九下 锐角三角函数 第5课时 由三角函数值求锐角 含答案

合集下载

九年级数学专题复习锐角三角函数

九年级数学专题复习锐角三角函数

总复习锐角三角函数【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点进阶:ABCabc(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点进阶:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点进阶:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点进阶:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点进阶:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点进阶:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c==,cos sin b A B c ==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高)②如图所示,1()2ABC S r a b c =++△.【典型例题】类型一、锐角三角函数的概念与性质例1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.举一反三:【变式】如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .类型二、特殊角的三角函数值 例2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.举一反三: 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值.例3.如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.CBA举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到0.1千米)类型三、解直角三角形及应用例4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长.例5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).举一反三:【变式】如图所示,正三角形ABC的边长为2,点D在BC的延长线上,CD=3.(1)动点P在AB上由A向B移动,设AP=t,△PCD的面积为y,求y与t之间的函数关系式及自变量t的取值范围;(2)在(1)的条件下,设PC=z,求z与t之间的函数关系式.例6.如图(1)所示,一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.(1)求AO与BO的长.(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图(2)所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A 沿NO下滑了多少米;②如图(3)所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【巩固练习】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35 B .45 C .34 D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247B .73C .724D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12B .22C .32D .336.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t an∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)。

人教版九年级数学下册第28章 锐角三角函数:用计算器求锐角三角函数值及锐角

人教版九年级数学下册第28章 锐角三角函数:用计算器求锐角三角函数值及锐角

·cosα,
∴sin2α=2sinαcosα.
随堂即练
(1) 利用计算器求值,并提出你的猜想: sin20°= 0.3420 , cos20°= 0.9397, sin220°= 0.1170 , cos220°= 0.8830; sin35°= 0.5735 ,cos35°= 0.8192, sin235°= 0.3290 ,cos235°= 0.6710; 猜想: 已知0°<α<90°,则 sin2α + cos2α = 1.
解:∵ AT 平分∠BAC,且∠BAC = 42°24′, ∴ ∠CAT = 1 ∠BAC = 21°12′. 2 在 Rt△ACT 中 cos∠CAT = AC , AT ∴ AC = AT ·cos∠CAT = 14.7×cos21°12′
≈13.705(cm).
课堂小结
用计算器求 锐角三角函 数值及锐角
新课讲解
1 用计算器求锐角的三角函数值或角的度数
例1 (1) 用计算器求sin18°的值; 解:第一步:按计算器 sin 键;
第二步:输入角度值18; 屏幕显示结果 sin18°= 0.309 016 994.
不同计算器操作的 步骤可能不同哦!
新课讲解
(2) 用计算器求 tan30°36′ 的值; 解:方法①:
的是
( A)
A.sin 2 4 D.M′S 3 7 D.M′S 1 8
D.M′S = B.2 4 D.M′S 3 7 Dsin 2 4 D.M′S 1 8 D.M′S = D.sin 2 4 D.M′S 3 7 D.M′S 1 8
D.M′S 2nd F =
(3) 已知 sinA = 0.501 8,用计算器求 ∠A 的度数. 解:第一步:按计算器 2nd F sin-1 键;

锐角三角函数的计算-特殊角的三角函数值(知识讲解)-2022-2023学年九年级数学下册基础知识讲练

锐角三角函数的计算-特殊角的三角函数值(知识讲解)-2022-2023学年九年级数学下册基础知识讲练

专题1.4 锐角三角函数的计算——特殊角的三角函数值(知识讲解)【学习目标】1.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;2.会进行有关三角函数的计算应用【要点梳理】特殊角的三角函数值锐角30°45° 160°特别说明:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为12、22、32,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).【典型例题】类型一、特殊角三角函数计算1.计算:(1)sin230°+sin60°-sin245°+cos230°;(2)tan30tan45 tan60?tan45︒+︒︒︒.【答案】(1)32+12;(2)133+.【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.特殊值:sin 30° =12;sin 60° = 32;sin 45° = 22;cos 30° = 32;tan 60° = 3;tan 45° = 1解:(1)原式=1342+-12+34=32 + 12; 3133?1+(2)原式= =133+. 【点拨】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.举一反三:【变式1】计算:222sin 60cos 60︒︒︒︒-﹣sin45°•tan45° 【答案】3232+ 【分析】把特殊角的三角函数值代入计算即可.解:222sin 60cos 60tan 604cos 45︒︒︒︒--﹣sin45°•tan45° ()22312222122342⎛⎫⨯- ⎪⎝⎭=-⨯-⨯ 122322=-- 23222=+-=3232+. 【点拨】本题考查了特殊角的三角函数值及分母有理化、二次根式的化简,牢记特殊角的三角函数值,是解决本题的关键.【变式2】计算:2cos45°﹣tan60°+sin30°﹣12tan45°【答案】2-3【分析】将各特殊角的三角函数值代入即可得出答案.解:原式=2×22﹣3+12﹣12×1 =2-3【点拨】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.类型二、特殊角三角函数计算2.计算:()2012sin 451220202π-︒⎛⎫----+- ⎪⎝⎭ 【答案】-2【分析】直接利用特殊角的三角函数值、绝对值的性质、零指数幂的性质、负整数指数幂的性质分别代入化简即可.解:原式=24121-+-+=-2【点拨】此题主要考查了实数运算,正确化简各数是解题关键.举一反三:【变式1】计算:0113tan 30(2014π)32()3-︒---. 【答案】-2试题分析:分别计算033tan3033=⨯,(2014-π)0=1,32-=2﹣11333-⎛⎫= ⎪⎝⎭,,再用实数的混合运算法则计算.解:原式=3×33﹣1+2﹣3﹣3=﹣2. 【变式2】计算:()()2(31)3tan3052522sin60+--++. 【答案】3试题分析:用完全平方公式、平方差公式去括号,计算出特殊角三角函数值,再进行乘法运算,最后进行加减运算即可.解:(3-1)2+3tan 30°-(5-2)( 5+2)+2sin 60°=4-23+3×33-(5-4)+2×32=4-23+3-1+3=3.【点拨】掌握二次根式的加减乘除运算法则.类型三、三角函数计算3. 已知A ∠为锐角,且24sin 30A -=,则A ∠=______. 【答案】60︒【分析】计算,并结合A ∠是个锐角,即可求解.解:∵24sin 30A -=,∵23sin 4A =, ∵3sin 2A =±, ∵A ∠为锐角,∵3sin 2A =, ∵60A ∠=︒故答案是:60°【点拨】本题主要考察计算和锐角三角函数与角度关系,属于基础的计算题,难度不大.解题的关键是结合角度范围确定三角函数值范围.举一反三:【变式1】已知矩形ABCD 的周长为()232cm ,对角线2cm AC =,求BAC ∠与DAC ∠的度数. 【答案】30BAC ∠=︒,60=︒∠DAC 或60BAC ∠=︒,30DAC ∠=︒.【分析】设AB=x,将BC 表示出来,再利用勾股定理可求出x=1或x=3,再利用三角函数求出一个角为30°,另一个角为60°.解:∵矩形ABCD 的周长为232+,∵AB+BC= 3+1,∵对角线AC=2,∵设AB=x,则BC=3+1-x,∵AB 2+BA 2=AC 2,∵x 2+(3+1-x)2=22,解得:x 1=1,x 2=3,∵当AB=1,则BC=3,∵tan∵BAC=3,∵∵BAC=60°,∵DAC=30°,当AB=3,则BC=1,∵tan∵BAC= 33, ∵∵BAC=30°,∵DAC=60°,故30BAC ∠=︒,60=︒∠DAC 或60BAC ∠=︒,30DAC ∠=︒. 【点拨】此题主要考查了勾股定理和特殊角的三角函数值,解答本题的关键是掌握特殊角的三角函数值.【变式2】计算(1)23602cos 30tan 45︒-︒+︒(2)已知α是锐角,且()1sin 152α-︒=84cos α的值. 【答案】(1)1 (2)0【分析】(1)把特殊角的三角函数值代入代数式进行计算即可;(2)先利用锐角的正弦求解α的大小,再代入代数式进行计算即可.(1)解:23sin 602cos 30tan 45︒-︒+︒ 23332122331122(2) α是锐角,且()1sin 152α-︒=,1530,=45,∴ 84cos α-2224222220=-=【点拨】本题考查的是特殊角的三角函数值的混合运算,已知三角函数值求解锐角的大小,熟记特殊角的三角函数值是解本题的关键.类型四、三角函数计算4.(1)计算:21122cos453-⎛⎫--︒+-⎪⎝⎭.(2)如图,在△ABC中,∵ACB=90°,角平分线AE与高CD交于点F,求证:CE=CF.【答案】(1)8;(2)见分析【分析】(1)计算绝对值、特殊角的三角函数值、负整数指数幂,再合并即可;(2)根据直角三角形两锐角互余求得∵B=∵ACD,然后根据三角形外角的性质求得∵CEF=∵CFE,根据等角对等边求得CE=CF.(1)解:21 122cos453-⎛⎫--︒+-⎪⎝⎭221292=--⨯+2129=--+=8;(2)证明:∵在△ABC中,∵ACB=90°,∵∵B+∵BAC=90°,∵CD是AB边上的高,∵∵ACD+∵BAC=90°,∵∵B=∵ACD,∵AE是∵BAC的角平分线,∵∵BAE=∵EAC,∵∵B +∵BAE =∵ACD +∵EAC ,即∵CEF =∵CFE ,∵CE =CF .【点拨】本题考查了特殊角的三角函数值,负整数指数幂,直角三角形的性质,三角形外角的性质,等腰三角形的判定等,熟练掌握性质定理是解题的关键.举一反三:【变式1】如图,将∵ABC 沿射线AB 平移4cm 后能与∵BDE 完全重合,连接CE 、CD 交BE 于点O ,OB =OC .(1)求证:四边形CBDE 为矩形;(2)若S △BOC 432,求∵ACD 的度数. 【答案】(1)见分析(2)120°【分析】(1)由平移的性质及ASA判定定理可证得OCE ODB ≌,根据全等三角形的性质即可求证结论.(2)根据矩形的性质及面积公式即可求得BC ,进而可利用特殊三角函数值可求得60BCD ∠=︒,根据垂直平分线的性质即可求解.(1)证明:由题意可知:△BDE 由△ABC 平移后得到,∵//BC DE ,且BC DE =,∵四边形CBDE 是平行四边形,∵//CE BD ,且CE BD =,∵ECD CDB ∠=∠,CEB EBD ∠=∠,在OCE 和ODB △中 ECD CDB CE BDCEB EBD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵ ()OCE ODB ASA ≌∵OC OD =,OB OE =,又∵OB OC =,∵CD BE =,∵ 平行四边形CBDE 为矩形.(2)由(1)可知四边形CBDE 为矩形,∵90CBD ∠=︒,且4BD =cm ,在OBC 中过点O 作BC 的垂线,垂足为F ,则2OF =,∵143223BOC S BC =⨯⨯=,∵433BC =cm , ∵在Rt CBD △,43433BD tan BCD CB ∠===,∵60BCD ∠=︒,又∵在△ACD 中,BC 是AD 的垂直平分线,∵60ACB BCD ∠=∠=︒,∵120ACD ∠=︒,∴∵ACD 的度数为120︒.【点拨】本题考查了平移的性质、全等三角形的判定及性质、矩形的判定及性质、特殊三角函数值求角度,熟练掌握相关性质及判定定理是解题的关键.【变式2】将矩形ABCD 对折,使AD 与BC 重合,得到折痕EF ,展开后再一次折叠,使点A 落在EF 上的点A '处,并使得折痕经过点B ,得到折痕BG ,连接AA ',如图1,问题解决:(1)试判断图1中ABA '△是什么特殊的三角形?并说明理由;(2)如图2,在图1的基础上,AA '与BG 相交于点N ,点P 是BN 的中点,连接AP 并延长交BA '于点Q ,求BQ BA '的值.【答案】(1)ABA '△是等边三角形,理由见分析(2)13BQ BA =' 【分析】(1)等边三角形,解法一利用垂直平分线性质得出AA ′=BA ′,利用折叠得出BA BA '=即可,解法二:根据折叠得出12BE BA =,BA BA '=,90A EB '∠=︒然后利用锐角三角函数定义得出1cos 2BE A BE BA '∠==' ,求出60A BE '∠=︒即可; (2)解法一:过点N 作NH A B '∥交AP 于H ,先证PHN PQB ≌△△(AAS ),再证AHN AQA '∽△△,得出12BQ QA =' 即可 解法二:由折叠可知A N AN '=,由点P 是BN 的中点 ,得出BP PN =,利用平行线等分性质得出1A M A N QM AN ''==,1BQ BP QM PN ==,证出BQ QM A M '==即可.(1)解:ABA '△是等边三角形.解法一:理由是:由折叠可知EF 垂直平分AB ;∵AA ′=BA ′,∵∵ABG 折叠得△A ′BG ,∵BA BA '=,∵AA BA BA ''==;∵ABA '△是等边三角形;解法二:理由是:由折叠可知12BE BA =,BA BA '=,90A EB '∠=︒, ∵1cos 2BE A BE BA '∠==' , ∵60A BE '∠=︒,∵ABA '△是等边三角形;(2)解法一:过点N 作NH A B '∥交AP 于H ,∵HNP QBP ∠=∠,NHP BOP ∠=∠, 又∵点P 是BN 的中点 , ∵BP NP =,在△PHN 和△PQB 中, HNP QBP NHP BQP PN PB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∵PHN PQB ≌△△(AAS ), ∵HN BQ =,又∵NH A B '∥,∵ANH AA Q '∠=∠,AHN AQA '∠=∠, ∵AHN AQA '∽△△, 由折叠可知12A N AN AA ''==, ∵12HN AN QA AA =='' , ∵12BQ QA =', ∵13BQ BA ='; 解法二:由折叠可知A N AN '=, 又∵点P 是BN 的中点 , ∵BP PN =,过点N 作NM AQ ∥交BA '于M , ∵1A M A N QM AN''==,1BQ BP QM PN ==, ∵BQ QM A M '==, ∵13BQ BA ='.【点拨】本题考查一题多解,等边三角形的判定,折叠性质,线段垂直平分线性质,平行线等分线段定理,三角形相似判定与性质,锐角三角函数值求角,掌握一题多解,等边三角形的判定,折叠性质,线段垂直平分线性质,平行线等分线段定理,三角形相似判定与性质是解题关键.。

