高中数学人教A版选修1-2学业分层测评6 分析法及其应用 Word版含解析

合集下载

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

高中数学人教A版选修1-2 第二章 推理与证明 学业分层测评6 Word版含答案

高中数学人教A版选修1-2 第二章 推理与证明 学业分层测评6 Word版含答案

学业分层测评(建议用时:分钟)[学业达标]一、选择题.若,∈,则>成立的一个充分不必要条件是( ).>.>.(-)<.<<【解析】由<<⇒<<⇒>,但>不能推出<<.∴<<是>的一个充分不必要条件.【答案】.求证:->-.证明:要证->-,只需证+>+,即证++>++,即证>,∵>,∴原不等式成立.以上证明应用了( ).分析法.综合法.分析法与综合法配合使用.间接证法【解析】该证明方法符合分析法的定义,故选.【答案】.(·汕头高二检测)要证:+--≤,只要证明( ).--≤.+--≤--≤.(-)(-)≥【解析】要证+--≤,只要证明(-)+(-)≤,只要证明(-)(-)≤,即证(-)(-)≥.【答案】.在不等边三角形中,为最大边,要想得到∠为钝角的结论,三边,,应满足什么条件( ).=+.<+.>+.≤+【解析】由余弦定理得=<,∴+-<,即+<.【答案】.分析法又称执果索因法,若用分析法证明“设>>,且++=,求证:<”,索的因应是( ).->.->.(-)(-)<.(-)(-)>【解析】由题意知<⇐-<⇐+(+)<⇐++<⇐+<⇐-->⇐-+->⇐(-)+(+)(-)>⇐(-)-(-)>⇐(-)(-)>,故选.【答案】二、填空题.(·烟台高二检测)设=+,=(>,>),则,的大小关系为.【解析】∵-=-==≥,∴≥.【答案】≥.(·西安高二检测)如果>,则实数,应满足的条件是.【导学号:】【解析】要使>成立,只需()>(),只需>>,即,应满足>>.【答案】>>.如图--,四棱柱-的侧棱垂直于底面,满足时,⊥(写上一个条件即可).。

高中数学人教版选修1-2_综合质量评估Word版含答案

高中数学人教版选修1-2_综合质量评估Word版含答案

=
==
因为 ω =z+ai=1-i+ai=1+(a-1)i
=1-i. ,

所以 = =
=
.
所以
=
≤,
所以 a2-2a-2 ≤ 0,
所以 1- ≤ a≤ 1+ .
故 a 的取值范围是 .
18.(12 分 ) 小流域综合治理可以有 3 个措施:工程措施、生物措施和农业技术措施
. 其中,
工程措施包括打坝建库、 平整土地、 修基本农田和引水灌溉, 其功能是贮水拦沙、 改善生产
D. 整数、有理数、零
【解析】选 B. 由实数系的包含关系知 B 正确 .
10.(2019 ·兰州高二检测 ) 已知面积为 S 的凸四边形中,四条边长分别记为
a1,a2, a3, a4,
点 P 为四边形内任意一点, 且点 P 到四边的距离分别记为 h1,h2,h3,h4,若 = = = =k,
则 h1+2h2+3h3+4h4= ,类比以上性质,体积为 V 的三棱锥的每个面的面积分别记为 S1, S2,

执行第三次循环体 a= , n=4;此时 |a-1.414|<0.005 ,此时不满足判断条件,输出 n=4.
【补偿训练】 (2014 ·陕西高考 ) 根据如图所示的框图,对大于 项公式是 ( )
2 的整数 N,输出的数列的通
A.a n=2n C.a n=2n
B.a n=2(n-1) D.a n=2n-1
④由于 |x|+1=
,即 x2+2|x|+y 2-3=0 ,结合图象可得,此曲线没有“自公切线”
.
【拓展延伸】演绎推理的主要出题模式 一般是给出一个一般原理,然后应用这一原理,如本题主要先理解什么叫“自公切线”

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

学业分层测评(建议用时:分钟)[学业达标]一、选择题.如果在犯错误的概率不超过的前提下认为事件和有关,那么具体算出的数据满足( ).<.>.<.>【解析】对应(≥)的临界值表可知,当>时,在犯错误的概率不超过的前提下认为事件与有关.【答案】.通过随机询问名性别不同的大学生是否爱好某项运动,得到如下的列联表:=≈.附表:.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”.有以上的把握认为“爱好该项运动与性别有关”.有以上的把握认为“爱好该项运动与性别无关”【解析】根据独立性检验的思想方法,正确选项为.【答案】.下列关于等高条形图的叙述正确的是( ).从等高条形图中可以精确地判断两个分类变量是否有关系.从等高条形图中可以看出两个变量频数的相对大小.从等高条形图中可以粗略地看出两个分类变量是否有关系.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故错.在等高条形图中仅能够找出频率,无法找出频数,故错.【答案】.分类变量和的列联表如下,则( ).-越大,说明与的关系越强.(-)越大,说明与的关系越强.(-)越接近于,说明与的关系越强【解析】结合独立性检验的思想可知-越大,与的相关性越强,从而(-)越大,说明与的相关性越强.【答案】.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过的前提下认为这个结论是成立的.下列说法中正确的是( ).个心脏病患者中至少有人打鼾.个人患心脏病,则这个人有的概率打鼾.个心脏病患者中一定有打鼾的人.个心脏病患者中可能一个打鼾的人都没有【解析】这是独立性检验,在犯错误的概率不超过的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为.根据概率的意义可知答案应选.【答案】.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了名高中生,通过问卷调查,得到以下数据:。

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如果在犯错误的概率不超过0.05的前提下认为事件A和B有关,那么具体算出的数据满足()A.K2>3.841 B.K2<3.841C.K2>6.635 D.K2<6.635【解析】对应P(K2≥k0)的临界值表可知,当K2>3.841时,在犯错误的概率不超过0.05的前提下认为事件A与B有关.【答案】 A2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K2=(a+b)(c+d)(a+c)(b+d)算得,k=110×(40×30-20×20)260×50×60×50≈7.8.附表:A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【解析】根据独立性检验的思想方法,正确选项为C.【答案】 C3.下列关于等高条形图的叙述正确的是()A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图中可以粗略地看出两个分类变量是否有关系D.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.【答案】 C3.分类变量X和Y的列联表如下,则()B.ad-bc越大,说明X与Y的关系越强C.(ad-bc)2越大,说明X与Y的关系越强D.(ad-bc)2越接近于0,说明X与Y的关系越强【解析】结合独立性检验的思想可知|ad-bc|越大,X与Y的相关性越强,从而(ad-bc)2越大,说明X与Y的相关性越强.【答案】 C4.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是()A.100个心脏病患者中至少有99人打鼾B.1个人患心脏病,则这个人有99%的概率打鼾C.100个心脏病患者中一定有打鼾的人D.100个心脏病患者中可能一个打鼾的人都没有【解析】这是独立性检验,在犯错误的概率不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知答案应选D.【答案】 D5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:确的是()【导学号:19220006】A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关【解析】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.【答案】 D二、填空题6.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.(填序号)【解析】K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①错误;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.【答案】③6.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天内的结果如表所示:【解析】由独立性检验的步骤知第一步先假设两分类变量无关,即假设电离辐射的剂量与小白鼠的死亡无关.【答案】假设电离辐射的剂量与小白鼠的死亡无关7.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:,从0而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.【解析】由公式计算得K2的观测值k≈4.882,∵k>3.841,∴有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.【答案】 4.8825%8.在对某小学的学生进行吃零食的调查中,得到如下表数据:【解析】由公式可计算得k=102×(27×29-34×12)2 39×63×61×41≈2.334.【答案】 2.334三、解答题9.为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:无差别,铅中毒病人与尿棕色素为阳性是否有关系.【解】等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比较尿棕色素为阳性差异明显,因此铅中毒病人与尿棕色素为阳性有关系.10.(2016·江西吉安高二检测)对某校小学生进行心理障碍测试得到如下表列联表:有心理障碍没有心理障碍总计女生1030男生7080总计20110附:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828 【解】将列联表补充完整如下:有心理障碍没有心理障碍总计女生102030男生107080总计2090110k=110×(10×70-20×10)230×80×20×90≈6.366>5.024,所以有97.5%的把握认为心理障碍与性别有关.[能力提升]1.(2016·玉溪高二检测)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列表述中正确的是() A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的效率为5%【解析】根据随机变量K2的意义知A正确.【答案】 A2.有两个分类变量X,Y,其一组观测值如下面的2×2列联表所示:为X,Y有关,则a的值为()A.8B.9C.8,9 D.6,8【解析】根据公式,得k=65×[a(30+a)-(15-a)(20-a)]2 20×45×15×50=13×(13a-60)220×45×3×2>3.841,根据a>5且15-a>5,a∈Z,求得a=8,9满足题意.【答案】 C3.某班主任对全班50名学生作了一次调查,所得数据如下表:能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与作业多有关.【解析】查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k0=6.635.本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.【答案】不能3.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:K2=________(保留三位小数),所以判定________(填“有”或“没有”)95%的把握认为主修统计专业与性别有关系.(参考公式:)K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d);【解析】根据提供的表格,得k=50(13×20-7×10)223×27×20×30≈4.844>3.841,∴可以判定有95%的把握认为主修统计专业与性别有关系.【答案】有4.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下表:(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【解】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)k=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男女的比例,再把老年人分成男女两层,并采用分层抽样方法比采用简单随机抽样方法更好.。

