三角函数常用公式
高中数学《三角函数》公式大全
高中数学《三角函数》公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是为大家整理的三角函数公式大全:锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边 / ∠α的邻边cot α=∠α的邻边 / ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα²sin(π/3+α)sin(π/3-α)cos3α=4cosα²cos(π/3+α)cos(π/3-α)tan3a = tan a ² tan(π/3+a)² tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中第1页(共16页)sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)第2页(共16页)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα²cosβ²cosγ+cosα²sinβ²cosγ+cosα²cosβ²sinγ-sin α²sinβ²sinγcos(α+β+γ)=cosα²cosβ²cosγ-cosα²sinβ²sinγ-sinα²cosβ²sinγ-sin α²sinβ²cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα²tanβ²tanγ)/(1-tanα²tanβ-tanβ²t anγ-tanγ²tanα)第3页(共16页)两角和差cos(α+β)=cosα²cosβ-sinα²sinβcos(α-β)=cosα²cosβ+sinα²sinβsin(α±β)=sinα²cosβ±cosα²sinβtan(α+β)=(tanα+tanβ)/(1-tanα²tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα²tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinα第4页(共16页)sin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得第5页(共16页)tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1) /n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n] =0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0第6页(共16页)。
数学常用三角函数公式全集
数学常用三角函数公式全集三角函数是数学中的一类重要函数,求解各种三角形和角度问题时经常用到。
下面是一些常用的三角函数公式:1. 正弦函数 (sine function):正弦函数是由一个角的对边和斜边的比值定义的。
在直角三角形中,正弦函数可以表示为:sinθ = opposite / hypotenuse。
注意,θ 是角的度数。
2. 余弦函数 (cosine function):余弦函数是由一个角的邻边和斜边的比值定义的。
在直角三角形中,余弦函数可以表示为:cosθ = adjacent / hypotenuse。
3. 正切函数 (tangent function):正切函数是由一个角的对边和邻边的比值定义的。
在直角三角形中,正切函数可以表示为:tanθ = opposite / adjacent。
这些是最基本的三角函数,我们还可以通过它们来推导出其他与其相关的函数。
4. 余割函数 (cosecant function):余割函数是正弦函数的倒数:cscθ = 1 / sinθ。
5. 余切函数 (cotangent function):余切函数是正切函数的倒数:cotθ = 1 /tanθ。
6. 余举函数 (secant function):余举函数是余弦函数的倒数:secθ = 1 / cosθ。
这些函数可以帮助我们求解各种三角形和角度问题。
此外,它们还有一些性质和公式,可以进一步扩展我们的计算范围。
7.三角函数的周期性:正弦函数、余弦函数、正切函数都具有周期性,周期为360度或2π弧度。
即sin(θ+360n) = sinθ,cos(θ+360n) = cosθ,tan(θ+πn) = tanθ,其中 n 为整数。
8.三角函数的正负关系:正弦函数在0到180度范围内是正数,在180到360度范围内是负数;余弦函数在90到270度范围内是负数,在其他角度范围内是正数;正切函数在0到90度和180到270度范围内是正数,在90到180度和270到360度范围内是负数。
三角函数变换公式大全
三角函数变换公式大全
以下列举了常见的三角函数变换公式:
1. 正弦函数变换公式:
- 正弦函数的平移变换:y = a*sin(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
2. 余弦函数变换公式:
- 余弦函数的平移变换:y = a*cos(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
3. 正切函数变换公式:
- 正切函数的平移变换:y = a*tan(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
4. 余切函数变换公式:
- 余切函数的平移变换:y = a*cot(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
5. 正割函数变换公式:
- 正割函数的平移变换:y = a*sec(b(x-c)) + d,其中a为水平
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。