九年级数学下册《直角三角形的边角关系》复习专题5 用锐角三角函数解航海问题(含答案)

九年级数学下册《直角三角形的边角关系》复习专题5 用锐角三角函数解航海问题(含答案)

专题五用锐角三角函数解航海问题航海问题主要包括求航行的时间、求航行速度、判断是否有触礁危险等,是考试中的热点问题.解决航行问题的关键是从实际问题中构建一个或两个直角三角形,通过三角函数直接解决或根据图形中的数量关系建立方程解决.例1如图1,灯塔A周围1 000米水域内有礁石,一舰艇由西向东航行,在O处测得灯塔A在北偏东74°方向线上,这时O,A相距4 200米,如果不改变航向,此舰艇是否有触礁的危险?分析:要判断舰艇是否有触礁的危险,关键比较点A到正东方向的距离与1 000米的大小,因此,需过点A向正东方向引垂线,转化为直角三角形中的问题.解:如图1,过点A作AB与正东方向线垂直,垂足为B.在Rt△AOB中,OA=4 200,∠AOB=90°-74°=16°.AB=AO·sin∠AOB=4 200·sin16°=4 200×0.275 6≈1 158(米).因为1 158>1 000,所以此舰艇按原航向继续航行没有触礁的危险.说明:本题是一道比较简单的航行问题,不仅要能从实际问题中构造出直角三角形,而且还要注意一些解题技巧,如能用乘法的运算的,不用除法,能用正弦计算的,不用余弦.例2如图2,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.分析:要判断点B是否在暗礁区域外.则需要计算BC的长度,看其长度是否大于16海里,若BC>16海里,则点B在暗礁区域外;要判断继续向东航行有无触礁危险,则需要计算船到岛C的最短距离,看是否小于16海里.若小于16海里,则有触礁的危险.为此,需要构造直角三角形解决.解:(1)过点B 作BD ∥A E ,交AC 于点D .因为AB =36×0.5=18(海里),∠ADB =60°,∠DBC =30°,所以∠ACB =30°.又∠CAB =30°,所以BC =AB .即BC =AB =18>16.所以点B 在暗礁区域外.(2)过点C 作CH ⊥AB ,垂足为H ,在Rt △CHB 中,∠BCH =30°,令BH =x ,则CH .在Rt △ACH 中,∠CAH =30°,所以3tan 30CH AH x ====o . 因为AH AB BH =+,所以318x x =+.解得9x =.所以16CH =<.所以船继续向东航行有触礁的危险.说明:有无触礁问题是航海中的热点,也是中考试题中经常出现的试题.解决此类问题需要正确理解题意,从实际问题构建直角三角形模型.专题训练:1.如图3,一艘船向正东方向航行,在B 处测得有一灯塔在它的北偏东30°,距离为72海里的A 处.当行至C 处测得灯塔恰好在它的正北方向,求此时它与灯塔的距离AC (计算结果精确到0.1海里).2.如图4,海上有一灯塔P ,在它周围3海里处有暗礁.一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向. 问客轮不改变方向继续前进有无触礁的危险?参考答案:1.据题意∠ABC =90°-30°=60°,AB =72.在Rt △ABC 中,因为sin ∠ABC =AC AB, 所以AC =AB sin ∠ABC =72sin60°=72×1.7322≈62.4(海里). 2.过P 作PC ⊥AB 于C 点.据题意知:AB =9×26=3,∠P AB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°. 所以PC =BC .在Rt △P AC 中,tan 303PC PC PC AC AB BC PC===++o .3PC PC =+.所以3PC =>. 所以客轮不改变方向继续前进无触礁危险.。

锐角三角函数(含习题及答案)

锐角三角函数(含习题及答案)