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

高中数学人教A版选修1-2模块综合检测(一~二) Word版含解析.doc

模块综合检测(一)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.(新课标全国卷Ⅱ)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5 B.5C.-4+i D.-4-i解析:选A由题意可知z2=-2+i,所以z1z2=(2+i)·(-2+i)=i2-4=-5.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形解析:选C只有平行四边形与平行六面体较为接近.3.实数的结构图如图所示,其中1,2,3三个方格中的内容分别为()A.有理数、零、整数B.有理数、整数、零C.零、有理数、整数D.整数、有理数、零解析:选B由实数的包含关系知B正确.4.已知数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项是()A.a k+a k+1+…+a2kB.a k-1+a k+…+a2k-1C.a k-1+a k+…+a2kD.a k-1+a k+…+a2k-2解析:选D利用归纳推理可知,第k项中第一个数为a k-1,且第k项中有k项,次数连续,故第k项为a k-1+a k+…+a2k-2.5.下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥lg a ·lg bD .若a 为正实数,ab <0,则a b +ba =--ab +-b a≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2解析:选D A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( )A.83B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=(3m -8)+(6+4m )i32+42.∵z 1z 2为实数, ∴6+4m =0, ∴m =-32.7.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式为( )A .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)B .(n +1)(n +2)…(n +1+n +1)=2n ×1×3×…×(2n -1)C .(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n +1)D .(n +1)(n +2)…(n +1+n )=2n +1×1×3×…×(2n -1)解析:选A 观察规律,等号左侧为(n +1)(n +2)…(n +n ),等号右侧分两部分,一部分是2n ,另一部分是1×3×…×(2n -1).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n∈Z,且n≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n∈Z,且n≥5)的末四位数为f(n),则f(2 015)=f(502×4+7)=f(7),∴52 015与57的末四位数相同,均为8 125.9.(重庆高考)执行如图所示的程序框图,则输出的k的值是()A.3 B.4C.5 D.6解析:选C第一次运行得s=1+(1-1)2=1,k=2;第二次运行得s=1+(2-1)2=2,k=3;第三次运行得s=2+(3-1)2=6,k=4;第四次运行得s=6+(4-1)2=15,k=5;第五次运行得s=15+(5-1)2=31,满足条件,跳出循环,所以输出的k的值是5,故选C.10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为=0.67x+54.9.现发现表中有一个数据模糊不清,经推断可知该数据为()零件数x/个1020304050加工时间y/min62758189A.70 B.解析:选B依题意得,=15×(10+20+30+40+50)=30.由于直线=0.67x+54.9必过点(,),于是有=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分)11.复数z=-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =(-3+i )(2-i )(2+i )(2-i )=-5+5i5=-1+i ,所以=-1-i.答案:-1-i12.“一群小兔一群鸡,两群合到一群里,数腿共40,数脑袋共15,多少小兔多少鸡?”其解答流程图如图所示,空白部分应为________.设有x 只鸡,y 只小兔→列方程组→ →得到x ,y 的值 答案:解方程组13.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V PA ′B ′C ′V PABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V PA ′B ′C ′V PABC =PA ′·PB ′·PC ′PA ·PB ·PC .答案:PA ′·PB ′·PC ′PA ·PB ·PC14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6, f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z =5ω+|ω-2|,求.解:由ω-4=(3-2ω)i ,得8ω(1+2i)=4+3i , ∴ω=4+3i1+2i=2-i.∴z =52-i+|-i|=3+i. 则z =3+i 的共轭复数=3-i.于是=3+i 3-i =(3+i )2(3-i )(3+i )=8+6i 10=45+35i.16.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程=x +; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解:(1)由题意知, n =10,=1n ∑i =1n x i =8010=8,=1n ∑i =1n y i =2010=2,==184-10×8×2720-10×82=2480=0.3,=-b =2-0.3×8=-0.4, 故所求回归方程为y =0.3x -0.4.(2)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 17.(本小题满分12分)先解答(1),再通过结构类比解答(2). (1)求证:tan ⎝⎛⎭⎫x +π4=1+tan x1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f (x )1-f (x ),试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得 tan ⎝⎛⎭⎫x +π4=tan x +tanπ41-tan x tanπ4 =tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想:f (x )是以4a 为周期的周期函数.证明:因为f (x +2a )=f ((x +a )+a ) =1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ),所以f (x +4a )=f ((x +2a )+2a ) =-1f (x +2a )=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表所示:甲厂:(2)由以上统计数据填下面2×2列联表,问:能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)优质品360320680非优质品140180320总计500500 1 000K2的观测值k=500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.设z=10i3+i,则z的共轭复数为()A.-1+3i B.-1-3i C.1+3i D.1-3i解析:选D∵z=10i3+i=10i(3-i)(3+i)(3-i)=1+3i,∴=1-3i.2.以下说法,正确的个数为()①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质,这是运用的类比推理.④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理.A.0 B.2 C.3 D.4解析:选C①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推测出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观察下图中图形的规律,在其右下角的空格内画上合适的图形为()解析:选A表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是()A.①②B.①③C.②③D.②①解析:选A解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.6.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出:“a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出:“若a,b,c,d ∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出:“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出:“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数是()A.1 B.2 C.3 D.4解析:选B①②正确,③④错误,因为③④中虚数不能比较大小.7.执行如图所示的程序框图,则输出s的值为()A.10 B.17C.19 D.36解析:选C执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19.选C.8.p=ab+cd,q=ma+nc·bm+dn(m,n,a,b,c,d均为正数),则p,q的大小为()A.p≥q B.p≤qC.p>q D.不确定解析:选B q=ab+madn+nbcm+cd≥ab+2abcd+cd=ab+cd=p.9.下图所示的是“概率”知识的()A.流程图B.结构图C.程序框图D.直方图解析:选B这是关于“概率”知识的结构图.10.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表:喜爱打篮球不喜爱打篮球总计男生20525女生101525总计302050.()附参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2>k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.78910.828C.0.005 D.0.001解析:选C由2×2列联表可得,K2的估计值k=50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“喜爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a=3+22,b=2+7,则a,b的大小关系为________________.解析:a=3+22,b=2+7两式的两边分别平方,可得a2=11+46,b2=11+47,显然,6<7.∴a<b.答案:a<b12.复数z=i1+i(其中i为虚数单位)的虚部是________.解析:化简得z=i1+i=i(1-i)(1+i)(1-i)=12+12i,则虚部为12.答案:1 213.根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是________(填序号).①a n=2n②a n=2(n-1)③a n=2n④a n=2n-1解析:由程序框图可知:a1=2×1=2,a2=2×2=4,a3=2×4=8,a4=2×8=16,归纳可得:a n=2n.答案:③14.(福建高考)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0 有且只有一个正确,则100a+10b+c等于________.解析:可分下列三种情形:(1)若只有①正确,则a≠2,b≠2,c=0,所以a=b=1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b=2,a=2,c=0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c≠0,a=2,b≠2,所以b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取网上学习注册码.(2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.解:某大学远程教育学院网上学习流程如下:17.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计 50岁以下 50岁以上 总计(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下: (2)因为K 2的观测值 30×(8-128)212×18×20×10=k=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”.18.(本小题满分14分)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?解:根据题目所给的数据得到如下列联表:理科 文科 总计 有兴趣 138 73 211 无兴趣 98 52 150 总计236125361k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.因为1.871×10-4<2.706,所以据目前的数据不能认为学生选报文、理科与对外语的兴趣有主食蔬菜主食肉类总计 50岁以下 4 8 12 50岁以上 16 2 18 总计201030关,即可以认为学生选报文、理科与对外语的兴趣无关.。

