北师大版高中数学必修1第二章函数分节练习及答案(函数概念、函数单调性、简单的幂函数和函数奇偶性练习)

合集下载

(常考题)北师大版高中数学必修一第二单元《函数》测试(含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试(含答案解析)

一、选择题1.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个4.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-5.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣ D .11,4⎡⎫-+∞⎪⎢⎣⎭6.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉7.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭8.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞9.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( ) A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞10.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦, B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭, D .103⎛⎫ ⎪⎝⎭, 11.若函数()f x =0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞12.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3] 二、填空题13.已知函数(31)4,2(),2a x a x f x ax x -+<⎧=⎨-≥⎩满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-,则a 的取值范围是______________.14.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.17.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).18.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________. 19.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n-<-成立,则实数a 的取值范围____.20.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数;④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.三、解答题21.已知函数()()12f x x x =+-. (1)作出函数()f x 的图象.(2)判断直线y a =与()()12f x x x =+-的交点的个数; (3)已知方程()1221x x m +-=-有三个实数解.求m 的取值范围.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围.23.已知二次函数()2f x x bx c =++的图象经过点()1,13,且函数12y f x ⎛⎫=- ⎪⎝⎭是偶函数.(1)求()f x 的解析式;(2)已知2t <,()()213g x f x x x ⎡⎤=--⋅⎣⎦,求函数()g x 在区间[],2t 上的最大值和最小值;24.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 25.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 26.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-14.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+;③设{}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,对任意*i N ∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.函数2()23||f x x x =-的单调递减区间是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知22()2x af x x -=+. (1)若0a =,证明:()f x在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =,当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减,∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i A B ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +,由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数.22.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-13.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 8.若函数()f x =的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3811.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()23=-+f x x x .(Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域;(Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =27x =. 3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b -≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】 由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x<的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.D解析:D 【分析】 令22(2)1t mx m x =+-+()0,t ∈+∞()22(2)0,1mx m x +-++∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mxm x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果.【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<.综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可.当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