锐角三角函数——正弦一、教学目标1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.2.能根据正弦概念正确进行计算3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30º,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90º,∠A=30º,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即==可得AB=2BC=70m,即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90º,∠A=45º,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90º,由于∠A=45º,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2 = AC2+BC2 = 2BC2,AB =BC故===结论:在一个直角三角形中,如果一个锐角等于45º,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90º,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90º,∠A=∠A’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c.师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦.记作sinA.板书:sinA== (举例说明:若a = 1,c = 3,则sinA=)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56º、sin∠DEF;3、sinA 是线段之间的一个比值;sinA 没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?(三)教学互动例、如图,在RtΔABC中,∠C = 90º,求sinA和sinB的值.分析:可利用勾股定理分别求出两个三角形中未知的那一边长,再根据正弦的定义求解.解答按课本.锐角三角函数——余弦和正切一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.如图,在Rt△ABC中,∠ACB=90º,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD=()A. B. C.D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90o,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90o,∠B=∠B’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90o,把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA;即cosA ==类似地,把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA =锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(三)教学互动例、如图,在RtΔABC中,∠C = 90º,BC=6,sinA =,求cosA和tanB的值.解:∵sinA =,∴AB == 6×= 10又AC === 8∴cosA ==,tanB ==30°、45°、60°角的三角函数值一、教学目标1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30º、45º、60º角的三角函数的运算式二、教学重点、难点重点:熟记30º、45º、60º角的三角函数值,能熟练计算含有30º、45º、60º角的三角函数的运算式难点:30º、45º、60º角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即sin30º =,sin45º=你还能推导出sin60º的值及30º、45º、60º角的其它三角函数值吗?(二)实践探索让学生画30º、45º、60º的直角三角形,分别求sin30º、cos45º、tan60°归纳结果(三)教学互动例1、求下列各式的值:(1) cos260º+cos245º+sin30ºsin45º(2)+解:(1)原式 = ()2+()2+××=++= 1(2)原式 =+=+= −(1+)2−(1−)2=−3−2−3+2= −6说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值.易错点因没有记准特殊角的正弦余弦值,造成计算错例2、(1)如图(1), 在RtΔABC中,∠C = 90º,AB =,BC =,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.解:(1)在图(1)中,∵sinA ===,∴∠A = −45º,(2)在图(2)中,∵tanα ===,∴α = 60º用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′sin37°23′cos21º28′ cos38°12′tan52°tan36°20′ tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=;cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A=.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C.D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.习题精选选择题:1.如图,CD是RtΔABC斜边上的高,AC = 4,BC = 3,则cos∠BCD的值是( )A.B.C. D.答案:D说明:因为CD⊥AB,所以∠BCD+∠B = 90º;又∠A+∠B = 90º,所以∠BCD =∠A;由BC = 3,AC = 4,得AB === 5,∴cos ∠BCD = cosA ==,所以答案为D.2.如图,以平面直角坐标系的原点为圆心,以1为半径作圆,若点P是该圆在第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标是( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)答案:D说明:如图,作PA⊥x轴于点A;由锐角三角函数定义知,cosα =,sinα =,所以OA = OPcosα = cosα,PA = OPsinα,所以点P的坐标为(cosα,sinα),所以答案为D.3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C’处,BC’交AD于E,下列结论不一定成立的是( )A.AD = BC’B.∠EBD =∠EDBC.ΔABE与ΔBCD相似D.sin∠ABE =答案:C说明:因为ΔBC’D≌ΔBCD,所以BC’ = BC;又BC = AD,所以AD = BC’;因为AD//BC,所以∠EDB =∠CBD,而∠CBD =∠EBD,所以∠EDB =∠EBD,所以EB = ED;而sin∠ABE ==,所以A、B、D都是成立的,答案为C.4.如图,RtΔABC中,∠C = 90º,D为BC上一点,∠DAC = 30º,BD = 2,AB = 2,则AC的长是( )A. B.2 C.3D.答案:A说明:在RtΔACD中,因为∠CAD = 30º,设CD = x,因为tan∠DAC =,则AC =x,在RtΔABC中,由勾股定理得AB2= AC2+BC2= AC2+(CD+DB)2,即(2)2= (x)2+(x+2)2,∴x2+x−2 = 0,解得x1 = 1或x2 = −2(舍去),即DC = 1,AC =,答案为A.5.在RtΔABC中,∠C = 90º,如果∠A = 30º,那么sinA+cosB的值等于( )A.1 B. C.D.答案:A说明:因为在RtΔABC中,∠C = 90º,∠A = 30º,所以∠B = 60º,所以sinA = sin30º =,cosB = cos60º =,故sinA+cosB =+= 1,所以答案为A.6.在矩形ABCD中,BC = 2,AE⊥BD于E,∠BAE = 30º,那么ΔECD的面积是( )A.2 B. C.D.答案:C说明:如图,由题意得,ΔABE与ΔBDC相似,∴∠CBD =∠BAE = 30º,∴CD = BC•tan∠CBD = 2•=,AB = CD =,BE = AB•sin30º =×=,EF = BE•sin30º =×=,∴SΔECD = SΔBCD−SΔEBC =BC•CD−BC•EF =×2×−×2×=,答案为C.7.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们的夹角为α,则它们重叠部分(图中黄色部分)的面积为( )A. B.sinα C. D.cosα答案:C说明:如图,过点A作AN⊥CD于N,过点D作DM⊥BC于M,则AN = DM = 1,∠DCM =α,在RtΔDCM中,CD == ,所以S平行四边形ABCD = CD•AN =,答案为C.解答题:1.如果α是锐角,且cosα =,求sinα及tanα的值.分析:事实上,因为α为锐角,所以可构造一个RtΔABC,使∠C = 90º,∠A = α,则有AC = 4k,AB = 5k,由勾股定理得BC == 3k,从而可求sinα;还可直接用公式sinA =求解.解:构造RtΔABC,使∠A = α,∠C = 90º,如图,∵cosα = cosA =,∴可令AC = 4k,AB = 5k,∴BC == 3k,∴sinA ===,tanA ===,即sinα =,tanα =.2.若tan2x−(+1)tanx+= 0,求锐角x.分析:这是以tanx为未知数的一元二次方程,可先求出tanx,再求x.解:tan2x−(+1)tanx+= 0,(tanx−1)(tanx−) = 0,得tanx = 1或tanx =;当tanx = 1时,x = 45º;当tanx =时,x = 60º;∴x1 = 45º,x2 = 60º.。

锐角三角函数(5)

锐角三角函数(5)

(C)0 °<∠A<60° (D)60°<∠A<90
2. 当∠A为锐角,且tanA的值小于 3 时, ∠A( C ) (A)0°<∠A<30° (B)30°<∠A<90° (C) 0°<∠A<60°(D)60°<∠A<90°
(A)0°<∠A< 30 ° (B) 30°<∠A≤45°
1 3. 当∠A为锐角,且cosA= 那么( D ) 5
10.如图,身高1.5m的小丽用一个两锐角分别是 300和600 的三角尺测量一棵树的高度.已知她与 树之间的距离为5m,那么这棵树大约有多高?
驶向胜利 的彼岸
同学们,前面我们学习了特殊角 30°45°60°的三角函数值,一些非特殊 角(如17°56°89°等)的三角函数值又怎 么求呢?
这一节课我们就学习借助计算器来完成这 个任务.
所以sin63゜52′41″=0.8979
练习一:
驶向胜利 的彼岸
1.使用计算器求下列三角函数值.(精确到0.0001) sin24゜,cos51゜42′20″,tan70゜21′.
答案:sin24°=0.4067,
cos51°42′20″=0.6197, tan70°21′=2.8006,
2已知锐角的三角函数值,求角度:
已知三角函数值求角度,要用到sin,Cos,tan的第 二功能键“sin-1 Cos-1,tan-1”键例如:已知 sinα =0.2974,求锐角α .按健顺序为:
按键的顺序 显示结果 · 2 17.30150783 =
SHIFT
9
sin
7
0 4
如果再按“度分秒健”就换算成度分 °′″ 秒, 注意: SHIFT 于书本中的 o18’5.43” 即∠ α=17
• 二.新课引入

用锐角三角函数概念解题的常见方法(含答案)

用锐角三角函数概念解题的常见方法(含答案)

用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=ac,cosA=bc,tanA=ab,cotA=ba.锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0<sinα<1,o<cosα<1(0°<α<90°)(2)tan α·cot α=1或tan α=1cot α; (3)tan α=sin cos αα,cot α=cos sin αα. (4)sin α=cos (90°-α),tan α=cot (90°-α).有关锐角三角函数的问题,常用下面几种方法: 一、设参数例1. 在ABC ∆中,︒=∠90C ,如果125tan =A ,那么sinB 的值等于( ) 512.125.1312.135.D C B A 解析:如图1,要求sinB 的值,就是求AB AC 的值,而已知的125tan =A ,也就是125=AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+=13121312sin ==∴k k B ,选B 二、巧代换例2. 已知3tan =α,求ααααcos sin 5cos 2sin +-的值。

解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式3cos sin tan ==ααα,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。

九年级数学知识点:由三角函数值求锐角知识点

九年级数学知识点:由三角函数值求锐角知识点

九年级数学知识点:由三角函数值求锐角知识点
(2)arcsin(-a)=-arcsina,arccos(-a)=π-arccosa,arctan(-a)=-arctana;
(3)arcsina+arccosa=
(4)arcsin(sinx)=x,只有当x在
内成立;同理arccos(cosx)=x只有当x在闭区间[0,π]上成立。

已知三角函数值求角的步骤:
(1)由已知三角函数值的符号确定角的终边所在的象限(或
终边在哪条坐标轴上);
(2)若函数值为正数,先求出对应锐角α1,若函数值为负数,先求出与其绝对值对应的锐角α1;
(3)根据角所在象限,由诱导公式得出0~2π间的角,如果适合条件的角在第二象限,则它是π-α1;如果适合条件的角在第三象限,则它是π+α1;在第四象限,则它是2π-α1;如果是-2π到0的角,在第四象限时为-α1,在第三象限为-π+α1,在第二象限为-π-α1;
(4)如果要求适合条件的所有角,则利用终边相同的角的表达式来写出。