2018学年高中数学人教A版选修1-2创新应用模块综合检测 Word版含解析

2018学年高中数学人教A版选修1-2创新应用模块综合检测 Word版含解析

模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i2.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a >b ”,应假设( ) A .a >b B .a <b C .a =b D .a ≤b4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为( )A .②①③B .③①②C .①②③D .②③①5.若P =a +a +7,Q =a +3+a +4,a ≥0,则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )8.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1009.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +ax n ≥n +1,则a 的值为( )A .2nB .n 2C .22(n-1)D .n n10.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z 2|=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R )有两个不同实数根的条件是b 2-4ac >0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根的条件是b 2-4ac >0;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是________.14.已知x ,y 的取值如表:由表格中数据的散点图分析,y 与x 线性相关,且回归方程为y =0.95x +a ,则a =________.15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.16.观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明证明过程或演算步骤) 17.(本小题10分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平方内对应的点分别为A ,B ,C ,求△ABC 的面积.18.(本小题12分)小流域综合治理可以有三个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土.生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种,地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.用结构图把“小流域综合治理”的措施与功能表示出来.19.(本小题12分)为研究大气污染与人的呼吸系统疾病是否无关,对重污染地区和轻污染地区作跟踪调查,得如下数据:20.(本小题12分)求证:对于任意的正实数a ,b ,c ,31a +1b +1c≤a +b +c 3(当且仅当a =b =c 时取等号).21.(本小题12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.22.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?答案1.解析:选C 因为(z -1)i =1+i ,所以z =1+ii+1=2-i.2.解析:选D 复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限. 3.解析:选D 因为“a >b ”的反面就是“a <b 或a =b ”,所以选D. 4.解析:选D 由“三段论”的推理形式可知D 正确. 5.解析:选C P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, 由于a 2+7a <a 2+7a +12, 所以2a 2+7a <2a 2+7a +12, 从而P 2<Q 2,即P <Q .6.解析:选B 由题可知若x 0=x ,y 0=y ,由回归直线的性质可知(x 0,y 0)满足回归方程y ^=b ^x +a ^,但满足回归方程y ^=b ^x +a ^的除(x ,y )外,可能还有其他样本点.c =|tan a |=33. 8.解析:选B 由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.9.解析:选D 由归纳推理,知a =n n .10.解析:选C 因为复数z 中,|z |2为实数,z 2不一定为实数,所以|z |2≠z 2,故②错;当方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根时,应设出复数根的表达式,利用复数相等的条件列关系式,故③错.11.解析:选D 由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).12.解析:选B 法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16.13.解析:z = m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:因为(x ,y )必在直线y ^=0.95x +a 上, 又x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=92,所以92=0.95×2+a ,所以a =2.6.答案:2.6 15.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 4=S 1+S 2+S 3.答案:S 24=S 21+S 22+S 2316.解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1). 答案:43n (n +1)17.解:(1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2abi , 所以2ab =2.所以a =b =1或a =b =-1, 即z =-1+i 或z =-1-i .(2)当z =1+i 时,z 2=(1+i )=2i ,z -z 2-1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1;当z =-1-i 时,z 2=(-1-i )2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =12|AC |×1=12×2×1=1.即△ABC 的面积为1. 18.解:19.解:假设H 0:大气污染与人的呼吸系统疾病无关. 由公式得k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636.因为72.636>10.828,所以拒绝H 0,即我们在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关. 20.证明:对于任意正实数a ,b ,c , 要证31a +1b +1c ≤a +b +c 3成立,只需证9≤(a +b +c )⎝⎛⎭⎫1a +1b +1c , 即证9≤3+a b +a c +b a +b c +c a +c b ,即证6≤⎝⎛⎭⎫a b +b a +⎝⎛⎭⎫a c +c a +⎝⎛⎭⎫b c +c b (*) 因为对于任意正实数a ,b ,c , 有a b +b a≥2a b ·ba=2, 同理a c +c a ≥2,b c +cb≥2,所以不等式(*)成立,且要使(*)的等号成立必须b a =a b 且c a =a c 且b c =c b .即当且仅当a =b =c 时等号成立.21.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1, 解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35, (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1).22.解:(1)设事件A 表示“选取的2组数据恰好是不相邻2天的数据”,则A 表示“选取的数据恰好是相邻2天的数据”.基本事件总数为10,事件A 包含的基本事件数为4. 所以P (A )=410=25, 所以P (A )=1-P (A )=35.(2)x =12,y =27,∑i =13x i y i =977,∑i =13x 2i =434,所以b ^=∑i =13x i y i -3x -y-∑i =13x 2i -3x -2=977-3×12×27434-3×122=2.5,a ^=y -b ^x -=27-2.5×12=-3, 所以y ^=2.5x -3.(3)由(2)知:当x =10时,y ^=22,误差不超过2颗; 当x =8时,y ^=17,误差不超过2颗. 故所求得的线性回归方程是可靠的.。

高中数学人教A版选修1-2模块综合测评1 Word版含解析

高中数学人教A版选修1-2模块综合测评1 Word版含解析

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为()A.i B.-iC.1D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值()【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】2i1-i=2i(1+i)(1-i)(1+i)=2(i-1)2=-1+i,由复数的几何意义知-1+i在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了() A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“a+bc=ac+bc(c≠0)”;③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.其中结论正确的个数为()A.1 B.2C.3 D.4【解析】①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t=0.01,则输出的n=()图1 A.5 B.6 C.7 D.8【解析】运行第一次:S=1-12=12=0.5,m=0.25,n=1,S>0.01;运行第二次:S=0.5-0.25=0.25,m=0.125,n=2,S>0.01;运行第三次:S=0.25-0.125=0.125,m=0.062 5,n=3,S>0.01;运行第四次:S=0.125-0.062 5=0.062 5,m=0.031 25,n=4,S>0.01;运行第五次:S=0.031 25,m=0.015 625,n=5,S>0.01;运行第六次:S=0.015 625,m=0.007 812 5,n=6,S>0.01;运行第七次:S=0.007 812 5,m=0.003 906 25,n=7,S<0.01.输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形 【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4,所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:填“是”或“否”).【解析】因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b =1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=...=b11b20,∴10b11b12...b20=30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z=(1-4i)(1+i)+2+4i3+4i,求|z|.【解】 z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z |=|7+i||3+4i|=525= 2. 18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:患心脏病 患其他病 总计 高血压 20 10 30 不高血压 30 50 80 总计5060110(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×(20×50-10×30)230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不能构成等差数列.【导学号:19220072】【证明】假设1a,1b,1c能构成等差数列,则2b=1a+1c,因此b(a+c)=2ac.而由于a,b,c构成等差数列,且公差d≠0,可得2b=a+c,∴(a+c)2=4ac,即(a-c)2=0,于是得a=b=c,这与a,b,c构成公差不为0的等差数列矛盾.故假设不成立,即1a ,1b,1c不能构成等差数列.21.(本小题满分12分)已知a2+b2=1,x2+y2=1,求证:ax+by≤1(分别用综合法、分析法证明).【证明】综合法:∵2ax≤a2+x2,2by≤b2+y2,∴2(ax+by)≤(a2+b2)+(x2+y2).又∵a2+b2=1,x2+y2=1,∴2(ax+by)≤2,∴ax+by≤1.分析法:要证ax+by≤1成立,只要证1-(ax+by)≥0,只要证2-2ax-2by≥0,又∵a2+b2=1,x2+y2=1,∴只要证a2+b2+x2+y2-2ax-2by≥0,即证(a-x)2+(b-y)2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(2)求物理成绩y对数学成绩x的回归直线方程;(3)一名学生的数学成绩是96,试预测他的物理成绩.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b^=∑i=1nx i y i-n x-y-∑i=1nx2i-n x2,a^=y-b^x-.【解】(1)散点图如图,(2)x=15×(88+76+73+66+63)=73.2,y=15×(78+65+71+64+61)=67.8.∑i=15x i y i=88×78+76×65+73×71+66×64+63×61=25 054.∑i=15x2i=882+762+732+662+632=27 174.所以b^=∑i=15x i y i-5x-y-∑i=15x2i-5x-2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a^=y-b^x-≈67.8-0.625×73.2=22.05.所以y对x的回归直线方程是林老师网络编辑整理y^=0.625x+22.05.(3)x=96,则y^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.林老师网络编辑整理。

高中数学人教A版选修1-2学业分层测评1回归分析的基本思想及其初步应用Word版含解析

高中数学人教A版选修1-2学业分层测评1回归分析的基本思想及其初步应用Word版含解析
所以当温差为 14 ℃时的发芽数约为 32 颗.
的前两组数据 (1,0)和(2,2)求得的直线方程为 y=b′x+a′,则以下结论正确的是
()
^ A.b>b′,
a^ >a′
^ B.b>b′,
a^ <a′
^ C.b<b′,
a^>a′
^ D.b<b′,
a^<a′
【解析】 根据所给数据求出直线方程 y=b′x+ a′ 和回归直线方程的系
数,并比较大小.

^ b=
i=
1
n
x2i -n x 2
i=1
(2)估计使用年限为 10 年时,维修费用是多少?
2+3+4+5+6
【解】 (1) x =
5
=4,
y

2.2+
3.8+
5.5+ 5
6.5+
7.0 =5,
5
5
x2i =90, xiyi=112.3,
i=1
i=1
5 xiyi-5-x -y
^ i=1
112.3-5×4× 5
对 x 的回归直线方程: ^y=0.254x+0.321.由回归直线方程可知,家庭年收入每增
加 1 万元,年饮食支出平均增加 ________万元.
【解析】 以 x+1 代 x,得 y^=0.254(x+1)+ 0.321,与 y^=0.254x+0.321 相
减可得,年饮食支出平均增加 0.254 万元.
不全相等 )的散点图中,若所有样本点 (xi, yi)(i =1,2,…, n)都在直线 y=2x+ 1
上,则这组样本数据的样本相关系数为 ________.
【解析】 根据样本相关系数的定义可知, 当所有样本点都在直线上时, 相

