)(2013•北京模拟)将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是37.17.(3分)在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为64.8分.18.(3分)(2007•北塘区)如图,飞镖靶分成5个部分,从外到内得分依次是1,3,5,7,9.某人掷了4支飞镖,全部击中圆靶,且4次得分不全相等.他至少得6分,最多得34分19.(3分)(2013•北京模拟)小红为班里买了33个笔记本.班长发现购物单上没有标明单价,总金额的字迹模糊,只看到9□.口3元,班长问小红用了多少钱,小红只记得不超过95元,她实际用了92.73元.20.(3分)(2013•北京模拟)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后500秒相遇.21.(3分)一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的多一些,比少一些.按这样的运法,他运完这批货物最少共要运7次,最多共要运9次.和化为同分母分数,进一步比较它们的大小,剩下中间的分数,找出最大的就是每一次运最多的=,=)多一些,比()或;×<<<<<<因此最少次,最多次;22.(3分)有一位探险家,计划用6天的时间徒步横穿沙漠,如果搬运工人和探险家每人最多只能携带1个人4天所需的食物和水,那么这个探险家至少要雇用2名工人.23.(3分)(2013•北京模拟)甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,莱客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是11:03.已走路程的倍就是已走路程的:﹣;2==3××=924.(3分)一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的1倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中的在乙工地工作.一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天.这批工人有36人.,去乙工地人数则是总数的;下午去甲工地的人数是总数的=,去乙工地人数是总数的.,甲工地的工作量是×+×,则乙工地的工作量为(×+×,×+×,剩下工作量为(×+×÷﹣(×+×),这需÷=36,﹣,﹣,×+×)﹣(××)+÷﹣(+×﹣÷=36。
全国四年级希望杯数学竞赛全部试题与答案
第一届小学“盼望杯”数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式可以成立:0.6+0.06+0.006+…=2002÷。
3.视察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的倍。
5.假如规定a※b =13×a-b÷8,那么17※24的最终结果是。
6.气象局对局部旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.是三角形的纸,=,图中的虚线是折痕,至少折次就可以得到8个一样的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任教师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园教师给几组小挚友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小挚友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比拟小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影局部的面积是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、填空题1.(3分)2006+200.6+20.06+2.006+994+99.4+9.94+0.994=.2.(3分)2006×2008×(+)=.3.(3分)÷+0.2=.(结果写成分数形式)4.(3分)规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=.5.(3分)如果a=,b=,那么a,b中较大的数是.6.(3分)1+2+3+…+2006被7除,余数是.7.(3分)□、△分别代表两个数,并且□﹣△=10,,那么□=.8.(3分)某品牌的家用电冰箱的冷冻室的温度是零下18℃,冷藏室比冷冻室的温度高22℃,则冷藏室的温度是℃.9.(3分)如果某商品涨价20%,销售量将减少,那么涨价后的销售金额和涨价前的销售金额相比较,.(填“变得大了”、“变得小了”或“没有变化”)10.(3分)小明和小刚各有玻璃弹球若干个.小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多.”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一.”小明和小刚共有玻璃弹球个.11.(3分)和为15的两个非零自然数共有对.12.(3分)大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小数等于.13.(3分)用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有个.14.(3分)如图,三个图形的周长相等,则a:b:c=.15.(3分)由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是.16.