必修二直线与方程试题三套含答案

合集下载

人教A版高中数学必修二第三章直线与方程 测试题(含答案)

人教A版高中数学必修二第三章直线与方程 测试题(含答案)

高中数学 直线方程测试题一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A B C D4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )A .32-B .32C .23-D .23 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0L 1 L 2 x o L 39、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。

《必修2》第三章“直线与方程”测试题(含答案)

《必修2》第三章“直线与方程”测试题(含答案)

《必修2》第三章“直线与方程”测试题(含答案)《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( )A .32-B .32C .23- D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=05 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22xy +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是15 已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________;23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等, 求m 的值19.已知三角形ABC的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是BC边上的中点。

高中数学必修2直线及方程练习题及答案详解

高中数学必修2直线及方程练习题及答案详解

直线与方程复习A一、选择题1.设直线ax by c 0的倾斜角为,且A. a b 1 B.a b 1 C.sin cos 0a b 0 D2.过点P(1,3)且垂直于直线x2y30的直线方程为〔A.2xy1B.2xy50 C.x2y5D.x2y703.过点A(2,m)和B(m,4)的直线与直线2x y1那么m的值为〔〕A.0B.8C.2D.104.ab0,bc0,那么直线ax by c通过〔〕A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.直线x1的倾斜角和斜率分别是〔〕000A.45,1B.135,1C.90,不存在2m3)x(m20表示一条直线6.假设方程(2m m)y4m1A.m0B.m 3C.m1D.m 2二、填空题1.点P(1,1)到直线x y10的距离是_______________ 2.直线l1:y 2x 3,假设l2与l1关于y轴对称,那么l2的三、解答题1.直线 Ax By C 0,1〕系数为什么值时,方程表示通过原点的直线;2〕系数满足什么关系时与坐标轴都相交;〔3〕系数满足什么条件时只与x轴相交;〔4〕系数满足什么条件时是x轴;1:2350,2:3230的交点且平行于2.求经过直线lx y l x y的直线方程。

3.经过点 A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求的方程。

第三章直线与方程 B一、选择题1.点A(1,2),B(3,1),那么线段 AB的垂直平分线的方程是〔A.4x 2y 5 B.4x 2y 5C.x 2y 5 D.x 2y 512.假设A( 2,3),B(3, 2),C( ,m)三点共线那么m的值为〔2A.1B.1C.2D.2 22x y1在y轴上的截距是〔3.直线22〕a bA.bB.b2C.b2D.b4.直线 kx y 1 3k,当k变动时,所有直线都通过定点〔A.(0,0)B.(0,1)C.(3,1)D.5.直线xcos ysin a0与xsinycos b0的A.平行B.垂直C.斜交D.与a 6.两直线3x y 3 0与6x my 1 0平行,那么它们之间的213C.5D.7A.4B.1310132627.点A(2,3), B( 3, 2),假设直线l过点P(1,1)与线段A 斜率k的取值范围是〔〕5.设 a b k(k 0,k为常数),那么直线ax by 1恒过定三、解答题1.求经过点 A( 2,2)并且和两个坐标轴围成的三角形的面积是2.一直线被两直线l1:4x y 6 0,l2:3x 5y 6 0截当P点分别为(0,0),(0,1)时,求此直线方程。

高中数学必修二直线与方程练习题(考查直线五种形式)

高中数学必修二直线与方程练习题(考查直线五种形式)

