高考数学一轮复习 第14章 几何概型 理
2013届新课标高中数学(理)第一轮总复习第14章 第73讲 几何概型
4.一个路口的红绿灯,红灯的时间为30 秒,黄灯的时间为5秒,绿灯的时间为 40秒,当你到达路口时,看见下列三种
情况的概率各是多少? (1)红灯;(2)黄灯;(3)不是红灯.
【解析】记“到达路口看见红灯”为事件A, “到达路口看见黄灯”为事件B, “到达路口 看见的不是红灯”为事件C,则整个区域 的时间长度为75秒,事件A所占时间长度 为30秒,事件B所占时间长度为5秒,事件 C所占时间长度为40秒.故 30 2 1 P A = = ; 75 5 5 1 2 P B = = ; 75 15 40 8 3 P C = = . 75 15
与体积有关的几 何概型
【例3】 一个球型容器的半径为3 cm,里面装有 纯净水.因为实验人员不小心混入了一 个AIDS病毒,从中任取1 mL水,含有 AIDS病毒的概率是多少?
【解析】病毒在水中的分布可以看作是随机的, 从中取得1 mL水可看作构成事件的区域,所有 水可看作试验的所有结果构成的区域,可用体 积比公式计算其概率. 水的体积为 4 3 4 R = 33=36 cm3 =36 mL . 3 3 故从中任取1 mL水,含有AIDS病毒的概率为 1 P= 0.00884. 36
【解析】这是一个几何概型,其概率就是相 1 应的线段CD、AB的长度的比值,所以P . 5
2.(2011 苏北四市期末卷)在区间 5,5内随机地 取出一个数a,则使得1 {x | 2x ax a >0}的
2 2
概率为 0.3
【解析】因为1 x | 2x 2 ax a 2 0, 所以 a 2 a 2 0 a 2 a 1 0 1 a 2. 3 所以P 0.3. 10
【解析】(1)晚报在5:30~6:30之间 送到或晚餐在6:30~7:00之间开始, 这两种情况都使得晚报的送达是在晚餐 开始之前,故晚报在晚餐开始之前被送 到的可能性大.
§14.4 古典概型与几何概型
“围棋”社团被抽取的同学中有 2 名女生,求至少有 1 名女同学被选担任监督职务
的概率.
解析
【解析】(1)设抽样比为 x,则由分层抽样可知,从“街舞”“围棋”“武术”三个社团 抽取的人数分别为 320x,240x,200x,则由题意得 320x-240x=2,解得 x=410,
故从“街舞”“围棋”“武术”三个社团抽取的人数分别为 320×410=8,240×410=6, 200×410=5.
.
答案
ቤተ መጻሕፍቲ ባይዱ
三、几何概型 1.定义:若每个事件发生的概率只与构成该事件区域的 长度 (面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有 无限多个 . (2)等可能性:每个结果的发生具有 等可能性 .
构成事件������的区域长度(面积或体积) 3.几何概型的概率公式 P(A)= 试验的全部结果所构成的区域长度(面积. 或体积)
������
2.利用古典概型求概率的关键是要正确求出基本事件的总数和随机事件包 含的基本事件的个数,对于较复杂的题目,计数时要正确分类,分类时应不重不漏, 要正确选择列举法、列表法、树状图法等.
【追踪训练 1】(2020 届天津高考模拟)根据调查,某学校开设了“街舞”“围
棋”“武术”三个社团,三个社团参加的人数如下表所示:
(2)从抽出的 6 人中,任选 2 人参加一对一的对抗比赛,基本事件总数为 n=C62=15, 这 2 人来自同一年龄组包含的基本事件个数为 m=C32+C22=4, ∴这 2 人来自同一年龄组的概率 P=������������=145.
解析
点拨:1.求古典概型概率的步骤 (1)判断本试验的结果是否为等可能事件,设出所求事件 A; (2)分别求出基本事件的总数 n 与所求事件 A 中所包含的基本事件个数 m; (3)利用公式 P(A)=������,求出事件 A 的概率.