6. 余割函数变换公式:
- 余割函数的平移变换:y = a*csc(b(x-c)) + d,其中a为水平拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为垂直平移量。
以上是常见的三角函数变换公式,它们可以通过改变振幅、周期、水平平移量和垂直平移量来对原始的三角函数进行变换。
三角函数的公式大全
三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。
常用的三角函数公式
三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A+tanB 1tan AtanB- 6、tan(A-B)=tan A-tanB 1tan AtanB+ 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A 1tan A- 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B 2-cos A B 2+ 减=减,加 证:左= sinA-sinB= sinA+sin(-B)= 2sin A+(B)2-cos A-(-B)2 =右 16、cosA+cosB=2cos A B 2+cos A B 2- 加=cos 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B 2+cos A B 2-=右 17、cosA-cosB=-2sin A B 2+sin A B 2- 减=sin 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sin A B 2+sin A B 2-=右 补充:18、sin2A=22tan A 1tan A+ 证:左=22222sin A 22tan A 2sin A cos A sin 2A cos A sin 2A=sin A 1tan A sin A cos A 11cos A⋅====+++右19、cos2A=221tan A 1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A cos 2A cos A cos 2A=sin A 1tan A sin A cos A 11cos A---====+++右 五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
三角函数所有的公式
三角函数公式汇总常见角三角函数值:sin 0o =0 cos 0o =1 tan 0o =0 cot 0o 不存在 sin 30o =21 cos 30o =23 tan 30o =33cot 30o =3 sin 60o =23 cos 60o =21 tan 60o =3 cot 60o =33 sin 45o =22cos 45o =22tan 45o =1cot 45o =1 sin 90o =1 cos 90o =0 tan 90o 不存在cot 90o =0 任意角三角函数:sin(2k ℼ+α)= sin αcos(2k ℼ+α)= cos αtan(2k ℼ+α)= tan αsin(ℼ+α)= - sin αcos(ℼ+α)= - cos αtan (ℼ+α)= tan αsin(ℼ-α)=sin αcos(ℼ-α)= - cos αtan (ℼ-α)= - tan αsin(2ℼ-α)= - sin αcos(2ℼ-α)=cos αtan (2ℼ-α)= - tan αSin (2π-α)=cos α cos (2π-α)=sin αSin (2π+α)=cos α cos (2π+α)=-sin αSin (23π-α)= - cos α cos (23π-α)= - sin α Sin (23π+α)= - cos α cos (23π+α)=sin α 两角和差三角函数:sin(A+B)=sinAcosB+cosAsinBsin(A- B)=sinAcosB- cosAsinBcos(A+B)=cosAcosB- sinAsinBcos(A- B)=cosAcosB+sinAsinB tan(A+B)=B tan A tan B tan A tan -+1 tan(A- B)=Btan A tan B tan A tan +-1 cot(A+B)=Bcot A cot B cot A cot +-1 cot(A-B)=Bcot -A cot B cot A cot 1+ 三角函数半角公式: sin(2A )=2A cos -1 cos(2A )=2A cos 1+ tan(2A )=Acos A cos 1+-1=A sin A cos -1=A cos A sin +1 cot(2A )=A cos Acos 1-+1三角函数平方公式:sin 2α+cos 2α=11+tan 2α=sec 2α1+cot 2α=csc 2αsin 2α=221αcos - cos 2α=αtan 211+=221αcos + tan 2α=αtan tan 212- 三角函数2倍角公式:sin2α=2sinαcosαcos2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1 tan2α=αtan αtan 212- tan tan2α1=2αcos αsin +1=αsin αcos -1 3倍角三角函数公式: sin3α=3sin α-4sin 3α =4sin αsin(60o +α)sin(60o -α) sos3α=4cos 3α-3cos α =4cos αcos(60o -α)cos(60o +α) tan3α=tan αtan(60o -α)tan(60o +α) 三角函数万能公式:sin α=2αtan 212αtan+2 cos α=2αtan 212αtan +-21 tan α=2αtan 212αtan -2三角函数和差化积公式: sinA+sinB=2sin 