必修二直线与方程(直线的五种形式)练习题让4第I卷(选择题)一、单选题(本大题共16小题,共80.0分)1.如图,直线l1,l2,l3的斜率分别为k1,k2,k3,则()A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k22.已知△ABC的顶点为A(3,3),B(2,−2),C(−7,1),则∠A的内角平分线AD所在直线的方程为()A. y=−x+6B. y=xC. y=−x+6和y=xD. 15x−12y−20=03.点(1,1)到直线x+y−1=0的距离为()D. √2A. 1B. 2C. √224.已知直线l1:ax+2y−1=0,直线l2:8x+ay+2−a=0,若l1//l2,则实数a的值为()A. ±4B. −4C. 4D. ±25.已知点A(1,6√3),B(0,5√3)到直线l的距离均等于a,且这样的直线l可作4条,则a的取值范围是()A. a≥1B. 0<a<1C. 0<a≤1D. 0<a<26.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为1,3则实数m,n的值分别为()A. 4和3B. −4和3C. −4和−3D. 4和−37.若两平行直线2x+y−4=0与y=−2x−m−2间的距离不大于√5,则实数m的取值范围是()A. [−11,−1]B. [−11,0]C. [−11,−6)∪(−6,−1]D. [−1,+∞)8.已知定点P(x0,y0)不在直线l:f(x,y)=0上,则f(x,y)+f(x0,y0)=0表示一条()A. 过点P且与l垂直的直线B. 过点P且与l平行的直线C. 不过点P且垂直于l的直线D. 不过点P且平行于l的直线9.已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为()A. 2x−y−3=0B. 2x+y−5=0C. x+2y−4=0D. x−2y+3=010.经过两条直线2x+3y+1=0和x−3y+4=0的交点,并且垂直于直线3x+4y−7=0的直线的方程为()A. 4x−3y+9=0B. 4x−3y−9=0C. 3x−4y+9=0D. 3x−4y−9=011.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>cC. b<0,d>0,a>cD. b<0,d>0,a<c12.已知直线l1:3x+4y+2=0,l2:6x+8y−1=0,则l1与l2之间的距离是()A. 12B. 35C. 1D. 31013.三点A(3,1),B(−2,k),C(8,11)在一条直线上,则k的值为()A. −8B. −9C. −6D. −714.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. √2B. 2−√2C. 1D. √2−115.已知两点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则直线l的斜率k的取值范围是()A. (−1,1)B. (−∞,−1)∪(1,+∞)C. [−1,1]D. (−∞,−1]∪[1,+∞)16.直线y=−√33x+1与x轴,y轴分别交于点A,B,以线段AB为边在第一象限内作等边△ABC,如果在第一象限内有一点P(m,12),使得△ABP和△ABC面积相等,则m的值()A. 5√32B. 3√32C. √32D. √3第II卷(非选择题)二、单空题(本大题共4小题,共20.0分)17.已知直线ax+3y−12=0与直线4x−y+b=0互相垂直,且相交于点P(4,m),则b=.18.已知两直线2x−5y+20=0,mx−2y−10=0与两坐标轴围成的四边形有外接圆,则实数m=.19.若直线l1:(2m2−5m+2)x−(m2−4)y+5=0的斜率与直线l2:x−y+1=0的斜率相同,则m的值为.20.若原点O在直线l上的射影是P(1,2),则直线l在y轴上的截距为__________.三、解答题(本大题共5小题,共60.0分)21.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.22.已知直线l1:ax+2y+6=0和直线l2:x+(a−3)y+a2−1=0.