物理电磁感应现象的两类情况的专项培优练习题(含答案)含答案

合集下载

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案一、电磁感应现象的两类情况1.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。

现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。

U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。

另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。

已知金属棒和U 形框与导轨间的动摩擦因数均为33μ=。

(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。

(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。

【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B lα+==N·s (3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212de ab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m2.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)及答案解析

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)及答案解析

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)及答案解析一、电磁感应现象的两类情况1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

物理电磁感应现象的两类情况的专项培优练习题(含答案)附答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)附答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)附答案一、电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

物理电磁感应现象的两类情况的专项培优练习题(含答案)

物理电磁感应现象的两类情况的专项培优练习题(含答案)

速度 v,则有
解得
E BLv
v E BL
(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为
Ek
1 2
mv2
mE 2 2 B 2 L2
所以在整个过程中电源释放的电能为 mE2 2 B 2 L2
(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于 E ,导体棒在安培力的作用下 R
7.磁场在 xOy 平面内的分布如图所示,其磁感应强度的大小均为 B0,方向垂直于 xOy 平 面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为 L0,整个磁场以速度 v 沿 x 轴正方向匀速运动。若在磁场所在区间内放置一由 n 匝线圈组成的矩形线框 abcd,线 框的 bc=LB、ab=L、LB 略大于 L0,总电阻为 R,线框始终保持静止。求: (1)线框中产生的总电动势大小和导线中的电流大小;
物理电磁感应现象的两类情况的专项培优练习题(含答案)
一、电磁感应现象的两类情况
1.如图甲所示,MN、PQ 两条平行的光滑金属轨道与水平面成 θ = 30°角固定,M、P 之间 接电阻箱 R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为 B = 1T.质量为 m 的金属杆 ab 水平放置在轨道上,其接入电路的电阻值为 r,现从静止释 放杆 ab,测得最大速度为 vm.改变电阻箱的阻值 R,得到 vm 与 R 的关系如图乙所示.已 知轨距为 L = 2m,重力加速度 g 取 l0m/s2,轨道足够长且电阻不计.求:
杆达到最大速度时 mgsin BIL 0

v
mg sin B2L2
R
mg sin B 2 L2
r
结合函数图像解得:m = 0.8kg、r = 2Ω

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)含答案

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)含答案

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)含答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及答案解析

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及答案解析

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及答案解析一、电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧ B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。

物理电磁感应现象的两类情况的专项培优练习题含答案

物理电磁感应现象的两类情况的专项培优练习题含答案

物理电磁感应现象的两类情况的专项培优练习题含答案一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

高考物理 电磁感应现象的两类情况 培优练习(含答案)

高考物理 电磁感应现象的两类情况 培优练习(含答案)

高考物理电磁感应现象的两类情况培优练习(含答案)一、电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。

当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。

【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh产生的热量为金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh产生的热量为联立解得2.如图所示,质量为4m的物块与边长为L、质量为m、阻值为R的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)
6.如图甲所示,MN、PQ 两条平行的光滑金属轨道与水平面成 =30 角固定,N、Q 之间
接电阻箱 R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为 B=0.5T,质量为 m 的金属杆 ab 水平放置在轨道上,其接入电路的电阻位为 r。现从静止释 放杆 ab,测得最大速度为 vM,改变电阻箱的阻值 R,得到 vM 与 R 之间的关系如图乙所 示。已知导轨间距为 L=2m,重力加速度 g=10m/s2,轨道足够长且电阻不计。求: (1)当 R=0 时,杆 ab 匀速下滑过程中产生感应电动势 E 的大小及杆中的电流方向; (2)金属杆的质量 m 及阻值 r;
时,电容器中贮存的电量 Q.
”字型线圈
【答案】(1)
2BL(v0 R1
v)
2BL
(2)
B2L2 kR1v0 2B2L2 kR1
(3)
4nB Lb R2
【解析】
【详解】
解:(1)金属框相对于磁场的速度为: v0 v
每边产生的电动势: E BL(v0 v)
由欧姆定律得: I 2E R1
解得: I 2BL(v0 v) R1
据法拉第电磁感应定律 在 ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化 联立解得: (3)对物体和 ab 棒组成的系统,根据能量守恒定律有:

解得:电阻 R 上产生的焦耳热
3.如图所示,两根竖直固定的足够长的金属导轨 ad 和 bc,相距为 L=10cm;另外两根水 平金属杆 MN 和 EF 可沿导轨无摩擦地滑动,MN 棒的质量均为 m=0.2kg,EF 棒的质量
受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀
速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条

【物理】物理电磁感应现象的两类情况的专项培优练习题含详细答案

【物理】物理电磁感应现象的两类情况的专项培优练习题含详细答案

【物理】物理电磁感应现象的两类情况的专项培优练习题含详细答案一、电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)含答案

物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)含答案

物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)含答案一、电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

物理电磁感应现象的两类情况的专项培优练习题含详细答案

物理电磁感应现象的两类情况的专项培优练习题含详细答案

物理电磁感应现象的两类情况的专项培优练习题含详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)含答案

【物理】物理电磁感应现象的两类情况的专项培优练习题(含答案)含答案

一、电磁感应现象的两类情况1.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。

第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。

线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。

重力加速度大小为g ,不计空气阻力。

求: (1)线框的质量m ;(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。

【答案】22112B l gh gR (2)+12n n B B =;23112(1)2n B l gh - 【解析】 【分析】 【详解】(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2112v gh =,设线框所受安培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得1F mg =由安培力的表达式得11F B Il =,111=E B lv ,1E I R=联立解得 22112B l m gh gR=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得22n nB l v mg R = 22+1+1n n B l v mg R=且12n n v v +=联立解得12n n B B +=(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得22nv h g=112n n v v -==2(1)L n l -联立解得2(1)122(1)n H h L h n l -=+=+-由能量守恒定律得2(1)Q mg n l =-联立解得23112(1)2n B l gh Q -=2.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R =4Ω的定值电阻,两导轨在同一平面内。

备战高考物理 电磁感应现象的两类情况 培优练习(含答案)附答案

备战高考物理 电磁感应现象的两类情况 培优练习(含答案)附答案

备战高考物理 电磁感应现象的两类情况 培优练习(含答案)附答案一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B L θθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L+=∆=3.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及详细答案

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及详细答案

【物理】物理电磁感应现象的两类情况的专项培优易错试卷练习题(含答案)及详细答案一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s内通过电阻R的电量为:10.253C0.75Cq I t V=⨯=⨯=设3s后到撤去外力F时又运动了1s,则有:11BLsq q I tR RΦ-===VV&解得:16ms=此时ab棒的速度设为1v,则有:221012v v as-=解得:14m/sv=此后到停止,由能量守恒定律得:可得:21210.195J2Q mv mgsμ=-=3.如图甲所示,两根足够长的光滑平行直导轨固定在水平面上,导轨左侧连接一电容器,一金属棒垂直放在导轨上,且与导轨接触良好。

物理电磁感应现象的两类情况的专项培优练习题(含答案)附详细答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)附详细答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)附详细答案一、电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

(2)线圈中的电流大小。

(3)AB 边产生的焦耳热。

【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图甲所示,两根足够长的光滑平行直导轨固定在水平面上,导轨左侧连接一电容器,一金属棒垂直放在导轨上,且与导轨接触良好。