由三角函数值求锐角知识点就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!。

2020年初三数学第七章 锐角三角函数 第5课时 由三角函数值求锐角

2020年初三数学第七章 锐角三角函数 第5课时 由三角函数值求锐角

第5课时 由三角函数值求锐角一、填空题1.(1)已知sin A =0.4561,则锐角A ≈_______;(2)已知cos A =0.3638,则锐角A ≈_______;(3)已知tan A =1.235,则锐角A ≈_______.(精确到0. 01°)2.若锐角A 满足2sin(A +15°)=1,则∠A 的度数为_______.3.已知tan a =0.8036,则锐角a 的度数为_______(精确到1').4.已知菱形的两条对角线长分别为23和6,则菱形中较小的内角为_______ .5.如图,小亮在太阳光下测得树AB 在地面上的影长BC =18 m ,树高AB 约为 12.6 m ,则太阳光线与地面所成的夹角为_______°(精确到0.1°).二、选择题6.若锐角a 满足sin a =35,则a 的取值范围为 ( )A .0°<a<30°B .30°<a<45°C .45°<a<60°D .60°<a<90°7.若∠A 为锐角,且满足3tan(A +15°)=1,则锐角A 的度数为 ( )A .15°B .30°C .45°D .60°8.若锐角a 满足cos a ≤12,则a 的取值范围为 ( )A .0°<a ≤60°B .60°≤a<90°C .0°<a ≤30°D .30°≤a<90°9.如图,已知:9045<<A ,则下列各式成立的是 ( )A .sinA=cosAB .sinA>cosAC .sinA>tanAD .sinA<cosA三、解答题10.在Rt △ABC 中,∠C =90°,BC =2AC ,求△ABC 中各锐角的度数(精确到0.01°).11.求满足下列条件的锐角θ的度数(精确到0.1°):(1) sin θ=0.1426; (2) cos θ=0.7845;(3) tan θ=3.448; (4)cos(θ-15°)=0.4378.12.如图,一名患者体内某重要器官的后面有一个肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知肿瘤在皮下6.3 cm的A处,射线从肿瘤右侧9.8 cm的B处进入身体,求射线的入射角度(精确到1').13.如图,一次函数y=kx+b的图象经过A(-2,-1)、B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的关系式.(2)求tan∠OCD的值.(3)求证:∠AOB=135°.14.先阅读材料,再解答下面的问题:问题:在△ABC中,AD是BC边上的高,AD=2,DB=2,CD=23.求∠BAC 的度数.王刚是这样解答的:如图,在Rt△ACD中,tan∠CAD=3CDADCAD=60°,在Rt△ADB中,tan ∠BAD=BDAD=1,则∠BAD=45°.∴∠BAC=∠CAD+∠BAD=105°,你认为王刚的解法正确吗?为什么?如果不正确,请指出错误之处,并写出正确的答案.参考答案1.(1) 27.14°(2) 68. 67°(3) 51. 00°2.15°3.38°47' 4.60°5.35.06.B 7.A 8.B 9.B10.∠A≈63.43°,∠B≈26.57°11.(1)θ≈8.2°(2)θ≈38.3°(3)θ≈73.8°(4) θ≈79.0°12.射线的入射角度大约为32°44'13.(1)4533y x=+(2)43(3) 略14.不正确他仅仅考虑了AC、AB分别位于AD两侧的情况,忽视了AC、AB位于AD 同侧的情况正确的答案应该是∠BAC的度数为105°或15°。

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析试题(含答案及详细解析)

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数难点解析试题(含答案及详细解析)