(1)当l1⊥l2时,求a的值;(2)在(1)的条件下,若直线l3//l2,且l3过点A(1,−3),求直线l3的一般方程.23.设直线4x+3y=10与2x−y=10相交于一点A.(1)求点A的坐标;(2)求经过点A,且垂直于直线3x−2y+4=0的直线的方程.24.已知直线l:(a+1)x+y−2−a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)当O(0,0)点到直线l距离最大时,求直线l的方程.25.如图,△ABC中,顶点A(1,2),BC边所在直线的方程为x+3y+1=0,AB边的中点D在y轴上.(1)求AB边所在直线的方程;(2)若|AC|=|BC|,求AC边所在直线的方程.答案和解析1.【答案】D本题考查直线的倾斜角与斜率,属于基础题.根据题意,利用直线的倾斜角来判断直线的斜率关系,即可得解.【解答】解:直线l1的倾斜角α1是钝角,故k1<0,直线l2与l3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k3<k2,因此k1<k3<k2,故选D.2.【答案】B本题考查了点到直线的距离公式,角平分线的性质,考查了学生的运算能力,属于中档题.求出直线AB,直线AC的方程,进行求解即可.【解答】解:设∠A的内角平分线AD上的任意一点P(x,y),又△ABC的顶点为A(3,3)、B(2,−2)、C(−7,1),可得:直线AB方程为:5x−y−12=0,直线AC的方程为:x−5y+12=0,∴点P到直线AC距离等于点P到直线AB距离,则√26=√26,解得x+y−6=0(此时B、C两点位于直线x+y−6=0同侧,不符合题意,舍去)或x−y=0.∴角平分线AD所在直线方程为:x−y=0.故选B.3.【答案】C【分析】本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.利用点到直线的距离公式即可得出.【解答】解:由点到直线的距离公式,得所求距离d=22=√22.4.【答案】B【分析】本题考查直线的一般式方程与直线的平行关系,利用直线平行的性质求解.【解答】解:由a2−2×8=0,得a=±4.当a=4时,l1:4x+2y−1=0,l2:8x+4y−2=0,l1与l2重合.当a=−4时,l1:−4x+2y−1=0,l2:8x−4y+6=0,l1//l2.综上所述,a=−4.故选B.5.【答案】B本题主要考查了点与直线的位置关系和两点间的距离公式的应用,做题时要善于转化,把求a的范围问题转化为求两点间的距离的问题,属于中档题.可分A,B在直线l的同侧还是两侧两种情况讨论直线l的可能,若A,B两点在直线l 的同侧,一定可作出两条直线,所以则当A,B两点分别在直线l的两侧时,还应该有两条,这时,只需a小于A,B两点间距离的一半即可.【解答】解:∵若A,B两点在直线l的同侧,可作出两条直线,∴若这样的直线l可作4条,则当A,B两点分别在直线l的两侧时,还应该有两条.∴2a小于A,B间距离,∵|AB|=√(1−0)2+(6√3−5√3)2=2.∴0<2a<2,∴0<a<1.故选B .6.【答案】C本题主要考查直线的方程的应用,属于基础题.由直线平行可得−mn =−43,再由直线在y 轴上的截距为13,可得−1n =13,联立解得m ,n 的值. 【解答】解:当n =0时,不合题意,所以n ≠0, 由题意知:−mn =−43,即3m =4n , 且在y 轴上的截距为13,即−1n =13, 联立解得:n =−3,m =−4. 故选C .7.【答案】C8.【答案】D9.【答案】C本题考查直线点斜式方程、中点坐标公式,属于基础题.设所求直线的方程为y −1=k(x −2),得Q 点坐标为(0,1−2k),P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0. 【解答】解:设所求直线的方程为y −1=k(x −2). 令x =0得y =1−2k , 所以Q 点坐标为(0,1−2k),又因为M 为线段PQ 的中点,P 点纵坐标为0,所以根据中点坐标公式有0+(1−2k)2=1,解得k =−12,故所求直线的方程为x +2y −4=0.10.