高考数学一轮复习目录
高考数学一轮复习书目一、集合与常用逻辑用语1.1集合的概念与运算1.2命题及其关系、充分条件与必要条件1.3简洁的逻辑联结词、全称量词与存在量词二.函数1.1函数及其表示2.2函数的单调性与最值2.3函数的奇偶性与周期性2.4一次函数、二次函数2.5指数与指数函数2.6对数与对数函数2.7幂函数2.8函数的图象及其变换2.9函数与方程2.10函数模型及其应用三、导数及其应用3.1导数、导数的计算3.2导数在函数单调性、极值中的应用3.3导数在函数最值及生活实际中的应用3.4 微积分基本定理四、三角函数、解三角形4.1随意角和弧度制及随意角的三角函数4.2同角三角函数的基本关系及三角函数的诱导公式4.3三角函数的图象与性质4.4函数y=Asin(ωx+φ)的图象与性质4.5简洁的三角恒等变换4.6正、余弦定理及其应用举例五、平面对量5.1平面对量的概念及其线性运算5.2平面对量的基本定理及坐标运算5.3平面对量的数量积及其应用六、数列6.1数列的概念与简洁表示法6.2等差数列及其前n项和6.3等比数列及其前n项和6.4数列的通项与求和6.5数列的综合应用七、不等式7.1不等式的概念与性质7.2一元二次不等式及其解法7.3二元一次不等式组与简洁的线性规划问题7.4基本不等式及其应用八.立体几何8.1空间几何体的结构及其三视图与直观图8.2空间几何体的表面积与体积8.3空间点、直线、平面之间的位置关系8.4直线、平面平行的判定及其性质8.5直线、平面垂直的判定及其性质8.6空间向量及其运算8.7空间向量的应用九、解析几何9.1直线及其方程9.2点与直线、直线与直线的位置关系9.3圆的方程9.4直线与圆、圆与圆的位置关系9.5椭圆9.6双曲线9.7抛物线9.8直线与圆锥曲线的位置关系9.9曲线与方程十.计数原理10.1分类加法计数原理与分步乘法计数原理10.2排列与组合10.3二项式定理十一、概率与统计11.1事务与概率11.2古典概型与几何概型11.3离散型随机变量及其分布列11.4二项分布及其应用11.5离散型随机变量的均值与方差、正态分布11.6随机抽样与用样本估计总体11.7变量间的相关关系十二、选修部分选修4-4坐标系与参数方程选修4-5不等式选讲十三、算法初步、推理与证明、复数12.1算法与程序框图12.2基本算法语句12.3合情推理与演绎推理12.4干脆证明与间接证明12.5数学归纳法12.6数系的扩充与复数的引入。
高考数学(理)一轮资源库 第十四章 14.1几何证明选讲
题型一
相似三角形的判定及性质
【例 1】 如图,已知在△ABC 中,
解析
思维升华
点 D 是 BC 边
(1)三角形相似的证明方法很多,解
上的中点,且
题时应根据条件,结合图形选择恰
AD=AC,
当的方法.一般的思考程序:先找两
DE⊥BC,DE
对内角对应相等;若只有一个角对
与 AB 相交于点 E,EC 与 AD 相 应相等,再判定这个角的两邻边是
解析
思维升华
点 D 是 BC 边
∵△ABC∽△FCD,BC=2CD,
上的(CBCD)2=4,
DE⊥BC,DE
又∵S△FCD=5,∴S△ABC=20,
与 AB 相交于点 E,EC 与 AD 相 交于点 F.
又 S△ABC=12×BC×AM
(1)求证:△ABC∽△FCD;
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
3.直角三角形射影定理 直角三角形一条直角边的平方等于 该直角边在斜边上的射影
与斜边的乘积
,斜边上的高的平方等于 两条直角边
在斜边上的射影的乘积 . 4.圆中有关的定理
(1)圆周角定理:圆周角的度数等于其所对弧的度数的 一半 . (2)圆心角定理:圆心角的度数等于 它所对弧 的度数. (3)切线的判定与性质定理 ①切线的判定定理 过半径外端且与这条半径 垂直 的直线是圆的切线.
交于点 F.
否对应成比例;若无角对应相等,
(1)求证:△ABC∽△FCD;
就要证明三边对应成比例. (2)证明等积式的一般方法是化为等
(2)若 S△FCD=5,BC=10,求 DE 积的比例式,若题目中无平行线,
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
高考数学(文)一轮复习课件:几何概型
整理ppt
11
5.在区间[-1,2] 上随机取一个数 x,则 x∈[0,1]的概率为
________.
解析 如图,这是一个长度型的几何概型题,所求概率 P=||CADB||
=13.
答案
1 3
整理ppt
12
考向一 与长度有关的几何概型 【例 1】►点 A 为周长等于 3 的圆周上的一个定点.若在该圆周 上随机取一点 B,则劣弧 的长度小于 1 的概率为________. [审题视点] 用劣弧 的长度与圆周长的比值.