2019-2020学年人教A版高中数学选修1-2同步导练练习:选修1—2综合测试 Word版含解析

2019-2020学年人教A版高中数学选修1-2同步导练练习:选修1—2综合测试 Word版含解析

选修1—2综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间100分钟.参考公式:线性回归方程y^=b^x+a^中,第Ⅰ卷(选择题,共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.) 1.(2018年高考·课标全国卷Ⅲ)(1+i)(2-i)=()A.-3-i B.-3+iC.3-i D.3+i解析:(1+i)(2-i)=2-i+2i-i2=3+i.答案:D2.以下哪种推理方法是类比推理()A.∵数列{a n}中,a1=1,a2=3,a3=5,∴a n=2n-1(n∈N*)B.∵x2=3,∴x=±3C.∵平面内平行于同一直线的两直线平行,∴空间平行于同一平面的两个平面平行D .∵f (x )=x +3,∴f (0)=3 答案:C3.执行如图1所示的程序框图,输出的s 值为( )图1A .2 B.32 C.53 D .85解析:运行该程序,k =0,s =1,k <3; k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =1+2=3,s =32+132=53,k =3.输出的s 值为53.故选C.答案:C4.在复平面内,O 为原点,向量OA→对应复数为-1-2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB→对应复数为( ) A .-2-i B .2+i C .1+2i D .-1+2i 答案:B5.对命题“正三角形的内切圆切于三边的中点”,可类比猜想出:正四面体的内切球切于四面各正三角形的什么位置( )A .各正三角形内的点B .各正三角形内的某高线上的点C .各正三角形的中心D .各正三角形外的某点 答案:C6.已知f (x +1)=2f (x )f (x )+2,f (1)=1(x ∈N *),猜想f (x )的表达式为( )A .f (x )=42x +2B .f (x )=2x +1C .f (x )=1x +1D .f (x )=22x +1解析:由f (1)=1, 排除C 、D ,再由f (2)=2f (1)f (1)+2=23,f (3)=2f (2)f (2)+2=12,排除A. 答案:B7.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…如果将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数为()A.12 B.13C.14 D.15解析:第k个黑球之前的白球数为S k′=1+2+3+…+k=k(k+1)2,故k(k+1)2+k≤120,且(k+1)[(k+1)+1]2+(k+1)>120且k∈N*解得k=14,∴前120个圈中●的个数为14,选C.答案:C8.如图2的程序框图可用来估计圆周率π的值.设CONRND(-1,1)是产生随机数的函数,它能随机产生区间(-1,1)内的任何一个数,如果输入1200,输出的结果为943,则运用此方法,计算π的近似值为(保留四位有效数字)()图2A.3.143 B.3.142C.3.141 D.3.140解析:N 表示随机数对(A ,B )落在正方形⎩⎨⎧-1<x <1-1<y <1内的点,m表示随机数对(A ,B )落在单位圆内的点.由几何概型知m N ≈S 单位圆S 正方形,即π4≈9431 200,∴π≈3.143. 答案:A9.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度.如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )C .2.5%D .97.5% 答案:D10.如图3,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )图3A .8B .9C .18D .17 答案:D第Ⅱ卷(非选择题,共80分)二、填空题(本大题共4小题,每小题4分,共16分.) 11.由数列的前四项:32,1,58,38,…,归纳出通项公式a n =________. 解析:该数列前四项可变为:32,44,58,616,…, 由此猜想a n =n +22n . 答案:n +22n12.已知等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,类比上述性质,在等比数列{a n }中,则有____________答案:a m·a n=a p·a q13.若某程序框图如图4所示,则该程序运行后输出的k的值是________.图4解析:按程序框图的运算次序一步步写出来,便知k=5.答案:514.若不全为0的实数k1,k2,…,k n满足向量k1a1+k2a2+…+k n a n=0成立,则称向量a1,a2,…,a n为“线性相关”.依据此规定,能说明向量a1=(1,0),a2=(1,1),a3=(2,2)线性相关的k1,k2,k3依次可以取________.(写出一组数值即可)答案:0,2,-1三、解答题(本题共6小题,共64分.解答应写出文字说明,证明过程或演算步骤.)15.(8分)求证:a2+b2+3≥ab+3(a+b).证明:∵a2+b2≥2ab,a2+3≥23ab 2+3≥23b ,∴2(a 2+b 2+3)≥2(ab +3a +3b ) ∴a 2+b 2+3≥ab +3(a +b ).16.(8分)儿童乘火车时,若身高不超过1.1米,则无需购票,若身高超过1.1米但不超过1.4米,可买半票,若超过1.4米,应买全票.设计一个算法,并画框图.解:本问题中旅客的身高影响他的票价,属于分段函数问题.设身高为h 米,票价为a 元,旅客购票款为y ,则y =⎩⎪⎨⎪⎧0,h ≤1.1,a2,1.1<h ≤1.4,a ,h >1.4设计算法如下: 第一步:输入身高h ,第二步:若h ≤1.1,则不必购买车票,否则进行下一步; 第三步:若h >1.4,则购买全票,否则买半票. 框图表示如图5:图517.(10分)已知复数z 1=m +(4-m 2)i(m ∈R ),z 2=2 cos θ+(λ+3 sin θ)i(λ,θ∈R ),并且z 1=z 2,求λ的取值范围.解:依题意,有⎩⎨⎧m =2 cos θ4-m 2=λ+3 sin θ∴λ=4-(2 cos θ)2-3 sin θ=4(1-cos 2θ)-3 sin θ =4 sin 2θ-3 sin θ=4(sin θ-38)2-916∵-1≤sin θ≤1∴0≤(sin θ-38)2≤12164 ∴-916≤λ≤7为所求的取值范围.18.(12分)正三角形内任意一点到三边距离之和为定值,在四面体中类比你会得到类似结论,并证明你的结论.解:结论:正四面体内任意一点到四个面的距离之和为定值. 证明如下:在正四面体ABCD 中,O 是正四面体内任一点,连结OA 、OB 、OC 、OD ,设O 到面ABC 、面ACD 、面ABD 、面BCD 的距离分别为h 1、h 2、h 3、h 4,A 到面BCD 的距离为h ,正四面体的一个面的面积为S ,则V A —BCD =13S △BCD ·h =13ShV O —ABC +V O —ACD +V O —ABD +V O —BCD =13S ·h 1+13Sh 2+13Sh 3+13Sh 4 =13S (h 1+h 2+h 3+h 4)∵V A —BCD =V O —ABC +V O —ACD +V O —ABD +V O —BCD ∴13Sh =13S (h 1+h 2+h 3+h 4) ∴h 1+h 2+h 3+h 4=h (定值)故正四面体内任意一点到四个面的距离之和为定值.19.(12分)为考察高中生的数学成绩与语文成绩之间的关系,对高二(1)班的55名学生进行了一次摸底考试,按照考试成绩优秀和不优秀统计成绩后,得到如下2×2列联表:解:假设“数学成绩与语文成绩没有关系”.而随机变量的观测值k=110(21×42-34×13)2(21+34)(13+42)(21+13)(34+42)=21 296 0007 816 600≈2.724>2.706.且P(K2≥2.706)≈0.10.这就意味着“数学成绩与语文成绩没有关系”这一结论是错误的可能性约为0.10,即有90%的把握认为“数学成绩与语文成绩有关系”.20.(14分)已知函数f(x)=2xx+a的图象关于直线x+y=0对称,定义数列{a n},使a1=2a,a2=f(a1),…,a n+1=f(a n).(1)求数列{a n}的通项公式;(2)求证:∑=+niiiaa11<8.解:(1)函数f(x)=2xx+a的图象关于直线x+y=0对称的解析式为-x =2(-y )-y +a即y =axx +2,∴a =2.∴a n +1=2a n a n +2,∴1a n +1=1a n +12∴{1a n}为等差数列∴1a n =14+12·(n -1),∴a n =42n -1. (2)由(1)可知a i a i +1=8⎝ ⎛⎭⎪⎪⎫12i -1-12i +1 ∴(2)求证:∑=+ni i i a a 11=8⎝ ⎛⎭⎪⎪⎫1-12n +1<8.。

2017-2018学年高中数学人教A版选修1-2学业分层测评:

2017-2018学年高中数学人教A版选修1-2学业分层测评:

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误【解析】合情推理得出的结论不一定正确,故A错;合情推理必须有前提有结论,故B对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C错;合情推理得出的结论可以进行判定正误,故D错.【答案】 B2.下面使用类比推理恰当的是()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“a+bc=ac+bc(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”【解析】由实数运算的知识易得C项正确.【答案】 C3.用火柴棒摆“金鱼”,如图2-1-7所示,图2-1-7按照上面的规律,第n个“金鱼”图需要火柴棒的根数为() A.6n-2B.8n-2C.6n+2 D.8n+2【解析】 从①②③可以看出,从第②个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n 个“金鱼”图需火柴棒的根数为6n +2.【答案】 C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心【解析】 由正四面体的内切球可知,内切球切于四个面的中心. 【答案】 D5.已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是( )A .(2,10)B .(10,2)C .(3,5)D .(5,3)【解析】 由题意,发现所给数对有如下规律: (1,1)的和为2,共1个; (1,2),(2,1)的和为3,共2个; (1,3),(2,2),(3,1)的和为4,共3个; (1,4),(2,3),(3,2),(4,1)的和为5,共4个; (1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n 时,有n -1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】 A 二、填空题6.观察下列特殊的不等式: 52-225-2≥2×72,45-3542-32≥52×⎝ ⎛⎭⎪⎫723, 98-2893-23≥83×⎝ ⎛⎭⎪⎫1125, 910-51095-55≥2×75, …由以上特殊不等式,可以猜测:当a >b >0,s ,r ∈Z 时,有a s -b sa r -b r ≥________.【解析】 52-225-2≥2×72=21×⎝⎛⎭⎪⎫5+222-1, 45-3542-32≥52×⎝ ⎛⎭⎪⎫723=52×⎝⎛⎭⎪⎫4+325-2, 98-2893-23≥83×⎝ ⎛⎭⎪⎫1125=83×⎝⎛⎭⎪⎫9+228-3, 910-51095-55≥2×75=105×⎝ ⎛⎭⎪⎫9+5210-5, 由以上特殊不等式,可以猜测:当a >b >0,s ,r ∈Z 时,有a s -b sa r -b r ≥s r ⎝ ⎛⎭⎪⎫a +b 2s -r .【答案】 s r ⎝⎛⎭⎪⎫a +b 2s -r7.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.【解析】 因为V =8πr 3,所以W =2πr 4,满足W ′=V . 【答案】 2πr 48.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为________.【解析】 结合等差数列的特点,类比等比数列中b 1b 2b 3…b 9=29可得,在{a n }中,若a 5=2,则有a 1+a 2+a 3+…+a 9=2×9.【答案】 a 1+a 2+a 3+…+a 9=2×9 三、解答题9.已知数列{a n }的前n 项和为S n ,a 1=-23且S n +1S n+2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【解】 先化简递推关系:n ≥2时,a n =S n -S n -1, ∴S n +1S n+2=S n -S n -1,∴1S n+S n -1+2=0.当n =1时,S 1=a 1=-23.当n =2时,1S 2=-2-S 1=-43,∴S 2=-34.当n =3时,1S 3=-2-S 2=-54,∴S 3=-45.当n =4时,1S 4=-2-S 3=-65,∴S 4=-56.猜想:S n =-n +1n +2,n ∈N +.10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.【证明】 如图所示,由射影定理,得AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC ,∴1AD 2=1BD ·DC =BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2.猜想,在四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB2+1AC2+1 AD2.证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,AC∩AD=A,∴AB⊥平面ACD,又AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2,∴1AE2=1AB2+1AC2+1AD2.[能力提升]1.根据给出的数塔,猜测123 456×9+7等于()1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=11 111;12 345×9+6=111 111;A.1 111 110 B.1 111 111C.1 111 112 D.1 111 113【解析】由前5个等式知,右边各位数字均为1,位数比前一个等式依次多1位,所以123 456×9+7=1 111 111,故选B.【答案】 B2.已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等”,则AOOM =( )A .1B .2C .3D .4【解析】 如图,设正四面体的棱长为1,即易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等体积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3∶1.【答案】 C3.如图2-1-8所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于_____________________________________.【导学号:81092015】图2-1-8【解析】 如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c,0),B (0,b ),A (a,0), 所以FB→=(c ,b ),AB →=(-a ,b ). 又因为FB→⊥AB →,所以FB →·AB →=b 2-ac =0, 所以c 2-a 2-ac =0,所以e 2-e -1=0, 所以e =1+52或e =1-52(舍去).【答案】1+524.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解】(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-32sin αcos α-12sin2α=34sin2α+34cos2α=34.。

最新精编高中人教A版选修1-2高中数学分层测评6分析法及其应用和答案

最新精编高中人教A版选修1-2高中数学分层测评6分析法及其应用和答案

学业分层测评(建议用时:45分钟)[学业达标] 一、选择题1.若a,b∈R,则1a3>1b3成立的一个充分不必要条件是( )A.ab>0 B.b>aC.a<b<0 D.ab(a-b)<0【解析】由a<b<0⇒a3<b3<0⇒1a3>1b3,但1a3>1b3不能推出a<b<0.∴a<b<0是1a3>1b3的一个充分不必要条件.【答案】 C2.求证:7-1>11- 5.证明:要证7-1>11-5,只需证7+5>11+1,即证7+27×5+5>11+211+1,即证35>11,∵35>11,∴原不等式成立.以上证明应用了( )A.分析法B.综合法C.分析法与综合法配合使用D.间接证法【解析】该证明方法符合分析法的定义,故选A. 【答案】 A3.(2016·汕头高二检测)要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b 22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0【解析】 要证a 2+b 2-1-a 2b 2≤0,只要证明(a 2-1)+b 2(1-a 2)≤0,只要证明(a 2-1)(1-b 2)≤0,即证(a 2-1)(b 2-1)≥0.【答案】 D4.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2【解析】 由余弦定理得cos A =b 2+c 2-a 22bc <0,∴b 2+c 2-a 2<0, 即b 2+c 2<a 2. 【答案】 C5.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”,索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0【解析】 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐b 2+a (a +b )<3a 2⇐b 2+a 2+ab <3a 2 ⇐b 2+ab <2a 2⇐2a 2-ab -b 2>0⇐a 2-ab +a 2-b 2>0⇐a (a -b )+(a +b )(a -b )>0⇐a(a-b)-c(a-b)>0⇐(a-b)(a-c)>0,故选C. 【答案】 C二、填空题6.(2016·烟台高二检测)设A=12a+12b,B=2a+b(a>0,b>0),则A,B的大小关系为________.【解析】∵A-B=a+b2ab-2a+b=a+b2-4ab2ab a+b=a-b22ab a+b≥0,∴A≥B.【答案】A≥B7.(2016·西安高二检测)如果a a>b b,则实数a,b应满足的条件是________.【导学号:19220024】【解析】要使a a>b b成立,只需(a a)2>(b b)2,只需a3>b3>0,即a,b应满足a>b>0.【答案】a>b>08.如图2­2­5,四棱柱ABCD­A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).图2­2­5【解析】要证BD⊥A1C,只需证BD⊥平面AA1C.因为AA1⊥BD,只要再添加条件AC⊥BD,即可证明BD⊥平面AA1C,从而有BD⊥A1C.【答案】AC⊥BD(或底面为菱形)三、解答题9.设a,b>0,且a≠b,求证:a3+b3>a2b+ab2.【证明】法一:分析法要证a3+b3>a2b+ab2成立.只需证(a+b)(a2-ab+b2)>ab(a+b)成立,又因a+b>0,只需证a2-ab+b2>ab成立,只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立.而依题设a≠b,则(a-b)2>0显然成立,由此命题得证.法二:综合法a≠b⇒a-b≠0⇒(a-b)2>0⇒a2-2ab+b2>0⇒a2-ab+b2>ab.注意到a,b>0,a+b>0,由上式即得(a+b)(a2-ab+b2)>ab(a+b).∴a3+b3>a2b+ab2.10.(2016·深圳高二检测)已知三角形的三边长为a,b,c,其面积为S,求证:a2+b2+c2≥43S.【证明】要证a2+b2+c2≥43S,只要证a2+b2+(a2+b2-2ab cos C)≥23ab sin C,即证a2+b2≥2ab sin(C+30°),因为2ab sin(C+30°)≤2ab,只需证a2+b2≥2ab,显然上式成立.所以a2+b2+c2≥43S.[能力提升]1.已知a,b,c,d为正实数,且ab<cd,则( )A.ab<a+cb+d<cdB.a+cb+d<a b< c dC.ab<cd<a+c b+dD.以上均可能【解析】先取特殊值检验,∵ab<c d,可取a=1,b=3,c=1,d=2,则a+cb+d=25,满足ab<a+cb+d<cd.∴B,C不正确.要证ab<a+cb+d,∵a,b,c,d为正实数,∴只需证a(b+d)<b(a+c),即证ad<bc.只需证ab<cd.而ab<cd成立,∴ab<a+cb+d.同理可证a+cb+d<cd.故A正确,D不正确.【答案】 A2.(2016·黄冈高二检测)下列不等式不成立的是( )A.a2+b2+c2≥ab+bc+caB.a+b>a+b(a>0,b>0)C.a-a-1<a-2-a-3(a≥3)D.2+10>2 6【解析】对于A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab +bc+ca;对于B,∵(a+b)2=a+b+2ab,(a+b)2=a+b,∴a+b>a+b;对于C,要证a-a-1<a-2-a-3(a≥3)成立,只需证明a+a-3 <a-2+a-1,两边平方得2a-3+2a a-<2a-3+2a-a-,即a a-<a-a-,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10 <26,故D错误.【答案】 D3.使不等式3+22>1+p成立的正整数p的最大值是________.【导学号:19220025】【解析】由3+22>1+p,得p<3+22-1,即p<(3+22-1)2,所以p<12+46-42-23,由于12+46-42-23≈12.7,因此使不等式成立的正整数p的最大值是12.【答案】124.(2016·唐山高二检测)已知a,b,c是不全相等的正数,且0<x<1,求证:logx a+b2+logxb+c2+logxa+c2<logxa+logxb+logxc.【证明】要证明logxa+b2+logxb+c2+logxa+c2<logxa+logxb+logxc,只需要证明logx⎝⎛⎭⎪⎫a+b2·b+c2·a+c2<log x(abc),而已知0<x<1,故只需证明a+b·b+c·a+c>abc.∵a,b,c是不全相等的正数,∴a+b2≥ab>0,b+c2≥bc>0,a+c2≥ac>0,∴a +b 2·b +c 2·a +c 2>a 2b 2c 2=abc . 即a +b 2·b +c 2·a +c2>abc 成立.∴log xa +b +log xb +c +log xa +c <log x a +log xb +log xc 成立.。

高中数学人教A版选修1-2学业分层测评5综合法及其应用Word版含解析

高中数学人教A版选修1-2学业分层测评5综合法及其应用Word版含解析

1+ky0 2
同理可得 yF= -k ,∴ xF= k2 .
yE- yF
1-ky0 1+ky0 k - -k
2 k
∴kEF=xE- xF = 1-ky0 2 1+ ky0 2=- 4ky0
k2 - k2
k2
=-
1 2y0(
定值
).
∴直线 EF 的斜率为定值.
【导学号: 19220019】
1 A.2
B. a2 + b2
C.2ab