在整个装置中加上垂直于导轨平面的磁场,磁感应强度按图乙所示规律变化。

0~t 0内在导体棒上施加外力使导体棒静止不动,t 0时刻撤去外力。

已知电容器的电容为C ,两导轨间距为L ,导体棒到导轨左侧的距离为d ,导体棒的质量为m 。

求: (1)电容器带电量的最大值; (2)导体棒能够达到的最大速度v m 。

【答案】(1)00CB Ld Q t =;(2)22022()CB L dv t m CB L =+() 【解析】 【分析】 【详解】(1)电容器两极板的电压B U Ld t =电容器的带电量00CB t Q CU Ld== (2)电容器放电后剩余的电量Q CU ''=U BLv '=由动量定理得i BI L t mv ∑∆= Q Q I t '-=∆解得220220()CB L d v t m CB L =+()3.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。

物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案

物理电磁感应现象的两类情况的专项培优练习题(含答案)及答案一、电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。

当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。

【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh产生的热量为金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh产生的热量为联立解得2.如图所示,在倾角30oθ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L。

物理电磁感应现象的两类情况的专项培优易错试卷练习题及详细答案

物理电磁感应现象的两类情况的专项培优易错试卷练习题及详细答案

物理电磁感应现象的两类情况的专项培优易错试卷练习题及详细答案一、电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒=线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin 302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)附答案解析

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)附答案解析

物理电磁感应现象的两类情况的专项培优 易错 难题练习题(含答案)附答案解析一、电磁感应现象的两类情况1.如图所示,线圈工件加工车间的传送带不停地水平传送长为L ,质量为m ,电阻为R 的正方形线圈,在传送带的左端线圈无初速地放在以恒定速度v 匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v 后,线圈与传送带始终相对静止,并通过一磁感应强度为B 、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离L 不变,匀强磁场的宽度为3L ,求:(1)每个线圈通过磁场区域产生的热量Q .(2)在某个线圈加速的过程中,该线圈通过的距离S 1和在这段时间里传送带通过的距离S 2之比.(3)传送带每传送一个线圈,电动机多消耗的电能E (不考虑电动机自身的能耗)【答案】(1)232B L vQ R= (2) S 1:S 2=1:2 (3)E=mv 2+2B 2L 3v/R【解析】 【分析】 【详解】(1)线圈匀速通过磁场,产生的感应电动势为E=BLv ,则每个线圈通过磁场区域产生的热量为223()22BLv L B L vQ Pt R v R===(2)对于线圈:做匀加速运动,则有S 1=vt /2 对于传送带做匀速直线运动,则有S 2=vt 故S 1:S 2=1:2(3)线圈与传送带的相对位移大小为2112vts s s s ∆=-== 线圈获得动能E K =mv 2/2=fS 1传送带上的热量损失Q /=f (S 2-S 1)=mv 2/2送带每传送一个线圈,电动机多消耗的电能为E =E K +Q +Q /=mv 2+2B 2L 3v/R 【点睛】本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv 、欧姆定律和能量如何转化是关键.2.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)AB 边产生的焦耳热
将v
FR B2 L2
代入得
I F BL
Q
I
2 RABt
(
F BL
)2
R 4
L v
Q FL 4
4.如图,光滑金属轨道 POQ、 P´O´Q´互相平行,间距为 L,其中 O´Q´和 OQ 位于同一水 平面内,PO 和 P´O´构成的平面与水平面成 30°。正方形线框 ABCD 边长为 L,其中 AB 边
有被击穿,求:
(1)匀强磁场的磁感应强度 B 的大小为多少?
(2)金属棒 ab 下滑 t 秒末的速度是多大?
【答案】(1) B
mgR sin L2v
(2) vt
gvt sin v CgR sin
【解析】 试题分析:(1)若在 M、P 间接电阻 R 时,金属棒先做变加速运动,当加速度为零时做匀
速运动,达到稳定状态.则感应电动势 E BLv ,感应电流 I E ,棒所受的安培力 R
2
6
2 3mr
3 gL 2B2L3
2
3mr
【解析】
【分析】
【详解】
(1)由机械能守恒
可得
mgL
sin
30
mg 2L
sin
30
1 2
2mv02
0
(2)由法拉第电磁感应定律可知 根据闭合电路欧姆定律可知
v0
3 gL 2
E BLv0
根据部分电路欧姆定律 可得
I BLv0 3r 2 1
U AB I 2 r
(2)求线框 AB 边刚进入磁场时,AB 两端的电压 UAB; (3)求 CD 边进入磁场时,线框的速度 v;
(4)若线框
AB
边尚未到达
M´N´,杆
EF
就以速度 v1
2 B 2 L3 3mr
离开
M´N´右侧磁场区域,
求此时线框的速度多大?
【答案】(1) 3 gL ;(2) BL 1 gL ;(3) 3 gL B2L3 ;(4)
运动. t0 时刻,金属杆进入磁感应强度大小为 B、方向垂直于纸面向里的匀强磁场区域,
且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触
良好,两者之间的动摩擦因数为 .重力加速度大小为 g.求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】 E
即:i=t-1(其中,1s≤t≤1.2s) 【点睛】 注意区分感生电动势与动生电动势的不同计算方法,充分理解 B-t 图象的含义.
联立①②③式可得: E
Blt0
F m
g