整理ppt
8
3.(2012·衡阳模拟)有四个游戏盘,将它们水平放稳后,在上 面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要 想增加中奖机会,应选择的游戏盘是( ).
解析 P(A)=38,P(B)=28,P(C)=26,P(D)=13, ∴P(A)>P(C)=P(D)>P(B). 答案 A
整理ppt
9
4.某人随机地在如图所示正三角形及其外
接圆区域内部投针(不包括三角形边界及圆
的边界),则针扎到阴影区域(不包括边界)
的概率为( ).
π
33
A.3
B. 4π
3 C. 4
D.以上全错
整理ppt
10
解析 设正三角形边长为a,则外接圆半径r= 23a×23= 33a, ∴所求概率P=π 4333aa22=34π3. 答案 B
几何概型求随机事件概率的关键,复习时要多反思和多领悟,
掌握方法要领.同时要加强与平面区域、空间几何体、平面向
量、函数结合等方面的训练.
整理ppt
2
基础梳理 1.几何概型 事件 A 理解为区域 Ω 的某一子区域 A,A 的概率只与子区域 A 的几何度量(长度、面积或体积)成正比,而与 A 的位置和形状 无关.满足以上条件的试验称为几何概型.
高考数学一轮复习 几何概型课件
与面积有关的几何概型
例 2 在可行域内任取一点,规则如程序框图所示,求能输出 数对(x,y)的概率.
即在可行域- -11≤ ≤xx+ -yy≤ ≤11 内求出点(x,y),求它在 x2+y2≤12
内的概率.
解 由题意,求输出的数对(x,y)的概率,即求 x2+y2≤12所表
探究提高
几何概型的关键是选择“测度”,如本例以角度为“测 度”.因为射线 AD 落在∠DAB 内的任意位置是等可能的, 所以选择“角度”为“测度”是解决本题的关键.
变式训练 3 如图所示,在△ABC 中,∠B=60°,∠C =45°,高 AD= 3,在∠BAC 内作射线 AM 交 BC 于点 M,求 BM<1 的概率. 解 ∵∠B=60°,∠C=45°, ∴∠BAC=75°, 在 Rt△ADB 中,AD= 3,∠B=60°, ∴BD=taAn D60°=1,∠BAD=30°.
变式训练 2 设关于 x 的一元二次方程 x2+2ax+b2=0.若 a 是从区间[0,3] 任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有 实根的概率.
解 设
当 a≥0,b≥0 时,方程 x2+2ax+b2=0 有实根的充要条件为 a≥b. 试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},构 成事件 A 的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}, 所以所求的概率为 P(A)=3×23-×122×22=23.
探究提高
从该题可以看出,我们将每个事件理解为从某个特定的几何区 域内随机地取一点,该区域中每一点被取到的机会都一样.而 一个随机事件的发生则理解为恰好取到上述区域内的某个指 定区域中的点,这样的概率模型就可以用几何概型来求解.
2021年高考数学一轮复习几何概型教学案
2021年高考数学一轮复习几何概型教学案一、考点要求:学习目标:了解几何概型的特点,会进行简单的几何概型的运算,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型。
二、知识要点:2.几何概率计算公式:一般地,在几何区域D中随机地取一点,记“该点落在其内部一个区域d内”为事件A,则事件A发生的概率,把这种概率模型称为几何概型。
三、基础回顾:1. 两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m的概率为_________2. 如图,向圆内投镖,如果每次都投入圆内,那么投中正方形区域的概率为________3. 在圆心角为90°的扇形中,以圆心O为起点作射线OC,则使得∠AOC和∠BOC都不小于30°的概率为。
4.如图所示,A是圆上固定的一点,在圆上其他位置任取一点A',连结AA',它是一条弦,则它的长度小于或等于半径长度的概率为________四、例题探究:例1:如图,单位正方形ABCD,在正方形内(包括边界)任取一点M,求:(1)△AMB面积大于等于1/4的概率;(2)求AM长度不小于1的概率。
内容要求A B C概率几何概型√例2:在等腰直角三角形中,在斜边上任取一点,求的概率。
变式:在等腰直角三角形中,过直角顶点在内部任作一条射线,与线段交于点,求的概率。
例3:已知三个正数.(1)若是从中任取的三个数,且,求能构成三角形三边长的概率;(2)若是从中任取的三个数,且,求能构成三角形三边长的概率.★★★例4:(会面问题)甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去,设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。
求二人能会面的概率。
五、课堂小结:六、感悟反思:1. 向面积为S的△ABC内任投一点P,则△PBC的面积小于S/2的概率是_____2.A是圆上固定的一点,在圆上其他位置任取一点A',连结AA',它是一条弦,则它的长度小于或等于半径长度的概率为________3.在区间[-1,1]上随机取一个数x,的值介于0到之间的概率为4. 已知右图所示的矩形其长为12,宽为5,在矩形内随机微下1000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为________七、千思百练:1.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机撒一粒豆子,则它落在阴影部分的概率为________2.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC都不小于30°的概率为 。
高三一轮复习几何概型PPT课件
返回
5.如图所示,边长为2的正方形中有一封闭 曲线围成的阴影区域,在正方形中随机撒
一粒豆子,它落在阴影区域内的概率为23, 则阴影区域的面积为________. 解析:设阴影区域的面积为S,则S4=23,∴S=83.