学高中数学第二章函数的单调性讲解与例题北师大版必修1

学高中数学第二章函数的单调性讲解与例题北师大版必修1

3函数的单调性(1)函数y=f(x)在区间A上的增加与减少及单调区间在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的.类似地,在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y =f(x)在区间A上是递减的.如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.在单调区间上,如果函数是增加的,那么它的图像是上升的;如果函数是减少的,那么它的图像是下降的.(2)函数y=f(x)在数集A上的增加与减少及单调性一般地,对于函数y=f(x)的定义域内的一个子集A,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),就称函数y=f(x)在数集A上是增加的.类似地,在函数y=f(x)的定义域内的一个子集A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)>f(x2),就称函数y=f(x)在数集A上是减少的.如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们分别称这个函数为增函数或减函数,统称为单调函数.谈重点函数单调性的理解函数的单调性的定义是用数学符号来刻画函数的图像特征,它反映了函数图像的变化趋势(当自变量增大时,函数值是增大还是减小,图像是上升还是下降).正确理解单调性的定义,应抓住以下几个重要字眼:(1)“定义域内”.研究函数的很多性质,我们都应有这样一个习惯:定义域优先.函数的单调性是对定义域内某个子区间而言的,即单调区间是定义域的子集,所以,在考察函数单调性时,必须先看函数的定义域.(2)“区间”.函数的单调性是对定义域内某个相应的区间而言的,离开相应的区间就谈不上函数的增减性.我们不能说一个函数在x=5时是增加的或减少的,因为这时没有一种可比性,没突出变化,所以我们不能脱离区间泛泛谈论某一个函数是增加的或是减少的.(3)“任意”和“都有”.“任意”两个字很重要,它是指不能取特定的值来判断函数的增减性,而“都有”的意思是:只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).对“任意”二字不能忽视,如考查函数y=x2在区间[-2,2]上的单调性,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y =x2在[-2,2]上是减少的,那就错了.原因就在于x1,x2是定值,不具有任意性.同样地,“都有”两个字也很重要,如函数y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2).我们可以看到对于x1<x2,f(x1)并没有始终小于(或者大于)f(x2),因此就不能说y=x2在[-2,2]上是增加的或是减少的.【例1-1】下列说法不正确的有( ).①函数y=x2在(-∞,+∞)上具有单调性,且在(-∞,0)上是减少的;②函数1yx的定义域为(-∞,0)∪(0,+∞),在其上是减函数;③函数y=kx+b(k∈R)在(-∞,+∞)上一定具有单调性;④若x1,x2是f(x)的定义域A上的两个值,当x1>x2时,有f(x1)<f(x2),则y=f(x)在A上是增函数.A.1个B.2个C.3个D.4个解析:①函数y=x2在(-∞,0]上是减少的,在[0,+∞)上是增加的,故其在(-∞,+∞)上不具有单调性;②(-∞,0)和(0,+∞)都是函数1yx=的单调区间,在这两个区间上函数是减少的,但1yx=在整个定义域上不是减函数,因为存在x1=-1<1=x2,f(x1)=-1,f(x2)=1,有f(x1)<f(x2)成立,不符合减函数的定义;③当k=0时,y=b,此时函数是一个常数函数,不具有单调性;④因为x1,x2是定义域上的两个定值,不具有任意性,所以不能由此判定函数的单调性.答案:D【例1-2】若对于任意实数x总有f(-x)=f(x),且f(x)在区间(-∞,-1]上是增函数,则( ).A.32f⎛⎫-⎪⎝⎭<f(-1)<f(2)B.f(-1)<32f⎛⎫-⎪⎝⎭<f(2)C.f(2)<f(-1)<32 f⎛⎫-⎪⎝⎭D.f(2)<32f⎛⎫-⎪⎝⎭<f(-1)解析:∵函数f(x)对于任意实数x总有f(-x)=f(x),∴f(-2)=f(2).∵f(x)在区间(-∞,-1]上是增函数,且-2<32-<-1,∴f(-2)<32f⎛⎫-⎪⎝⎭<f(-1),即f(2)<32f⎛⎫-⎪⎝⎭<f(-1).答案:D【例1-3】定义在R上的函数f(x)是增函数,A(0,-1),B(3,1)是其图像上的两点,那么不等式|f(x+1)|<1的解集为( ).A.(-1,2) B.[3,+∞)C.[2,+∞) D.(-∞,-1]∪(2,+∞)解析:∵A(0,-1),B(3,1)是函数f(x)图像上的两点,∴f(0)=-1,f(3)=1.由|f(x+1)|<1得-1<f(x+1)<1,即f(0)<f(x+1)<f(3).∵f(x)是定义在R上的增函数,∴由单调函数的定义可知,0<x+1<3,∴-1<x<2.答案:A2.函数单调性的判断方法(1)图像法对于简单函数或可化为简单函数的函数,由于其图像较容易画出,因此,可利用图像的直观性来判断函数的单调性,写出函数的单调区间.谈重点函数单调区间的求解及书写12.书写函数的单调区间时应该注意以下几点:(1)如果一个函数有多个单调增(减)区间,这些增(减)区间应该用逗号隔开(即“局部”)或用“和”来表示,而不能用并集的符号“∪”连接(并完之后就成了“整体”).例如f(x)=1x的单调减区间可以写成(0,+∞),(-∞,0)〔或者写成(0,+∞)和(-∞,0)〕,但不能写成(0,+∞)∪(-∞,0).(2)确定已知函数的单调区间要有整体观念,本着宁大勿小的原则,即求单调区间则应求“极大”区间.如虽然函数y=x2在区间[2,3],[5,9],[1,+∞)上都是递增的,但在写这个函数的递增区间时应写成[0,+∞),而不能写区间[0,+∞)的任一子集区间.(3)书写函数的单调区间时,区间端点的开或闭没有严格规定,若函数在区间端点处有定义且图像在该点处连续,则书写函数的单调区间时,既可以写成闭区间,也可以写成开区间;若函数在区间端点处没有定义,则书写函数的单调区间时必须写成开区间.(2)定义法如果要证明一个函数的单调性,目前只能严格按照定义进行,步骤如下:①取值:设x1,x2为给定区间内任意的两个值,且x1<x2(在证明函数的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,所以,在证题时,不能用特殊值来代替它们);②作差变形:作差f(x1)-f(x2),并通过因式分解、配方、有理化等方法,向有利于判断差值的符号的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正负号时,经常采用这种变形方法);③定号:确定差值的符号,当符号不确定时,可考虑分类讨论(判断符号的依据是自变量的范围、假定的大小关系及符号的运算法则);④判断:根据定义作出结论(若x1-x2与f(x1)-f(x2)同号,则给定函数是增函数;异号,就是减函数).【例2-1】已知四个函数的图像如下图所示,其中在定义域内具有单调性的函数是( ).解析:来考虑.根据函数单调性的定义可知函数B 在定义域内为增函数.答案:B析规律 单调性图像的表现形式函数的单调性反映在图像上是函数图像在指定的区间上(也可以是定义域)从左到右越来越高或越来越低(注意一个点也不能例外,如本例C 中的函数只有一个点例外,受此点影响,该函数在整个定义域上不具有单调性),这是函数单调性在函数图像上的直观表现.【例2-2】画出函数f (x )=-x 2+2|x |+3的图像,说出函数的单调区间,并指明在该区间上的单调性.分析:含有绝对值符号的函数解析式,可根据绝对值的意义,将其转化为分段函数,画出函数图像后,观察曲线在哪些区间上是上升的,在哪些区间上是下降的,即可确定函数的单调区间及单调性.解:f (x )=22230230.x x x x x x ⎧-++≥⎪⎨--+<⎪⎩,,,当x ≥0时,f (x )=-(x -1)2+4,其开口向下,对称轴为x =1,顶点坐标为(1,4),且f (3)=0,f (0)=3;当x <0时,f (x )=-(x +1)2+4,其开口向下,对称轴为x =-1,顶点坐标为(-1,4),且f (-3)=0.作出函数的图像(如图),由图看出,函数在(-∞,-1],[0,1]上是增加的,在[-1,0],[1,+∞)上是减少的.解技巧 利用函数图像确定函数的单调区间,具体做法是:先化简函数解析式,然后再画出它的草图,最后根据函数定义域与草图的位置、形状,确定函数的单调区间.【例2-3】(1)证明函数f (x )=在定义域上是减函数;(2)证明函数f (x )=x 3+x 在R 上是增函数; (3)证明函数f (x )=1x x+在(0,1)上为减函数. 分析:证明函数的单调性,关键是对函数在某一区间上任意两个函数值f (x 1),f (x 2)的差f (x 1)-f (x 2)进行合理的变形,尽量变为几个最简单的因式的乘积或几个完全平方式的和的形式.证明:(1)f (x )=的定义域为[0,+∞), 任取x 1,x 2∈[0,+∞),且x 1<x 2,则x 2-x 1>0.∴f (x 1)-f (x 2)=((-==0=>,即f (x 1)>f (x 2).由单调函数的定义可知,函数f (x )=在定义域[0,+∞)上是减函数. (2)设x 1,x 2∈R ,且x 1<x 2,则x 1-x 2<0.∴f (x 1)-f (x 2)=(x 13+x 1)-(x 23+x 2)=(x 13-x 23)+(x 1-x 2)=(x 1-x 2)(x 12+x 1x 2+x 22)+(x 1-x 2)=(x 1-x 2)(x 12+x 1x 2+x 22+1)=(x 1-x 2)2212213124x x x ⎡⎤⎛⎫+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦<0,即f (x 1)<f (x 2).由单调函数的定义可知,函数f (x )=x 3+x 在R 上是增函数. (3)设x 1,x 2∈(0,1)且x 1<x 2,则x 1-x 2<0.∴f (x 1)-f (x 2)=121211x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭ =(x 1-x 2)+2112x x x x -=(x 1-x 2)1211x x ⎛⎫- ⎪⎝⎭=121212()(1)x x x x x x --.∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1x 2>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴由单调函数的定义可知,函数f (x )=1x x+在(0,1)上为减函数. 警误区 证明函数单调性的常见错误在第(1)题中,有的同学认为由0≤x 1<x 2,可得0≤<函数y =的单调性,而y =的单调性我们没作证明,因此不能使用;在第(1)题中还使若函数y =f (x )在给定的区间A 上是增加的,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)<f (x 2);若函数y =f (x )在给定的区间A 上是减少的,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)>f (x 2).所以,当给定的两个自变量在同一单调区间上时,可直接比较相应的两个函数值的大小.否则,可以先把它们转化到同一单调区间上,再利用单调性比较大小.【例3】设函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与34f ⎛⎫⎪⎝⎭的大小关系为________.解析:已知函数f (x )的单调性,比较两个函数值f (a 2-a +1)与34f ⎛⎫⎪⎝⎭的大小,可以转化为判断a 2-a +1的取值范围以及a 2-a +1与34的大小关系.∵a2-a+1=2133244a⎛⎫-+≥>⎪⎝⎭,又∵f(x)在(0,+∞)上是减函数,∴当12a≠时,a2-a+1>34,有f(a2-a+1)<34f⎛⎫⎪⎝⎭;当12a=时,a2-a+1=34,有f(a2-a+1)=34f⎛⎫⎪⎝⎭.综上可知,f(a2-a+1)≤34f⎛⎫⎪⎝⎭.答案:f(a2-a+1)≤34 f⎛⎫ ⎪⎝⎭4.利用函数的单调性确定参数范围已知函数的单调性,求函数解析式中参数的取值范围时,要注意利用数形结合的思想,运用函数单调性的逆向思维思考问题.这类问题能够加深对概念、性质的理解.例如:已知函数f(x)=x2-2(1-a)x+2在(-∞,4]上是减少的,求实数a的取值范围.由于二次函数是我们最熟悉的函数,遇到二次函数就画图像,会给我们研究问题带来很大方便.要使f(x)在(-∞,4]上是减函数,由二次函数的图像可知,只要对称轴x=1-a≥4即可,解得a≤-3.谈重点分段函数的单调性求分段函数在定义域上的单调性问题时,不但要考虑各段上函数的类型及其单调性,而且还要考虑各段图像之间的上下关系.【例4】已知函数f(x)=(3)411a x a xaxx-+<⎧⎪⎨≥⎪⎩,,,是(-∞,+∞)上的减函数,求实数a的取值范围.分析:函数f(x)是一个分段函数,其图像由两部分组成.当x<1时,f(x)=(3-a)x+4a,其图像是一条射线;当x≥1时,f(x)=ax,其图像由a的取值确定,若a=0,则为一条与x轴重合的射线,若a≠0,则为反比例函数图像的一部分(曲线).已知函数f(x)是(-∞,+∞)上的减函数,则在两段上必须都是递减的,且要保证x<1时的图像位于x≥1时的图像的上方.解:由题意知,函数f(x)=(3-a)x+4a,x<1与f(x)=ax,x≥1都是减少的,且前者图像位于后者图像的上方(如图所示).∴30(3)4aaa a a-<⎧⎪>⎨⎪-+≥⎩,,,即3,0,3.2aaa⎧⎪>⎪>⎨⎪⎪≥-⎩∴a>3.∴实数a的取值范围是{a|a>3}.5.利用函数的单调性求函数的最值若函数在给定的区间上是单调函数,可利用函数的单调性求最值.若给定的单调区间是闭区间,函数的最值在区间的两个端点处取得,也就是说,若函数f (x )在某一闭区间[a ,b ]上是增函数,则最大值在右端点b 处取得,即y max =f (b );最小值在左端点a 处取得,即y min =f (a ).若函数f (x )在某一闭区间[a ,b ]上是减函数,则最大值在左端点a 处取得,即y max =f (a );最小值在右端点b 处取得,即y min =f (b ).解题时也可结合函数的图像,得出问题的答案.以下是基本初等函数的最值: ①正比例函数y =kx (k ≠0)在定义域R 上不存在最值,但在闭区间[a ,b ]上存在最值.当k >0时,函数y =kx 的最大值为f (b )=kb ,最小值为f (a )=ka ;当k <0时,函数y =kx 的最大值为f (a )=ka ,最小值为f (b )=kb .②反比例函数y =kx(k ≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值,但在闭区间[a ,b ](ab >0)上存在最值.当k >0时,函数y =k x 的最大值为f (a )=k a ,最小值为f (b )=k b ;当k <0时,函数y =kx的最大值为f (b )=k b ,最小值为f (a )=ka .③一次函数y =kx +b (k ≠0)在定义域R 上不存在最值,但在闭区间[m ,n ]上存在最值.当k >0时,函数y =kx +b 的最大值为f (n )=kn +b ,最小值为f (m )=km +b ;当k <0时,函数y =kx +b 的最大值为f (m )=km +b ,最小值为f (n )=kn +b .【例5-1】求函数y =x 2+x -1在区间[a ,a +1]上的值域.解:函数y =x 2+x -1的对称轴为12x =-,开口方向向上. ①当a +1<12-,即32a <-时,区间[a ,a +1]在对称轴的左侧, ∴y 在[a ,a +1]上单调递减.∴当x =a +1时,y min =a 2+3a +1;当x =a 时,y max =a 2+a -1. ②当12a >-时,区间[a ,a +1]在对称轴的右侧, ∴y 在[a ,a +1]上单调递增.∴当x =a 时,y min =a 2+a -1;当x =a +1时,y max =a 2+3a +1.③当a ≤12-≤a +1,即3122a -≤≤-时, 当12x =-时,y min =54-;当1122a a ≤-<+,即-1<a ≤12-时,当x =a +1时,y max =a 2+3a +1; 当11122a a +≤-≤+,即32-≤a ≤-1时, 当x =a 时,y max =a 2+a -1.综上可知,函数y 在区间[a ,a +1]上的值域为当32a <-时,[a 2+3a +1,a 2+a -1]; 当32-≤a ≤-1时,25,14a a ⎡⎤-+-⎢⎥⎣⎦;当-1<a≤12-时,25,314a a⎡⎤-++⎢⎥⎣⎦;当a>12-时,[a2+a-1,a2+3a+1].【例5-2】求f(x)=x+的最小值.分析:求函数f(x)=x+的最小值,可先利用单调函数的定义判断其在定义域上的单调性,再利用单调性求出最值.解:f(x)=x[1,+∞),任取x1,x2∈[1,+∞),且x1<x2,则f(x1)-f(x2)=(x1+)-(x2+)=(x1-x2)+(-)=(x1-x2)+=(x1-x2)·1⎛⎝.∵x1<x2,∴x1-x2<0.④二次函数y=ax2+bx+c(a≠0)当a>0时,函数y=ax2+bx+c在定义域R上有最小值2424b ac bfa a-⎛⎫-=⎪⎝⎭,无最大值;当a<0时,函数y=ax2+bx+c在定义域R上有最大值2424b ac bfa a-⎛⎫-=⎪⎝⎭,无最小值.求解二次函数在某区间上的最值,应判断它的开口方向、对称轴与区间的位置关系,若含有字母应注意分类讨论,解题时最好结合图像解答.以上基本初等函数的最值作为结论记住,可以提高解题速度.6.利用函数的单调性解不等式函数的单调性具有可逆性,即f(x)在区间D上是递增的,则当x1,x2∈D且f(x1)>f(x2)时,有x1>x2〔事实上,若x1≤x2,则f(x1)≤f(x2),这与f(x1)>f(x2)矛盾〕.类似地,若f(x)在区间D上是递减的,则当x1,x2∈D且f(x1)>f(x2)时,有x1<x2.利用函数单调性的可逆性,可以脱去某些函数符号,把抽象的不等式化为具体的不等式.此时要特别注意处在自变量位置的代数式必须满足定义域的要求,最后取几个不等式解集的交集即可.又∵1+1x1-1+x2-1>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)在[1,+∞)上为增函数,∴f(x)min=f(1)=1.析规律利用单调性求最值利用函数的单调性求最值,其规律为:若f(x)在[a,b]上是递增的,则f(a)≤f(x)≤f(b),即最大值为f(b),最小值为f(a);若f(x)在[a,b]上是递减的,则f(b)≤f(x)≤f(a),即最大值为f(a),最小值为f(b).【例6】已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(a2-1),求a的取值范围.分析:由于函数y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(a2-1),所以由单调函数的定义可知1-a∈(-1,1),a2-1∈(-1,1),且1-a>a2-1,解此关于a的不等式组,即可求出a的取值范围.解:由题意可得2211111111aaa a-<-<⎧⎪-<-<⎨⎪->-⎩,①,②,③由①得0<a<2,由②得0<a2<2,∴0<|a|,∴a<<,且a≠0.由③得a2+a-2<0,即(a-1)(a+2)<0,∴1020aa->⎧⎨+<⎩,,或1020aa-<⎧⎨+>⎩,,∴-2<a<1.综上可知0<a<1,∴a的取值范围是{a|0<a<1}.一般地,如果f(x),g(x)在给定区间上具有单调性,则可以得到如下结论:(1)f(x),g(x)的单调性相同时,f(x)+g(x)的单调性与f(x),g(x)的单调性相同.(2)f(x),g(x)的单调性相反时,f(x)-g(x)的单调性与f(x)的单调性相同.(3)y=f(x)在区间I上是递增(减)的,c,d都是常数,则y=cf(x)+d在I上是单调函数.若c>0,y=cf(x)+d在I上是递增(减)的;若c<0,y=cf(x)+d在I上是递减(增)的.(4)f(x)恒为正或恒为负时,1()yf x=与y=f(x)单调性相反.(5)若f(x)>0,则函数y=f(x)与y=具有相同的单调性.(6)复合函数y=f[g(x)]的单调区间求解步骤:①将复合函数分解成基本初等函数y=f(u),u=g(x);②分别确定各个函数的定义域;③分别确定分解成的两个基本初等函数的单调区间;④若两个基本初等函数在对应的区间上的单调性是同增或同减,则y=f[g(x)]为增函数;若为一增一减,则y=f[g(x)]为减函数.该法可简记为“同增异减”.值得注意的是:在解答题中不能利用它作为论证的依据,必须利用定义证明.【例7】求y=的单调区间,并指明在该区间上的单调性.分析:这是一个复合函数,应先求出函数的定义域,再利用复合函数单调性的判断法则确定其单调性.解:要使函数y=有意义,需满足x2+2x-3≥0,即(x-1)(x+3)≥0.∴1030xx-≥⎧⎨+≥⎩,,或1030xx-≤⎧⎨+≤⎩,,∴x≥1,或x≤-3.∴函数y={x|x≥1,或x≤-3}.令u=x2+2x-3,则y=,易知u=(x+1)2-4,其开口向上,对称轴为x=-1.∴当x≥1时,u是x的增函数,y是u的增函数,从而y是x的增函数;当x≤-3时,u是x的减函数,y是u的增函数,从而y是x的减函数.∴y=的递增区间是[1,+∞),递减区间是(-∞,-3].警误区函数的定义域与单调区间由于函数的单调区间一定是函数定义域的子集,所以我们在求函数的单调区间时,一定要先求函数的定义域,在函数的定义域内讨论函数的单调区间.8.抽象函数的单调性问题没有具体的函数解析式的函数,我们称为抽象函数,关于抽象函数的单调性,常见的有以下题型:(1)抽象函数单调性的证明.证明抽象函数的单调性,必须用单调函数的定义作出严格证明,而不能用几个特殊值的大小来检验,证明时要同时注意特殊值的应用.(2)抽象函数单调性的应用.如,利用抽象函数的单调性求函数的最值、解不等式等.【例8】已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=23 -.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.解:(1)令x=y=0得,f(0)+f(0)=f(0),∴f(0)=0.令y=-x得,f(x)+f(-x)=f(0),∴f(-x)=-f(x).任取x1,x2∈R,且x1<x2,则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).∵x1<x2,∴x2-x1>0.又∵当x>0时,f(x)<0,∴f(x2-x1)<0,即f(x2)<f(x1).∴f(x)在R上是减函数.(2)∵f(x)在[-3,3]上是减少的,∴f(x)在[-3,3]上的最小值为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×23⎛⎫-⎪⎝⎭=-2,最大值为f(-3)=-f(3)=2.。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