【答案】A本题主要考查两条直线的交点及两直线垂直的性质应用,属于基础题.联立方程2x +3y +1=0和x −3y +4=0,可求出交点坐标,垂直于直线3x +4y −7=0,可设为4x −3y +m =0,代入交点坐标即可求出该直线的方程. 【解答】解:由{2x +3y +1=0,x −3y +4=0,得{x =−53y =79, 因为所求直线与直线3x +4y −7=0垂直, 所以可设所求直线的方程为4x −3y +m =0, 代入点(−53,79),解得m =9,故所求直线的方程为4x −3y +9=0. 故选A .11.【答案】C本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解. 【解答】解:l 1 :y =−1a x −ba , l 2 : y =−1c x −dc ,由图象知:①−1a >−1c >0,②−ba <0,③−dc >0, 解得:①c <a <0,②b <0,③d >0, 故选C .12.【答案】A【分析】本题考查两条平行线之间的距离公式,属基础题.在使用两条平行线间的距离公式时,要注意两直线方程中x,y的系数必须相同.【解答】解:直线l1:3x+4y+2=0可化为直线l1:6x+8y+4=0,则l1与l2之间的距离是√62+82=12,故选A.13.【答案】B本题考查了斜率计算公式、斜率与三点共线的关系,考查了推理能力与计算能力,属于基础题.三点A(3,1),B(−2,k),C(8,11)在一条直线上,可得k AB=k AC,利用斜率计算公式即可得出.【解答】解:∵三点A(3,1),B(−2,k),C(8,11)在一条直线上,∴k AB=k AC,即k−1−2−3=11−18−3,解得k=−9.故选B.14.【答案】D本题考查直线和圆的位置关系,点到直线的距离公式的应用,是基础题.化标准方程求圆心与半径,由圆心到直线的距离易得结果.【解答】解:由题设知圆心为C(−1,−2),半径r=1,而圆心C(−1,−2)到直线x−y+1=0距离为:d=√2=√2,因此,圆上点到直线的最短距离为d−r=√2−1,故选D.15.【答案】D本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,属于基础题.根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围.【解答】解:如图所示:∵点A(−3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,∴直线l的斜率k≥k PB或k≤k PA,∵PA的斜率为4−0−3−1=−1,PB的斜率为2−03−1=1,∴直线l的斜率k≥1或k≤−1,故选D.16.【答案】A【解析】解:根据题意画出图形,如图所示:由直线y=−√33x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=√3,故点A(√3,0),∵△ABC为等边三角形,且OA=√3,OB=1,根据勾股定理得:AB=2,故点C到直线AB的距离为√3,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=√32|−√33m+12|=√3,即−√33m+12=2或−√33m+12=−2,解得:m=−3√32(舍去)或m=5√32.则m的值为5√32.根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.此题考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.学生做题时注意采用数形结合的思想及转化的思想的运用,在求出m的值后要根据点P在第一象限舍去不合题意的解.17.【答案】−13【解析】【分析】本题考查两条直线垂直的斜率关系,两直线的交点问题,属于基础题.由两直线互相垂直得a=34,由点P(4,m)在直线34x+3y−12=0上,得m=3,再将点P(4,3)代入4x−y+b=0,即可求出结果.【解答】解:由题意,直线ax+3y−12=0与直线4x−y+b=0互相垂直,可得−a3×4=−1,解得a=34,由点P(4,m)在直线34x+3y−12=0上,得3+3m−12=0,解得m=3,再将点P(4,3)代入直线4x−y+b=0,得16−3+b=0,解得b=−13,故答案为−13.18.