物理化学讲义02 热力学第一定律

合集下载

物理化学 第二章 热力学第一定律.ppt

物理化学 第二章 热力学第一定律.ppt
第二章 热力学第一定律 (The first law of
thermodynamics)
◆“化学热力学”概念 一、热力学研究的内容
1、 化学反应的能量转化规律(热一律); 2、 化学反应的可能性和限度(热二律); 二、特点
1、 研究物质的宏观性质; 2、 只考虑变化的始终态; 3、 解决最大产率,没有时间的概念; 三、局限性
系统分三类: 1)封闭系统; 2)敞开系统; 3)隔离系统;
2、系统的宏观性质:
广延性质:数量与物质的量有关,具有加和性。
如:m、V、U、H等。
强度性质:数量与物质的量无关,不具有加和
性。如:T、P、d等。
3、状态、状态性质和状态函数
状态:系统中物理、化学性质的综合表现。当
这些性质具有确定的值时,系统就处于某一状态 。
3.3 过程热的计算 恒容变温过程的热:
δQ v=n CV,M dT
恒压变温过程的热:
δQ P=n CP,M dT
组成不变的均相系统等压(等容)变
T2

T1
T2

温过程热的计算
T1
Qp

H

n
T2 T1
C
p,m
dT
QV
U
n
T2 T1
CV
,mdT
例题:试计算常压下1molCO2温度从25℃升到200℃时 所需吸收的热。
∴ ΔV≈Vg
既 W= - P饱Vg= -nRT

三、化学过程的体积功 T、P一定时,
可逆反应 aA + bB € gG + hH
气相化学反应 W=-P外∫dV =- PΔV = -Δn(g)RT
复相化学反应 W= -Δn(g)RT (固体、液体的体积

物理化学第2章 热力学第一定律

物理化学第2章 热力学第一定律

注意:物系变化后,那些不影响的部分不能 叫做环境。
6
(3) 物系分类
根据体系与环境间是否有能量、物质交 换,将物系分成三类: a、敞开物系:物系与环境间既有物质交换, 又有能量交换; b、封闭物系:物系与环境间没有物质交换, 但有能量交换; c、隔离物系:物系与环境间没有物质交换, 又没有能量交换;
第二章 热力学第一定律
热力学是建立在大量科学实验基础上的 宏观理论,是研究各种形式的能量相互转化 的规律,由此而得出各种自动变化、自动进 行的方向、限度以及外界条件变化时对它们 的影响等。
1
§2.1 热力学基本概念
一、热力学概述 热力学:是应用热力学的基本定律研究化 学变化及其有关的物理变化的科学。 1、 研究对象: 热力学研究的对象是大量微观粒子 的宏观性质,(粒子数大体上不低于1023 数量级。)热力学不研究少数粒子所构成 的物质和个别粒子的行为。
(b) 广度性质是系统所含物质量的一次齐函 数,强度性质是零次齐函数。 (c) 两个广度性质相除,所得为强度性质 如:m / V =ρ V / n = Vm
13
** 3、状态与状态函数
(1)状态:当体系的所有性质都有确定值时,就 称体系处于某一状态。因此体系的状态是体系 性质的综合表现。 (2)独立变量(状态变量、状态参数、状态参 变量): 当体系处于一定状态时,其强度性质和容 量性质都有一定的数值,但体系的这些性质是 相互关联的,只有几个是独立的,因而可用几 个独立性质来描述体系的状态。
2、物系的性质
物系的性质:物系处于某种条件下(状态或 热力学状态)的物理量,这些性质或物理量又称热 力学变量。如T、P、V、N、、U、H、G、CP、S 等。仔细分析这些性质就会发现,它们有的值与物 质量有关,具有加和性,有的无加和性。

物理化学(第二章)