答案:83
返回
1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的 长度 ( 面积 或 体积 )成比例,则称这样的概率模 型为几何概率模型,简称为几何概型.
返回
4.如右图所示,在直角坐标系内,射线 OT 落
在 60°角的终边上,任作一条射线 OA,则
射线 OA 落在∠xOT 内的概率是________.
解析:记“射线OA落在∠xOT内”为事件A.事件A的几何
度量是60°,而所有区域的几何度量是360°,故P(A)=
2.几何概型的概率公式 在几何概型中,事件A的概率的计算公式如下: P(A)=
构成事件A的区域长度面积或体积 试验的全部结果所构成的区域长度面积或体积 .
返回
返回
[做一题] [例1] 在半径为1的圆内一条直径上任取一点,过这个 点作垂直于直径的弦,求弦长超过圆内接等边三角形 边长的概率.
返回
返回
[悟一法] 1.解决概率问题先判断概型,本题属于几何概型,满足
两个条件:基本事件的无限性和每个基本事件发生的 等可能性.要抓住它的本质特征,即与长度(面积或体 积)有关. 2.求与长度有关的几何概型的概率的方法,是把题中所 表示的几何模型转化为线段的长度,然后求解,应特 别注意准确表示所确定的线段的长度.
第
十章
第
六
、概
节
率、
随机
几
变量
何
及分
概
高三数学第一轮复习课件(ppt)目录
第一章
集合与常用逻辑用语
1.1 集合的概念与运算 1.2 命题及其关系、充分条件与必要条件 1.3 简单的逻辑联结词、全称量词与存在量词
目录 CONTENTS
第二章
函数
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程 2.10 函数模型及其应用
12.1 算法与程序框图 12.2 基本算法语句 12.3 合情推理与演绎推理 12.4 直接证明与间接证明 12.5 数学归纳法 12.6 数系的扩充与复数的引入
目录 CONTENTS
选修4系列
选修4-1 几何证明选讲(选考) 选修4-4 坐标系与参数方程(选考) 选修4-5 不等式选讲(必考)
目录 CONTENTS
第十一章
概率与统计
11.1 事件与概率 11.2 古典概型与几何概型 11.3 离散型随机变量及其分布列 11.4 二项分布及其应用 11.5 离散型随机变量的均值与方差、正态分布 11.6 随机抽样与用样本估计总体 11.7 变量间的相关关系
目录 CONTENTS
第十二章 算法初步、推理与证明、复数
目录 CONTENT第S五章
平面向量
5.1 平面向量的概念及其线性运算
5.2 平面向量的基本定理及坐标运算
5.3 平面向量的数量积及其应用
第六章
数列
6.1 数列的概念与简单表示法 6.2 等差数列及其前n项和 6.3 等比数列及其前n项和 6.4 数列的通项与求和 6.5 数列的综合应用
目录 CONTENTS
高考数学一轮复习几何概型
第三节几何概型[考纲传真](教师用书独具)1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.(对应学生用书第152页)[基础知识填充]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个.(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数的个数N;③计算频率f n(A)=MN作为所求概率的近似值.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)从区间[1,10]内任取一个数,取到1的概率是110.()(3)概率为0的事件一定是不可能事件.()(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )[答案] (1)√ (2)× (3)× (4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A .710 B .58 C .38D.310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B .]4.(2018·石家庄模拟)如图10-3-1所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10-3-10.18 [由题意知,S 阴S 正=1801 000=0.18.∵S 正=1,∴S 阴=0.18.]5.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是________. 【导学号:79170357】1-π4 [如图所示,区域D 为正方形OABC 及其内部,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π, ∴所求事件的概率P =4-π4=1-π4.](对应学生用书第152页)明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D.34(2)如图10-3-2所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.图10-3-2(3)(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.(1)B (2)13 (3)59 [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B .(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,且射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt △ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率P ==π6·1π2·1=13.(3)由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P=59.][规律方法] 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD为测度”计算几何概型的概率,导致错求P=1 2.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1](1)(2017·唐山质检)设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径2倍的概率是() 【导学号:79170358】A.34B.12C.13D.35(2)(2016·山东高考)在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x -5)2+y2=9相交”发生的概率为________.