D.a
【解析】 ∵a+ b= 1, a+ b>2 ab,
∴2ab<12.

a2+b2>
a+b 2
2

12,
又∵ 0<a<b,且 a+b=1,

1 a<2,∴
a2+b2
最大,故选
B.
【答案】 B
4.A,B 为△ ABC 的内角, A>B 是 sin A>sin B 的 ( )
a+b 2
2 =1.故选
C.
【答案】 C
2.(2019 ·西安高二检测 )在△ ABC 中, tan A·tan B>1,则△ ABC 是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
【解析】 因为 tan A·tan B>1,
所以角 A,角 B 只能都是锐角,
所以 tan A>0,tan B>0,1- tan A·tan B<0,
高中数学人教 A 版选修 1-2 学业分层测评 5 综合法及其应用 Word 版含解析 学业分层测评
(建议用时: 45 分钟 ) [学业达标 ]

高中数学人教A版选修1-2学业分层测评12 流程图 Word版含解析.doc

高中数学人教A版选修1-2学业分层测评12 流程图 Word版含解析.doc

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·广州高二检测)如图4-1-6所示流程图中,判断正整数x是奇数还是偶数,判断框内的条件是()图4-1-6A.余数是1?B.余数是0?C.余数是3? D.余数不为0?【解析】依据判断框的出口进行选择,出口为“是”时x为偶数.故判断框内应该填“余数是0?”.【答案】 B2.进入互联网时代,发电子邮件是不可少的,一般而言,发电子邮件要分成以下几个步骤:a.打开电子信箱;b.输入发送地址;c.输入主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”.则正确的是() A.a→b→c→d→e→f B.a→c→d→f→e→bC.a→e→b→c→d→f D.b→a→c→d→f→e【解析】依题意知发送电子邮件的步骤应是:a→e→b→c→d→f.【答案】 C3.如图4-1-7,小黑点表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量是()【导学号:19220059】图4-1-7A.26 B.24C.20 D.19【解析】由A→B有4条路线,4条路线单位时间内传递的最大信息量为3+4+6+6=19.【答案】 D4.小明每天早晨起床后要做如下事情:洗漱用5分钟,收拾床褥用4分钟,听广播用15分钟,吃早饭用8分钟,要完成这些事情,小明要花费的最少时间为()A.17分钟B.19分钟C.23分钟D.27分钟【解析】把过程简化,把能放在同一个时间内完成的并列,如听广播的同时可以洗涮、收拾被褥、吃早饭,共用5+4+8=17(分钟).【答案】 A5.(2014·全国卷Ⅰ)执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()图4-1-8A.203 B.165C.72 D.158【解析】当n=1时,M=1+12=32,a=2,b=32;当n=2时,M=2+23=83,a=32,b=83;当n=3时,M=32+38=158,a=83,b=158;n=4时,终止循环.输出M=15 8.【答案】 D 二、填空题6.椭圆x2a2+y2b2=1(a>b>0)的面积为S=πab,当a=4,b=2时,计算椭圆面积的流程图如图4-1-9所示,则空白处应为________.【导学号:19220060】图4-1-9【解析】由S=πab知,需要a,b的值,由已知a=4,b=2,而且用的是框,故为赋值.【答案】a=4,b=27.如图4-1-10是计算1+13+15+…+199的程序框图,判断框中应填的内容是________,处理框中应填的内容是________.图4-1-10【解析】用i来表示计数变量,故判断框内为“i>99?”,处理框内为“i =i+2”.【答案】i>99?i=i+28.(2014·辽宁高考)执行如图4-1-11所示的程序框图,若输入n=3,则输出T=________.图4-1-11【解析】初始值:i=0,S=0,T=0,n=3,①i=1,S=1,T=1;②i=2,S=3;T=4;③i=3,S=6,T=10;④i=4,S=10,T=20,由于此时4≤3不成立,停止循环,输出T=20. 【答案】20三、解答题9.设计一个计算1+2+…+100的值的程序框图.【解】程序框图设计如下:10.数学建模过程的流程图如图4-1-12.图4-1-12根据这个流程图,说明数学建模的过程.【解】数学建模的过程:根据实际情境提出问题,从而建立数学模型得出数学结果,然后检验是否合乎实际,如果不合乎实际,进行修改后重新提出问题.如果合乎实际,则成为可用的结果.[能力提升]1.某工厂加工某种零件的工序流程图如图4-1-13:图4-1-13按照这个工序流程图,一件成品至少经过几道加工和检验程序()A.3 B.4C.5D.6【解析】由流程图可知加工零件有三道工序:粗加工、返修加工和精加工,每道工序完成都要对产品进行检验,粗加工的合格品进入精加工,不合格品进入返修加工;返修加工的合格品进入精加工,不合格品作为废品处理;精加工的合格品为成品,不合格品为废品.由上可知一件成品至少要经过粗加工、检验、精加工、最后检验四道程序.【答案】 B2.执行两次如图4-1-14所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为()图4-1-14A.0.2,0.2 B.0.2,0.8C.0.8,0.2 D.0.8,0.8【解析】第一次:a=-1.2<0,a=-1.2+1=-0.2,-0.2<0,a=-0.2+1=0.8>0,a=0.8≥1不成立,输出0.8.第二次:a=1.2<0不成立,a=1.2≥1成立,a=1.2-1=0.2≥1不成立,输出0.2.【答案】 C3.如图4-1-15所示算法程序框图中,令a=tan 315°,b=sin 315°,c=cos 315°,则输出结果为________.【导学号:19220061】图4-1-15【解析】程序框图的算法是求出a,b,c三个数中的最大值.对于tan 315°=-1,sin 315°=-22,cos 315°=22,故输出的结果为22.【答案】2 24.A,B,C,D四位同学分别拿着5,3,4,2个暖瓶一起去打开水,热水龙头只有一个,怎么安排他们打水的顺序,才能使他们打完水所花的总时间(含每个人排队、打水的时间)最少?如果打满一瓶水需1分钟,那么他们打完水所花的总时间最少是多少分钟?【解】由题意可知A,B,C,D四人把自己手中的暖瓶打满水分别需要5分钟,3分钟,4分钟,2分钟,A用时最长,D用时最短.对于A和D来说,如果先安排A打水用去5分钟,这样A等于用了5分钟,而D除了等A打完水用5分钟外,再加上自己打完水用2分钟,共需要7分钟,那么两个人总共用了5+5+2=12(分钟).若反过来将D安排在A前面,则D打完水用去2分钟,A 等候2分钟,再加上自己打完水用去5分钟,两人总共用了2+2+5=9(分钟).相比较,第二种方案用时少于第一种.由此可以得出这样的结论:把打水占用时间少的人安排在前面可以使打完水所花的总时间最短.按占用时间由少到多的顺序安排四人打水顺序为D,B,C,A.流程图如图所示.由流程图知他们打完水所花的总时间最少为2+5+9+14=30(分钟).。