物理化学(第二章)
=(U2 + p2V ) −(U + pV ) 2 1 1 1
系统在恒 且非体积功为零的过程中与环境交换的热量 的过程中与环境交换的热量。 系统在恒压,且非体积功为零的过程中与环境交换的热量。
Q= ∆U −W ∆U =Q+W
W = −p环(V −V ) 2 1
= − p 系 (V 2 − V1 )
= − ( p 2V 2 − p1V1 )
U2
Q+W
dU =δQ+δW
第一类永动机 是不可能造成的。 是不可能造成的。 永远在做功,却不消耗能量。 永远在做功,却不消耗能量。
∆U =Q+W = 0
若 <0 则 >0. W , Q
W < 0,
Q= 0
∆ = Q+W U
推论: 、 推论: 1、隔离系统 内能守恒
W = 0 Q= 0
∆ =0 U
4、热和功的分类 、 显热 热 相变热(潜热) 相变热(潜热) 化学反应热 功 非体积功( ) 非体积功(W’) 体积功
5、体积功的计算 、
dV = Asdl
截面 As
环 境
δW = Fd l
热 源
系统
Q F = p环 As
V=As l l dl
p环
∴δW = p环 Asdl
= p环d( Asl ) = p环dV
x = f ( y, z)
∂x dy+ ∂x dz dx = ∂y ∂z y z
(2)广度性质 ) 摩尔热力学能: 摩尔热力学能: (3)绝对值未知 ) 始态
U Um = n
∆ U
强度性质
末态
U1
U2

物理化学 学习资料2 热力学第一定律

物理化学 学习资料2 热力学第一定律
物理化学
学习资料2 热力学第一
定律
《 物理化学 学习资料2 热力学第一定律 》 - 1/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 2/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 3/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 4/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 5/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 56/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 57/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 58/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 59/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 60/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 11/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 12/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 13/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 14/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 15/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 61/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 62/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 63/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 64/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 65/74页 -
《 物理化学 学习资料2 热力学第一定律 》 - 6/74页 -