(1)B(2)34[(1)作等腰直角△AOC和△AMC,B为圆上任一点,则当点B在上运动时,弦长|AB|>2R,∴P ==12.(2)由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.]角度1 与随机模拟相关的几何概型(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nm B .2n m C .4m nD .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=mn ,即π4=m n ,所以π=4m n .]角度2 与线性规划交汇问题(2018·长沙模拟)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A .14 B .316 C .916D .34D [由x ,y ∈[0,4]可知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.][规律方法] 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.[变式训练2] (1)(2017·全国卷Ⅰ)如图10-3-3,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )【导学号:79170359】图10-3-3A.14B.π8C.12D.π4(2)(2018·莆田模拟)从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.π8B.π4C.12D.34(1)B(2)B[(1)不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,可得S正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑=S白=12S圆=π2,所以由几何概型知所求概率P=S黑S正方形=π22×2=π8.故选B.(2)任取的两个数记为x,y,所在区域是正方形OABC内部,而符合题意的x,y位于阴影区域内(不包括x,y轴),故所求概率P=14π×121×1=π4.]1111的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A .π12B .1-π12 C .π6D .1-π6B [设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π. ∴P (A )=23-23π23=1-π12.][规律方法] 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.[变式训练3] 如图10-3-4,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.图10-3-412[设四棱锥M -ABCD 的高为h ,由于V 正方体=1.且13·S ABCD ·h <16,又S ABCD =1,∴h <12, 即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.]。
【高考风向标】高考数学一轮复习 第十四章 第3讲 几何概型课件 文
A.7.68 C.17.32
图 14-3-2 B.16.32 D.8.68
4.(2010 年湖南)在区间[-1,2]上随即取一个数 x,则 x∈[0,1]
1 的概率为__3___.
5.(2011 年广东深圳模拟)如图 14-3-3 所示,墙上挂有一 边长为 a 的正方形木板,它的四个角的空白部分都是以正方形的
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/172022/1/17January 17, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/172022/1/172022/1/171/17/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/172022/1/17
•
【互动探究】
2.一元二次方程 x2+2ax+b2=0,其中 a∈[0,3],b∈[0,2].
求此方程有实根的概率.
解:试验的全部结果所构成的区域为
{(a,b)|0≤a≤3,0≤b≤2}.
设事件 A 表示“此方程有实根”,
则构成事件 A 的区域为如图D32,
{(a,b)|0≤a≤3,0≤b≤2,a≥b}.
0<y<12,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习 第14章 几何概型 理
一、选择题
1.已知三棱锥S ABC ,在三棱锥内任取一点P ,使得V P -ABC <1
2V S ABC 的概率是( )
A.78
B.34
C.12
D.14
解析:当P 在三棱锥的中截面与下底面构成的三棱台内时符合要求,由几何概型知,P =1-18=7
8.
答案:A
2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随
机取一个点
Q ,则点Q 取自△ABE 内部的概率等于( )
A.14
B.13
C.12
D.23
解析:点E 为边CD 的中点,故所求的概率P =△ABE 的面积矩形ABCD 的面积=1
2.
答案:C
3.平面上画了一些彼此相距2a 的平行线,把一枚半径r <a 的硬币任意掷在这个平面上,求硬币不与任何一条平等线相碰的概率是( )
A.a -r a
B.a -r
2a
C.
2a -r 2a D.a +r
2a
解析:∵硬币的半径为r ,
∴当硬币的中心到直线的距离d >r 时,硬币与直线不相碰. ∴P =2a -r 2a =a -r
a
. 答案:A
4.已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )
A.14
B.13
C.23
D.12
解析:由题意可知,点P 位于BC 边的中线的中点处. 记黄豆落在△PBC 内为事件D ,则P (D )=S △PBC S △ABC =1
2
. 答案:D
5.在区间(0,1)内任取两个实数,则这两个实数的和大于1
3的概率为( )
A.1718
B.79
C.29
D.118
解析:设这两个实数分别为x ,y ,则⎩
⎪⎨
⎪⎧
0<x <1
0<y <1,满足x +y >1
3
的
部分如图中阴
影部分所示.所以这两个实数的和大于13的概率为1-12×13×13=17
18
.