人教版九年级数学下册第二十八章-锐角三角函数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△ABC 的顶点在正方形网格的格点上,则cos ∠ACB 的值为( )A .12BCD 2、如图,在平面直角坐标系xoy 中,直线14y k x =+与y 轴交于点C ,与反比例函数2k y x =在第一象限内的图象交于点B ,连接BO ,若2OBC S ∆=,1tan 5BOC ∠=,则2k 的值是( )A .-20B .20C .-5D .53、如图,在33⨯的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则tan BAC∠的值是()A.12B.255C.53D.234、如图,过点O、A(1,0)、B(0作⊙M,D为⊙M上不同于点O、A的点,则∠ODA的度数为()A.60°B.60°或120°C.30°D.30°或150°5、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到△AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DE=x,△AEC'的面积为y,则y与x的函数图象大致为()A. B.C. D.6、tan45 的值为()A.1 B.2 C D.7、如图所示,点C是⊙O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,∠AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A B.150°,2 C D.120°,28、在正方形网格中,ABC的位置如图所示,点A、B、C均在格点上,则cos B的值为()A.12B.22C.32D.249、△ABC中,tan A=1,cos B=2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形10、如图要测量小河两岸相对的两点P,A的距离,点P位于点A正北方向,点C位于点A的北偏西46°,若测得PC=50米,则小河宽PA为()A.50sin44°米B.50cos44°C.50tan44°米D.50tan46°米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为 _____.(精确到0.1米,参考数值:tan37°≈34,tan53°≈43)2、如图,以BC 为直径作圆O ,A ,D 为圆周上的点,AD ∥BC ,AB =CD =AD =1.若点P 为BC 垂直平分线MN 上的一动点,则阴影部分图形的周长最小值为__________ .3、如图, 在 Rt ABC △ 中, 390,tan ,2ACB BAC CD ∠∠== 是斜边 AB 上的中线, 点 E 是直线 AC 左侧一点, 联结 AE CE ED 、、, 若 ,EC CD EAC B ∠∠⊥=, 则 CDE ABC S S 的值为______.4、若一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度为______.5、在△ABC 中,∠A ,∠C 都是锐角,cos A =12,sin CB =________. 三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线2154y ax bx =+-与x 轴交于点A 、点B ,与y 轴交于点C ,点D 在第三象限的抛物线上,直线31522y x =--经过点A 、点D ,点D 的横坐标为3-. (1)如图1,求抛物线的解析式;(2)如图2,直线AD 交y 轴于点T ,过点D 作DP y ⊥轴,交y 轴于点H,交抛物线于点P,过点P 作PQ AD⊥,交直线AD于点Q,求线段PQ的长;(3)在(2)的条件下,点F在OA上,直线PF交OC于点G,2FG PG=,点M在第二象限,连接PM交OG于点E,连接MF,tan2MFO∠=,FMEG=R在GF的延长线上,点N在直线MR上,且点N的横坐标为5,连接PN,PN NR=,求点N的纵坐标.2、定义:如果一个三角形一条边上的高与这条边的比值叫做这条边所对角的准对(记作qad).如图1,在△ABC中,AH⊥BC于点H,则qad∠BAC=AHBC.当qad∠BAC=35时,则称∠BAC为这个三角形的“金角”.已知在矩形ABCD中,AB=3,BC=6,△ACE的“金角”∠EAC所对的边CE在BC边上,将△ACE绕点C按顺时针方向旋转α(0°<α<90°)得到△A'CE',A'C交AD边于点F.(1)如图2,当α=45°时,求证:∠ACF 是“金角”.(2)如图3,当点E '落在AD 边上时,求qad ∠AFC 的值.3、计算:0201521π 3.14122cos303--⨯-+-+︒()()()4、计算:32022tan 45(4sin 601)|2--⨯+-+--.5、小明周末沿着东西走向的公路徒步游玩,在A 处观察到电视塔在北偏东37度的方向上,5分钟后在B 处观察到电视塔在北偏西53度的方向上.已知电视塔C 距离公路AB 的距离为300米,求小明的徒步速度.(精确到个位,sin370.6︒≈,cos370.8︒≈,sin530.8︒≈,cos530.6︒≈,tan370.75︒≈,tan53 1.3︒≈)---------参考答案-----------一、单选题1、D【分析】根据图形得出AD 的长,进而利用三角函数解答即可.【详解】解:过A 作AD ⊥BC 于D ,∴DC =1,AD =3,∴AC∴cos ∠ACB =DC AC == 故选:D .【点睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义.2、D【分析】先根据直线解析式求得点C 的坐标,然后根据△BOC 的面积求得BD 的长,然后利用正切函数的定义求得OD 的长,从而求得点B 的坐标,利用待定系数法将点B 坐标代入即可求得结论.【详解】解:∵直线y =k 1x +4与x 轴交于点A ,与y 轴交于点C ,∴点C 的坐标为(0,4),∴OC =4,过B 作BD ⊥y 轴于D ,∵S △OBC =2, ∴114222OC BD BD ⋅=⨯⋅=,∴BD =1,∵tan∠BOC =15, ∴15BD OD =, ∴OD =5,∴点B 的坐标为(1,5), ∵反比例函数2k y x=在第一象限内的图象交于点B , ∴k 2=1×5=5.故选:D .【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形.3、B【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CD AC AD在Rt △ACD 中,tan ∠ACD =AD CD =∴tan ∠BAC =tan ∠ACD故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.4、D【分析】连接AB ,先利用正切三角函数可得30OBA ∠=︒,再分点D 在x 轴上方的圆弧上和点D 在x 轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得. 【详解】解:如图,连接AB ,(1,0),A B ,1,OA OB ∴==90AOB ∠=︒,∴在Rt AOB 中,tanOA OBA OB ∠== 30OBA ∴∠=︒,由题意,分以下两种情况:(1)如图,当点D 在x 轴上方的圆弧上时,由圆周角定理得:30OBA ODA ∠∠==︒;(2)如图,当点D 在x 轴下方的圆弧上时,由圆内接四边形的性质得:180150OD BA A O ∠=︒-∠=︒;综上,ODA ∠的度数为30或150︒,故选:D .【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键.5、B【分析】先证△ABF ≌△AC ′E (ASA ),再证△B ′FD ≌△CED (AAS ),得出DE +DC =DE +DB ′=B ′E =x ,利用锐角三角函数求出2B C GC '''==AG =AC ′sin30°=1,根据三角形面积列出函数解析式12y x =是一次函数,即可得出结论.【详解】解:设BC 与AB ′交于F ,∵△ABC 绕点A 逆时针旋转α(0<α<120°)得到△AB 'C ',∴∠BAF =∠C ′AE =α,∵AB =AC =AB ′=AC ′,∠B =∠C =∠B ′=∠C ′=30°,在△ABF 和△AC ′E 中,B C AB AC CAF C AE ∠=∠⎧⎪=⎨⎪∠=∠''⎩', ∴△ABF ≌△AC ′E (ASA ),∴AF =AE ,∵AB ′=AC ,∴B ′F =AB ′-AF =AC -AE =CE ,在△B ′FD 和△CED 中,B C FDB EDC B F CE '''∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△B ′FD ≌△CED (AAS ),∴B ′D =CD ,FD =ED ,∴DE +DC =DE +DB ′=B ′E =x ,过点A 作AG ⊥B′C′于G ,∵AB ′=AC ′,∴B′G =C′G ,∵AC ′=2,∴cos C′=2GC GC AC ''==',∴B G GC ''==∴2B C GC '''==∴AG =AC ′sin30°=1∴EC ′=B C B E x '''-=∴()1111222y EC AG x x '=⋅=⨯⨯=∴12y x =是一次函数,当x =0时,y =故选择B .【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键.6、A【分析】直接求解即可.【详解】解:tan 45︒=1,故选:A .【点睛】本题考查特殊角的三角函数值,熟记特殊角的三角函数值是解答的关键.7、D【分析】观察图象可得:y 的最大值为4,即BC 的最大值为4,当x =0时,y =AB =C ′是AB 的中点,连接OC ′交AB 于点D ,则OC ′⊥AB ,AD =BD AOB =2∠BOC ′,利用三角函数定义可得∠BOC ′=60°,即可求得答案.【详解】解:由函数图象可得:y 的最大值为4,即BC 的最大值为4,∴⊙O 的直径为4,OA =OB =2,观察图象,可得当x =0时,y =∴AB =如图,点C ′是AB 的中点,连接OC ′交AB 于点D ,∴OC ′⊥AB ,AD =BD AOB =2∠BOC ′,∴sin∠BOC ′=BD OB ∴∠BOC ′=60°,∴∠AOB=120°,∵OB=OC′,∠BOC′=60°,∴△BOC′是等边三角形,∴BC′=OB=2,即点C运动到弧AB的中点时所对应的函数值为2.故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.8、B【分析】如图所示,过点A作AD垂直BC的延长线于点D得出△ABD为等腰直角三角形,再根据45°角的余弦值即可得出答案.【详解】解:如图所示,过点A作AD⊥BC交BC延长线于点D,∵AD=BD=4,∠ADB=90°,∴△ABD为等腰直角三角形,∴∠B=45°∴cos B故选B.【点睛】本题主要考查了求特殊角三角函数值,解题的关键在于根据根据题意构造直角三角形求解.9、C【分析】先根据△ABC中,tanA=1,cosB=求出∠A及∠B的度数,进而可得出结论.2【详解】,解:∵△ABC中,tanA=1,cosB=2∴∠A=45°,∠B=45°,∴∠C=90°,∴△ABC是等腰直角三角形.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.10、C【分析】先根据AP⊥PC,可求∠PCA=90°-46°=44°,在Rt△PCA中,利用三角函数AP=tan4450tan44︒⨯=︒PC米即可.【详解】解:∵AP ⊥PC ,∴∠PCA +∠A =90°,∵∠A =46°,∴∠PCA =90°-46°=44°,在Rt△PCA 中,tan∠PCA =AP CP,PC =50米, ∴AP =tan 4450tan 44PC ︒⨯=︒米.故选C .【点睛】本题考查测量问题,掌握测量问题经常利用三角函数求边,熟悉锐角三角函数定义是解题关键.二、填空题1、8.6米【解析】【分析】根据题意,利用锐角三角函数解直角三角形即可.【详解】解:由题意知,∠A =37°,∠DBC =53°,∠D =90°,AB =5,在Rt△CBD 中,tan∠DBC =CD BC , ∴BC =tan 53CD ≈34CD , 在Rt△CAD 中,tan∠A =CD AC ,即354CD CD +=tan37°≈34 ∴解得:CD =607≈8.6,答:观光塔CD 的高度约为8.6米.【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键.21【解析】【分析】连接BP ,BD ,OD ,根据线段垂直平分线的性质定理,可得BP =CP ,从而得到当点B 、P 、D 三点共线时,DP +CP 的值最小,最小值为BD 的长,再由直径所对的圆周角为直角,可得∠BDC =90°,再由AB AD CD == ,可得∠COD =11803⨯︒ =60°,从而得到1302CBD COD ∠=∠=︒ ,进而得到tan CD BD CBD==∠ 【详解】解:如图,连接BP ,BD ,OD ,∵MN 为BC 的垂直平分线,∴BP =CP ,∴DP +CP =DP +BP ≥BD ,即当点B 、P 、D 三点共线时,DP +CP 的值最小,最小值为BD 的长, ∵BC 为直径,∴∠BDC =90°,∵AB =CD =AD ,∴AB AD CD == ,∴∠COD =11803⨯︒ =60°, ∴1302CBD COD ∠=∠=︒ ,∴tan CD BD CBD ===∠,∴DP +CP,1 .1【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数,熟练掌握圆周角定理,线段垂直平分线的性质定理,特殊角锐角三角函数是解题的关键.3、1336【解析】【分析】先证明Rt AED Rt CED ≌,则AED CED S S =,进而证明DAE BCA ∽,据3tan 2BAC ∠=求得相似比,根据面积比等于相似比的平方即可求解【详解】解:CD 是Rt ABC 斜边 AB 上的中线,12CD AB AD ∴== DCA DAC ∴∠=∠90ACB ∠=︒90CAB B ∴∠+∠=︒EAC B∠=∠90EAC DAC∴∠+∠=︒即90EAD∠=︒又EC CD⊥90ECD∴∠=︒EAD ECD∴∠=∠Rt AED Rt CED∴≌AED CEDS S∴=,DA DC EA EC==ED AC∴⊥又90ACB∠=︒BC AC∴⊥//ED BC∴ADE B∴∠=∠又90EAD ACB∠=∠=︒DAE BCA∴∽2ADCABCS ADS BC⎛⎫∴= ⎪⎝⎭3tan2BAC∠=32CBCA∴=设3CB k=,则2AC k=AB∴=12AD AB ∴==AED CED S S =2CDE ADC ABC ABC S S AD S SBC ⎛⎫∴== ⎪⎝⎭2132336k ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭ 故答案为:1336【点睛】 本题考查了解直角三角形,三角形全等的性质与判定,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,垂直平分线的性质与判定,正切的定义,证明AED CED SS =是解题的关键. 4【解析】【分析】过B 作BC ⊥桌面于C ,由题意得AB =10cm ,BC =5cm ,再由勾股定理求出AC 的长度,然后由坡度的定义即可得出答案.【详解】如图,过B 作BC⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴AC =,∴这个斜坡的坡度BC i AC ==,【点睛】 本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.5、60°##60度【解析】【分析】利用特殊角的锐角三角函数值先求解60,60,A C ∠=︒∠=︒再利用三角形的内角和定理可得答案.【详解】解: ∠A ,∠C 都是锐角,cos A =12,sin C 60,60,A C ∴∠=︒∠=︒180606060,B ∴∠=︒-︒-︒=︒ 故答案为:60.︒【点睛】本题考查的是已知锐角三角函数值求解锐角的大小,掌握“特殊角的锐角三角函数值”是解本题的关键.三、解答题1、(1)抛物线的解析式为:21115424y x x =+-;(2)PQ =;(3)点N 的纵坐标为5. 【解析】【分析】(1)根据题意可得一次函数图象经过A 、D 两点,所以当0y =及当3x =-时,可确定A 、D 两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当3y =-时,代入抛物线解析式确定点P 的坐标,求得PD ,然后求出直线与y 轴的交点T ,利用勾股定理确定AT ,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P 作PS x ⊥轴,且()1,3P -,即3PS =,1OS =,利用相似三角形的性质可确定()2,0F -,()0,2G -,求出直线GF 的函数解析式,过点M 作ML x ⊥轴,设(),M a b 且()2,0F -,可求得MF 的长度,设直线MP 的函数解析式为:()0y kx b k =+≠,将点(),24M a a +,()1,3P -代入即可确定点E 的坐标,求出EG ,根据题意即可确定点()1,2M -,设点R 、点N 在如图所示位置:过点N 作NV x ⊥轴,过点M 作MI NV ⊥,过点R 作RJ NV ⊥,利用相似三角形及勾股定理即可得出结果.【详解】解:(1)∵31522y x =--经过A 、D 两点, ∴当0y =时,315022x --=, 解得5x =-,∴()5,0A -,当3x =-时,()3153322y =-⨯--=-, ∴()3,3D --, 将A 、D 两点代入抛物线解析式可得:1502554153934a b a b ⎧=--⎪⎪⎨⎪-=--⎪⎩,解得:1412a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:21115424y x x =+-; (2)当3y =-时,211153424x x +-=-,解得:13x =-,21x =,∴()1,3P -,∴4PD =, 直线解析式31522y x =--,当0x =时,152y =-, ∴150,2T ⎛⎫- ⎪⎝⎭, ∴152OT =,在Rt AOT 中,AT ==,∵DP y ⊥轴,∴∥DP x 轴,∴QAD PDQ ∠=∠,∵AOT PQD ∠=∠,∴~AOT DQP ,∴DP PQ AT OT=,即154PQ ⨯==; (3)如图所示:过点P 作PS x ⊥轴,且()1,3P -,即3PS =,1OS =,∴∥PS GO ,∴~FGO FPS ,∵2FG GP =,∴2FO OS =,23OG PS =, ∴2FO =,2OG =,∴()2,0F -,()0,2G -,设直线GF 的函数解析式为:()0y kx b k =+≠,可得:022k b b=-+⎧⎨-=⎩, 解得:12k b =-⎧⎨=-⎩, ∴直线GF 的函数解析式为:2y x =--,过点M 作ML x ⊥轴,设(),M a b 且()2,0F -,∴2FL a =+,ML b =,∵tan 2MFO ∠=, 即22b a =+, ∴24b a =+,∴)2MF a =+,设直线MP 的函数解析式为:()0y kx b k =+≠,将点(),24M a a +,()1,3P -代入可得:可得:243a ak b k b+=+⎧⎨-=+⎩, 解得:271541a k a a b a +⎧=⎪⎪-⎨--⎪=⎪-⎩, 点540,1a E a --⎛⎫ ⎪-⎝⎭, ∵()0,2G -,∴()321a EG a -+=-,∵FM EG =∴)()2321a a a +-+-,解得:1a =-,点()1,2M -,设点R 、点N 在如图所示位置:过点N 作NV x ⊥轴,过点M 作MI NV ⊥,过点R 作RJ NV ⊥,∴∥MI RJ ,∴~NMI NRJ ,设()5,N d ,(),2R x x --,则6MI =,5RJ x =-,2NI d =-,2NJ d x =++, ∴MI NI RJ IJ=, 代入化简可得:3304d x d --=+①, ∵NR NP =,∴()()()22225243x d x d -+++=++②,联立①②求解可得:53d x =⎧⎨=-⎩, ∴点N 的纵坐标为5.【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键.2、(1)见解析(2)23【解析】【分析】(1)过点E 作EG AC ⊥于点G ,解直角三角形求得45EAC ∠=︒,进而证明AF EC =,根据“金角”的定义即可证明当α=45°时,∠ACF 是“金角”.(2)过点E '作E H A F ''⊥于点H ,证明HFE DFC '∽,可得E F E H FC CD ''==E F x '=,则FC =,4FD E D E F x ''=-=-,根据勾股定理列出方程,解方程即可求得52E F '=,进而根据定义AB qad AFC AF ∠=即可求得答案 【详解】解:(1)四边形ABCD 是矩形,∴90B ∠=︒,,//AB CD AD BC =△ACE 的“金角”∠EAC 所对的边CE 在BC 边上,35AB qad EAC EC ∴∠== 3AB = ,BC =6,5,651EC BE BC BE ∴==-=-=将△ACE 绕点C 按顺时针方向旋转45°得到△A 'CE ',45ACA '∴∠=︒,即45ACF ∠=︒如图,过点E 作EG AC ⊥于点G ,在Rt ABC 中,31tan 62AB ACB BC ∠===,又ECG BCA ∠=∠ ∴1tan 2EG GCE GC ∠== 设EG a =,则2CG a =EC ∴=5=a ∴=EG ∴= 在Rt ABC 中,3,6AB BC ==AC ∴=AG AC GC ∴=-=在Rt AEG 中,tan 1GE EAG AG ∠== 45EAC ∴∠=︒ ACF CAE ∴∠=∠//AE CF ∴//AF CE∴四边形AECF 是平行四边形,AE CF AF EC ∴==35CD AB qad ACF AF EC ∴∠=== ∴当α=45°时,∠ACF 是“金角”.(2)如图,过点E '作E H A F ''⊥于点H由(1)可知5CE =,45EAC E A F ''∠=∠=︒则HE HA ''=由旋转的性质可得5CE CE '==,3CD AB ==,AE AE '=在Rt ABE △中,3,1AB BE ==,则AE AE '==在Rt E DC '中4E D '642AE AD DE ''∴=-=-=在等腰直角三角形A E H ''中,sin 45A H HE A E ''''==⋅︒=90E HF FDC '∠=∠=︒,HFE DFC '∠=∠HFE DFC '∴∽E F E H FC CD ''∴== 设E F x '=,则FC x =,4FD E D E F x ''=-=- 在Rt FDC 中,222FC FD DC =+即()22243x ⎫=-+⎪⎭ 解得1252522x x ==-,(舍) 则52E F '=59222AF AE E F ''∴=+=+= 32932AB qad AFC AF ∴∠===【点睛】本题考查了“准对”,三角形的“金角”的定义,解直角三角形,相似三角形的性质,矩形的性质,旋转的性质,理解新定义是解题的关键.3、6+【解析】【分析】本题涉及零指数幂、负指数幂、绝对值和特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=1×(﹣1)2=192-+=6+.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.4、0【解析】【分析】根据乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质即可求出答案.【详解】解:原式=181124-⨯+--=-2+2=0【点睛】本题考查了实数的运算,乘方,二次根式的化简、特殊的三角函数值,零指数幂的意义以及绝对值的性质,熟练掌握各自的性质是解本题的关键.5、126米/分钟【解析】【分析】过C 作CD AB ⊥于D ,则300CD =米,由解直角三角形求出AD 和BD 的长度,则求出AB 的长度,即可求出小明的速度.【详解】解:过C 作CD AB ⊥于D ,则300CD =米,∴903753CAD ∠=︒-︒=︒, ∴300tan tan 53 1.3CAD AD∠=︒=≈, ∴231AD ≈,同理:400BD ≈631AB AD BD =+= 速度:631÷5≈126(米/分钟).【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD 和BD 的长度.。