物理化学热力学第一定律总结

物理化学热力学第一定律总结

物理化学热力学第一定律总结热力学第一定律是热力学中最基本的定律之一,并且与能量守恒原理密切相关。

它陈述了一个闭合系统内部的能量转换过程。

根据热力学第一定律,能量是不能从真空中产生的,也不能消失,它只能在系统内部进行转化。

该定律可以用以下公式表达:ΔU=Q-W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外界做的功。

这个公式说明了能量的守恒,即系统吸收的热量和对外界做的功之和等于系统内部能量的变化。

当系统从外界吸收热量时,其内部能量会增加,而当系统对外界做功时,其内部能量会减少。

这种能量的转化是一个相互依存的过程,可以通过热力学第一定律进行描述。

热力学第一定律的应用十分广泛,并且在实际问题中具有重要的意义。

以下是热力学第一定律在不同领域的应用:1.在化学反应中,热力学第一定律可以用来计算反应的焓变。

通过测量反应前后系统吸收或释放的热量,可以计算出反应的焓变,从而了解反应的能量转化和方向。

2.在工程领域,热力学第一定律常用于能量转换设备的设计和优化中。

例如,蒸汽轮机、内燃机和制冷机等能量转换系统的效率可以通过热力学第一定律进行评估和计算。

3.在生物学领域,热力学第一定律可以用于研究生物体内的能量转化过程。

例如,通过测量生物体吸收的热量和对外界做的功,可以计算出生物代谢的能量转换效率。

热力学第一定律的重要性在于揭示了能量守恒的基本原理,为能量转化和能量利用提供了基础理论支持。

它对于研究和解决实际问题具有重要指导意义。

热力学第一定律的应用可以帮助我们评估能量转换过程的效率,优化能量利用方式,并促进可持续发展。

总之,物理化学热力学第一定律表述了能量守恒的原则,描述了能量转化和能量守恒的过程。

它在化学、工程、生物等领域具有广泛的应用,并对能量转换和利用提供了理论支持。

热力学第一定律的理解和应用可以帮助我们更好地理解能量转换过程,优化能量利用方式,并实现可持续发展的目标。

物理化学(傅献彩著)02章 热力学第一定律

物理化学(傅献彩著)02章 热力学第一定律

状态函数(state function)
用以描述系统状态的函数称为状态函数 系统处于定态时,其性质仅取决于系统所处的 状态,而与系统的历史无关; 系统状态改变时,它的变化值仅取决于系统的 始态和终态,而与变化的途径无关。
异途同归,值变相等;周而复始,数值还原
状态函数在数学上具有全微分的性质。
Complete differential property
(1)等温过程 (isothermal process)
T1 T2 T环 p1 p2 p环
dV 0
(2)等压过程 (isobaric process)
(3)等容过程 (isochoric process)
(4)绝热过程 (adiabatic process)
(5)环状过程 (cyclic process)
1. 指出某一变化是否能发生 2. 估计变化的限度 3. 指明改进工作的方向
温度的概念
Et 1 mu 2 f (T ) 2
T 反映大量分子无规则运动的剧烈程度,具有统计概念, 与分子的平均平动能有函数关系。 平衡态(equilibrium state):一个不受外界影响的系统, 最终会达到一个稳定的状态,宏观上不再变化,并可用一 定的状态函数来描述它,这表明该系统达到了平衡态。
系统的性质
广度性质 广度性质(1) 强度性质 物质的量 广度性质(2)
m V
热力学平衡态 (thermodynamic equilibrium state)
当系统的诸性质不随时间而改变,则系统就处于 热力学平衡态。
热平衡(thermal equilibrium)
环境
系统
系统与环境
系统的分类
(1)敞开系统(open system) 系统与环境之间既有物质交换,又有能量交换

物理化学-02章_热力学第一定律

物理化学-02章_热力学第一定律
定律延伸:任一热力学均相体系,在平衡态各自存 在一个称之为温度的状态函数,对所有达到热平衡 的均相体系,其温度相同。
温标:a)摄氏温标,以水为基准物,规定水的凝 固为零点,水的沸点与冰点间距离的1/100为1℃。
热力学第零定律
b)理想气体温标 以低压气体为基准物质,规定水 的三相点为273.16 K,温度计中低压气体的压强为P ,则恒容时,任意其它压力时的温度为
§2.0 热力学概论
热力学方法特点和局限性
• 热力学方法是一种演绎的方法,结合经验所 得的基本定律进行演绎推理,指明宏观对象的 性质、变化方向和限度。
• 研究对象是大数量分子的集合体,研究宏 观性质,所得结论具有统计意义。
• 只考虑平衡问题,考虑变化前后的净结果, 但不考虑物质的微观结构和反应机理。
状态函数的特性可描述为: 异途同归,值变相等;
人的状态,变化,性质。
周而复始,数值还原。
状态函数在数学上具有全微分的性质。
状态函数的特性
(1)体系的状态确定,则状态函数也就确定了, 状态变化,状态函数也随着变化。
(2)状态函数的改变值只与始终态有关,与变 化途径无关。如果进行了一个微小的变化,可以 用数学的全微分表示状态函数的微小的变化:如 dp、dT。
(3)隔离体系(isolated system)
有时把体系和影响所及的环境一起作为孤立体
系来考虑。
大环境
无物质交换
孤立体系(2)
Siso Ssys Ssur
无能量交换
体系分类
若以体系中存在的物质种类或均匀的物质部分 数为分类依据,热力学体系还有:
单组分和多组分体系,如水和水溶液。
单相和复相体系/均相和多相体系, 体系中只 含一个均匀的物质部分称为单相体系,含有二个以 上均匀物质部分的体系称复相体系。如水和冰。

物理化学第二章热力学第一定律主要公式及其适用条件

物理化学第二章热力学第一定律主要公式及其适用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压力,W ’为非体积功。

上式适用于封闭体系的一切过程。

2.焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4.热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。