答案:A
6.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2
+2ax -b 2
+π有零点的概率为( )
A.78
B.3
4 C.12D.14
解析:因为f (x )=x 2
+2ax -b 2
+π有零点,所以Δ=4a 2
-4(π-b 2
)≥0,即a 2
+b 2
-π≥0,由几何概型的概率计算公式可知所求概率为P =
2π×2π-π×
π
2
2π×2π
=3π2
4π2=34
. 答案:B 二、填空题
7.在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________.
解析:以A 、B 、C 为圆心,以1为半径作圆,与△ABC 交出三个扇形,当P 落在其内
时符合要求.
∴P =3×12×π3×1
2
34×22
=3π
6.
答案:
36
π
8.若m ∈(0,3),则直线(m +2)x +(3-m )y -3=0与x 轴、y 轴围成的三角形的面积小于9
8的概率为
________.
解析:直线与两个坐标轴的交点分别为(3m +2,0),(0,33-m ),又当m ∈(0,3)时,3m +2>0,33-m
>0, ∴12·3m +2·33-m <98, 解得0<m <2, ∴P =2-03-0=23.
答案:23
9.若不等式组⎩⎪⎨⎪
⎧
y ≤x y ≥-x
2x -y -3≤0
表示的平面区域为M ,x 2+y 2
≤1所表示的平面区域为N ,现随机向
区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.
解析:如图,△AOB 为区域M ,扇形COD 为区域M 内的区域N ,A (3,3),
B (1,-1),
S △AOB =12
×2×32=3,S
扇形COD
=π
4,所以豆子落在区域N 内的概率为P =
S 扇形COD S △AOB
=π
12
. 答案:π12
三、解答题
10.图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是1
4
,求此长方体的体积.
解:设长方体的高为h ,则图(2)中虚线围成的矩形长为2+2h ,宽为1+2h ,面积为(2+2h )(1+2h ),展开图的面积为2+4h ;由几何概型的概率公式知2+4h 2+2h 1+2h =1
4
,得h =3,所以长方体的体积
是V =1×3=3.
11.已知函数f (x )=-x 2
+ax -b .
(1)若a ,b 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率; (2)若a ,b 都是从区间[0,4]任取的一个数,求f (1)>0成立时的概率.
解:(1)a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25个. 函数有零点的条件为Δ=a 2
-4b ≥0,即a 2
≥4b .
因为事件“a 2
≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a 2
≥4b ”的概率为P =1225,即函数f (x )有零点的概率为1225
.
(2)a ,b 都是从区间[0,4]任取的一个数,
f (1)=-1+a -b >0,
即a -b >1,此为几何概型.
所以事件“f (1)>0”的概率为P =1
2×3×34×4=9
32
.
12.已知复数z =x +y i(x ,y ∈R)在复平面上对应的点为M .
(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机取一个数作为x ,从集合Q 中随机取一个数作为y ,求复数z 为纯虚数的概率;
(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组:
⎩⎪⎨⎪
⎧
x +2y -3≤0,x ≥0,y ≥0
所表示的平面区域内的概率.
解:(1)记“复数z 为纯虚数”为事件A .
∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,
且每种情况出现的可能性相等,属于古典概型,其中事件A 包含的基本事件共2个:i,2i ,∴所求事件的概率为P (A )=212=16
.
(2)依条件可知,点M 均匀地分布在平面区域
⎩
⎪⎨⎪⎧
x ,y
|⎩
⎪⎨
⎪⎧⎭⎪⎬⎪
⎫0≤x ≤30≤y ≤4内,属于几何概型,该平面区域的图形为下图中矩形OABC 围成的区域,面积
为S =3×4=12.
而所求事件构成的平面区域为
⎩
⎨⎧⎭
⎬⎫
x ,y |⎩⎪⎨⎪
⎧
x +2y -3≤0x ≥0
y ≥0
,
其图形如图中的三角形OAD (阴影部分).
又直线x +2y -3=0与x 轴、y 轴的交点分别为A (3,0)、D (0,3
2),
∴三角形OAD 的面积为S 1=12×3×32=9
4.
∴所求事件的概率为P =S 1S =9
412=3
16
.。