(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为 I,根据欧姆定律:I= E ⑤ R
式中 R 为电阻的阻值.金属杆所受的安培力为: f BIl ⑥
因金属杆做匀速运动,由牛顿运动定律得:F–μmg–f=0 ⑦
联立④⑤⑥⑦式得: R= B2l 2t0 m
2.如图所示,足够长的光滑平行金属导轨 MN 、 PQ 倾斜放置,两导轨间距离为 L ,导
轨平面与水平面间的夹角 ,所处的匀强磁场垂直于导轨平面向上,质量为 m 的金属棒 ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒 ab 的电阻,重力加速度 为 g .若在导轨的 M 、 P 两端连接阻值 R 的电阻,将金属棒 ab 由静止释放,则在下滑的 过程中,金属棒 ab 沿导轨下滑的稳定速度为 v ,若在导轨 M 、 P 两端将电阻 R 改接成电 容为 C 的电容器,仍将金属棒 ab 由静止释放,金属棒 ab 下滑时间 t ,此过程中电容器没
6.如图,POQ 是折成 60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对 称,OP=OQ=L.整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时 间变化规律为 B=B0-kt(其中 k 为大于 0 的常数).一质量为 m、长为 L、电阻为 R、粗细
均匀的导体棒锁定于 OP、OQ 的中点 a、b 位置.当磁感应强度变为 1 B0 后保持不变,同 2
则电容器板间电压为 U E BLv
此时电容器的带电量为 Q CU
设时间间隔△ t 时间内流经棒的电荷量为 Q
则电路中电流 i Q CU CBLv ,又 a v ,解得 i CBLa
t t
t
t
mgsin
gvsin
根据牛顿第二定律得 mgsin BiL ma ,解得 a m B2L2C v CgRsin
大小均为 B。在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆 EF,其质量为 m 电阻为 r。锁定解除开关 K 与 M 点的距离为 L,不会阻隔导轨中的电流。当线框 AB 边经过
开关 K 时,EF 杆的锁定被解除,不计轨道转折处 OO´和锁定解除开关造成的机械能损耗。
(1)求整个线框刚到达水平面时的速度 v0 ;
1
U AB BL
gL 6
(3)线框进入磁场的过程中,由动量定理
又有 代入可得
BIL t 2mv 2mv0 I t BL2 3r 2
v 3 gL B2L3 2 3mr
(4)杆 EF 解除锁定后,杆 EF 向左运动,线框向右运动,线框总电流等于杆 EF 上电流 对杆 EF
对线框
BIL t mv1
根据闭合电路欧姆定律可知,回路中的感应电流最大为:im= =0.2A
根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:Fm=imLB=0.04N
在棒通过三角形 abd 区域时,切割有效长度 l=2v(t-1)(其中,1s≤t≤ +1s)
综合上述分析可知,回路中的感应电流为:i= =
(其中,1s≤t≤ +1s)
s2
s1
vt 2
s1
线圈获得动能 EK=mv2/2=fS1 传送带上的热量损失 Q/=f(S2-S1)=mv2/2 送带每传送一个线圈,电动机多消耗的电能为 E=EK+Q+Q/=mv2+2B2L3v/R 【点睛】
本题的解题关键是从能量的角度研究电磁感应现象,掌握焦耳定律、E=BLv、欧姆定律和能
量如何转化是关键.
时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为 v.导体棒与导轨始终保持良 好接触,导轨电阻不计,重力加速度为 g.求导体棒:
(1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.
【答案】⑴ 3kL2 ,顺时针方向或 b→a;⑵g- B02L2v ;⑶
和 CD 边质量均为 m,电阻均为 r,两端与轨道始终接触良好,导轨电阻不计。BC 边和 AD 边为绝缘轻杆,质量不计。线框从斜轨上自静止开始下滑,开始时底边 AB 与 OO´相距 L。
在水平轨道之间, MNN´M´长方形区域分布着有竖直向上的匀强磁场,
OM O´N L, N´M´右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度
所以金属棒做初速度为
0
的匀加速直线运动, ts 末的速度 v
at
gvtsin v CgRsin