(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。

(4) ,m ,m p V C C R -=此式只适用于理想气体。

(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。

(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

物理化学 第二章 热力学第一定律

物理化学 第二章 热力学第一定律

1)热: 系统状态变化时,因其与环境之间存在温度差 而引起的能量交换形式称为热,以符号Q表示。 热的符号规定: Q的数值以系统实际得失来衡量,热的传递方向 通过Q的数值为正或负来表示:若系统吸热(即 环境放热),则Q值规定为正;若系统对环境放 热,则Q值规定为负。
热的本质: 从微观角度讲,物质的温度高低反映该物质内 部粒子无序热运动的平均强度大小,热实质上 是系统与环境两者内部粒子无序热运动平均强 度不同而交换之能量。 传热过程的推动力:温度差。 热是途径函数: 系统经历某一变化过程中所发生的系统和环境 之间以热的形式的能量交换,与变化过程的具 体途径有关。热不是状态函数。
化学反应热: 系统因发生化学反应而与环境交 换的热称为化学反应热。 2)功 系统状态发生变化时,除热之外,系统与环境 之间所发生的其它所有形式的能量交换均称为 功,以符号W来表示。 功的符号规定:功的数值同样以系统的实际得 失来衡量,并规定系统从环境获得功为正,对 环境作功为负(注意:这一正负号的规定可能与 其它版本的教材中的规定不同)。
若系统由始态(p1,V1,T1)经某一过程变至终态 (p2,V2,T2),则该过程的体积功W为过程中系 统各微小体积变化与环境交换的功之和: W=∑δ W=-∫pambdV 注意:仍然要用pamb而不能用p(系统)计算!
功也是途径函数: 系统的体积变化相同时,体积功数值的大小取 决于环境的压力pamb。 如果系统经历一个pamb=0的过程,如气体向真空 膨胀的过程,则与环境之间无体积功的交换。 当系统从同一始态经历不同的途径变至同一终 态,因为途径不同,pamb不同,故体积功也就不 同。体积功为途径函数。 功不是状态函数,数学上不是全微分,微小的 功不能写成dW,而应写作δ W。
4.热与功 热与功是系统状态发生变化时,与环境交换能 量的两种不同形式。 热与功只是能量交换形式,而且只有系统进行 某一过程时才能以热与功的形式与环境进行能 量的交换。热与功的数值不仅与系统开始与终 了状态有关,而且还与状态变化时所经历的途 径有关。热与功称作途径函数(不是状态函数)。 热和功的单位: 具有能量的单位,为焦耳(J)或千焦耳(kJ)。

物理化学-第二章-热力学第一定律及其应用精选全文

物理化学-第二章-热力学第一定律及其应用精选全文

上一内容 下一内容 回主目录
返回
2024/8/13
状态与状态函数
状态函数的特性: 异途同归,值变相等;周而复始,数值还原。
状态函数的性质:
(1) 状态函数的值取决于状态,状态改变则状态函数必定改 变(但不一定每个状态函数都改变);任何一个状态函数 改变,系统的状态就会改变。
上一内容 下一内容 回主目录

ΔU=Q+W (封闭系统)
对于无限小过程,则有
dU=δQ+δW (封闭系统)
上一内容 下一内容 回主目录
返回
2024/8/13
3. 焦耳实验 盖.吕萨克—焦尔实验
实验结果:水温未变 dT=0 dV≠0
表明:Q =0
自由膨胀 W=0
上一内容 下一内容 回主目录
返回
2024/8/13
dU= Q+ W =0
1. 热(heat)
a) 定义:体系与环境之间因温差而传递的能量称为热,用 符号Q 表示。单位:KJ 或 J。 b) Q的取号:体系吸热,Q>0;体系放热,Q<0 。
c) 性质:热不是状态函数,是一个过程量;热的大小和具 体的途径有关。
上一内容 下一内容 回主目录
返回
2024/8/13
功和热
不能说在某个状态时系统有多少热量,只能说 在某个具体过程中体系和环境交换的热是多少。
热力学能是状态函数,用符号U表示,单位为J。它 的绝对值无法测定,只能求出它的变化值。
U= U2 –U1
上一内容 下一内容 回主目录
返回
2024/8/13
热力学能
纯物质单相系统
若n确定
U=U ( n,T,V ) U=U (T,V )

物理化学 第二章 热力学第一定律-2

物理化学 第二章 热力学第一定律-2

定义 :
def
H = =U + pV
H为焓,为状态函数,广度量,无绝对值,单位 : J
Qp H
δQ p = dH 即恒压热与过程的焓变在量值上相等。
焓是状态函数,其改变量△H只取决于体系的初态和终态,而
与变化过程无关。故恒压过程热QP量值也仅取决于体系的初态 和终态,而与变化过程无关。
H 的计算的基本公式: H= U+ (pV) 恒压过程 H = Qp
一 、热容
1.定义:在不发生相变化、不发生化学反应和非体积功为零的条 件下,一定量的物质温度升高1K所吸收的热量称为该物质的热 容。 C Q dT
2. 特性 :
1)与物质的量有关
规定物质的质量为1g,或1kg,称为比热容,单位为J.K-1.g-1 或J.K-1.Kg-1。 2)与过程有关 热不是状态函数,与途径有关,所以热容C一般也与途径有关。 对于不同的途径,吸收的热量不同,热容值也不相同。
T,V
途径1 反应b
QV,b=Ub
CO2(g)
T,V
因为: Uc = Ua + Ub , Ua = Uc – Ub 。 所以: Qa = Qc - Qb 。
盖斯定律:一确定化学反应的恒容热或恒压热只取决于过程 的始末态,与中间经过的途径无关。
§2.4 摩尔热容
摩尔热容是实验测定的一类基础数据,用来计算系统发生单纯 PVT变化(无相变、无化学变化)时,过程的热Q及△H、△U。
U n( Ar, g)Cv,m( Ar, g) n(Cu, s)C p,m (Cu, s) (T2 - T1 )
(412.472 2 24.435)(373.15 - 273.15)J 9.876kJ