2B A +cos 2B A - sinA- sinB=2sin 2B A -cos 2B A + cosA+cosB=2cos 2B A +cos 2B A - cosA- cosB= -2sin 2B A +sin 2B A - tanA+tanB=Bcos A cos )B A sin(+ tanA - tanB=Bcos A cos )B A sin(- cotA+cotB=Bsin A sin )B A sin(+ cotA - cotB=Bsin A sin )B A sin(- tanA - cotB= - B sin A cos )B A cos(+三角函数积化和差公式: sinAsinB= -21[cos(A+B)-cos(A-B)] cosAcosB=21[cos(A+B)+cos(A-B)] sinAcosB=21[sin(A+B)+sin(A-B)] cosAsinB=21[sin(A+B)-sin(A-B)] 辅助角公式:asin α+bcos α=b 2a 2 sin(α+ѱ) (公式中tan ѱ=a b ) 正弦定理:A sin a =B sin b =C sin c =2R (R 为△ABC 外接圆半径)余弦定理:a 2=b 2+c 2-2bc ·cosAb 2=a 2+c 2-2ac ·cosBc 2=a 2+b 2-2ab ·cosC整理不易,请勿盗版。
常用的三角函数公式大全
常用的三角函数公式大全三角函数是数学中的重要概念,它们在几何、物理和工程等领域中起到重要的作用。
本文将为你介绍一些常用的三角函数公式,这些公式包括正弦函数、余弦函数和正切函数的基本性质及其应用。
1. 正弦函数(Sine Function):正弦函数是指在直角三角形中,对于给定角度的正弦值定义的函数。
其公式为:sinθ = 对边 / 斜边其中,θ为角度,对边是指与角θ相对的那条边,斜边是指斜线,即斜边为直角三角形斜边的长度。
正弦函数的重要性质有:- 周期性:sin(θ + 2π) = sinθ- 奇偶性:sin(-θ) = -sinθ- 行为:-1 ≤ sinθ ≤ 12. 余弦函数(Cosine Function):余弦函数是指在直角三角形中,对于给定角度的余弦值定义的函数。
其公式为:cosθ = 邻边 / 斜边其中,θ为角度,邻边是指与角θ相邻的那条边。
余弦函数的重要性质有:- 周期性:cos(θ + 2π) = cosθ- 奇偶性:cos(-θ) = cosθ- 行为:-1 ≤ cosθ ≤ 13. 正切函数(Tangent Function):正切函数是指在直角三角形中,对于给定角度的正切值定义的函数。
其公式为:tanθ = 对边 / 邻边其中,θ为角度,邻边是指与角θ相邻的那条边。
正切函数的重要性质有:- 周期性:tan(θ + π) = tanθ- 奇偶性:tan(-θ) = -tanθ- 行为:正切函数在某些特殊角度处无定义,即在π/2、3π/2、5π/2等处无解。
4. 反三角函数(Inverse Trigonometric Functions):反三角函数是指通过三角函数的值计算对应角度的函数,常用的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)和反正切函数(arctan)。
他们的公式为:- 反正弦函数:θ = arcsin(x) ⇒ sin(θ) = x- 反余弦函数:θ = arccos(x) ⇒ cos(θ) = x- 反正切函数:θ = arctan(x) ⇒ tan(θ) = x这些反三角函数的应用十分广泛,可以帮助我们求解三角函数的角度。
三角函数相关所有公式
三角函数相关所有公式1.正弦函数公式:正弦函数表示为:y = sin(x)关系:sin(x) = y/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:奇函数,即sin(-x) = -sin(x)- 周期性:周期为2π,即sin(x+2π) = sin(x)2.余弦函数公式:余弦函数表示为:y = cos(x)关系:cos(x) = x/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:偶函数,即cos(-x) = cos(x)- 周期性:周期为2π,即cos(x+2π) = cos(x)3.正切函数公式:正切函数表示为:y = tan(x)关系:tan(x) = sin(x)/cos(x)性质:- 定义域:(-∞, +∞),且除去一些点使得tan(x)无定义(如x = π/2 + nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即tan(-x) = -tan(x)- 周期性:周期为π,即tan(x+π) = tan(x)4.余切函数公式:余切函数表示为:y = cot(x)关系:cot(x) = cos(x)/sin(x)性质:- 定义域:(-∞, +∞),且除去一些点使得cot(x)无定义(如x = nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即cot(-x) = -cot(x)- 周期性:周期为π,即cot(x+π) = cot(x)5.正弦函数和余弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))cot(x ± y) = (cot(x)cot(y) ∓ 1)/(cot(y) ± cot(x))6.正弦函数和余弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))7.正弦函数和余弦函数的半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)8.正弦函数和余弦函数的和积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这些是三角函数常见的公式,它们在数学和物理中有广泛的应用。