考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化
【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式, 通过分析棒的受力情况,确定其运动情况.
3.如图,垂直于纸面的磁感应强度为 B,边长为 L、电阻为 R 的单匝方形线圈 ABCD 在外 力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v。 (2)线圈中的电流大小。 (3)AB 边产生的焦耳热。
物理电磁感应现象的两类情况的专项培优练习题(含答案)含答案
一、电磁感应现象的两类情况
1.如图所示,线圈工件加工车间的传送带不停地水平传送长为 L,质量为 m,电阻为 R 的 正方形线圈,在传送带的左端线圈无初速地放在以恒定速度 v 匀速运动的传送带上,经过 一段时间,达到与传送带相同的速度 v 后,线圈与传送带始终相对静止,并通过一磁感应 强度为 B、方向竖直向上的匀强磁场,已知当一个线圈刚好开始匀速度运动时,下一个线 圈恰好放在传送带上,线圈匀速运动时,每两个线圈间保持距离 L 不变,匀强磁场的宽度 为 3L,求:
【解析】
【分析】
【详解】
(1)线圈匀速通过磁场,产生的感应电动势为 E=BLv,则每个线圈通过磁场区域产生的热量
为 Q Pt (BLv)2 2L 2B2L3v
Rv
R
(2)对于线圈:做匀加速运动,则有 S1=vt/2 对于传送带做匀速直线运动,则有 S2=vt 故 S1:S2=1:2
(3)线圈与传送带的相对位移大小为 s
可得 整理得到 可得
BIL t 2m v2
v1 2v2
v2
1 2
v1
B2 L3 3mr
v2 v v2
3 gL 2B2L3
2
3mr
5.如图,水平面(纸面)内同距为 l 的平行金属导轨间接一电阻,质量为 m、长度为 l 的
金属杆置于导轨上,t=0 时,金属杆在水平向右、大小为 F 的恒定拉力作用下由静止开始
(1)每个线圈通过磁场区域产生的热量 Q.
(2)在某个线圈加速的过程中,该线圈通过的距离 S1 和在这段时间里传送带通过的距离 S2 之 比.
(3)传送带每传送一个线圈,电动机多消耗的电能 E(不考虑电动机自身的能耗)
【答案】(1) Q 2B2L3v R
(2) S1:S2=1:2 (3)E=mv2+2B2L3v/R
F BIL
联立可得 F B2L2v ,由平衡条件可得 F mgsin ,解得 B R
mgRsin . L2 v
(2)若在导轨 M、P 两端将电阻 R 改接成电容为 C 的电容器,将金属棒 ab 由静止释放,
相关文档
最新文档