物理化学 02章_热力学第一定律(三)

物理化学 02章_热力学第一定律(三)


因为 所以
p1V1 p2V2 K
p2V2 p1V1 nR(T2 T1) W= 1 1
绝热功的求算 (2)绝热状态变化过程的功
W U CV dT
T1
T2
= CV (T2 T1)
(设CV 与T 无关)
因为计算过程中未引入其它限制条件,所以
该公式适用于定组成封闭系统的一般绝热过程, 不一定是可逆过程。
Th
D(p4 ,V4 , TC )
C (p3 ,V3 , TC )
环境对系统所作的功如
O
Tc
DA曲线下的面积所示。
a
d
b
c
V
Carnot 循环
过程4:绝热可逆压缩
p
A(p1 ,V1 , Th ) B(p2 ,V2 , Th )
D( p4 ,V4 , TC ) A( p1,V1, Th )
Th
D(p4 ,V4 , TC )
表示经节流过程后,气体温度随压 力的变化率。
J-T是系统的强度性质。因为节流过程的 dp 0 ,
所以当:
J-T >0 J-T <0 J-T =0
经节流膨胀后,气体温度降低。 经节流膨胀后,气体温度升高。 经节流膨胀后,气体温度不变。
转化温度(inversion temperature)
Qc ' Tc W Th Tc
式中W表示环境对系统所作的功。
热泵
热泵的工作原理与致冷机相仿。
把热量从低温物体传到高温物体,使高温物体
温度更高。
热泵的工作效率等于:向高温物体输送的热与
电动机所做的功的比值。
热泵与致冷机的工作物质是氨、溴化锂(氟

物理化学 第二章 热力学第一定律

物理化学 第二章 热力学第一定律
2.热不是状态函数
(1)不能说系统某一状态有多少热,只能说过程的热是 多少。过程的功只能表示为Q,不能表示为∆Q。 (2)同一始末态,途径不同,热的值也不同
注意:热是过程中系统与环境交换的能量。 系统内的不同部分之间交换的能量不应称为热。
尽管 TA TB,但系统和环境间交换的Q=0
绝热
AA
B
热力学能
而与环境交换的能量。 非体积功:除体积功以外一切其他形式的功。如,电
功、表面功。符号: W/
2.体积功
dl V
F pamb As
dl V
F pamb As
活塞位移方向
系统压缩(环境作功)
W 0, dV 0 W Fdl pamb Asdl pambdV
活塞位移方向
判断:
喷射前
喷射中
喷射后
状态和状态函数
1.概念
状态:静止系统内部的状态,即热力学状态。
状态函数:描述系统状态的宏观性质(如P,T,V,U,S, A,G 等)。
热力学用系统所有的性质描述它所处的状态。状态确定
后,系统所有性质有确定值,性质随状态的确定而确定,
是状态的函数。
描述
所有性质 (T、P、V、 ρ 、η 等)
(1)热与途径有关
途径a、b有相同始末态,则 Qa Wa Q b Wb
∵不同途径 Wa Wb
∴ Qa Qb
(2)第一类永动机不可能造成。
§2.3 恒容热、恒压热,焓
恒容热 恒压热 焓 QV=△U,Qp=△H两式的意义
一、恒容热:系统在恒容且非体积功为零的过
程中与环境交换的热。符号:QV
步骤a1
H2O(l) 80℃ 47.360kPa

物理化学 02章_热力学第一定律(二)

物理化学 02章_热力学第一定律(二)