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题

【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题

c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。

苏科版九年级数学下册由三角函数值求锐角课件

苏科版九年级数学下册由三角函数值求锐角课件

3 3
,则A=
300
(4)2sinA- 3 =0,则A= 600
3.已知sinα·cos300= 3 ,求锐角α. 4
4. 一梯子斜靠在一面墙上,已知梯子长4m,梯子位于地 面上的一端离墙壁2.5m,求梯子与地面所成的锐角.
5 . 一个人由山底爬到山顶,需先爬400的山坡300m, 再爬300 的山坡100m,求山高(结果精确到0.01m).
300 tanA =
3 ∠A= 600
tan A = 1 ∠A= 450
练一练
1.sin700= 0.9397
cos500= 0.6428
2.(1)sinA=0.3475 ,则A= 20020'4" (精确到1")
(2)cosA=0.4273,则A= 64042'13"(精确到1")
(3)tanA=
解 :Q tan ∠ACD= AD = 10 0.5208,
CD 19.2
∴∠ACD≈27.50 . ∴∠ACB=2∠ACD≈2×27.50 =550.
∴V型角的大小约550.
例2:如图,一段公路弯道A⌒B两端的距离为200m, A⌒B的半径为1000m,求弯道的长(精确到0.1m)。




课内练习:
A
例如,已知sin α=0.2974,求锐角α.
按键顺序如下:
SHIFT sin 0 . 2 9 7 4 =
即α=17.30150783
17.30150783
例1 根据下面的条件,求锐角β的大小(精确到 1)
(1)sinβ=0.4511;
SHIFT sin 0 . 4 5 1 1 =

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)

第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。

九年级数学锐角三角函数(带答案)

九年级数学锐角三角函数(带答案)