高中数学人教A版选修1-2学业分层测评4 演绎推理 Word版含解析

高中数学人教A版选修1-2学业分层测评4 演绎推理 Word版含解析

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·保定高二检测)下面几种推理中是演绎推理的为() A.由金、银、铜、铁可导电,猜想:金属都可导电B.猜想数列11×2,12×3,13×4,…的通项公式为a n=1n(n+1)(n∈N+)C.半径为r的圆的面积S=πr2,则单位圆的面积S=πD.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2【解析】A,B为归纳推理,D为类比推理,C为演绎推理.【答案】 C2.已知△ABC中,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论【解析】结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.【答案】 B3.“因为对数函数y=log a x是增函数(大前提),而y=log 13x是对数函数(小前提),所以y=log 13x是增函数(结论).”上面推理错误的是()A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提都错导致结论错【解析】大前提y=log a x是增函数错误,当0<a<1时,函数y=log a x是减函数.【答案】 A4.在△ABC中,E,F分别为AB,AC的中点,则有EF∥BC,这个问题的大前提为()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边的一半C.EF为中位线D.EF∥CB【解析】三段论中的大前提是指一个已知的一般性结论,本题中指:三角形的中位线平行于第三边,故选A.【答案】 A5.定义运算“⊗”为:a⊗b=ab+a2+b2,若1⊗m<3,则m的取值范围是()【导学号:19220017】A.(-2,1) B.(-1,2)C.(-2,-1) D.(1,2)【解析】依题意,1⊗m<3,即m+1+m2<3,整理得m2+m-2<0,解得-2<m<1,所以m的取值范围是(-2,1).【答案】 A二、填空题6.以下推理过程省略的大前提为________.因为a2+b2≥2ab,所以2(a2+b2)≥a2+b2+2ab.【解析】由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.【答案】若a≥b,则a+c≥b+c7.命题:“若空间两条直线a,b分别垂直平面α,则a∥b”.学生小夏这样证明:设a,b与面α分别相交于A,B,连接A,B,∵a⊥α,b⊥α,AB⊂α,①∴a⊥AB,b⊥AB,②∴a∥b.③这里的证明有两个推理,即:①⇒②和②⇒③.老师认为小夏的证明推理不正确,这两个推理中不正确的是________.【解析】②⇒③时,大前提错误,导致结论错误.【答案】②⇒③8.“如图2-1-7,在△ABC中,AC>BC,CD是AB边上的高,求证:∠ACD>∠BCD”.图2-1-7证明:在△ABC中,因为CD⊥AB,AC>BC,①所以AD>BD,②于是∠ACD>∠BCD.③则在上面证明的过程中错误的是________(填序号).【解析】由AD>BD,得到∠ACD>∠BCD的推理的大前提应是“在同一三角形中,大边对大角”,小前提是“AD>BD”,而AD与BD不在同一三角形中,故③错误.【答案】③三、解答题9.用三段论证明通项公式为a n=cq n(c,q为常数,且cq≠0)的数列{a n}是等比数列.【证明】设a n+1,a n是数列中任意相邻两项,则从第二项起,后项与前项的比是同一个常数的数列叫等比数列(大前提),因为a n+1a n=cq n+1cq n=q(常数)(小前提),所以{a n}是等比数列.(结论)10.已知a>0且函数f(x)=2xa+a2x是R上的偶函数,求a的值.【解】 由于f (x )是偶函数,所以f (-x )=f (x )对x ∈R 恒成立,即2-x a +a2-x =2x a +a 2x ,所以1a ·2x +a ·2x =2xa +a 2x ,整理得⎝⎛⎭⎪⎫a -1a (2x -2-x )=0,必有a -1a =0.又因为a >0,所以a =1.[能力提升]1.(2016·海淀区模拟)下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A .大前提错误B .小前提错误C .结论正确D .推理形式错误【解析】 f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,选A.【答案】 A2.设⊕是R 内的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集【解析】 A 错,因为自然数集对减法不封闭;B 错,因为整数集对除法不封闭;C 对,因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错,因为无理数集对加、减、乘、除法都不封闭.【答案】 C3.(2016·西城高二检测)若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 018)f (2 017)=________. 【解析】 ∵f (a +b )=f (a )f (b )(a ,b ∈N *)(大前提). 令b =1,则f (a +1)f (a )=f (1)=2(小前提).∴f (2)f (1)=f (4)f (3)=…=f (2 018)f (2 017)=2(结论), ∴原式=2+2+…+21 009个=2 018. 【答案】 2 0184.设数列{a n }的首项a 1=a ≠14,且a n+1=⎩⎨⎧12a n ,n 为偶数,a n +14,n 为奇数.记b n =a 2n -1-14,n =1,2,3,….(1)求a 2,a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论. 【解】 (1)a 2=a 1+14=a +14, a 3=12a 2=12a +18. (2)∵a 4=a 3+14=12a +38, ∴a 5=12a 4=14a +316. ∴b 1=a 1-14=a -14≠0, b 2=a 3-14=12⎝ ⎛⎭⎪⎫a -14,b 3=a 5-14=14⎝ ⎛⎭⎪⎫a -14.猜想{b n }是公比为12的等比数列. 证明如下: ∵b n +1=a 2n +1-14 =12⎝ ⎛⎭⎪⎫a 2n -1+14-14=12⎝ ⎛⎭⎪⎫a 2n -1-14=12b n (n ∈N *),14,公比为12的等比数列.∴{b n}是首项为a-。

最新整理高中数学人教A版选修1-2学业分层测评7 反证法 Word版含解析.doc

最新整理高中数学人教A版选修1-2学业分层测评7 反证法 Word版含解析.doc

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角【解析】“最多有一个”的反设是“至少有两个”,故选C.【答案】 C2.下列命题错误的是()A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a,b∈Z,若a,b中至少有一个为奇数,则a+b是奇数【解析】a+b为奇数⇔a,b中有一个为奇数,另一个为偶数,故D错误.【答案】 D3.“自然数a,b,c中恰有一个偶数”的否定正确的为()【导学号:19220029】A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数【解析】自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a,b,c中都是奇数或至少有两个偶数.【答案】 D4.设x,y,z都是正实数,a=x+1y,b=y+1z,c=z+1x,则a,b,c三个数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【解析】若a,b,c都小于2,则a+b+c<6,①而a+b+c=x+1x+y+1y+z+1z≥6,②显然①,②矛盾,所以C正确.【答案】 C5.(2016·温州高二检测)用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为()A.①②③B.①③②C.②③①D.③①②【解析】根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.【答案】 D二、填空题6.(2016·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是__________________.【解析】“至少有一个”的否定是“没有一个”.【答案】任意多面体的面没有一个是三角形或四边形或五边形7.(2016·汕头高二检测)用反证法证明命题“如果a>b,那么3a>3b”时,假设的内容应是________.【解析】3a与3b的关系有三种情况:3a>3b,3a=3b和3a<3b,所以“3a>3b”的反设应为“3a=3b或3a<3b”.【答案】3a=3b或3a<3b8.(2016·石家庄高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一个大于1”的条件是________(填序号).【解析】若a=13,b=23,则a+b=1,但a<1,b<1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b2>2,故④不能推出.对于③,即a+b>2,则a,b中至少有一个大于1.反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.【答案】③三、解答题9.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,试证明:a,b,c至少有一个不小于1.【导学号:19220030】【证明】假设a,b,c均小于1,即a<1,b<1,c<1,则有a+b+c<3.而与a+b+c=2x2-2x+12+3=2⎝⎛⎭⎪⎫x-122+3≥3矛盾,故假设不成立,即a,b,c至少有一个不小于1.10.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.【证明】假设a,b,c成等差数列,则a+c=2b,两边同时平方得a+c+2ac=4b.把b2=ac代入a+c+2ac=4b,可得a+c=2b,即a,b,c成等差数列,这与a,b,c不成等差数列矛盾.所以a,b,c不成等差数列.[能力提升]1.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是()A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确【解析】用反证法证题时一定要将对立面找准.在①中应假设p+q>2,故①的假设是错误的,而②的假设是正确的.【答案】 D2.已知命题“在△ABC中,A≠B.求证sin A≠sin B”.若用反证法证明,得出的矛盾是()A.与已知条件矛盾B.与三角形内角和定理矛盾C.与已知条件矛盾且与三角形内角和定理矛盾D.与大边对大角定理矛盾【解析】证明过程如下:假设sin A=sin B,因为0<A<π,0<B<π,所以A =B或A+B=π.其中A=B与A≠B矛盾;A+B=π与三角形内角和定理矛盾,所以假设不成立.所以sin A≠sin B.【答案】 C3.(2016·九江高二检测)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是________.【解析】因为只有一人获奖,所以丙、丁只有一个说的对,同时甲、乙中只有一人说的对,假设乙说的对,这样丙就说的错,丁就说的对,也就是甲也说的对,与甲说的错矛盾,所以乙说的错,从而知甲、丙说的对,所以丙为获奖歌手.【答案】 丙4.(2016·温州高二检测)设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n ,证明:数列{c n }不是等比数列.【证明】 假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).① 因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q ,所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得2a n b n =a n +1b n -1+a n -1b n +1=a n b n ⎝ ⎛⎭⎪⎫p q +q p , 即2=p q +q p .②当p ,q 异号时,p q +q p <0,与②相矛盾;当p ,q 同号时,由于p ≠q ,所以p q +q p >2,与②相矛盾.故数列{c n }不是等比数列.。