【答案】−5【解析】略19.【答案】320.【答案】52【解析】【分析】本题考查直线方程的求法,两直线垂直斜率之间的关系,属于基础题.由题意得OP ⊥l ,求出OP 的斜率即可得到直线l 的斜率,从而求出直线l 的方程,即可得到答案.【解答】解:由题意得OP ⊥l ,而k OP =2−01−0=2,∴k l =−12. ∴直线l 的方程为y −2=−12(x −1),化成斜截式为y =−12x +52.当x =0时,y =52,∴直线l 在y 轴上的截距为52.故答案为52. 21.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0;当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =22=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 22.【答案】解:(1)由A 1A 2+B 1B 2=0⇒a +2(a −3)=0⇒a =2;(2)由(1),l 2:x −y +3=0,又l 3//l 2,设l 3:x −y +C =0,把(1,−3)代入上式解得C =−4,所以l 3:x −y −4=0.【解析】本题考查了两条直线平行、两条直线垂直的条件,属于基础题.(1)利用两条直线垂直的充要条件即可得出.(2)根据平行可设l 3:x −y +C =0,代值计算即可.23.【答案】解:(1)由{2x −y =104x +3y =10,解得{x =4,y =−2., ∴A (4,−2). (2)直线3x −2y +4=0的斜率为32,垂直于直线3x −2y +4=0的直线斜率为−23,则过点A (4,−2)且垂直于直线3x −2y +4=0的直线的方程为y +2=−23(x −4),即:2x +3y −2=0.【解析】本题考查求两直线的交点坐标,直线与直线的位置关系,直线方程的求法,属于基础题.(1)解方程组{2x −y =104x +3y =10,可得点A 的坐标; (2)由题可得直线3x −2y +4=0的斜率为32,则垂直于直线3x −2y +4=0的直线斜率为−23,由点斜式即可得出所求直线的方程. 24.【答案】解:(1)直线l :(a +1)x +y −2−a =0,取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a =−2或a =0,故直线方程为x −y =0或x +y −2=0.(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大.k OA =1,故k =−1,解得a =0,故所求直线方程为x +y −2=0.【解析】本题考查了直线的截距、相互垂直时斜率之间的关系,考查了推理能力与计算能力,属于基础题.(1)取x =0,y =a +2,取y =0,x =a+2a+1,即a +2=a+2a+1,解得a .(2)l :(a +1)x +y −2−a =0变换得到a(x −1)+x +y −2=0,故过定点A(1,1),当直线l 与AO 垂直时,距离最大,即可求解. 25.【答案】解:(1)因点B 在直线x +3y +1=0上,不妨设B(−3a −1,a),由题意得(−3a −1)+1=0,解得a =0,所以B 的坐标为(−1,0),故AB 边所在直线的方程为x−1−1−1=y−20−2,即x −y +1=0;(2)因|AC|=|BC|,所以点C 在线段AB 的中垂线x +y −1=0上由{x +y −1=0x +3y +1=0,解得x =2,y =−1,即C 的坐标为(2,−1), 又点A(1,2),∴AC 边所在直线的方程为x−12−1=y−2−1−2,即3x +y −5=0.【解析】(1)利用点B 在直线上,设B(−3a −1,a),利用中点坐标公式,求出点B 的坐标,然后再由两点式求出直线方程即可;(2)联立两条直线的方程,求出交点坐标即点C ,再由两点式求出直线方程即可. 本题考查了直线方程的求解,主要考查了两点式直线方程的应用,涉及了中点坐标公式以及直线交点坐标的求解,属于基础题.。