锐角三角函数与解直角三角形之杨若古兰创作【考纲请求】锐角三角函数的定义、性质及利用,特殊角三角函数值的求法,应用锐角三角函数解决与直角三角形有关的实际成绩.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的常识解决成绩.【常识收集】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B 所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.ab要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变更时,比值也随之变更.(2)sinA,cosA,tanA分别是一个完好的数学符号,是一个全体,不克不及写成,,,不克不及理解成sin与∠A,cos与∠A,tan 与∠A的乘积.书写时习气上省略∠A的角的记号“∠”,但对三个大写字母暗示成的角(如∠AEF),其正切应写成“tan∠AEF”,不克不及写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有响应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变更时,,,tanA >0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地晓得0°、30°、45°、60°、90°角的各三角函数值,它的另一个利用就是:如果晓得了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)细心研讨表中数值的规律会发现:sin0︒、、、、sin90︒的值顺次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值顺次增大,其变更规律可以总结为:当角度在0°<∠A<90°之间变更时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常利用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包含其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的罕见类型及解法已知条件解法步调Rt△两两直角边(a,b) 由求∠A,∠B=90°-ABC 边∠A,斜边,不断角边(如c,a)由求∠A,∠B=90°-∠A,一边一角不断角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在碰到解直角三角形的实际成绩时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即请求出所有的未知元素,已知条件中至多有一个条件为边.考点六、解直角三角形的利用解直角三角形的常识利用很广泛,关键是把实际成绩转化为数学模型,善于将某些实际成绩中的数量关系化归为直角三角形中的边角关系是解决实际利用成绩的关键. 解这类成绩的普通过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际成绩转化为解直角三角形的成绩. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学成绩的答案并检验答案是否符合实际意义,得出实际成绩的解.拓展:在用直角三角形常识解决实际成绩时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母暗示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母暗示,则,如图,坡度通常写成=∶的方式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指南方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别暗示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东南方向指的是北偏东45°,东北方向指的是南偏西45°,东北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角常识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的成绩,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的利用题时,首先弄清题意(关键弄清其中名词术语的意义),然后准确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边暗示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.晓得某个锐角的三角函数值就晓得了该角的大小,可以用比例系数k暗示各边.(3)请求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,经常使用的方法是:利用定义,根据三角函数值,用比例系数暗示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可本人测验考试完成.举一反三:【变式】Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,那么c等于( )(A) a cos A bsin B+ (B)a sin A bsin B+(C)a bsin A sin B+(D)a bcos A sin B+【答案】选B.过点C作CD⊥AB于D,在Rt△ACD中,AD ADcos AAC b==,所以AD=bcosA,同理,BD=acosB,所以c=AB=AD+BD=bcosA+acosB,又∠A+∠B=90°,所以cosA=sinB,cosB=sinA,所以c=asinA+bsinB.类型二、特殊角的三角函数值2.解答以下各题:(1)化简求值:tan60tan45sin45sin30sin60cos30cos45--++°°°°°°°;(2)在△ABC中,∠C=9012sin cosA A-【思路点拨】第(2)题可以先利用关系式sin2A+cos2A=1对根号内的式子进行变形,配成完好平方的方式.【答案与解析】解 (1)tan60tan45sin45sin30 sin60cos30cos45--++°°°°°°°(2)12sin cosA A-2(sin cos)|sin cos|A A A A=-=-,12sin cosA A -cos sin(045)sin cos(4590)A A AA A A-<⎧=⎨-<<⎩°≤°°°.由第(2)题可得到今后经常使用的一个关系式:1±2sin αcos α=(sin α±cos α)2.例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角,∴2α=60°,α=30°.∴12cos sin 22βα===,∴β=45°.∴23tan()tan 3033β==°. 3.(1)如图所示,在△ABC 中,∠ACB =105°,∠A =30°,AC =8,求AB 和BC 的长;(2)在△ABC 中,∠ABC =135°,∠A =30°,AC =8,如何求AB 和BC 的长?(3)在△ABC 中,AC =17,AB =26,锐角A 满足12sin 13A =,如何求BC的长及△ABC 的面积?若AC =3,其他条件不变呢?第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B =45°;过点C 作CD ⊥AB 于D ,则Rt △ACD 是可解三角形,可求出CD 的长,从而Rt △CDB 可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.【答案与解析】解: (1)过点C 作CD ⊥AB 于D .∵∠A =30°,∠ACD =105°,∴∠B =45°.∵AC ·sinA =CD =BC ·sin B ,∴sin 8sin 30sin sin 45AC A BC B ===°°∴AB =AD+BD =AC ·cosA+BC ·cosB =8cos30°+cos45°=4+(2)作CD ⊥AB 的耽误线于D ,则AB =4,BC =(3)作BD ⊥AC 于D ,则BC =25,ABC S =△204.当AC =3时,∠ACB 为钝角,BC =25,36ABC S =△.【总结升华】对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,而且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形得到本来斜三角形的边、角的大小.类型三、解直角三角形及利用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=,AC+CD =18,求tanA 的值和AB 的长.【思路点拨】解题的基本思路是将成绩转化为解直角三角形的成绩,转化的目标次要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°. ∵4cos 5CD DCE CE=∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高不异,∴AD:DB =:2:3ACD CDB S S =△△. 即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k += ∴AB =AD+DB =AD+32AD =541【总结升华】在解直角三角形时,经常使用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.专题总结及利用一、常识性专题专题1:锐角三角函数的定义【专题解读】锐角三角函数定义的考查多以选择题、填空题为主.例1 如图28-123所示,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则以下结论准确的是 ( )A.sin A=32 B.tan A=12C.cos B=32 D.tan B=3分析 sin A=BCAB=12,tan A=BCAC=33,cos B=BCAB=12.故选D.例2 在△ABC中,∠C=90°,cos A=35,则tan A等于 ( )A.35 B.45 C.34 D.43分析在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=4433BC kAC k==.故选D.分析在Rt△ABC中,BC=222254AB AC-=-=3,∴sin A=35BCAB =.故填35.专题2 特殊角的三角函数值【专题解读】要熟记特殊角的三角函数值.例4 计算|-3|+2cos 45°-(3-1)0.分析 cos 45°=2 2.解:原式=3+2×22-1=2+2.例5 计算-12⎛⎫- ⎪⎝⎭+9+(-1)2007-cos 60°.分析 cos 60°=1 2.解:原式=12+3+(-1)-12=3-1=2.例6 计算|-2|+(cos 60°-tan 30°)0+8.分析cos 60°=12,tan 30°=33,∴cos 60°-tan 30°≠0,∴(cos60°-tan 30°)0=1,解:原式=2+1十+22=32+1.例7 计算312-⎛⎫⎪⎝⎭-(π-3.14)0-|1-tan 60°|-132-.分析 tan 60°=3.解:原式=8-1-3+1+3+2=10.专题3 锐角三角函数与相干常识的综合应用【专题解读】锐角三角函数常与其他常识综合起来应用,考查综合应用常识解决成绩的能力.例8 如图28-124所示,在△ABC中,AD是BC 边上的高,E为AC边的中点,BC=14,AD=12,sin B=4 5.(1)求线段DC的长;(2)求tan∠EDC的值.分析在Rt△ABD中,由sin B=ADAB,可求得BD,从而求得CD.由直角三角形斜边上的中线等于斜边的一半,得DE=12AC=EC,则∠EDC=∠C,所以求tan∠EDC可以转化为求tan C.解:(1)∵AD是BC边上的高,∴AD⊥BC在Rt△ABD中,sin B=AD AB.∵AD=12,sin B=45,∴AB=15,∴BD=22AB AD-=221512-=9.∵BC=14,∴CD=5.(2)在Rt△ADC中,∵AE=EC,∴DE=12AC=EC,∴∠EDC=∠C∵tan C=ADDC=125,∴tan∠EDC=tan C=125.例9 如图28-125所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证AC=BD;(2)若sin C=1213,BC=12,求AD的长.分析(1)利用锐角三角函数的定义可得AC=BD.(2)利用锐角三角函数与勾股定理可求得AD的长.证实:(1)∵AD是BC边上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵tan B=ADBD,cos∠DAC=ADAC,tan B=cos∠DAC,∴ADBD=ADAC,∴AC=BD.解:(2)在Rt△ADC中,sin C=1213,设AD=12k,AC=13k,∴CD=22AC AD-=5k.∵BC=BD+CD,AC=BD,∴BC=13k+5k=18k.由已知BC=12,∴18k=12,k=2 3,∴AD=12k=12×23=8.例10 如图28-126所示,在△ABC中,∠B=45°,∠C=30°,BC=30+303,求AB的长.分析过点A作AD⊥BC于D,把斜三角形转化为直角三角形,利用AD是两个直角三角形的公共边,设AD=x,把BD,DC用含x的式子暗示出来,再由BD+CD=BC这一等量关系列方程,求得AD,则AB可在Rt△ABD中求得.解:过点A作AD⊥BC于D,设AD=x.在Rt△ADB中,tan B=ADBD,∴BD=tan tan45AD ADB=︒=x,在Rt△ADC中,tan C=ADCD,∴CD=tanADC=tan30AD︒=3x.又∵BD+CD=BC,BC=30+303,∴x +3x=30+303 ,∴x=30.在Rt△ABD中,sin B=AD AB,∴AB=30sin sin45ADB=︒=3022=302.专题4 用锐角三角函数解决实际成绩【专题解读】加强数学与实际生活的联系,提高数学的利用认识,培养利用数学的能力是当今数学改革的方向,环绕本章内容,纵观近几年各地的中考试题,与解直角三角形有关的利用成绩慢慢成为命题的热点,其次要类型有轮船定位成绩、堤坝工程成绩、建筑测量成绩、高度测量成绩等,解决各类利用成绩时要留意掌控各类图形的特征及解法.例13 如图28-131所示,我市某中学数学课外活动小组的同学利用所学常识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(结果保存小数点后两位)分析本题可作CE⊥AB,垂足为E,求出CE的长即为河宽.解:如图28-131所示,过点C作CE⊥AB于E,则CE即为河宽,设CE=x(米),则BE=x+60(米).在Rt△BCE中,tan30°=CEEB,即33=60xx+,解得x=30(3+1)≈81.96(米).答:河宽约为81.96米.【解题计谋】解本题的关键是设CE=x,然后根据BE=AB+AE 列方程求解.例14 如图28-132所示,某边防巡查队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去救援.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C点再跳入海中;3号救生员沿岸边向前跑300米到离B点比来的D点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中泅水的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达救援地点B.(参考数据2≈1.4,3≈1.7)分析在Rt△ABD中,已知∠A=45°和AD,可求AB,BD,在Rt △BCD中,可利用求出的BD和∠BCD=60°求出BC,然后根据计算出的数据判断谁先到达.解:在Rt△ABD中,∠A=45°,∠D=90°,AD=300,∴AB=AD300cos4522=︒=3002.BDAD=tan 45°,即BD=AD·tan 45°=300.在Rt△BCD中,∠BCD=60°,∠D=90°,∴BC=300sin6032BD=︒=2003,CD=tan60BD︒=3003=1003 .1号救生员到达B点所用的时间为30022=1502≈210(秒),2号救生员到达B点所用的时间为3001003200362-+=50+25033≈192(秒),3号救生员到达B点所用的时间为3006+3002=200(秒).∵192<200<210.∴2号求生员先到达救援地点B.【解题计谋】本题为浏览理解题,题目中的数据比较多,准确分析题意是解题的关键.例15 如图28-133所示,某货船以24海里/时的速度将一批次要物质从A处运往正东方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后到达B处,此时再测得该岛在它的北偏东30°方向上;已知在C 岛四周9海里的区域内有暗礁,若货船继续向正东方向航行,该货船有没有触礁风险?试说明理由.分析本题可作CD⊥AM于点D,在Rt△BCD中求出CD即可.解:过点C作CD⊥AM,垂足为点D,由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∠CAB=∠ACB,∴BC=AB=24×12=12(海里).在Rt△BCD中,CD=BC×sin 60°=63(海里).∵63>9,∴货船继续向正东方向航行无触礁风险.【解题计谋】此题实际上是通过⊙C(半径为9海里)与直线AM相离判断出无触礁风险.例16 如图28-134所示,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(3≈1.73,结果保存整数)分析因为CD=CE-DE,所以可分别在Rt△AED和Rt△BEC中求DE,CE的长,从而得出结论.解:∵AB=8,BE=15,∴AE=23.在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan 60°=153,∴CD=CE-DE=153-23≈3,即这块广告牌的高度约为3米.例17 如图28-135所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.分析坡度即坡角的正切值,所以分别过A,D两点向坝底引垂线,把梯形转化为两个直角三角形和一个矩形.解:过A作AE⊥BC于E,过D作DF⊥BC于F,由题意可知tan B=1,tan C=1 1.5,在Rt△ABE中,AE=4,tan B=AEBE=1,∴BE=AE=4,在Rt△DFC中,DF=AE=4,tan C=11.5 DFCF,∴CF =1.5DF ×4=6.又∵EF =AD =2.5,∴BC =BE +EF +FC =4+2.5+6=12.5.答:坝底宽BC 为12.5 m .【解题计谋】 背水坡是指AB ,而迎水坡是指CD .例18 如图28-136所示,山顶建有一座铁塔,塔高CD =30m ,某人在点A 处测得塔底C 的仰角为20°,塔顶D 的仰角为23°,求此人距CD 的水平距离AB .(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364,sin 23°≈0.391,cos 23°≈0.921,tan 23°≈0.424)分析 请求AB 的值,因为两个直角三角形中都只要角的已知条件,不克不及直接求解,所以设AB 为未知量,即用AB 暗示BD 和BC ,根据BD -BC =CD =30,列出关于AB 的方程.解:在Rt △ABC 中,∠CAB =20°,∴BC =AB tan ∠CAB =AB tan 20°.在Rt △ABD 中,∠DAB =23°,∴BD =AB tan ∠DAB =AB tan 23°.∴CD =BD -BC =AB tan 23°-AB tan 20°=AB (tan 23°-tan 20°).∴AB =tan 23tan 20CD ︒-︒≈300.4240.364-=500(m).答:此人距CD 的水平距离AB 约为500 m .二、规律方法专题专题5 公式法【专题解读】 本章的公式很多,熟练把握公式是解决成绩的关键.例19 当0°<α<90的值.分析 由sin 2α+cos 2α=1,可得1-sin 2α=cos 2α解:∵sin 2α+cos 2α=1,∴cos 2α=1-sin 2α.|cos |cos αα=.∵0°<a <90°,∴cos α>0. ∴原式=cos cos αα=1.【解题计谋】 以上解法中,利用了关系式sin 2α+cos 2α=1(0°<α<90°),这一关系式在解题中经经常使用到,该当牢记,并灵活应用.三、思想方法专题专题6 类比思想【专题解读】 求方程中未知数的过程叫做解方程,求直角三角形中未知元素的过程叫做解直角三角形,是以对解直角三角形的概念的理解可类比解方程的概念.我们可以像解方程(组)一样求直角三角形中的未知元素.例20 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知a ,b ,解这个直角三角形.分析 已知两直角边长a ,b ,可由勾股定理c c ,再利用sin A =a c 求出∠A ,进而求出∠B =90°-∠A . 解:∵∠C =90°,∴a 2+b 2=c 2.∴c =222515+522a b +==2()().又∵sin A =51225a c ==,∴∠A =30°.∴∠B =90°-∠A =60°.【解题计谋】 除直角外,求出Rt △ABC 中的所有未知元素就是解直角三角形.专题7 数形结合思想【专题解读】由“数”思“形”,由“形”想“数”,两者巧妙结合,起到互通、互译的感化,是解决几何成绩经常使用的方法之一.例21 如图28-137所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12 B .22 C .32 D .33 分析∵y =-33x +33,∴当x =0时,y =33,当y =0时,x =1,∴A (1,0),B 30,3⎛⎫ ⎪ ⎪⎝⎭,∴OB =33,OA =1,∴AB =22OB OA +=233,∴cos ∠OBA =12OB AB =. ∴OP ⊥AB ,∴∠α+∠OAB =90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=12.故选A.专题8 分类讨论思想【专题解读】当结果不克不及确定,且有多种情况时,对每一种可能的情况都要进行讨论.例22 一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔挺的公路与高速公路订交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保存根号)解:①如图28-138(1)所示,在Rt△BDC中,∵CD=30,CB=60,∴∠B=30°.又PC=PB,∴∠CPD=60°,∴DP=103.故AP=AD+DP=(30+103)km.②同理,如图28-138(2)所示,可求得AP=(30-103)km,故交叉口P与加油站A的距离为(30+103)km或(30-103)km.【解题计谋】此题针对P点的地位分两种情况进行讨论,即点P 在线段AB上或点P在线段BA的耽误线上.专题9 转化思想例24 如图28-140所示,A,B两城市相距100 km.现计划在这两座城市两头构筑一条高速公路(即线段AB),经测量,森林呵护中间P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林呵护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划构筑的这条高速公路会不会穿越呵护区.为何?(参考数据:3≈1.732,2≈1.414)解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan 30°,BC=PC·tan 45°,∵AC+BC=AB,∴PC·tan 30°+PC·tan 45°=100,∴(33+1)PC=100,∴PC=50(3-3)≈50×(3-1.732)≈63.4>50.答:森林呵护区的中间与直线AB的距离大于呵护区的半径,所以计划构筑的这条高速公路不会穿越呵护区.例25 小鹃学完解直角三角形常识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD放在每格宽度为12 mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保存整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE =24 mm ,DF =48 mm .在Rt △ABE 中,sin α=BE AB , ∴AB =sin36BE ︒≈240.6=40(mm).在Rt △ADF 中,cos ∠ADF =DFAD ,∴AD =cos36DF ︒≈480.8=60(mm).∴矩形ABCD 的周长=2(40+60)=200(mm).例26 如图28-142所示,某居民楼I 高20米,窗户朝南.该楼内一楼住户的窗台离地面距离CM 为2米,窗户CD 高1.8米.现计划在I 楼的正南方距1楼30米处新建一居民楼Ⅱ.当正午时刻太阳光线与地面成30°角时,要使Ⅱ楼的影子不影响I 楼所有住户的采光,新建Ⅱ楼最高只能盖多少米?解:设正午时光线正好照在I 楼的一楼窗台处,此时新建居民楼Ⅱ高x 米.过C 作CF ⊥l 于F ,在Rt △ECF 中,EF =(x -2)米,FC =30米,∠ECF =30°,∴tan 30°=230x -,∴=103+2.答:新建居民楼Ⅱ最高只能建(103+2)米.。