(完整版)常用的三角函数公式大全
2
2
tana+tanb= sin(a b) cosa cosb
积化和差
1 sinasinb = - [cos(a+b)-cos(a-b)]
2 1 cosacosb = [cos(a+b)+cos(a-b)] 2 sinacosb = 1 [sin(a+b)+sin(a-b)] 2 cosasinb = 1 [sin(a+b)-sin(a-b)] 2
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = tanA tanB 1- tanAtanB tanA tanB
万能公式
2tan a
sina=
2
1 (tan a ) 2
2
1 (tan a) 2
cosa=
2
1 (tan a )2
2
a
2tan
tana=
2
1 (tan a ) 2
2
其它公式
a?sina+b?cosa= (a 2 b2 ) ×sin(a+c) [其中 tanc= b ] a
a?sin(a-)b?cos(a) = (a2
tan(A-B) = 1 tanAtanB cotAcotB -1
cot(A+B) = cotB cotA cotAcotB 1
cot(A-B) = cotB cotA
三角函数常用公式
三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sin α·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。
常用的三角函数公式大全
常用的三角函数公式大全一、正弦函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:正弦函数的取值范围为[-1,1];正弦函数的周期为2π。
3.正弦函数的基本关系式:sin(π/2 - θ) = cosθ;sin(π/2 + θ) = cosθ;sin(π - θ) = sinθ;sin(-θ) = -sinθ;sin(2θ) = 2sinθcosθ;sin(θ + φ) = sinθcosφ + cosθsinφ;4.余弦函数与正弦函数的关系:cos(π/2 - θ) = sinθ;cos(π/2 + θ) = -sinθ;cos(π - θ) = -cosθ;cos(-θ) = cosθ;cos(2θ) = cos²θ - sin²θ;cos(θ + φ) = cosθcosφ - sinθsinφ;二、余弦函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:余弦函数的取值范围为[-1,1];余弦函数的周期为2π。
3.余弦函数的基本关系式:cos(π/2 - θ) = sinθ;cos(π/2 + θ) = -sinθ;cos(π - θ) = -cosθ;cos(-θ) = cosθ;cos(2θ) = cos²θ - sin²θ;cos(θ + φ) = cosθcosφ - sinθsinφ;4.正弦函数与余弦函数的关系:sin(π/2 - θ) = cosθ;sin(π/2 + θ) = cosθ;sin(π - θ) = sinθ;sin(-θ) = -sinθ;sin(2θ) = 2sinθcosθ;sin(θ + φ) = sinθcosφ + cosθsinφ;三、正切函数的公式:1.弧度和角度关系:在单位圆上,弧度与角度的关系为:1弧度=180°/π2.基本性质:正切函数的取值范围为全体实数;正切函数的周期为π。
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角函数定理公式大全
三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
常用三角函数公式与口诀
常用三角函数公式与口诀三角函数是数学中常用的一种函数形式,用来描述角和边长之间的关系。
常用的三角函数包括正弦函数、余弦函数和正切函数。
为了方便记忆和应用,人们总结了一些常用的三角函数公式和口诀,下面将介绍一些常见的。
一、正弦函数(sin):正弦函数表示对边与斜边的比值,记作sinθ。
常用公式有:1. sin(90°-θ) = cosθ2. sin²θ + cos²θ = 13. sin(2θ) = 2sinθcosθ4. sin(-θ) = -sinθ5. sin(180°+θ) = -sinθ二、余弦函数(cos):余弦函数表示的是邻边与斜边的比值,记作cosθ。
常用公式有:1. cos(90°-θ) = sinθ2. cos²θ + sin²θ = 13. cos(2θ) = cos²θ - sin²θ4. cos(-θ) = cosθ5. cos(180°+θ) = -cosθ三、正切函数(tan):正切函数表示的是对边与邻边的比值,记作tanθ。
常用公式有:1. tanθ = sinθ / cosθ2. tan(-θ) = -tanθ3. tan(180°+θ) = tanθ四、反三角函数:反三角函数是三角函数的逆运算,由于三角函数是周期性的,所以我们通常只考虑其在一个周期内的值。
常用的反三角函数包括:1. 反正弦函数(arcsin):y = arcsin(x),其定义域为[-1, 1],值域为[-π/2, π/2]。
2. 反余弦函数(arccos):y = arccos(x),其定义域为[-1, 1],值域为[0, π]。
3. 反正切函数(arctan):y = arctan(x),其定义域为整个实数集,值域为[-π/2, π/2]。
五、常用口诀:为了方便记忆这些三角函数的公式,人们总结了一些口诀,如下:1."正旦分,分正时,余分秋."(正弦函数公式)2."正白夜,夜分钟,余原分."(余弦函数公式)3."正旦奇,奇旦分,正平双"(正切函数公式)4."全部落下是正弦,正切同名都负伸;奇奇偶,愣丑默,反余余起来都正。
三角函数的万能公式是什么
三角函数的万能公式是什么