新课程北师大版高中数学必修1第二章《函数》单元测试题(含解答)

新课程北师大版高中数学必修1第二章《函数》单元测试题(含解答)

高中数学必修1第二章《函数》单元测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.若()f x (3)f = ( )A 、2B 、4 C、 D 、10 2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 ( )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与1()g x x=; ④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④ 4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx(1)(2)(3)(4)8.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥510.设函数x x xf =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(2)

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(2)

一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞3.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,44.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭5.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞6.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .27.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M .④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .18.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞9.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3] 10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( )A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-12.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 15.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i A B ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.16.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.17.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.18.若对任意x ,y R ∈都有()()()f x y f x f y +=⋅,且()12f =,则()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值是______. 19.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.已知函数()()12f x x x =+-. (1)作出函数()f x 的图象.(2)判断直线y a =与()()12f x x x =+-的交点的个数; (3)已知方程()1221x x m +-=-有三个实数解.求m 的取值范围.22.对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由. 23.已知函数()2()01axf x a x =≠+. (1)判断函数()f x 在()1,1-上的单调性,并用单调性的定义加以证明; (2)若2a =,函数满足44()55f x -≤≤,求x 的取值范围. 24.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 25.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 26.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax ≥-对任意[]1,3x ∈恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 3.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.4.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.5.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.6.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.7.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案.对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.8.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.9.C【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立, 22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.11.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.故选:D . 【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.12.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭,()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k>⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.15.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i Aϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.16.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数, 又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.17.【分析】由已知得出单调增然后由及可得结论【详解】因为对任意都有成立所以为单调递增函数因此故答案为:【点睛】本题考查分段函数的单调性分段函数在定义域内单调需满足分段函数的所有段同单调及相邻段端点处的函 解析:[1,2]【分析】由已知1212()()0f x f x x x ->-得出单调增,然后由2210,02b b -->≥及10b -≥可得结论. 【详解】因为对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 为单调递增函数,因此21020210b b b ->⎧⎪-⎪≥⎨⎪-≥⎪⎩,12b ∴≤≤. 故答案为:[1,2].. 【点睛】本题考查分段函数的单调性,分段函数在定义域内单调,需满足分段函数的所有段同单调及相邻段端点处的函数值满足相应的大小关系.18.2014【分析】令得利用赋值法进行求解利用即可的值【详解】对任意的都有且令则故答案为:2014【点睛】本题主要考查函数值的计算利用赋值法是解决抽象函数的常用方法解析:2014 【分析】 令1y =,得(1)2()f x f x +=,利用赋值法进行求解.利用(1)2()f x f x +=,即可()()()()()()246135f f f f f f +++⋅⋅⋅()()()()()()201020122014200920112013f f f f f f +++的值. 【详解】对任意的x ,y R ∈都有()()()f x y f x f y +=,且(1)2f =,∴令1y =,则(1)()(1)2()f x f x f f x +==,∴(1)2()f x f x +=, ∴(2)(4)(6)(2012)(2014)222210072014(1)(3)(5)(2011)(2013)f f f f f f f f f f +++⋯++=++⋯+=⨯=. 故答案为:2014. 【点睛】本题主要考查函数值的计算,利用赋值法是解决抽象函数的常用方法.19.5【分析】由二次函数的图象与性质得到函数在区间递减递增即可求得在区间函数的最值得解【详解】由题意函数可得函数在区间递减递增所以函数在递减递增所以故答案为:5【点睛】熟记二次函数的图象与性质是解答的关解析:5 【分析】由二次函数的图象与性质,得到函数()f x 在区间(,1]-∞递减[1,)+∞递增,即可求得在区间[]0,3函数的最值得解. 【详解】由题意,函数()222f x x x =-+,可得函数()f x 在区间(,1]-∞递减[1,)+∞递增[]0,3,所以函数()f x 在[0,1]递减,[1,3]递增(1)1,(3)5f f ∴==所以max (3)5y f == 故答案为:5 【点睛】熟记二次函数的图象与性质是解答的关键,着重考查推理与运算能力.20.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解. 【详解】当1a >时,xy a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.三、解答题21.(1)图象见解析;(2)答案见详解;(3)5182m -<<.【分析】(1)先去绝对值,化简函数成分段函数形式()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,把握关键点分段画出函数图象即可;(2)结合(1)中图象,数形结合即得结果; (3)由额(2)中结果即得92104m -<-<,即求得参数范围. 【详解】解:(1)函数()()12f x x x =+-,去绝对值可得()()()()()12,112,1x x x f x x x x ⎧+-≥-⎪=⎨-+-<-⎪⎩,即1x ≥-时,()f x 是开口向上、对称轴为12x =、零点为-1和2的抛物线的一部分;1x <-时,()f x 是开口向下、对称轴为12x =、零点为-1和2的抛物线的一部分,作图如下:(2)由(1)中图象,数形结合知, 当0a >或94a <-时,直线y a =与()()12f x x x =+-有1个交点; 当0a =或94a =-时,直线y a =与()()12f x x x =+-有2个交点; 当904a -<<时,直线y a =与()()12f x x x =+-有3个交点; (3)方程()1221x x m +-=-有三个实数解,即21y m =-与()()12f x x x =+-有三个交点,由(2)可知92104m -<-<,即5182m -<<, 所以m 的取值范围为5182m -<<. 【点睛】本题解题关键在于去绝对值写出分段函数,根据二次函数关键点(零点、对称轴、顶点)正确作图,再数形结合,依次突破.22.(1)[]0,1;(2)104m ≤<. 【分析】 1)由函数2yx 在[0,)+∞上是增函数,根据“不变”区间的定义,由22a ab b⎧=⎨=⎩求解;(2)假设函数存在“不变”区间,根据函数2(0)y x m x =+≥单调递增,由22a m ab m b ⎧+=⎨+=⎩,消去m ,结合a b <,求得a 的范围,再由2m a a =-+,利用二次函数的性质求解. 【详解】 (1)因为函数2yx 在[0,)+∞上是增函数,所以22a ab b⎧=⎨=⎩,解得0a =或1a =,0b =或1b =,因为a b <, 所以 0,1a b ==,所以函数的 “不变”区间是[]0,1;(2)假设函数2(0)y x m x =+≥存在“不变”区间,因为函数2(0)y x m x =+≥单调递增,所以22a m a b m b⎧+=⎨+=⎩,消去m 得22a b a b -=-,即()()+10a b a b --=,因为a b <,所以+10a b -=,即1b a =-, 所以10a a ->≥,解得102a ≤<, 所以221124m a a a ⎛⎫=-+=--+ ⎪⎝⎭, 所以104m ≤<, 所以实数m 的取值范围是104m ≤< 【点睛】关键点点睛:本题第二问关键是由a b <,即10a a ->≥求得a 的范围. 23.(1)答案见解析;(2)(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【分析】(1)先设﹣1<x 1<x 2<1,然后利用作差法比较f (x 2)与f (x 1)的大小即可判断函数的单调性,(2)把a =2代入后,然后把分式不等式转化为二次不等式组求解即可.【详解】(1)当0a >时,函数()f x 在()1,1-上是增函数;当0a <时,()f x 在()1,1-上是减函数. 理由如下:当0a >时,任取1211x x -<<<,21212221()()11ax ax f x f x x x -=-++ 21122221()(1)(1)(1)a x x x x x x --=++. 因为111x -<<,211x -<<,∴1211x x -<<,1210x x ->,2212(1)(1)0x x ++>,210x x ->,所以21122212()(1)0(1)(1)x x x x x x -->++, 当0a >时,得21()()f x f x >,故函数()f x 在()1,1-上是增函数;同理可证,当0a <时,21()()f x f x <,所以函数()f x 在()1,1-上是减函数,得证.(2)2a =时,得22()1xf x x =+, ∴44()55f x -≤≤,即2424515x x -≤≤+,∴222520112,,2222520x x x x x x x ⎧++≥⇒≤--≤≤≥⎨-+≥⎩. 由此可得,x 的取值范围是(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【点睛】过程点睛:用定义证明单调性时,第一步,任取12,x x 并规定大小;第二步,将函数值作差并化简;第三步,判断每个因式符号进而得到函数值大小;第四步,下结论. 24.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增;(2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果.25.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.26.(1)(2,2)-;(2)(,-∞.【分析】(1)由已知得210x ax ++>的解集为R ,只需∆<0可得答案;(2)由已知得230x ax -+≥对任意[]1,3x ∈恒成立,可分别讨论对称轴的位置,然后利用单调性和二次函数的性质可得答案.【详解】(1)()4f x >-即234x ax +->-,即210x ax ++>,由不等式()4f x >-的解集为R ,可得∆<0,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)()26f x ax ≥-即2326x ax ax +-≥-,即230x ax -+≥,由不等式()26f x ax ≥-对任意[]1,3x ∈恒成立, 可得当12a ≤,即2a ≤时,10f ≥(),即40a -≥,得4a ≤,从而2a ≤; 当132a <<,即26a <<时,0∆≤,即2120a -≤,得a -≤≤2a <≤ 当32a ≥,即6a ≥时,(3)0f ≥,即1230a -≥,得4a ≤,此时无解.综上,a 的取值范围是(,-∞.【点睛】对于一元二次不等式的恒成立的问题,可结合二次函数图象,利用函数的单调性和二次函数的性质处理,也可以利用参数分离求最值.。

北师版高中数学必修第一册精品课件 第2章 函数 习题课——函数性质的综合应用

北师版高中数学必修第一册精品课件 第2章 函数 习题课——函数性质的综合应用
在关于原点对称的区间上的单调性相同,偶函数又在关于原
点对称的区间上的单调性相反.
2.奇函数在关于原点对称的区间上的单调性相同;偶函数在
关于原点对称的区间上的单调性相反.
3.已知奇函数f(x)在区间[0,+∞)内单调递增,则满足f(x)<f(1)的
x的取值范围是(
)
A.(-∞,1) B.(-∞,-1)
x1,x2(x1<x2),然后向已知区间上转化,利用题设条件,最后运用
函数单调性的定义解决问题.
【变式训练2】 若定义在R上的函数f(x)对任意x1,x2∈R,都有
f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.求证:
(1)y=f(x)-1为奇函数;
(2)f(x)是R上的增函数.
【例1】 已知定义在区间(-1,1)内的奇函数f(x)为减函数,且
f(1-a)+f(1-2a)>0,求实数a的取值范围.
解:由f(x)是定义在区间(-1,1)内的奇函数,且f(1-a)+f(1-2a)>0,
得f(1-a)>-f(1-2a)=f(2a-1).
因为f(x)在定义域上为减函数,
- < - < ,
习题课——函数性质的综合应用
自主预习·新知导学
合作探究·释疑解惑
规 范 解 答
随 堂 练 习
课标定位
素养阐释
1.掌握函数奇偶性与单调性的关系,能够运用这
种关系解决相关问题.
2.掌握抽象函数奇偶性与单调性的判断方法.
3.掌握函数奇偶性与单调性的综合应用.
4.感受数学抽象的过程,提高逻辑推理能力与数
的取值范围为(-2,2).