C p CV nR
C p,m CV ,m R
因为等容过程中,升高温度,系统所吸的 热全部用来增加热力学能;而等压过程中,所 吸的热除增加热力学能外,还要多吸一点热量 用来对外做膨胀功,所以气体的Cp恒大于Cv 。
§2.5 准静态过程与可逆过程
•功与过程 •准静态过程 •可逆过程
1.功与过程 广义功 广义力 广义位移 δW Fdl
体积功的计算: 设活塞无质量、与气缸壁 无磨擦,气缸截面积As , 长l ,体积 V= As l 。 若在环境的压力 pe 下移 动dl ,则有: 膨胀功
dV = Asdl
H Q p C p dT
所以理想气体的等容热容和等压热容也仅 是温度的函数,与体积和压力无关
U dT 0 CV 0 T V H dT 0 Cp 0 T p
理想气体的 C p 与 CV 之差
气体的Cp 恒大于Cv 对于理想气体:
def
C (T ) 1 Q n n dT
摩尔热容单位:
J K mol
1
1
§2.7
等压热容Cp:
热容
Qp H Cp ( )p T dT
等容热容Cv:
等压摩尔热容
QV U CV ( )V T dT U QV CV dT
等容摩尔热容
H Qp CpdT
p2
O
p2V2
V1
V2
V
阴影面积代表 We,2
2.一次等外压膨胀所作的功
p2
p
p1V1
V2
p1 p2
V1
p2
O
p2V2
V1
V2
V

物理化学第二章(第一定律)

物理化学第二章(第一定律)
统计热力学 系统的(微观)状态 系统的(宏观)性质
热力学
8
系统的性质具有如下特点: 1.系统的性质只决定于它现在所处的状态,而与其过
去的历史无关。 2. 系统的状态发生变化时,它的一系列性质也随之而改
变,改变多少,只决定于系统的开始状态和终了状态, 而与变化的途径无关。
热力学把具有这种特征的系统性质称为状态函数。
或不能使一个自然发生的过程完全复原。
第一类永动机 (能量不守衡)
热源 Q W
第二类永动机
2
根据大量的实验结果和自然现象,得出热力学第一、 二定律。
热力学定律的特点: (1) 大量分子系统
(2)不管物质的微观结构 (3)不管过程的机理
优点:结论绝对可靠, 如从热力学导出纯液体 饱和蒸汽压与温度的关系:
(3) 热分为: 显热(Sensible heat)系统做单纯的pVT变化(没有相 变化),如: 25C水75C水时,系统与环境交换的热量。 潜热(Latent heat)系统发生相变化时,如:
100C水100C水汽时,系统与环境交换的热量。
27
§2-2 热力学第一定律 The First Law of Thermodynamics
活塞
p1 dV
pe
汽缸
如果p1>pe(外压),气体膨胀dV,
则系统对环境做体积功为:dWe= pedV
21
(1) 自由膨胀(Free expansion) 为外压等于零的膨胀,即 pe=0,所以:
We,1 0
(2) 恒外压膨胀pe=const.
We,2
V2

pedV
-pe (V2
V1 )
第二章 热力学第一定律及其应用

物理化学第2章热力学第一定律

物理化学第2章热力学第一定律

第二章热力学第一定律2.1 热力学的理论基础与方法1.热力学的理论基础热力学涉及由热所产生的力学作用的领域,是研究热、功及其相互转换关系的一门自然科学。

热力学的根据是三件事实:①不能制成永动机。

②不能使一个自然发生的过程完全复原。

③不能达到绝对零度。

热力学的理论基础是热力学第一、第二、第三定律。

这两个定律是人们生活实践、生产实践和科学实验的经验总结。

它们既不涉及物质的微观结构,也不能用数学加以推导和证明。

但它的正确性已被无数次的实验结果所证实。

而且从热力学严格地导出的结论都是非常精确和可靠的。

不过这都是指的在统计意义上的精确性和可靠性。

热力学第一定律是有关能量守恒的规律,即能量既不能创造,亦不能消灭,仅能由一种形式转化为另一种形式,它是定量研究各种形式能量(热、功—机械功、电功、表面功等)相互转化的理论基础。