三角函数的万能公式是(sinα)²+(cosα)²=1,1+(tanα)²=(secα)²,1+(cotα)²=(cscα)²。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数公式大全
三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ 余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secαcotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, 三角函数恒等变形公式两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数常用公式两角和与差的三角函数cos(α+β)=cosα²cosβ-sinα²sinβcos(α-β)=cosα²cosβ+sinα²sinβsin(α±β)=sinα²cosβ±cosα²sinβtan(α+β)=(tanα+tanβ)/(1-tanα²tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα²tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα²cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα²sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα²cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα²sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα²cosα=2/(tanα+cotα)cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cotα)sec(2α)=sec^2α/(1-tan^2α)csc(2α)=1/2*secα²cscα三倍角公式sin(3α) = 3sinα-4sin^3α = 4sinα²sin(60°+α)sin(60°-α)cos(3α) = 4cos^3α-3cosα = 4cosα²cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)n倍角公式sin(nα)=ncos^(n-1)α²sinα-C(n,3)cos^(n-3)α²sin^3α+C(n,5)cos^(n-5)α²sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α²sin^2α+C(n,4)cos^(n-4)α²sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A^2+B^2)sin(α+arctan(B/A))Asinα+Bcosα=√(A^2+B^2)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα²cosβ²cosγ+cosα²sinβ²cosγ+cosα²cosβ²sinγ-sinα²sin β²sinγcos(α+β+γ)=cosα²cosβ²cosγ-cosα²si nβ²sinγ-sinα²cosβ²sinγ-sinα²sin β²cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα²tanβ²tanγ)/(1-tanα²tanβ-tanβ²tanγ-t anγ²tanα)1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30°=sin60°sin30°=cos60°推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=[sin(α/2)+cos(α/2)]^2其他及证明sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^2a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三角形面积变形公式的应用王利超本文结合实例,介绍一个面积公式的变形S ab C=12sin(a,b为三角形两边长,∠C为a,b边的夹角)。
已知:如图1,在△ABC中,a,b是边长,∠C是a,b边的夹角。
求证:SA BC△=12ab Csin。
图1证明:如图1,作底边BC上的高AH,设其长为h。
在Rt△AHC中,sinC ==A HA Chb,可得h=b²sinC。
SA BC△(²)===121212ah a b C ab Csin sin。
说明:这个公式对于任意三角形均适用,但初中阶段尚未学习钝角的三角函数,我们只讨论夹角为锐角的情况。
例已知△ABC,分别以AB,BC,CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF。
(1)如图2,当△ABC是等边三角形时,请你写出满足图中条件的四个成立的结论。
图2(2)如图3,△ABC中只有∠ACB=60°时,请你证明S△BCE 与S△ACF的和等于S△ABC与S△ABD的和。
图3解:(1)在图2中,四个等边三角形组成一个大的等边三角形,图形很特殊,条件也很多。
如图2中菱形就有ABEC,DACB,ABCF等。
这些特殊图形中,写出四个成立的结论应该不是难事。
①图形DAFCEB构成一个△DEF;②△DFE是等边三角形;③△ABC的面积是△DEF的面积的14;④AB∥EF;⑤BC =12DF。
(2)方法1:如图4,过A作AM⊥BC于M,设BC=a,AC=b,AM=h。
图4S△BCE+ S△ACF=12601260 22a b²²sin sin︒+︒=126022()ab +︒sinS △ACB =1260ab sin ︒。