北师大版高中数学必修一第二章第3节函数的单调性

北师大版高中数学必修一第二章第3节函数的单调性

§3函数的单调性课帀呈目IE・IkKECHENGMUBIAOYINHANG^1.理解函数单调性的定义.2.会用函数单调性的定义判断函数的单调性.3•能从给定的函数图像上直观得出函数的单调性及单调区间.星础和识・1.增函数(1)定义:在函数y=fx)的定义域内的一个区间A上,如果对于任意两数x1,x2£A,当X]V x2时,都有,那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=fx)在区间A上是递增的.〔名师点拨)fxj_fx2)设x1,x2e A,x1^x2,f(x)在A上是增加的O.g-x2)fX])-fx2)]>0_>0.X1-X2(2) _________________________________________ 几何意义:函数fx)的图像在区间A上是的.(3)图示:如图所示.【做一做1】下列命题正确的是().A.定义在(a b)上的函数fx),如果存在X],x2W(a,b),使得x1<x2时,有fx/V fx?),那么fx)在(a b)上为增函数B•定义在(ab)上的函数fx),如果有无穷多对x1,x2W(ab),使得x1<x2时,有f(x1)<fx2),那么fx)在(ab)上为增函数C.如果fx)在区间I1上为增函数,在区间I2上也为增函数,那么fx)在I1U I2上也一定为增函数D.如果fx)在区间I上为增函数且f(x1)<f(x2)(x1,x2G I),那么x1<x22.减函数(1)定义:在函数y=fx)的定义域内的一个区间A上,如果对于任意两数x1,x2£A,当x1<x2时,都有,那么,就称函数y=fx)在区间A上是减少的,有时也称函数y=fx)在区间A上是递减的.[名师点拨1。

新北师大版高中数学必修一第二单元《函数》检测(答案解析)(1)

新北师大版高中数学必修一第二单元《函数》检测(答案解析)(1)

一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个4.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,45.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .66.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 7.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉8.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .109.函数()21xf x x=-的图象大致是( ) A .B .C .D .10.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞.⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .111.已知函数()y f x =的定义域为[]0,4,则函数0(2)y x =-的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃12.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.14.若函数()y f x =的定义域是[0,2],则函数()g x =______. 15.函数y x =+______. 16.已知函数()(12)3,1ln ,1a x a x f x x x -+<⎧⎨⎩=的值域为R ,则实数a 的取值范围是________.17.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________.18.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.19.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n-<-成立,则实数a 的取值范围____.20.若y =y 的取值范围是________三、解答题21.已知函数()22f x mx mx n =-+ ()0m >在区间[]1,3上的最大值为5,最小值为1,设()()=f xg x x. (1)求m 、n 的值;(2)证明:函数()g x 在)+∞上是增函数;(3)若函数F ()()22xxx g k =-⋅=0,在[]1,1x ∈-上有解,求实数k 的取值范围.22.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域.23.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.24.已知函数()21ax bf x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围.25.已知函数()81f x x =- (1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值. 26.已知函数2()3f x x ax a =++-,a R ∈.当[]0,2x ∈时,()f x 的最大值是关于a 的函数()M a .求函数()M a 的表达式及()M a 的最小值【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

新北师大版高中数学必修一第二单元《函数》检测(有答案解析)(2)

新北师大版高中数学必修一第二单元《函数》检测(有答案解析)(2)

一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7-,无最小值 D .()F x 的最大值为3,最小值为-13.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-4.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-5.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)6.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 7.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .28.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .49.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .1410.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦11.函数2log xy x x=的大致图象是( ) A . B . C . D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.14.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________15.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间()0,6内的解的个数的最小值是__________ . 18.已知函数()f x 的值域为[]0,4(2,2x),函数()1=-g x ax ,2,2x ,[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立,则实数a 的取值范围为________________.19.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域; (3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 23.已知函数()21ax bf x x +=+(其中a >0)为奇函数. (1)求实数b 的值;(2)证明:()f x 在()01,上是增函数,在()1+∞,上是减函数; (3)若存在实数m ,n (0<m <n ),使得m ≤()f x ≤n 的解集为[]m n ,,求a 的取值范围.24.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值;(3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 25.已知函数()2342()log log 16a f x x x=⋅⋅.(1)若1a =,求方程()1f x =-的解集; (2)当[]2,4x ∈时,求函数()f x 的最小值.26.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n n f f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-.3.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).4.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.5.D解析:D【分析】任设120x x <<,则211x x >,21()1x f x <-,根据定义可得()f x 在(0,)+∞上为递减函数,令1x y ==得(1)1f =-,令18,8x y ==可得(8)4f =-,可得(2)2f =-,将不等式化为[(3)](2)f x x f ->,利用单调性和定义域可解得结果. 【详解】任设120x x <<,则211x x >,21()1x f x <-,所以()()()()222111111111x x f x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=++<-+= ⎪⎪⎝⎭⎝⎭, 所以()f x 在(0,)+∞上为递减函数,在()()()1f xy f x f y =++中,令1x y ==得(1)2(1)1f f =+,得(1)1f =-,令18,8x y ==得11(1)(8)(8)()188f f f f =⨯=++,所以(8)1124f =---=-, 又(8)(2)(4)1f f f =++(2)(2)(2)113(2)2f f f f =++++=+4=-,所以(2)2f =-,()(3)3f x f x +->-可化为()(3)12(2)f x f x f +-+>-=,所以[(3)](2)f x x f ->,所以030(3)2x x x x >⎧⎪->⎨⎪-<⎩,解得01x <<或23x <<.故选:D 【点睛】关键点点睛:利用定义判断函数的单调性以及求出(2)f 是解题关键.6.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去);当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.7.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.8.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.9.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号.故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.10.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.11.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A .本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =, 所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--. 所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩.【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.15.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转 解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.18.【分析】依题意分析的值域A 包含于的值域B 再对分类讨论得到的值域列关系计算即可【详解】因为总使得成立所以的值域A 包含于的值域B 依题意A=又函数因此当时不满足题意;当时在上递增则故即得;当时在上递减则故解析:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】依题意分析()f x 的值域A 包含于()g x 的值域B ,再对a 分类讨论得到()g x 的值域,列关系计算即可. 【详解】因为[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立, 所以()f x 的值域A 包含于()g x 的值域B ,依题意A =[]0,4, 又函数()1=-g x ax ,2,2x,因此,当0a =时,{}1B =-,不满足题意;当0a >时,()g x 在[]2,2-上递增,则[][]21,210,4B a a =---⊇, 故210214a a --≤⎧⎨-≥⎩,即得52a ≥;当0a <时,()g x 在[]2,2-上递减,则[][]21,210,4B a a =---⊇, 故210214a a -≤⎧⎨--≥⎩,即得52a ≤-.综上,实数a 的取值范围为55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故答案为:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 【点睛】本题考查了恒成立问题、函数的值域,以及利用包含关系求参数范围问题,属于中档题.19.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果.【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

新课程北师大版高中数学必修1第二章函数单元测试题(含解答) (2)

新课程北师大版高中数学必修1第二章函数单元测试题(含解答) (2)

- 让每个人相同地提升自我高中数学必修 1 第二章《函数》单元测试题一、选择题(本大题共12 小题,每题 5 分,共 60 分)1.若f ( x)x 1 ,则 f (3)()A、 2B、4C、22D、102.关于函数y f (x) ,以下说法正确的有()① y 是x的函数;②关于不相同的x, y 的值也不相同;③f (a) 表示当 x a 时函数 f (x) 的值,是一个常量;④ f ( x) 必然可以用一个详尽的式子表示出来.A、1 个B、2 个C、3 个D、4 个3.以下各组函数是同一函数的是()① f ( x)2x3与g( x)x 2x ;②f ( x)x 与 g (x)x2;③ f ( x) x0与 g( x)1;④ f ( x)x22x 1 与 g(t ) t22t 1 .xA .①②B、①③C、③④ D 、②④4.二次函数y 4x2mx 5 的对称轴为x 2 ,则当 x 1 时, y 的值为()A、7B、 1C、17D、255.函数y x26x 5 的值域为()A、0,2B、0,4C、,4D、0,6.以下四个图像中,是函数图像的是()y y y yO x O xO xO x( 1)( 2)( 3)( 4)A、( 1)B、( 1)、(3)、( 4)C、( 1)、( 2)、( 3)D、( 3)、( 4)7.若f : A B 能构成照射,以下说法正确的有()( 1) A 中的任一元素在 B 中必定有像且唯一;( 2) B 中的多个元素可以在 A 中有相同的原像;( 3)B 中的元素可以在 A 中无原像;(4)像的会集就是会集 B.- 让每个人相同地提升自我8. f ( x) 是定义在 R 上的奇函数,以下结论中,不正确 的是 ()...A 、 f ( x)f ( x)0 B 、 f ( x)f (x)2 f ( x) C 、 f ( x)f ( x) 1f ( x) ≤ 0 D 、f ( x)9.若函数 f ( x) x 2 2(a 1)x2 在区间,4 上是减少的, 则实数 a 的取值范围是( )A 、 a ≤ 3B 、 a ≥ 3C 、 a ≤ 5D 、 a ≥ 5 10.设函数 f (1x ) x ,则 f ( x) 的表达式为()1 x1 x1 x 1xD .2xA .xB .1C .xx 11x 111.定义在 R 上的函数 f ( x) 对任意两个不等实数 a,b 总有f (a)f (b) 0 建立,则必有( )a bA 、函数 f ( x) 是先增加后减少B 、函数 f ( x) 是先减少后增加C 、 f ( x) 在 R 上是增函数D 、 f ( x) 在 R 上是减函数12.以下所给 4 个图像中,与所给3 件事切合最好的序次为()( 1)我走开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;( 2)我骑着车一路以常速行驶,可是在途中遇到一次交通拥堵,耽搁了一些时间;( 3)我出发后,心情轻松,慢慢行进,此后为了赶时间开始加速。

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)