高中数学人教A版选修1-2学业分层测评结构图含解析

高中数学人教A版选修1-2学业分层测评结构图含解析

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.以下关于构造图的说法不正确的选项是()A.构造图中各要素之间通常表现为概念上的附属关系和逻辑上的先后关系B.构造图都是“树形〞构造C.简洁的构造图能更好地反映主体要素之间关系和系统的整体特点D.复杂的构造图能更详细地反映系统中各细节要素及其关系【解析】构造图是指以模块的调用关系为线索,用自上而下的连线表示调用关系并注明参数传递的方向和内容,从宏观上反映软件层次构造的图形.A.构造图中各要素之间通常表现为概念上的附属关系和逻辑上的先后关系,正确;B.构造图不一定都是“树形〞构造,错误;C.简洁的构造图能更好地反映主体要素之间关系和系统的整体特点,正确;D.复杂的构造图能更详细地反映系统中各细节要素及其关系,正确.【答案】 B2.如下列图的框图中是构造图的是()【解析】A,B,C都是表达了完成某一件事情的流程图,而不是构造图;只有D表达了高考文科所包含的考试科目,表达了总—分的关系,故是构造图.应选D.【答案】 D3.如图4-2-6是某工厂的组织构造图,由图可以知道,工厂办公室所管辖的科室有()【导学号:19220064】图4-2-6A.销售科、后勤科、宣传科B.汽车队、接待科、宣传科C.消费部、销售科、后勤科D.消费部、汽车队、宣传科【解析】由构造图可知工厂办公室的“下位〞要素共有3个,分别为汽车队、接待科、宣传科.【答案】 B4.如图4-2-7是人教A版选修1-2第二章“推理与证明〞的知识构造图(局部),假设要参加知识点“三段论〞,那么应该放在图中()图4-2-7A.“①〞处B.“②〞处C.“③〞处D.“④〞处【解析】三段论是演绎推理的内容,因此应放在“②〞处.【答案】 B5.把平面内两条直线的位置关系填入构造图4-2-8中的M,N,E,F中,顺序较为恰当的是()图4-2-8①平行;②垂直;③相交;④斜交.A.①②③④B.①④②③C.①③②④D.②①④③【解析】平行无交点,而垂直、相交、斜交都有交点,垂直与斜交是并列的,都隶属于相交.【答案】 C二、填空题6.按边对三角形进展分类的构造图为:图4-2-9那么①处应填入________.【解析】等腰三角形又可分为“等边三角形〞和“腰和底边不等的等腰三角形〞两类.【答案】等边三角形7.如图4-2-10所示的构造图中,进一步细化时,二面角应放在________的下位.图4-2-10【解析】二面角反映的是两平面的位置关系,应放在“平面与平面〞的下位.【答案】平面与平面8.在工商管理学中,MRP(Material Requirement Planning)指的是物资需求方案,根本MRP的体系构造如图4-2-11所示:图4-2-11从图中可以看出,根本MRP直承受________、____________________和________的影响.【解析】由图看出箭头指向根本MRP的有三点:产品构造、主消费方案、库存状态.【答案】产品构造主消费方案库存状态三、解答题9.(2016·安庆高二检测)目前我省高考科目为文科考:语文,数学(文科),英语,文科综合(政治、历史、地理);理科考:语文,数学(理科),英语,理科综合(物理、化学、生物).请画出我省高考科目构造图.【导学号:19220065】【解】10.某大学的学校组织构造图如图4-2-12所示,由图答复以下问题:图4-2-12(1)学生工作处的“下位〞要素是什么?(2)学生工作处与其“下位〞要素是什么关系?【解】(1)由图可知学生工作处的“下位〞要素包括工业工程系、城建环保工程系、电气工程系、计算机工程系、机械工程系、汉教部.(2)学生工作处与其“下位〞要素的关系是附属关系.[才能提升]1.以下构造图中,表达各要素之间是逻辑先后关系的是()【解析】C选项中的构造图表达了从整数指数幂到无理指数幂的开展过程与顺序,表达的是各要素间的逻辑先后关系,应选C.【答案】 C2.如图4-2-13是一商场某一个时间制订销售方案时的局部构造图,那么“方案〞受影响的主要要素有()图4-2-13A.1个B.2个C.3个D.4个【解析】影响“方案〞的主要要素应是三个“上位〞要素,有“政府行为〞,“筹划部〞,“社会需求〞.【答案】 C3.在平面几何中,特殊四边形的分类关系可用以下框图描绘:图4-2-14那么在①中应填入________;在②中应填入________.【解析】结合①的条件可知:有一组邻边相等的平行四边形为菱形,故①处应填菱形.结合②的条件可知:两腰相等的梯形叫等腰梯形,故②处应填等腰梯形.【答案】菱形等腰梯形4.据有关人士预测,我国居民的消费正由生存型消费转向质量型消费,城镇居民消费热点是商品住房、小轿车、新型食品、效劳消费和文化消费;农村居民消费热点是住房、家电,试设计表示我国居民消费情况的构造图.【解】构造图如下列图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.若a ,b ∈R ,则1a 3>1b 3成立的一个充分不必要条件是( )A .ab >0B .b >aC .a <b <0D .ab (a -b )<0【解析】 由a <b <0⇒a 3<b 3<0⇒1a 3>1b 3,但1a 3>1b 3不能推出a <b <0.∴a <b <0是1a 3>1b 3的一个充分不必要条件.【答案】 C2.求证:7-1>11- 5. 证明:要证7-1>11-5, 只需证7+5>11+1,即证7+27×5+5>11+211+1,即证35>11,∵35>11,∴原不等式成立.以上证明应用了( )A .分析法B .综合法C .分析法与综合法配合使用D .间接证法【解析】 该证明方法符合分析法的定义,故选A.【答案】 A3.(2016·汕头高二检测)要证:a 2+b 2-1-a 2b 2≤0,只要证明() A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a+b)22-1-a2b2≤0D.(a2-1)(b2-1)≥0【解析】要证a2+b2-1-a2b2≤0,只要证明(a2-1)+b2(1-a2)≤0,只要证明(a2-1)(1-b2)≤0,即证(a2-1)(b2-1)≥0.【答案】 D4.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足什么条件()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2【解析】由余弦定理得cos A=b2+c2-a22bc<0,∴b2+c2-a2<0,即b2+c2<a2.【答案】 C5.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:b2-ac<3a”,索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】由题意知b2-ac<3a⇐b2-ac<3a2⇐b2+a(a+b)<3a2⇐b2+a2+ab<3a2⇐b2+ab<2a2⇐2a2-ab-b2>0⇐a2-ab+a2-b2>0⇐a(a-b)+(a+b)(a-b)>0⇐a(a-b)-c(a-b)>0⇐(a-b)(a-c)>0,故选C.【答案】 C二、填空题6.(2016·烟台高二检测)设A=12a+12b,B=2a+b(a>0,b>0),则A,B的大小关系为________.【解析】∵A-B=a+b2ab-2a+b=(a+b)2-4ab2ab(a+b)=(a-b)22ab(a+b)≥0,∴A≥B.【答案】A≥B7.(2016·西安高二检测)如果a a>b b,则实数a,b应满足的条件是________.【导学号:19220024】【解析】要使a a>b b成立,只需(a a)2>(b b)2,只需a3>b3>0,即a,b 应满足a>b>0.【答案】a>b>08.如图2-2-5,四棱柱ABCD-A1B1C1D1的侧棱垂直于底面,满足________时,BD⊥A1C(写上一个条件即可).图2-2-5【解析】要证BD⊥A1C,只需证BD⊥平面AA1C.因为AA1⊥BD,只要再添加条件AC⊥BD,即可证明BD⊥平面AA1C,从而有BD⊥A1C.【答案】AC⊥BD(或底面为菱形)三、解答题9.设a,b>0,且a≠b,求证:a3+b3>a2b+ab2.【证明】法一:分析法要证a3+b3>a2b+ab2成立.只需证(a+b)(a2-ab+b2)>ab(a+b)成立,又因a+b>0,只需证a2-ab+b2>ab成立,只需证a2-2ab+b2>0成立,即需证(a-b)2>0成立.而依题设a≠b,则(a-b)2>0显然成立,由此命题得证.法二:综合法a≠b⇒a-b≠0⇒(a-b)2>0⇒a2-2ab+b2>0⇒a2-ab+b2>ab.注意到a,b>0,a+b>0,由上式即得(a+b)(a2-ab+b2)>ab(a+b).∴a3+b3>a2b+ab2.10.(2016·深圳高二检测)已知三角形的三边长为a,b,c,其面积为S,求证:a2+b2+c2≥43S.【证明】要证a2+b2+c2≥43S,只要证a2+b2+(a2+b2-2ab cos C)≥23ab sin C,即证a2+b2≥2ab sin(C+30°),因为2ab sin(C+30°)≤2ab,只需证a2+b2≥2ab,显然上式成立.所以a2+b2+c2≥43S.[能力提升]1.已知a,b,c,d为正实数,且ab<cd,则()A.ab<a+cb+d<cdB.a+cb+d<ab<cdC.ab<cd<a+cb+dD.以上均可能【解析】先取特殊值检验,∵ab<c d,可取a=1,b=3,c=1,d=2,则a+cb+d=25,满足ab<a+cb+d<cd.∴B,C不正确.要证ab<a+cb+d,∵a,b,c,d为正实数,∴只需证a(b+d)<b(a+c),即证ad<bc.只需证ab<cd.而ab<cd成立,∴ab<a+cb+d.同理可证a+cb+d<cd.故A正确,D不正确.【答案】 A2.(2016·黄冈高二检测)下列不等式不成立的是()A.a2+b2+c2≥ab+bc+caB.a+b>a+b(a>0,b>0)C.a-a-1<a-2-a-3(a≥3)D.2+10>2 6【解析】对于A,∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴a2+b2+c2≥ab+bc+ca;对于B,∵(a+b)2=a+b+2ab,(a+b)2=a+b,∴a+b>a+b;对于C,要证a-a-1<a-2-a-3(a≥3)成立,只需证明a+a-3 <a-2+a-1,两边平方得2a-3+2a(a-3)<2a-3+2(a-2)(a-1),即a(a-3)<(a-2)(a-1),两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10 <26,故D错误.【答案】 D3.使不等式3+22>1+p成立的正整数p的最大值是________.【导学号:19220025】【解析】由3+22>1+p,得p<3+22-1,即p<(3+22-1)2,所以p<12+46-42-23,由于12+46-42-23≈12.7,因此使不等式成立的正整数p的最大值是12.【答案】124.(2016·唐山高二检测)已知a,b,c是不全相等的正数,且0<x<1,求证:log x a+b2+log xb+c2+log xa+c2<log x a+log x b+log x c.【证明】要证明log xa+b2+log xb+c2+log xa+c2<log x a+log x b+log x c,只需要证明log x⎝⎛⎭⎪⎫a+b2·b+c2·a+c2<log x(abc),而已知0<x<1,故只需证明a+b2·b+c2·a+c2>abc.∵a,b,c是不全相等的正数,∴a+b2≥ab>0,b+c2≥bc>0,a+c2≥ac>0,∴a+b2·b+c2·a+c2>a2b2c2=abc.即a+b2·b+c2·a+c2>abc成立.∴log xa+b2+log xb+c2+log xa+c2<log x a+log x b+log x c成立.。

相关文档
最新文档