2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析

2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析

2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。

必修2第三章直线与方程测试题

必修2第三章直线与方程测试题

第三章 直线与方程测试题(一)一 •选择题(每小题5分,共12小题,共60分)1 •若直线过点C.3,3)且倾斜角为300,则该直线的方程为()B.y=—^x 4 C.y=—^x —4 D. y333. 如果直线x by ^0经过直线5x -6y -17二0与直线4x • 3y • 2 = 0的交点,那么b 等于 (). A. 2B. 3C. 4D. 52 2 04. 直线(2m -5m - 2)x 「(m -4)y - 5m = 0的倾斜角是45,则m 的值为()。

A.2B. 3C. - 3D. - 225.两条直线3x 2y ^0和(m • 1)x-3y • 2 -3m = 0的位置关系是()A.平行B.相交C.重合D.与m 有关 7直线x -2y • b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A. [-2,2]E. (-::,一2] [2,::)C . [ -2,0) (0,2]D.(-::,::)A.2.如果 A(3,1)、 B (-2,k )、C (8,11),在同一直线上,那k 的值是(A. -6B. —7C. -8D. -9*6•到直线2x y ^0的距离为—的点的集合是(5A.直线 2x y -2 = 0B. 直线2x y = 0C.直线 2x ■ y = 0 或直线 2x ■ y - 2 = 0 D. 直线2x y = 0或直线2x y 2 = 0*8 •若直线I 与两直线y , x - y -7 =0分别交于M , N 两点,且MN 的中点是P (1,-1),则直线1的斜率是()22厂3 3A .B .—C .D.—3 32210•直线x -2y ・1 = 0关于直线x =1对称的直线方程是( )A . x 2y -1 = 0B . 2x y -1 = 0C . 2x y -3=0D . x 2y -3=0共有 ( )A . 1个B . 2个*12 .若y =a|x|的图象与直线y =x ,a (a 0),有两个不同交点,则 a 的取值范围是 ()A . 0 :: a :: 10B . a 1C . a 0 且 a =1D . a =1二.填空题(每小题5分,共4小题,共20分)13.经过点(-2, -3),在x 轴、y 轴上截距相等的直线方程是 _____________________ ; 或 ______________________ 。

高中数学必修二第3章《直线与方程》测试卷及答案解析

高中数学必修二第3章《直线与方程》测试卷及答案解析

2019-2020学年高中数学必修二《第3章直线与方程》测试卷参考答案与试题解析一.选择题(共30小题)1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k=﹣,b=3B.k=﹣,b=﹣2C.k=﹣,b=﹣3D.k=﹣,b=﹣3【分析】化为斜截式方程y=kx+b,即可找出直线的斜率k及与y轴的截距b即可.【解答】解:直线y﹣3=﹣(x+4)化为斜截式为y=﹣x﹣3,故k=﹣,b=﹣3,故选:C.【点评】此题考查了直线的斜截式方程,属于基础题2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()A.B.C.D.【分析】利用倾斜角、斜率的计算公式即可得出.【解答】解:设直线的倾斜角为α,则tanα==,又∵α∈[0,π],∴α=.故选:A.【点评】本题考查了直线的倾斜角.熟练掌握倾斜角、斜率的计算公式是解题的关键.3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()A.k≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k≤【分析】作出图象,求出边界直线的斜率,进而可得要求的范围.【解答】解:点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,∴k AP==﹣2,k BP==,∴直线l的斜率﹣2≤k≤故选:D.【点评】本题考查直线的斜率,数形结合是解决问题的关键,属基础题.4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()A.k≤或k≥B.k≤﹣或k≥﹣C.≤k≤D.﹣≤k≤﹣【分析】算出直线P A、PB的斜率,并根据斜率变化过程中直线L倾斜角总是锐角,即可得到L的斜率k的取值范围.【解答】解:∵A(﹣2,﹣3),P(1,1)∴直线P A的斜率k P A==,同理可得直线PB的斜率k PB==∵直线L过点P(1,1)且与线段AB相交,且在斜率变化过程中倾斜角总是锐角∴L的斜率k的取值范围是≤k≤故选:C.【点评】本题给出直线L与线段AB总有公共点,求L的斜率k的取值范围.着重考查了直线的斜率与倾斜角等知识,属于基础题.5.与直线垂直,且过(2,0)点的直线方程是()A.y=﹣2x+4B.C.y=﹣2x﹣4D.【分析】由题意,设直线方程为y=﹣2x+b,代入(2,0),可得b,即可求出直线方程.【解答】解:由题意,设直线方程为y=﹣2x+b,代入(2,0),可得b=4,。

必修二直线与方程试题三套含答案

必修二直线与方程试题三套含答案

(数学2必修)第三章 直线与方程[基础训练A 组]一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足()A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________;3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.5.直线l 过原点且平分ABCD Y 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