一、选择题1.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()f x 在区间I 上为“缓增函数”,区间I 为()f x 的“缓增区间”.若函数()224f x x x =-+是区间I 上的“缓增函数”,则()f x 的“缓增区间”I 为( )A .[)1,+∞B .[)2,+∞C .[]0,1D .[]1,22.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-4.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 5.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( ) A .13或2 B .2或3C .12或2 D .13或3 6.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,47.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦8.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .29.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .110.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B .()0,2C .(0,4)D .(,2)-∞11.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.()f x 为定义在R 上的偶函数,2()()2=-g x f x x 在区间[0,)+∞上是增函数,则不等式()1246()f x f x x +-+>--的解集为___________. 14.若函数2(21)1,0()(2),0b x b x f x x b x x -+->⎧=⎨-+-≤⎩,满足对任意12x x ≠,都有1212()()0f x f x x x ->-成立,那么b 的取值范围是_____.15.已知函数()()1f x a =-[]0,2上是减函数,则实数a 的取值范围是_____.16.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.17.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 18.若关于x 的不等式2222x x a +-<在(),0-∞上有解,则实数a 的取值范围是______. 19.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n-<-成立,则实数a 的取值范围____.20.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________ 三、解答题21.已知函数()221x f x x =+.(1)求()122f f ⎛⎫+ ⎪⎝⎭,()133f f ⎛⎫+ ⎪⎝⎭的值;(2)求证:()1f x f x ⎛⎫+ ⎪⎝⎭是定值; (3)求()()11120202320202f f f f f ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 22.已知二次函数()2f x x bx c =++的图象经过点()1,13,且函数12y f x ⎛⎫=-⎪⎝⎭是偶函数.(1)求()f x 的解析式;(2)已知2t <,()()213g x f x x x ⎡⎤=--⋅⎣⎦,求函数()g x 在区间[],2t 上的最大值和最小值;23.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 24.已知函数()()kf x x x R x=+∈,且()()12f f =. (1)求k ;(2)用定义证明()f x 在区间)+∞上单调递增.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()1()=-+∈f x x kx k R .(1)若()f x 在区间[2,)+∞上单调递增,求实数k 的取值范围; (2)若()0f x ≥在(0,)x ∈+∞上恒成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 求得()42f x x x x=+-,利用双勾函数的单调性可求出函数()f x x 的单调递减区间,并求出函数()f x 的单调递增区间,取交集可得出()f x 的“缓增区间”. 【详解】由二次函数的基本性质可知,函数()224f x x x =-+的单调递增区间为[)1,+∞.设()()42f x g x x x x==+-,则函数()g x 在区间(]0,2上为减函数,在区间[)2,+∞上为增函数,下面来证明这一结论.任取1x 、[)22,x ∈+∞且12x x >,即122x x >≥,()()()1212121212444422g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121244x x x x x x x x x x x x ---=-+=,122x x >≥,则120x x ->,124x x >,所以,()()12g x g x >,所以,函数()g x 在区间[)2,+∞上为增函数,同理可证函数()g x 在区间(]0,2上为减函数. 因此,()f x 的“缓增区间”为[)(][]1,0,21,2I =+∞=.故选:D. 【点睛】关键点点睛:本题考查函数的新定义,求解本题的关键在于理解“缓增区间”的定义,结合二次函数和双勾函数的单调性求对应函数的单调区间.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).4.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.5.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去); 当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.6.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.7.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.8.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.9.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.10.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =,不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<,所以不等式()80f x x->的解集为()0,2. 故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.11.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值.【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.;【分析】根据题意判断出为偶函数且在上先减再增把转化为进行求解即可【详解】由为偶函数可知也为偶函数且在上先减再增由可知即可知解得故答案为:【点睛】关键点睛利用函数的性质得到的单调性通过化简把问题转化解析:3,2⎛⎫-∞- ⎪⎝⎭; 【分析】根据题意,判断出()g x 为偶函数,且在R 上先减再增,把(1)(2)46f x f x x +-+>--转化为(1)(2)g x g x +>+,进行求解即可 【详解】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +-+>--,可知22(1)2(1)(2)2(2)f x x f x x +-+>+-+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <-. 故答案为:3,2⎛⎫-∞- ⎪⎝⎭【点睛】关键点睛,利用函数的性质,得到()g x 的单调性,通过化简把问题转化为(1)(2)g x g x +>+,进而利用()g x 的单调性求解,属于中档题14.【分析】由已知得出单调增然后由及可得结论【详解】因为对任意都有成立所以为单调递增函数因此故答案为:【点睛】本题考查分段函数的单调性分段函数在定义域内单调需满足分段函数的所有段同单调及相邻段端点处的函 解析:[1,2]【分析】由已知1212()()0f x f x x x ->-得出单调增,然后由2210,02b b -->≥及10b -≥可得结论. 【详解】因为对任意12x x ≠,都有()()12120f x f x x x ->-成立,所以()f x 为单调递增函数,因此21020210b b b ->⎧⎪-⎪≥⎨⎪-≥⎪⎩,12b ∴≤≤. 故答案为:[1,2].. 【点睛】本题考查分段函数的单调性,分段函数在定义域内单调,需满足分段函数的所有段同单调及相邻段端点处的函数值满足相应的大小关系.15.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取 解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围. 【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0;∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数; ②a=1时,f (x )=0,不满足在[0,2]上是减函数; ∴a≠1;③0<a <1时,a ﹣1<0; ∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数; ∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数; ∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数; ∴综上得,实数a 的取值范围为012a a <<≤或. 故答案为012a a <<≤或. 【点睛】考查函数定义域的概念,函数单调性的定义及判断.16.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .17.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f(x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.18.【分析】由题意可知关于的不等式在上有解作出函数和函数的图象考虑直线与函数的图象相切以及直线过点数形结合可求得实数的取值范围【详解】关于的不等式在上有解即关于的不等式在上有解作出两函数图象当由与相切时解析:5,22⎛⎫- ⎪⎝⎭【分析】由题意可知关于x 的不等式2222x a x -<-在(),0-∞上有解,作出函数2y x a =-和函数222y x =-的图象,考虑直线2y x a =-与函数222y x =-的图象相切,以及直线()2y x a =--过点()0,2,数形结合可求得实数a 的取值范围.【详解】关于x 的不等式2222x x a +-<在(),0-∞上有解,即关于x 的不等式2222x a x -<-在(),0-∞上有解,作出两函数2y x a =-,222y x =-图象,当由2y x a =-与222y x =-相切时,则2222x a x -=-,即22220x x a +--=,()4828200a a ∆=++=+=,解得52a =-.由()2y x a =--过点()0,2得2a =. 由图可知5142a -<<,因此,522a -<<,即实数a 的取值范围为5,22⎛⎫- ⎪⎝⎭.故答案为:5,22⎛⎫- ⎪⎝⎭.【点睛】本题考查利用含绝对值的不等式在区间上有解求参数,考查数形结合思想的应用,属于中等题.19.【分析】根据对任意实数都有成立得出在R 上单调递减从而得出解出a 的范围即可【详解】函数对任意的实数都有成立得在R 上单调递减∴故答案为:【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减利用分段解析:2324a ≤<. 【分析】根据对任意实数m n ≠,都有()()0f m f n m n-<-成立,得出()f x 在R 上单调递减,从而得出()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩,解出a 的范围即可.【详解】函数()f x 对任意的实数m n ≠,都有()()0f m f n m n-<-成立,得()f x 在R 上单调递减,∴()()()4300143141log 134a a a a a ⎧-<⎪<<⎨⎪-⋅-+-≥-++⎩34230142a a a a ⎧<⎪⎪⎪⇒<<⇒≤<⎨⎪⎪≥⎪⎩. 234a ≤<. 【点睛】关键点点睛:依函数单调性的定义得函数在R 上单调递减,利用分段函数的单调性求解.20.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论. 【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.三、解答题21.(1)()1212f f ⎛⎫+= ⎪⎝⎭,()1313f f ⎛⎫+= ⎪⎝⎭;(2)证明见解析;(3)2019. 【分析】(1)根据函数解析式,直接计算,即可得出结果; (2)根据函数解析式,计算1f x ⎛⎫⎪⎝⎭,得出()12f x f x ⎛⎫+= ⎪⎝⎭即可; (3)根据(2)的结论,可直接得出结果. 【详解】 (1)()221x f x x =+ ()22221124122121255112f f ⎛⎫ ⎪⎛⎫⎝⎭∴+=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,()222113913313131010113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭; (2)证明:()22222222211111111111x x x x f f x x x x x xx ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭, ()1f x f x ⎛⎫+ ⎪⎝⎭∴是定值;(3)()()()111232020232020f f f f f f ⎛⎫⎛⎫⎛⎫++++⋅⋅⋅++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()111232020232020f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦111=++⋅⋅⋅+2019=.22.(1)()211f x x x =++;(2)见详解.【分析】(1)根据二次函数过点()1,13,得到12b c +=,根据函数奇偶性,得到()y f x =关于直线12x =-对称,求出b ,得出c ,即可得出函数解析式;(2)先由(1)得到()222,02,0x x x g x x x x ⎧-≥=⎨-+<⎩,分别讨论12t ≤<,01t ≤<,10t ≤<,1t <四种情况,结合二次函数的性质,即可求出最值.【详解】(1)因为二次函数()2f x x bx c =++的图象经过点()1,13,所以131b c =++,即12b c +=①;又函数12y f x ⎛⎫=- ⎪⎝⎭是偶函数,所以12y f x ⎛⎫=- ⎪⎝⎭关于y 轴对称,因此()y f x =关于直线12x =-对称;所以122b -=-,即1b =,代入①式可得11c =, 所以()211f x x x =++; (2)由(1)()211f x x x =++,所以()()()22222,0111322,0x x x g x x x x x x x x x x ⎧-≥=++--⋅=-⋅=⎨-+<⎩,因为()11g =-,当0x <时,由221x x -+=-解得1x = 因为[],2x t ∈,所以当12t ≤<时,()22g x x x =-在[],2t 上单调递增;所以()()max 20g x g ==,()()2min 2g x g t t t ==-;当01t ≤<时,()22g x x x =-在(),1t 上单调递减,在()1,2上单调递增;所以()()max 20g x g ==,()()min 11g x g ==-;当10t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,则(()()()1100g g t g x g -=≤≤<=; []0,2x ∈时,()22g x x x =-在()0,1上单调递增,在()1,2上单调递增,所以()()()[]1,21,0g x g g ∈=-⎡⎤⎣⎦, 所以()()max 20g x g ==,()()min 11g x g ==-;当1t <时,因为0x <时,()22g x x x =-+在[),0t 上单调递增,所以()(()()1100g t g g x g <-=-≤<<;[]0,2x ∈时,()[]221,0g x x x =-∈-,所以()()max 20g x g ==,()()2min 2g x g t t t ==-+;综上,函数()g x 在区间[],2t 上的最大值()()max 20g x g ==,最小值为()2min22,11,112,12t t t g x t t t t ⎧-+<⎪⎪=--≤<⎨⎪-≤<⎪⎩. 【点睛】 方法点睛:二次函数在闭区间上的最值问题主要有三种类型:(1)轴定区间定;(2)轴动区间定;(3)轴定区间动;不论哪种类型,解题时,都是讨论对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论. 23.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果. 24.(1)2;(2)证明见解析. 【分析】(1)由题得122kk +=+,解方程即得解; (2)利用定义法证明函数在区间)+∞上单调递增. 【详解】(1)由()()12f f =得122k k +=+, 解得2k =,所以()2f x x x=+ (2)21x x ∀>>()()21212122f x f x x x x x ⎛⎫⎛⎫-=+-+ ⎪ ⎪⎝⎭⎝⎭()()()1221212112222x x x x x x x x x x -⎛⎫=-+-=-+ ⎪⎝⎭()()1221122x x x x x x -=-,∵21x x >>,∴210x x ->,212x x >, ∴()()210f x f x ->,即()()21f x f x >, 所以函数()f x在区间)+∞上单调递增.【点睛】方法点睛:用定义法判断函数的单调性的一般步骤:①取值,设12,x x D ∈,且12x x <;②作差,求12()()f x f x -;③变形(合并同类项、通分、分解因式、配方等);④判断12()()f x f x -的正负符号;⑤根据函数单调性的定义下结论.25.(1)()()20f x x x x=-+≠;(2)证明见解析;(3)()max 1f x =-,()min 235f x =-. 【分析】(1)将点坐标代入解析式,求出,a b 的值;(2)设任意1x ,()20,x ∈+∞,且12x x <,判断()()12f x f x >即可; (3)利用函数的单调性,将端点值代入,即可得答案; 【详解】(1)由()f x 的图象过A 、B ,则1212a b ba +=⎧⎪⎨+=-⎪⎩,解得12a b =-⎧⎨=⎩, ()()20f x x x x=-+≠. (2)证明:设任意1x ,()20,x ∈+∞,且12x x <,∴()()()12122112122222f x f x x x x x x x x x ⎛⎫⎛⎫-=-+--+=-+- ⎪ ⎪⎝⎭⎝⎭()()()()2121122112122=2x x x x x x x x x x x x --+-+=由1x ,()20,x ∈+∞,得120x x >,1220x x +>. 由12x x <,得210x x ->. ()()12 0f x f x ∴->,即()()12f x f x >.∴函数()f x 在()0,∞+上为减函数.(3)由(2)知函数为减函数,∴()()max 21f x f ==-,()()min 2355f x f ==-. 【点睛】利用待定系数法求函数的解析式,利用定义证明函数的单调性注意取值的任意性,及作差、因式分解、判断符号的步骤. 26.(1)4k ≤;(2)k 2≤.【分析】(1)解不等式22k ≤即得解; (2)化为1≤+k x x 在(0,)x ∈+∞恒成立,令1()g x x x =+,求出函数()g x 的最小值即可.【详解】(1)若()f x 在(2,)x ∈+∞单调递增,则22k ≤,所以4k ≤; (2)因为()0f x ≥在(0,)x ∈+∞上恒成立,所以210-+≥x kx 在(0,)x ∈+∞恒成立, 即1≤+k x x在(0,)x ∈+∞恒成立令1()g x x x =+,则1()2=+≥=g x x x ,当且仅当1x =时等号成立 所以k 2≤.【点睛】 方法点睛:处理参数的问题常用的方法有:(1)分离参数法(先分离参数转化为函数的最值);(2)分类讨论法(对参数分类讨论求解).。