(3分)将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是.17.(3分)在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为分.18.(3分)如图,飞镖靶分成5个部分,从外到内得分依次是1,3,5,7,9.某人掷了4支飞镖,全部击中圆靶,且4次得分不全相等.他至少得分,最多得分19.(3分)小红为班里买了33个笔记本.班长发现购物单上没有标明单价,总金额的字迹模糊,只看到9□.口3元,班长问小红用了多少钱,小红只记得不超过95元,她实际用了元.20.(3分)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后秒相遇.21.(3分)一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的多一些,比少一些.按这样的运法,他运完这批货物最少共要运次,最多共要运次.22.(3分)有一位探险家,计划用6天的时间徒步横穿沙漠,如果搬运工人和探险家每人最多只能携带1个人4天所需的食物和水,那么这个探险家至少要雇用名工人.23.(3分)甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,莱客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是.24.(3分)一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的1倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中的在乙工地工作.一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天.这批工人有人.2006年第4届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、填空题1.(3分)2006+200.6+20.06+2.006+994+99.4+9.94+0.994=3333.【解答】解:2006+200.6+20.06+2.006+994+99.4+9.94+0.994=(1006+994)+(200.6+99.4)+(20.6+9.4)+(2.006+0.994),=3000+300+30+3,=3333;故答案为:3333.2.(3分)(2013•北京模拟)2006×2008×(+)=2.【解答】解:2006×2008×(+)=+=+====2;故答案为:2.3.(3分)÷+0.2=.(结果写成分数形式)【解答】解:由题意知:0.=,0.=,0.÷0.+0.2,=+,=×+,=,=,故答案为:.4.(3分)规定:A*B=3A+2B,如4*5=3×4+2×5,那么,B*A=3B+2A.【解答】解:B*A=3×B+2×A=3B+2A,故答案为:3B+2A.5.(3分)如果a=,b=,那么a,b中较大的数是b.【解答】解:1﹣a=1﹣=;1﹣b=1﹣=;>,所以1﹣a>1﹣b,则a<b.故答案为:b.6.(3分)1+2+3+…+2006被7除,余数是3.【解答】解:1+2+3+…2006=(1+2+…7)+(8+9+…14)+(15+16+…21)+…+(1996+1997+…2002)+2003+2004+2005+20061+2+…+7=28可以整除;8+9+…+14=(1+2+…7)+(7+7+7+…+7),即每7位数都能被7整除,最后2003+2004+2005+2006=8018,8018÷7=1145…3,故余数是3.故答案为:3.7.(3分)□、△分别代表两个数,并且□﹣△=10,,那么□=50.【解答】解:设□为x,△为y,则x﹣y=10,第二个算式为:==x=y;x﹣y=10可变为:y﹣y=10,y=10,y=40,x﹣40=10,x=50;故答案为:50.8.(3分)某品牌的家用电冰箱的冷冻室的温度是零下18℃,冷藏室比冷冻室的温度高22℃,则冷藏室的温度是4℃.【解答】解:﹣18+22=4(℃);答:冷藏室的温度是4℃.故答案为:4.9.(3分)如果某商品涨价20%,销售量将减少,那么涨价后的销售金额和涨价前的销售金额相比较,没有变化.(填“变得大了”、“变得小了”或“没有变化”)【解答】解:涨价前的销售金额:1×1=1;涨价后的销售金额:(1+20%)×(1﹣)=1.所以说涨价后的销售金额和涨价前的销售金额相比较没有变化.故答案为:没有变化.10.(3分)(2013•北京模拟)小明和小刚各有玻璃弹球若干个.小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多.”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一.”小明和小刚共有玻璃弹球16个.【解答】解:设小明有x个,则小刚有x﹣4个.根据题意得方程:3(x﹣4﹣2)=x+23x﹣18=x+22x=20x=10所以小刚有:10﹣4=6(个)所以他们共有:10+6=16(个)故答案为:16.11.(3分)和为15的两个非零自然数共有7对.【解答】解:和为15的两个非零自然数相加情况如下:1+14=15,2+13=15,3+12=15,4+14=15,5+10=15,6+9=15,7+8=15,所以共有7对,故答案为:7.12.(3分)大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小数等于1985.94.【解答】解:较小数是:2026.06÷(100+1),=2026.06÷101,=20.06;较大数是:20.06×100=2006;大数减小数:2006﹣20.06=1985.94.故答案为:1985.9413.(3分)用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有2个.