2020人教版高一高二数学必修2直线与方程试题三套含答案

2020人教版高一高二数学必修2直线与方程试题三套含答案

【文库独家】(数学2必修)第三章 直线与方程 [基础训练A 组]一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .10 4.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为___ 三、解答题 1.已知直线,(1)系数为什么值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;3)系数满足什么条件时只与x 轴相交;(4)系数满足什么条件时是x 轴;(5)设为直线上一点,证明:这条直线的方程可以写成.2.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1 两条直线的交点坐标练习一一、 选择题 1、点(a , b )到直线0x yb a+=的距离是(A(B(C(D2、已知M (sin α, cos α), N (cos α, sin α),直线l : x cos α+y sin α+p =0 (p <–1),若M , N 到l 的距离分别为m , n ,则(A )m ≥n (B )m ≤n (C )m ≠n (D )以上都不对3、已知A , B , C 为三角形的三个内角,它们的对边长分别为a , b , c ,已知直线x sin A +y sin B +sin C =0到原点的距离大于1,则此三角形为(A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )不能确定4、过两直线x –3y +1=0和3x +y –3=0的交点,并与原点的距离等于1的直线共有 (A )0条 (B )1条 (C )2条 (D )3条5、与直线2x +3y –6=0关于点(1, –1)对称的直线是(A )3x –2y +2=0 (B )2x +3y +7=0 (C )3x –2y –12=0 (D )2x +3y +8=0 6、若直线y =ax +2与直线y =3x –b 关于直线y =x 对称,则(A )a =31, b =6 (B )a =31, b =–2 (C )a =3, b =–2 (D )a =3, b =67、不论m 取何值,直线(2m –1)x –(m +3)y –(m –11)=0恒过的定点的坐标是 (A )(3, 2) (B )(2, –3) (C )(2, 3) (D )(–2, 3)8、已知函数f (x )=x +1,则与曲线y =f (x +1)关于直线l : x +1=0成轴对称图形的曲线方程是 (A )y =–x (B )y =–x –4 (C )y =–x +2 (D )y =x9、方程2x 2+9xy +10y 2–7x –15y +k =0表示两条直线,则过这两直线的交点且与x –y +2=0垂直的直线方程是 (A )x +y –1=0 (B )x +y –2=0 (C )x +y +1=0 (D )x +y +2=0二、填空题10、若点P 在直线x +3y =0上,且它到原点的距离与到直线x +3y –2=0的距离相等,则点P 的坐标是 .11、若两平行直线3x –2y –1=0和6x +ay +c =0之间的距离是,则2c a +的值为 .12、直线y =2x +1关于直线y +2=0对称的直线方程是 .13、直线l 过点A (0, 1),且点B (2, –1)到l 的距离是点C (1, 2)到l 的距离的2倍,则直线l 的方程是 . 14、11.给出下列五个命题:① 过点(–1, 2)的直线方程一定可以表示为y –2=k (x +1);② 过点(–1, 2)且在x 轴、y 轴截距相等的的直线方程是x +y –1=0; ③ 过点M (–1, 2)且与直线l : Ax +By +C =0(AB ≠0)垂直的直线方程是B (x +1)+A (y –2)=0;④ 设点M (–1, 2)不在直线l : Ax +By +C =0(AB ≠0)上,则过点M 且与l 平行的直线方程是A (x +1)+B (y –2)=0;⑤ 点P (–1, 2)到直线ax +y +a 2+a =0的距离不小于2,以上命题中,正确的序号是 。