高一北师大版数学必修1第二章 函数练习题含答案解析 双基限时练8

高一北师大版数学必修1第二章 函数练习题含答案解析 双基限时练8

双基限时练(八) 函数的表示法基 础 强 化1.函数f (x )=|x -1|的图像是( )答案 B2.已知f (x -1)=x 2-3,则f (2)的值为( ) A. -2 B. 1 C. 6D. 10解析 f (2)=f (3-1)=9-3=6. 答案 C3.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤1,-x +3,x >1,)则f ⎝ ⎛⎭⎪⎫52等于( )A. 52 B. 72 C. 12D. -12解析 ∵52>1,∴f ⎝ ⎛⎭⎪⎫52=-52+3=12.答案 C4.已知f (x +2)=6x +5,则f (x )=( ) A. 18x +17 B. 6x +5 C. 6x -7D. 6x -5解析 设x +2=t ,得x =t -2,∴f (t )=6(t -2)+5=6t -7,∴f (x )=6x -7,故选C.答案 C5.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A. g (x )=2x +1 B. g (x )=2x -1 C. g (x )=2x -3D. g (x )=2x +7解析 由已知得,g (x +2)=2x +3=2(x +2)-1,所以g (x )=2x -1.答案 B6.设f (x )=⎩⎪⎪⎨⎪⎪⎧1,x >0,0,x =0,-1,x <0,)g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ) A. 1 B. 0 C. -1D. π解析 π为无理数,g (π)=0,f (g (π))=f (0)=0. 答案 B7.函数y =2x +1x -1的图像过点P (p,4),则实数p =________.解析 由题意得2p +1p -1=4,得p =52.答案 52能 力 提 升8.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,-x ,x >1,若f (a )=2,则a =________.解析 由题意得⎩⎪⎨⎪⎧ a 2=2,a ≤1,或⎩⎪⎨⎪⎧-a =2,a >1,得a =- 2.答案 -29.一水池有2个进水口,1个出水口,进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的论断序号是________.解析 设进水量为y 1,出水量为y 2,时间为t ,由图像知y 1=t ,y 2=2t .由图丙知,从0~3时蓄水量由0变为6,说明0~3时两个进水口均打开进水但不出水,故①正确;3~4时蓄水量随时间增加而减少且每小时减少一个单位,若3~4点不进水只出水,应每小时减少两个单位,故②不正确;4~6时为水平线说明水量不发生变化可能是所有水口都打开,进出均衡,也可能不进水也不出水,不能确定,故③亦不正确.答案 ①10.求下列函数解析式.(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)已知f (x )满足2f (x )+f (-x )=3x ,求f (x ). 解 (1)设f (x )=ax +b (a ≠0), 则3f (x +1)-2f (x -1) =3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17 ∴a =2,b =7, ∴f (x )=2x +7.(2)2f (x )+f (-x )=3x ,① 2f (-x )+f (x )=3x ,② ①×2-②得3f (x )=6x -3x , ∴f (x )=2x -1x .11.已知函数f (x )=⎩⎪⎨⎪⎧-x ,-1≤x <0,x 2,0≤x <1,x ,1≤x ≤2.(1)求f ⎝ ⎛⎭⎪⎫-23,f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫32的值;(2)作出函数f (x )的简图; (3)求函数f (x )的值域.解 函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2]. (1)因为-1≤x <0时,f (x )=-x ,所以f ⎝⎛⎭⎪⎫-23=-⎝⎛⎭⎪⎫-23=23.因为0≤x <1时,f (x )=x 2,所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122=14.因为1≤x ≤2时,f (x )=x ,所以f ⎝ ⎛⎭⎪⎫32=32.(2)在同一坐标系中分段画出函数f (x )的图像,如图所示.(3)由(2)中函数f (x )的图像可知,函数的值域为[0,2].12.某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)关于用电量x (千瓦时)的函数图像是一条折线(如图所示),根据图像解下列问题:(1)求y 关于x 的函数解析式.(2)利用函数解析式,说明电力公司采取的收费标准.(3)若该用户某月用电62千瓦时,则应交费多少元?若该用户某月交费105元,则该用户该月用了多少千瓦时电?解 (1)当0≤x ≤100时,设函数解析式为y =kx ,将x =100,y =65代入,得k =0.65, ∴y =0.65x .当x ≥100时,设函数解析式为y =ax +b . 将x =100,y =65和x =130,y =89代入,得⎩⎪⎨⎪⎧ 100a +b =65,130a +b =89解得⎩⎪⎨⎪⎧a =0.8,b =-15.∴y =0.8x -15.综上可得y =⎩⎪⎨⎪⎧0.65x ,0≤x ≤100,0.8x -15,x >100.(2)由(1)知收费标准为:用户月用电量不超过100千瓦时时,每千瓦时电0.65元;超过100千瓦时时,超出的部分,每千瓦时电0.80元.(3)当x =62时,y =62×0.65=40.3(元);当y =105时, ∵0.65×100=65<105,故x >100, ∴105=0.8x -15,x =150.即若该用户某月用电62千瓦时,则应交费40.3元;若该用户某月交费105元,则该用户用了150千瓦时电.考 题 速 递13.设f (x )=⎩⎨⎧12x +1,x ≥0,5-4x ,x <0,若f (a )>a ,则实数a 的取值范围是________.解析由f (a )>a ,得⎩⎨⎧12a +1>a ,a ≥0,或⎩⎪⎨⎪⎧5-4a >a ,a <0,得0≤a <2,或a <0,整理得a <2,∴a的取值范围是(-∞,2).答案(-∞,2)。

高中数学北师大版必修1习题第二章函数2.2.2.2含解析

高中数学北师大版必修1习题第二章函数2.2.2.2含解析

第2课时 分段函数课时过关·能力提升1已知f (x )={x +1,x >0,π,x =0,0,x <0,则f (f (f (-3)))=( )A.0B.πC.π+1D.2π解析:因为-3<0,所以f (-3)=0,所以f (f (-3))=f (0)=π,又π>0,所以f (f (f (-3)))=f (π)=π+1.答案:C2函数f (x )=x+|x |x 的图像是( )解析:f (x )={x +1,x >0,x -1,x <0,故选C .答案:C3某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图像大致为( )解析:由题意,当0<x ≤3时,y=10;当3<x ≤4时,y=11.6; 当4<x ≤5时,y=13.2; ……当n-1<x ≤n 时,y=10+(n-3)×1.6,故选C . 答案:C4已知f (x )={2x ,x >0,f (x +1),x ≤0,则f (43)+f (-43)等于( )A.-2B.4C.2D.-4答案:B5已知f (x )={x 2,x >1,2,0≤x ≤1,x +4,x <0,g (x )=3-2x ,则f (g (2))=( )A.-3B.-2C.3D.-1解析:因为g (x )=3-2x ,所以g (2)=3-2×2=-1<0,所以f (g (2))=f (-1)=-1+4=3.答案:C6拟定从甲地到乙地通话m min 的话费y (元)满足y={3.71,0<m ≤4,1.06×(0.5[m ]+2),m >4,其中[m ]是不超过m 的最大整数,如[3.74]=3,从甲地到乙地通话5.2 min 的话费是( ) A.3.71元 B.4.24元 C.4.77元 D.7.95元解析:f (5.2)=1.06×(0.5×[5.2]+2)=4.77.答案:C7若函数f (x )={f (x +2),x <2,2x ,x ≥2,则f (-3)= .解析:f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=2×3=6. 答案:68已知实数a ≠0,函数f (x )={2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为 .答案:-349已知函数f (x )={-x ,-1≤x <0,x 2,0≤x <1,x ,1≤x ≤2.(1)求f (-23),f (12),f (32)的值;(2)作出函数f (x )的简图; (3)求函数f (x )的值域.分析:给出的函数是分段函数,应注意在不同的自变量取值范围内函数有不同的解析式.(1)根据自变量的值所在的区间,选用相应的关系式求函数值.(2)函数f (x )在不同区间上的关系式都是常见的基本初等函数,因而可利用常见函数的图像完成作图.(3)函数的值域是各段函数值的集合的并集. 解函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)∵-1≤x<0时,f (x )=-x ,∴f (-23)=-(-23)=23.∵0≤x<1时,f (x )=x 2,∴f (12)=(12)2=14. ∵1≤x ≤2时,f (x )=x ,∴f (32)=32.(2)在同一平面直角坐标系中分段画出函数f (x )的图像,如图.(3)由(2)中函数f (x )的图像可知,函数的值域为[0,2]. ★10某市范围内住宅电话通话费为前3 min 0.20元,以后每分0.10元(不足3 min 按3 min 计,以后不足1 min 按1 min 计).(1)在直角坐标系内,画出一次通话在6 min 内(包括6 min)的通话费y (元)关于通话时间t (min)的函数图像;(2)如果一次通话t min(t>0),写出通话费y (元)关于通话时间t (min)的函数关系式(可用[t ]表示不小于t 的最小整数). 解(1)如图:(2)由(1)知,话费与时间t 的关系是分段函数,当0<t ≤3时,话费为0.2元;当t>3时,话费应为[0.2+([t ]-3)×0.1]元,所以y={0.2,0<t ≤3,0.2+([t ]-3)×0.1,t >3.★11已知函数的图像由两条射线及开口向下的抛物线的一部分(包括端点)组成,如图,试求函数的解析式.解设左射线所在直线的解析式为y=kx+b ,因为点(1,1),(0,2)在直线上, 故由{k +b =1,b =2,得{k =-1,b =2.所以左射线的解析式为y=-x+2(x<1). 同理可得右射线的解析式为y=x-2(x>3). 再设抛物线的解析式为y=a (x-2)2+2, 因为点(1,1)在此抛物线上,所以a+2=1,a=-1,所以中间抛物线的解析式为y=-(x-2)2+2=-x 2+4x-2,1≤x ≤3. 综上所述,所求函数的解析式为 y={-x +2,x <1,-x 2+4x -2,1≤x ≤3,x -2,x >3.。

最新北师大版高中数学必修一第二单元《函数》测试(答案解析)(2)

最新北师大版高中数学必修一第二单元《函数》测试(答案解析)(2)

一、选择题1.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)4.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,45.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .26.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞7.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞8.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确9.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)- B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( )A .()2,+∞B .[)(]2,00,2-C .(](),22,-∞-+∞ D .()()2,00,2-11.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.14.若函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,且它的值域为(,1]-∞,则a=_____.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.若y =y 的取值范围是________三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域.24.已知函数22()3mx f x x n+=+是奇函数,且()523f =(1)求实数m 和n 的值;(2)利用“函数单调性的定义”判断()f x 在区间[]2,1--上的单调性,并求()f x 在该区间上的最值.25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.26.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