【解答】解:根据分析,用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有442、433共2个.故答案为:2.14.(3分)(2013•北京模拟)如图,三个图形的周长相等,则a:b:c=4:3:2.【解答】解:设它们周长为C,则a:b:c==4:3:2;故答案为:4:3:2.15.(3分)由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图所示,则剩下的几何体的表面积是64.【解答】解:小正方体一个面的面积是:1×1=1,大正方体的表面积为:3×3×6=54,自上而下去掉中间的3个小正方体后的表面积为:54﹣1×2+1×12=54﹣2+12=64;答:则剩下的几何体的表面积是64.故答案为:64.16.(3分)(2013•北京模拟)将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是37.【解答】解:●●●●●○也就是000001=1,●●●●○●也就是000010=21+0=2,●●●●○○也就是000011=21+1=3,●●●○●●也就是000100=1×22+0×21+0×20=4,●●●○●○也就是000101=1×22+0×21+1×20=5,那么○●●○●○也就是100101=1×20+0×21+1×22+0×23+0×24+1×25,=1+0+4+0+0+32,=37.故答案为:37.17.(3分)在一次数学测验中,包括小明在内的6名同学的平均分为70分,其中小明得了96分,则小明以外的另5位同学的平均分为64.8分.【解答】解:(70×6﹣96)÷(6﹣1),=324÷5,=64.8(分);答:小明以外的另5位同学的平均分为64.8分;故答案为:64.8.18.(3分)(2007•北塘区)如图,飞镖靶分成5个部分,从外到内得分依次是1,3,5,7,9.某人掷了4支飞镖,全部击中圆靶,且4次得分不全相等.他至少得6分,最多得34分【解答】解:最小得分为:1×3+3=6(分);最多得分为:9×3+7=34(分).故答案为:6,34.19.(3分)(2013•北京模拟)小红为班里买了33个笔记本.班长发现购物单上没有标明单价,总金额的字迹模糊,只看到9□.口3元,班长问小红用了多少钱,小红只记得不超过95元,她实际用了92.73元.【解答】解:9□.口3元=9ab3分,既能被11整除,也能被3整除,由能被11整除且a<5知,(9+b)﹣(a+3)=11,9+b﹣a﹣3=11,b﹣a=5;由能被3整除可知,(a+b)能被3整除,只能是a=2,b=7;将a=2,b=7代入上式;9273分,9273分=92.73元所以92.73是小红实际用的金额.答:小红实际用了92.73元.故填:92.73.20.(3分)(2013•北京模拟)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后500秒相遇.【解答】解:原来两人的速度和:1500÷10=150(米),提速后的速度和:150×(1+20%)=180(米),平均每秒的速度和:180÷60=3(米),相遇时间:1500÷3=500(秒).答:出发后500秒相遇.故答案为:500.21.(3分)(2015•长沙)一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的多一些,比少一些.按这样的运法,他运完这批货物最少共要运7次,最多共要运9次.【解答】解:=,=;因为运到的货物比这批货物的()多一些,比()少一些.所以运到的货物可以是或;因此运完这批货物的次数×5<×5<×5<×5,即<<<;因此最少次,最多次;取整就是最少7次,最多9次.故答案为:7,9.22.(3分)(2014•台湾模拟)有一位探险家,计划用6天的时间徒步横穿沙漠,如果搬运工人和探险家每人最多只能携带1个人4天所需的食物和水,那么这个探险家至少要雇用2名工人.【解答】解:需要雇两名工人,因为:(1)第一天结束后,还剩下12﹣3=9份食物.然后给1名工人带上1份食物回去.剩下的8份食物,工人和探险家一起带上,再一起赶路.(2)第二天结束后,还剩下8﹣2=6份食物,然后给2份食物给那名工人,叫他回去.这样就剩下4份食物,而且刚好还有4天的时间,所以探险家刚好可以走完6天的路程.故答案为:2.23.(3分)(2011•西安校级自主招生)甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,莱客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是11:03.【解答】解:1﹣=;÷2=;已走路程:未走路程=1:=3:1;已走路程就是:12×=12×=9(千米)9÷30=0.3(小时)0.3×60=18(分),所以现在的时间为11:03.答:现在的时间是11:03.故答案为:11:03.24.(3分)(2012•广州自主招生)一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的1倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中的在乙工地工作.一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天.这批工人有36人.【解答】解:3÷(3+1)=,1﹣=,1﹣=,(×+×)÷1﹣(×+×),=(+)÷﹣(+),=×﹣,=,4÷=36(人).答:这批工人有36人.参与本试卷答题和审题的老师有:admin;吴涛;冯凯;zhuyum;duaizh;WX321;ZGR;旭日芳草;rdhx;姜运堂;zxg;xiaosh;春暖花开;pyzq;73zzx(排名不分先后)菁优网2017年2月24日。