求锐角三角函数值的七种常用方法学年春人教版九年级数学下册练习课件

求锐角三角函数值的七种常用方法学年春人教版九年级数学下册练习课件

∵DO∥AC,∴△AEC∽△DEF,且相似比为 3∶1. 设 EF=k,则 CE=3k,BC=8k. ∴AC=2CE=6k. ∴AB= AC2+BC2= (6k)2+(8k)2=10k. ∴sin∠CDA=sin∠ABC=AACB=160kk=35.
5.如图所示,在矩形 ABCD 中,AB=10,BC=8,E 为 AD 边 上一点,沿 CE 将△CDE 折叠,使点 D 正好落在 AB 边上的 点 F 处,求 tan∠AFE 的值.
∵AC=5,∴AB=13. ∴BC=12. ∴PD=CE=BE=6. ∵OA=OB,CE=BE,∴OE=12AC=52. ∵OP=OB=123,∴CD=PE=123-52=4. ∴AD=9. ∴AP= AD2+PD2= 92+62=3 13.
7.(2020·遵义)构建几何图形解决代数问题是“数形结合”思想的
(1)求证:AD 平分∠BAE; 【点拨】连接 OD,根据切线的性质得到 OD⊥DE, 结合题意即可判定 OD∥AE,从而得到∠1=∠ODA, 然后利用∠2=∠ODA 得到∠1=∠2;
第28章 锐角三角函数
第28章 锐角三角函数
第5课时 求锐角三角函数值的七种常用方法
第28章 锐角三角函数
第5课时 求锐角三角函数值的七种常用方法
第5课时 求锐角三角函数值的七种常用方法
第28章 锐角三角函数
第28章 锐角三角函数
解:如图,作 CH⊥AB 于 H.
在 Rt△ACH 中,CH=AC·sin A=4 3×sin 30°=2 3,
AH=AC·cos A=4 3×cos 30°=6,
∴BH=AB-AH=4.
∴tan
B=CBHH=
3 2.
第5课时 求锐角三角函数值的七种常用方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B A 第5课时
由三角函数值求锐角
1.(1)已知sin A =0.4561,则锐角A =______°;
(2)已知cos A =0.3638,则锐角A =______°;
(3)已知tan A =l. 235,则锐角A =______°.(结果精确到0.01°)
2.若锐角A 满足2sin(A +15°)=1,则∠A =______.
3.已知tanα=0.8036,则锐角α=________.(精确到1’)
4.已知一个直角三角形的面积为23cm 2,其中一边长为2 cm ,则这个
三角形较小锐角的度数为_________.
5.(2010 荆州)如图,在△ABC 中,∠B=45°,cos ∠C=
5
3,AC=5a ,则△ABC 的面积用含a的式子表示是 .
6.若锐角α满足3sin 5α=,则α的取值范围为 ( ) A .0°<α<30° B .30°<α<45º C .45º<α<60º D .60º<α<90°
7.若∠A 为锐角,且满足3tan(15)1A +︒=,则锐角A 的度数应该是 ( )
A .15°
B .30°
C .45°
D .60°
8.如图,已知秋千吊绳OA 为4m ,当秋千向左摆动,水平距离为1.5 m 时, 秋千吊绳与竖直方向所成的夹角约为 ( )
A . 22º
B . 35º
C . 55º
D . 68º
9.若锐角α满足1cos 2
α≤,则α的取值范围为 ( ) A .0°<α≤60° B .60°≤α<90º C .0º<α≤30º D .30º≤α<90°
10.(2010眉山)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为
A .90°
B .60°
C .45°
D .30°
11.某商场工作人员在大厅安装一部由一楼到二楼的电梯,已知一、二楼层高3.4 m ,可
供电梯伸展的长度不超过10 m ,求电梯的最小倾斜角α的大小.
12.在R t △ABC 中,∠C =90º,BC =2AC .求△ABC 中各锐角的度数.
13.根据下列条件,求锐角θ的大小(精确到0.1°):
(1) sin θ=0.1426; (2) cos θ=0.7845;
(3) tan θ=3.448; (4) cos(θ-15º) =0.4378.
14.如图,AB 是⊙O 的切线,A 为切点,AC 是⊙O 的弦,过O 作OH ⊥AC 于点H .若
OH =2,AB =12,BO =13.
(l)求⊙O 的半径.
(2)求∠OAC 的度数(精确到0.1°).
(3)求AC 的长(π取3.14,结果保留四个有效数字).
15.先阅读,再解答. 问题:在△ABC 中,AD 是BC 边上的高,AD =2,DB =2,CD =23.求∠BAC 的度数,
王刚是这样解答的:
如图,在Rt △ACD 中,tan ∠CAD =
3CD AD =,则∠CAD =60°. 在Rt △ADB 中,tan ∠BAD 1BD AD
==,则∠BAD =45°. ∴∠BAC =∠CA D +∠BAD =105º.
你认为王刚同学的解法正确吗?为什么?如果不正确,请指出错误之处,并写出正确答案.
参考答案
1.(1) 27.14 (2) 68.67 (3) 51.00
2.15º
3.38°47’
4.30°
14a
5.2
6.B 7.A 8.A 9.B 10.C
11.19.88°
12.∠A=63.43°,∠B=26.57.
13.(l)θ≈8.2(2) θ≈38.3º(3) θ≈73.8º(4) θ≈79.0°
14.(l) OA=5 (2) ∠OAC≈23:6°(3)AC≈11.58
15.不正确.他仅仅考虑了AC、AB分别位于AD两侧的情况,忽视了位于AD同侧的情况.正确答案应该是∠BAC的度数为105°或15°。

相关文档
最新文档