最新北师大版高中数学必修一第二单元《函数》测试卷(答案解析)(1)

最新北师大版高中数学必修一第二单元《函数》测试卷(答案解析)(1)

一、选择题1.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <2.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,33.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)4.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦5.函数()21xf x x=-的图象大致是( ) A .B .C .D .6.已知定义在R 上的函数()2||·x f x x e =, (5a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>7.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .28.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+9.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞10.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]11.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f12.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a 二、填空题13.已知函数2123y kx kx =++的定义域为R ,则实数k 的取值范围是__________.14.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cos f x x<0的解集为________.15.已知二次函数f (x )=ax 2﹣2x +1在区间[1,3]上是单调函数,那么实数a 的取值范围是_____.16.若关于x 的不等式2222x x a +-<在(),0-∞上有解,则实数a 的取值范围是______.17.函数21y ax ax =++的定义域是R ,则a 的取值范围是_________.18.函数的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数,例如,函数()21f x x =+()R x ∈是单函数,下列命题: ①函数4()f x x =()R x ∈是单函数;②若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;③若:f A B →为单函数,则对于任意b B ∈,在A 中至多有一个数与它对应; ④函数()f x 在某区间上具有单调性,则()f x 在其定义域上一定是单函数. 期中正确命题的序号是___________.19.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 20.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________ 三、解答题21.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值.22.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由; (2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围25.已知函数()24f x x ax =-.(1)当1a =时,求函数()f x 的值域; (2)解关于x 的不等式()230f x a +>;(3)若对于任意的[)2,x ∈+∞,()21f x x >-均成立,求a 的取值范围. 26.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解.【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.2.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==, ∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围3.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得: 若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.4.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥,当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.5.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x =-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x =-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.6.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.8.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果.由()f x 是R 上的单调函数,可设()221xf x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =, ()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.9.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<, 所以不等式()80f x x->的解集为()0,2.故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.10.C【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立, 22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.11.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.12.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】 因为log ,0(),0a xx x f x a x >⎧=⎨≤⎩, 所以11(1)f a a --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.二、填空题13.【解析】解:当k=0时满足条件当时综上:点睛:定义域为分母在上都不为0注意分母不一定为二次所以先考虑二次项系数为零解析:0k ≤<3. 【解析】 解: 当k=0时,13y =,满足条件 当k 0≠时,24120k k -< 综上:0k 3≤<.点睛:定义域为R ,分母在R 上都不为0,注意分母不一定为二次,所以先考虑二次项系数为零.14.【解析】在区间上不等式不成立在区间上要使不等式成立则所以所以在区间上不等式的解集为再由偶函数的对称性知在区间上不等式的解集为所以不等式的解集为点睛:本题考查偶函数的对称性及数形结合数学思想属于中档题 解析:(,1)(1,)22ππ--⋃【解析】在区间[]0,1 上,()0,cos 0f x x ≥>,不等式不成立,在区间[]1,4 上,()0f x ≤,要使不等式()0cos f x x <成立,则cos 0x >,所以(1,)2x π∈,所以在区间[]0,4上,不等式的解集为(1,)2π,再由偶函数的对称性知,在区间[)4,0-上,不等式的解集为(,1)2π--,所以不等式的解集为(,1)(1,)22ππ--⋃. 点睛:本题考查偶函数的对称性及数形结合数学思想,属于中档题.15.【分析】根据二次函数的性质列不等式解不等式求得的取值范围【详解】由于为二次函数所以其对称轴为要使在区间上是单调函数则需其对称轴在区间两侧即或解得或或所以的取值范围是故答案为:【点睛】本小题主要考查二解析:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦【分析】根据二次函数的性质列不等式,解不等式求得a 的取值范围. 【详解】由于()f x 为二次函数,所以0a ≠,其对称轴为1x a=, 要使()f x 在区间[]1,3上是单调函数,则需其对称轴1x a=在区间[]1,3两侧, 即11a≤或13a ≥,解得0a <,或1a ≥,或103a <≤, 所以a 的取值范围是()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦故答案为:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦.【点睛】本小题主要考查二次函数的单调性,属于中档题.16.【分析】由题意可知关于的不等式在上有解作出函数和函数的图象考虑直线与函数的图象相切以及直线过点数形结合可求得实数的取值范围【详解】关于的不等式在上有解即关于的不等式在上有解作出两函数图象当由与相切时解析:5,22⎛⎫- ⎪⎝⎭【分析】由题意可知关于x 的不等式2222x a x -<-在(),0-∞上有解,作出函数2y x a =-和函数222y x =-的图象,考虑直线2y x a =-与函数222y x =-的图象相切,以及直线()2y x a =--过点()0,2,数形结合可求得实数a 的取值范围.【详解】关于x 的不等式2222x x a +-<在(),0-∞上有解,即关于x 的不等式2222x a x -<-在(),0-∞上有解,作出两函数2y x a =-,222y x =-图象,当由2y x a =-与222y x =-相切时,则2222x a x -=-,即22220x x a +--=,()4828200a a ∆=++=+=,解得52a =-.由()2y x a =--过点()0,2得2a =. 由图可知5142a -<<,因此,522a -<<,即实数a 的取值范围为5,22⎛⎫- ⎪⎝⎭.故答案为:5,22⎛⎫- ⎪⎝⎭. 【点睛】本题考查利用含绝对值的不等式在区间上有解求参数,考查数形结合思想的应用,属于中等题.17.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意; ②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,0a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00b c <=,;当0a ≠时,00a <⎧⎨∆<⎩. 18.②③【分析】结合单函数的定义对四个命题逐个分析可选出答案【详解】命题①:对于函数设则由与可能相等也可能互为相反数即不是单函数故①错误;命题②:假设因为函数为单函数所以与已知矛盾故即命题②正确;命题③解析:②③ 【分析】结合单函数的定义,对四个命题逐个分析,可选出答案. 【详解】命题①:对于函数4()f x x =()R x ∈,设()4400f x x a ==,则0x a =±,由a 与a -可能相等,也可能互为相反数,即4()f x x =不是单函数,故①错误;命题②:假设12()()f x f x =,因为函数()f x 为单函数,所以12x x =,与已知12x x ≠矛盾,故12()()f x f x ≠,即命题②正确;命题③:若:f A B →为单函数,则对于任意b B ∈,()b f a =,假设不只有一个原象与其对应,设为12,,a a ,则()()12f a f a ==,根据单函数定义,可得12a a ==,又因为原象中元素不重复,故函数:f A B →至多有一个原象,即命题③正确; 命题④:函数()f x 在某区间上具有单调性,并不意味着在整个定义域上具有单调性,则可能存在不同的12,x x ,使得12()()f x f x =,不符合单函数的定义,故命题④错误. 综上可知,真命题为②③. 故答案为②③. 【点睛】关键点点睛:本题考查新定义函数,解题关键是根据新定义的特点,弄清新定义的性质,按照新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决,考查学生的逻辑推理能力,计算求解能力,属于中档题.19.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解. 【详解】当1a >时,xy a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,xy a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.20.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.三、解答题21.(1)奇函数;(2)证明见解析;(3)172,4-- 【分析】(1)直接利用函数的奇偶性定义判断即可;(2)利用单调性定义进行判断证明:取值、作差、定号、得结论; (3)利用(2)的结论,得到函数在区间上的单调性,进一步求得最值. 【详解】 函数1()f x x x=+的定义域为(-∞,0)(0⋃,)+∞ (1)因为对任意的0x ≠,都有11()()()()()f x x x f x x x-=+-=-+=--, 故函数()f x 为奇函数.(2)对区间[)1,+∞上的任意两个数1x 、2x ,且12x x <, 则121212121212111()()()()()x x f x f x x x x x x x x x --=+-+=-. 由于1x 、[)21x ∈+∞,且12x x <,则121x x >,1210x x ->,120x x -<. 从而12())0(f x f x -<即12()()f x f x <,因此函数()f x 在区间[)1,+∞上为增函数. (3)由(2)知,函数()f x 在区间[)1,+∞上为增函数,由(1)知,函数()f x 是奇函数,所以函数()f x 在区间(],1-∞-上为增函数,则函数()f x 在区间[]41--,上为增函数,故()min f x =()1744f -=-,()()12max f x f =-=-. 【点睛】方法点睛:判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为奇函数);(2)和差法, ()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) . 22.(1)()2243f x x x =-+;(2)8m ≥或0m ≤. 【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 23.(1)不是;证明见详解.(2)∅ 【分析】(1)求出2()1y f u u ==+的值域以及[]()y f g x =的值域,根据题中定义即可判断.(2)根据题意可得221()1x ax g x x x ++=++的值域与u 的取值范围相同,转化为()2211x ax u x x ++=++,从而可得0∆≥,再由12u ≤≤,利用韦达定理即可求解.【详解】(1)1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”, 证明如下:2()11y f u u ==+≥,()f u ∴的值域为[)1,+∞,又[]22211()13y f g x x x x x ⎛⎫==++=++ ⎪⎝⎭,2212x x +≥=,当且仅当1x =时取等号, []221()35y f g x x x+∴==+≥, 即[]()y f g x =的值域为[)5,+∞, 两函数的值域不同,∴1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”. (2)()y f u =在定义域[]1,2上为单调函数,∴()y f u =在两端点处取得最值,又221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”, ∴[]()y f g x =与()y f u =值域相同,()12g x ∴≤≤,即()g x 的值域与u 的取值范围相同,由2211x ax u x x ++=++得()2211x ax u x x ++=++,()()2110u x a u x u ∴-+-+-=有根,()()22410a u u ∴∆=---≥,即()2232840u a u a +-+-≤,又12u ≤≤,1,2∴是方程()2232840u a u a +-+-=的两个根,228121324123a a a a a -⎧+=-⎧⎪=-⎪⎪∴⇒⇒∈∅⎨⎨-⎪⎪∈∅⨯=⎩⎪⎩, 所以实数a 的取值范围是∅. 【点睛】方法点睛:本题考查了函数的值域求法,常见方法如下: (1)利用函数的单调性求值域. (2)对于分式型的值域利用分离常数法.(3)换元法. (4)数形结合法. (5)判别式法.24.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解. 【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-, 则化简可得:442(22)60x x x x m --+-+-=⋯① 令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解,而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-,所以1m -,故实数m 的取值范围为:[1-,)+∞. 【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.25.(1)[)4,-+∞;(2)答案见解析;(3)1,8⎛⎫-∞ ⎪⎝⎭. 【分析】(1)由二次函数值域的求解方法可直接求得结果;(2)将不等式变为()()30x a x a -->,分别在0a =、0a <和0a >三种情况下讨论得到不等式的解集;(3)利用分离变量法得到142a x x <+-,令()12g x x x=+-,由对勾函数性质可求得()min g x ,由()min 4a g x <可求得结果.【详解】(1)当1a =时,()24f x x x =-,∴当2x =时,()min 484f x =-=-,则()f x 的值域为[)4,-+∞.(2)由()230f x a +>得:()()224330x ax a x a x a -+=-->,当0a =时,20x >,则不等式的解集为()(),00,-∞⋃+∞; 当0a <时,3a a <,则不等式的解集为()(),3,a a -∞+∞; 当0a >时,3a a >,则不等式的解集为()(),3,a a -∞+∞.(3)由()21f x x >-得:2421x ax x ->-,[)2,x ∈+∞142a x x∴<+- 记函数()12g x x x=+-,由对勾函数性质知:()g x 在[)2,+∞上单调递增, ()()1122222g x g ∴≥=+-=,142a ∴<,解得:18a <,a ∴的取值范围为1,8⎛⎫-∞ ⎪⎝⎭.【点睛】方法点睛:恒成立问题的常用处理方法是采用分离变量的方式,将问题转化为变量与函数最值之间的大小关系:①若()a f x ≤恒成立,则()min a f x ≤;②若()a f x ≥恒成立,则()max a f x ≥.26.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数, 函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =,解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12a a +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-. 所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域.。