三、解答题15、在△ABC 中,已知A (3, –1),∠B 的内角平分线BD 所在的直线方程是x –3y +6=0,AB 边 3.3.1 两条直线的交点坐标练习二一、 选择题1、经过点P(x 0, y 0)且与直线Ax+By+C=0垂直的直线方程是 (A )B(x –x 0)–A(y –y 0)=0 (B )B(x –x 0)–A(y –y 0)+C=0 (C )B(x+x 0)–A(y+y 0)=0 (D )B(x+x 0)–A(y+y 0)+C=02、直线l 1: x+ay+6=0与直线l 2: (a –2)x+3y+2a=0平行,则a 的值等于 (A )–1或3 (B )1或3 (C )–3 (D )–13、直线l 1: (2a+1)x+(a+5)y –6=0与直线(3–a)x+(2a –1)y+7=0互相垂直,则a 等于 (A )–31 (B )1 (C )71 (D )21 4、直线2x –y –4=0绕着它与x 轴的交点,按逆时针方向旋转4π后,所得的直线的方程是 (A )x –3y –2=0 (B )3x+y –6=0 (C )3x –y+6=0 (D )x –y –2=0 5、已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是(A )(–2, –3) (B )(2, 3) (C )(2, 1) (D )(–2, 1)6、已知直线ax+4y –2=0与2x –5y+b=0互相垂直,垂足为(1, c),则a+b+c 的值为 (A )–4 (B )20 (C )0 (D )247、点A(1, 2)在直线l 上的射影是B(–1, 4),则直线l 的方程是 (A )x –y+5=0 (B )x+y –3=0 (C )x+y –5=0 (D )x –y+1=08、已知两直线l 1和l 2的斜率分别是方程x 2–4x+1=0的两根,则l 1与l 2的夹角是(A )6π (B )3π (C )2π(D )32π 9、已知直线y=kx+2k+1与直线y=–21x+2的交点位于第一象限,则实数k 的取值范围是(A )–6<k<2 (B )–61<k<0 (C )–61<k<21 (D )21<k<+∞二、填空题:10、两条直线x –2y –2=0与x+y –4=0所成的角的正弦值是 . 11、过点P(2, 3)且与直线2x+3y –6=0的夹角为arctan32的直线的方程是 .12、在△ABC 中,高线AD 与BE 的方程分别是x+5y –3=0和x+y –1=0,AB 边所在直线的方程是x+3y –1=0,则△ABC 的顶点坐标分别是A ; B ;C 。

13、经过两直线x –2y+4=0和x+y –2=0的交点,且与直线3x –4y+5=0垂直的直线方程是 .14、若△ABC 的顶点为A(3, 6), B(–1, 5), C(1, 1),则BC 边上的高所在的直线方程是 .15、已知A(0, 0), B(3, 0), C(1, 2),则△ABC 的重心、垂心坐标分别为 .《直线与方程》单元测试题一、选择题1.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是( ) A. 4 B.13132 C. 26135 D. 26137 2、过点A(1,2)且与原点距离最大的直线方程是( )A . 052=-+y xB . 042=--y xC 073=-+y xD . 053=-+y x 3.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是A.-2B.-1C.0D.1 4、直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C. 0,4π⎡⎤⎢⎥⎣⎦D. 3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦5.已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( )(A)[-25,1] (B)[-25,0]∪(0,1)(C)[-1,25] (D) ][)+∞⋃--∞,125,( 6.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( )(A)3x +4y +2=0 (B)3x -4y -2=0 (C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=07.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( ) (A)22(B) 2 (C)22 (D)42 8.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .249.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( ) A. (4,0) B. (13,0) C. (5,0) D. (1,0)10.设a,b,c 分别是△ABC 中,∠A ,∠B ,∠C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直 二、填空题11.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条.12.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程 是 . 13.当210<<k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 15.直线y=21x 关于直线x =1对称的直线方程是 ;16.(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x-y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a-1)x +(2a+3)y=2互相垂直,求a 的值.17.已知∆ABC 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆ABC 各边所在直线方程.18.△ABC 中,A (3,-1),AB 边上的中线CM 所在直线方程为:6x +10y -59=0, ∠B 的平分线方程B T 为:x -4y +10=0,求直线BC 的方程.19.过点(2,3)的直线L被两平行直线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,求直线L的方程20.过点)1,4(P作直线l分别交x轴的正半轴和y轴的正半轴于点A、B,当AOB∆(O为原点)的面积S最小时,求直线l的方程,并求出S的最小值21.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示)。

相关文档
最新文档