热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。

利用热力学第三定律来确定规定熵的数值,再结合其他热力学数据从而解决有关化学平衡的计算问题。

2.热力学的研究方法热力学方法是:从热力学第一和第二定律出发,通过总结、提高、归纳,引出或定义出热力学能U,焓H,熵S,亥姆霍茨函数A,吉布斯函数G;再加上可由实验直接测定的p,V,T等共八个最基本的热力学函数。

再应用演绎法,经过逻辑推理,导出一系列的热力学公式或结论。

进而用以解决物质的p,V,T变化、相变化和化学变化等过程的能量效应(功与热)及过程的方向与限度,即平衡问题。

这一方法也叫状态函数法。

热力学方法的特点是:(i)只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(ii)只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。

因此,热力学方法属于宏观方法。

2.2 热力学的基本概念1.系统与环境系统:作为某热力学问题研究对象的部分;环境:与系统相关的周围部分;按系统与环境交换内容分为:(1)敞开系统(open system) :体系与环境间既有物质交换又有能量交换的体系。

【物理化学】2-02热力学第一定律

【物理化学】2-02热力学第一定律

结论: 当始, 终态确定的条件下, 不 同途径有不同大小的热量.
热是途径函数!
2功 系统与环境间除热量外的另一种能量交换形式 (由微观粒子的有序运动所引起的) 环境对系统作功取“ + ”, 反之取“ - ”
体积功(本节) 功
电功(电化学章) 非体积功
表面功(表面现象章)
dl F (环) = p (环) A
•又要马儿跑, 又要马儿不吃草是不可能的. •将欲取之, 必先与之. •天上不会掉下馅饼. •一份耕耘, 一份收获.
的热“量”(Q), 而不是象状态函数那样的始, 终态
之间的“增量” ( T =T2-T1, Q=Q2-Q1 );
• 一个微小途径对应微小热“量”(dQ), 同时对应
各状态函数的微小“增量”(如 dT, T2 = T1 + dT );
• 上述提醒对“功”同样有效!
我们拥有一个家 名字叫状态函数 兄弟姐妹都很多 但是没有功和热
式中U是状态函数, Q和W是途径函数. 当系统从状态1
变化到状态2, 不同途径Q和W的不同, 但Q + W却与途径无
关.
状态1 U1
QW Q W
状态2 U2 U = U2-U1
Q + W = Q + W = U
5. 热力学第一定律的其它叙述方式
第一类永动机是不能创造的. 内能是系统的状态函数.
…………
T
V
n
p
一定状态的系统 Cp
U
A
HS
G
WQ
H2 1mol, 0℃ 101325Pa
Q=0
Q = 1135J
恒温 热源 0℃
11m01oH3l2,25H0P2℃5a, 15m66o真3lP,空a0℃p环, =0

物理化学第2章热力学第一定律

物理化学第2章热力学第一定律

解: W= -10540J
Q=27110J
△U=Q+W=27110-10540=16570 J
作业:P129 1
§2.5 准静态过程与可逆过程
一、功和过程
Pe
功: W Fdl
dl
力F(force)
以气体膨胀为例
pi
A
W
Fe
dl
(
Fe A
)(
Adl
)
pedV
(2.6)
不同的过程,功值不同
(适用于宏观静止的、无外力场作用的封闭系统)
※第一类永动机是不可能造成的
注意: (1)热力学能、热和功三者可相互转化 (2)热力学第一定律是人类经验总结,任何与它相违 反的假设都不能成立
(3)热力学能在定态下有定值,其改变值只取决于 系统的始态和终态,与变化的途径无关
(4)热力学能在数学上具有全微分性质
(4)焓值不守恒,对一个隔离系统,△U=0,但ΔH不 一定等于零
(1)隔离系统
体系与环境之间既无物质交换,又无能量交换, 故又称为孤立体系。有时把封闭体系和体系影响所及 的环境一起作为孤立体系来考虑。
(2)封闭系统(closed system) 体系与环境之间无物质交换,但有能量交换。
(3)敞开系统 体系与环境之间既有物质交换,又有能量交换。
二、系统的性质 (1) 定义: 确定系统状态所需的各宏观可测量的物理性质 (如温度、压力、体积等)。又称热力学变量。
局限性: ▲考虑过程的始、终态,只计算变化前后的总结 果,不考虑过程的细节。
▲只能说明在某种条件下变化能否发生及进行的程 度,不能说明所需的时间、变化的根本原因和所经 过的历程
▲只做宏观了解,不做微观说明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 热力学第一定律一.基本要求1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。