【高一数学试题精选】北师大版高一数学必修1第二章函数练习题(含答案)

【高一数学试题精选】北师大版高一数学必修1第二章函数练习题(含答案)

北师大版高一数学必修1第二章函数练习题(含答案)
5
第二节对函数的进一步认识
一、选择题(每小题5分,共20分)
1下列两个函数完全相同的是 ( )
A=x2x与=x B=x2与= x c=(x)2与=x D=3x3与=x
【解析】 A中=x2x的定义域为{x|x≠0},而=x的定义域为R;
c中=(x)2的定义域为[0,+∞),而=x的定义域为R,故A、c错;
B中=x2=|x|与=x的对应关系不同,所以B错;
D中=3x3=x与=x定义域与对应关系均相同,故D对
【答案】 D
2函数=1x+1 的定义域是 ( )
A[- 1,+∞) B[-1,0) c(-1,+∞) D(-1,0)
【解析】要使函数式有意义,须满足x+1 0,
∴x -1,故定义域为(-1,+∞)
【答案】 c
3如图所示,可表示函数图象的是 ( )
A① B②③④ c①③④ D②
【解析】因为在②图中,给定x的一个值,有两个值与它对应,不满足函数的定义,而①、③、④均满足函数定义
【答案】 c
4已知f(x)=x2+1,则f[f(-1)]的值等于 ( )
A2 B3 c4 D 5
【解析】 f(-1)=2,∴f(f(-1))=f(2)=5
【答案】 D
二、填空题(每小题5分,共10分)
5用区间表示下列数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版高中数学必修1第二章函数分节练习§1 生活中的变量关系 §2.1 函数的概念1、下列变量之间的关系是函数关系的是 ( ) A. 人体内的脂肪含量与年龄之间的关系B. 人的身高与体重C. 一个人的工资收入与消费水平的关系D. 物体作自由落体运动时,物体下落的距离与所用时间之间的关系 2、已知函数253)(2+-=x x x f ,求)3(f ,)2(-f ,)1(+a f 3、求下列函数的定义域: (1)35-=x y (2)2-=x y (3)211--=x y (4)()210++=x x y (5)1+=x y ·1-x (6)xx x y 12132+--+= 4、下列各组函数中是同一函数的为A. 32x y -=与x x y 2-= B. ()2x y =与丨=丨x yC. 1+=x y ·1-x 与)1)(1(-+=x x y D. 12)(2--=x x x f 与12)(2--=x x x g 5、函数322--=x x y 的定义域为M ,函数31-+=x x y 的定义域为N ,则A. N M =B. M N ≠⊃ C. =)(N C M R D. =)(N C M R {3} 6、函数24x x y -=的值域是__________. (用区间表示) 7、函数x x x f -+-=22)(的定义域是______,值域是______.8、已知函数)(x f ,有(0)1,()(1)()f f n nf n n N +==-∈,则(4)f =______. 9、已知xx x f 1)2(+=+,则=)(x f ____________.10、已知132)1(2+-=+x x x f ,求)1(-f ,)2(f .11、已知函数221)(x x x f +=(1)求)2(f 与)21(f ,)3(f 与)31(f ;(2)由(1)中求得的结果,你能发现)(x f 与)1(xf 有什么关系?并证明你的发现; (3)求)3()2()1(f f f +++…+)31()21()2013(f f f +++…+)20131(f§2.2 函数的表示法1、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 2、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A 、(1)(2)(4)B 、(4)(2)(3)C 、(4)(1)(3)D 、(4)(1)(2)3、已知函数⎪⎩⎪⎨⎧≤111121)(2丨>,丨+丨,丨丨--丨=x x x x x f , 则)()21(f f =_________.4、设22 (1)() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩≤≥,若()3f x =,则x =_________.5、画出下列函数的图象(1)22-=x y ,Z x ∈,丨x 丨≤2 (2)丨=丨x y(3)xx x y 丨丨+= 6、已知函数⎩⎨⎧≤≤11111)(2<-或>,,-=x x x x x f(1)画出此函数图象;(2)求函数的定义域和值域.§2.3 映射1、关于映射f :B A →,下列说法错误的是 ( )A. 集合A 中每个元素在集合B 中必有唯一的像.B. 对于A 中不同的元素,在B 中可以有相同的像.C. 允许B 中元素没有原像D. 集合A 中元素与集合B 中元素的对应关系可以是一对一、多对一或一对多. 2、已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( )(A )f ∶x →y=21x (B )f ∶x →y=x 31 (C )f ∶x →y=x 32(D )f ∶x →y=x3、下列命题中正确的是( )(A)若M={整数},N={正奇数},则一定不能建立一个从集合M 到集合N 的映射(B)若集合A 是无限集,集合B 是有限集,则一定不能建立一个从集合A 到集合B 的映射 (C)若集合A={a},B={1,2},则从集合A 到集合B 只能建立一个映射 (D)若集合A={1,2},B={a},则从集合A 到集合B 只能建立一个映射 4、下列对应关系不是从集合A 到集合B 的映射的是 ( )A. =A {0≥x x 丨},=B {0≥y y 丨},f :2x y x =→ (A x ∈,B y ∈) B. =A {00<或>丨x x x },=B {1},f :0x y x =→ (A x ∈,B y ∈) C. =A {2,3},=B {4,9},f :nx y x =→ (Z n ∈,A x ∈,B y ∈) D. =A R ,=B R ,f :x y x 2=→ (A x ∈,B y ∈)5、设集合A 和B 都是自然数集合N ,映射f :B A →是把集合A 中的元素n 映射到集合B 中的元素n n +2,则在映射f 下,像20的原像是 ( )A. 2B. 3C. 4D. 56、集合=A {a ,b },=B {e ,f },从集合A 到集合B 的不同映射有_____个.7、已知集合=A {a ,b ,c },=B {1,2},从A 到B 建立映射f ,使4)()()(=++c f b f a f , 则满足条件的映射共有_____个.§3 函数的单调性1、下列函数中,在(-∞,1)上为增函数的是 ( )A. xy 1=B. x y 2=C. 21x y -=D. 2)1(+=-x y 2、若b x k y +-=)12(在R 上为减函数,则有 ( )A. 21>k B. 21<k C. 21>-k D. 21<-k 3、函数x y 2=在区间 [2,4] 上的最大值、最小值分别为 ( )A. 1,21B. 21,1C. 21,41D. 41,214、函数丨-=丨1x y 在[-2,2]上的最大值为 ( ) A. 0 B. 1 C. 2 D. 35、函数54)(2+-=mx x x f 在区间 [-2,+∞)上为增函数,在区间(-∞,-2 ]上是减函数,则)1(f 等于 ( )A. -7B. 1C. 17D. 25 6、函数x x f 67)(-=的单调减区间是 ( ) A. (-∞,67] B. R C. [0,67] D. [67,+∞)7、设)(x f 是(-∞,+∞)上的增函数,a 为实数,则有 ( )A. )2()(a f a f <B. )()(2a f a f < C. )()(2a f a a f <+ D. )()1(2a f a f >+ 8、函数23)(+=x x f 在区间 [-1,2]上的最小值为_______. 9、函数1+=ax y 在区间[1,3]上的最大值是4,则=a _______.10、若)(x f 是定义在 [0,+∞)上的减函数,则不等式)82()(+-<x f x f 的解集是_______. 11、函数322-+=x x y 的单调减区间是_______. 12、证明:函数42x y =在[0,+∞)上是增加的.13、证明:函数x xx f +=1)(在(-1,+∞)上是增函数. 14、已知函数21)(++=x ax x f 在区间(-2,+∞)上是增函数,求实数a 的取值范围.§4 二次函数性质的再研究1、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( )A 、7-B 、1C 、17D 、25 2、下列关于函数106)(2+-=x x x f ,]5,2[∈x 的结论正确的是( ) A .递增函数 B .递减函数 C .最小值是2 D .最大值是5 3、函数24xy --=)12(<≤-x 的值域为( )A .[]2,1B . (]2,0C .[]0,2-D .[)0,2- 4、函数))(1(a x x y -+=的图象的对称轴为y 轴,则a 等于 ( ) A. -2 B. -1 C. 1 D. 25、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )A 、3-≤aB 、3-≥aC 、5≤aD 、5≥a6、已知二次函数a x x x f ++=2)( (0>a ),若0)(<m f ,则)1(+m f 的值是 ( ) A. 正数 B. 负数 C. 零 D.符号与a 有关7、二次函数4322++=x x y 的图象的顶点坐标为________,对称轴方程是_________ .8、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为_________ . 9、已知86)(2++-=k kx kx x f 定义域为R ,则实数k 的取值范围是 .10、二次函数)(x f y =满足)3()3(x f x f -=+,且0)(=x f 有两个实根21x x ,,则=+21x x . 11、方程0422=+-ax x 的两根均大于1,则实数a 的取值范围是_____。

12、(1)已知函数)(x f =122++ax ax 在区间 [-1,2] 上的最大值为4,求实数a 的值; (2)已知函数)(x f =222+-ax x ,∈x [-1,1],求函数)(x f 的最小值.§5 简单的幂函数1、下列函数是幂函数的是 ( )A. 12-=x y B. π=x y C. 33x y = D. xy 1=- 2、下列结论中,不正确的是 ( ) A. 幂函数1-=xy 是奇函数B. 幂函数2x y =是偶函数C. 幂函数x y =既是奇函数,又是偶函数D. 21x y =既不是奇函数又不是偶函数3、对于定义域是R 的任意奇函数)(x f ,都有 ( ) A. 0)()(>--x f x f B. 0)()(≤x f x f -- C. )(x f ·)(x f -0≤ D. )(x f ·)(x f -0>4、下列命题正确的是 ( ) A. 偶函数的图象一定与y 轴相交 B. 奇函数的图象一定通过原点C. 不存在既是奇函数又是偶函数的函数D. 偶函数的图象关于y 轴对称5、函数)(x f =丨32+x 丨-丨32-x 丨 是 ( )A. 奇函数B. 偶函数C. 非奇非偶函数D. 既是奇函数又是偶函数6、如果奇函数)(x f 在区间[3,7]上是增函数,且最小值为5,那么)(x f 在区间[―7,―3]上是 ( ) A. 增函数且最小值为-5 B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-57、已知偶函数=y )(x f 的图象与x 轴有四个交点,则方程)(x f =0的所有实数根之和是 ( ) A. 4 B. 2 C. 1 D. 08、设)(x f =735+++cx bx ax (其中c b a ,,为常数,∈x R ),若17)7(=--f ,则=)7(f ( ) A. 31 B. 17 C. -31 D. 249、设)(x f 为R 上的奇函数,当0>x 时,x x x f -=2)(,则0<x 时,)(x f =___________. 10、 y=(m 2-2m+2)x 2m+1是一个幂函数,则m=_____. 11、已知函数12)5(---=m xm m y 是幂函数,而且当∈x (0,+∞)时为增函数,则=m ______.12、画出下列函数的图象,并判断奇偶性:(1)xx f 3)(=- (2)2x y =,∈x (-3,3] (3)33)(2-=x x f (4)1)1(2)(2++=x x f 13、判断下列函数的奇偶性(1)x x x f -=3)( (2)11)(2+=x x f (3)1)1()(4++=x x x x f (4)1)(+=丨x x f 丨14、已知)(x f =1222)(--+m m xm m(1)当m 取什么值时,)(x f 为正比例函数? (2)当m 取什么值时,)(x f 为反比例函数? (3)当m 取什么值时,)(x f 为幂函数?15、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。

相关文档
最新文档