2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的和的值。

3.了解为什么要定义焓,记住公式的适用条件。

4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中,的计算。

5.掌握等压热与等容热之间的关系,掌握使用标准摩尔生成焓和标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握与之间的关系。

6.了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。

二.把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。

热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。

这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。

例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。

功和热的计算一定要与变化的过程联系在一起。

譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。

在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。

功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。

在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。

传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变为另一种形式。

同样,在环境内部传递的能量,也是不能称为功(或热)的。

例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以。

这个变化只是在系统内部,热力学能从一种形式变为另一种形式,而其总值保持不变。

也可以通过教材中的例题,选定不同的对象作系统,则功和热的正、负号也会随之而不同。

功和热的取号也是初学物理化学时容易搞糊涂的问题。

目前热力学第一定律的数学表达式仍有两种形式,即:,虽然已逐渐统一到用加号的形式,但还有一个滞后过程。

为了避免可能引起的混淆,最好从功和热对热力学能的贡献的角度去决定功和热的取号,即:是使热力学能增加的,还是使热力学能减少的,这样就容易掌握功和热的取号问题。

焓是被定义的函数,事实上焓是不存在的,仅是几个状态函数的组合。

这就要求理解为什么要定义焓?定义了焓有什么用处?在什么条件下,焓的变化值才具有一定的物理意义,即。

务必要记住这两个公式的使用限制条件。

凭空要记住公式的限制条件,既无必要,又可能记不住,最好从热力学第一定律的数学表达式和焓的定义式上理解。

例如,根据热力学第一定律,要使或,必须使,这就是该公式的限制条件。

同理:根据焓的定义式,将上面的表达式代入,得要使或,必须在等压条件下,,系统与环境的压力相等,和,这就是该公式的限制条件。

以后在热力学第二定律中的一些公式的使用限制条件,也可以用相似的方法去理解。

状态函数的概念是十分重要的,必须用实例来加深这种概念。

例如:多看几个不同的循环过程来求和,得到,,这样可以加深状态函数的“周而复始,数值还原”的概念。

例如和可以通过燃烧、爆鸣、热爆炸和可逆电池等多种途径生成水,只要保持始态和终态相同,则得到的和的值也都相同,这样可以加深“异途同归,值变相等”的概念。

化学反应进度的概念是很重要的,必须牢牢掌握。

以后只要涉及化学反应,都要用到反应进度的概念。

例如,在化学反应摩尔焓变的求算中,今后在化学平衡中,利用反应的Gibbs自由能随反应进度的变化曲线来判断化学变化的方向与限度,在化学动力学中利用反应进度来定义反应的速率,以及在电化学中,利用电化学的实验数据来计算反应进度为1 mol时的热力学函数的变化值等,都要用到反应进度的概念,所以必须掌握化学反应进度的概念。

用标准摩尔生成焓和标准摩尔燃烧焓来计算化学反应的摩尔焓变时,相减的次序是不一样的,必须要理解为什么不一样,这样在做习题时就不会搞错了。

要学会查阅热力学数据表,这在今后的学习和工作中都是十分有用的。

三.思考题参考答案1.判断下列说法是否正确,并简述判断的依据。

(1)状态给定后,状态函数就有定值;状态函数固定后,状态也就固定了。

(2)状态改变后,状态函数一定都改变。

(3)因为,所以是特定条件下的状态函数。

(4)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。

(5)在等压下,用机械搅拌某绝热容器中的液体,使液体的温度上升,这时。

(6)某一化学反应在烧杯中进行,热效应为,焓变为。

若将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态都相同,这时热效应为,焓变为,则。

答:(1)对。

因为状态函数是状态的单值函数,状态固定后,所有的状态函数都有定值。

反之,状态函数都有定值,状态也就被固定了。

(2)不对。

虽然状态改变后,状态函数会改变,但不一定都改变。

例如,系统发生了一个等温过程,体积、压力等状态函数发生了改变,系统的状态已与原来的不同,但是温度这个状态函数没有改变。

(3)不对。

热力学能U和焓H是状态函数,而U,H 仅是状态函数的变量。

和仅在特定条件下与状态函数的变量相等,所以和不可能是状态函数。

(4)不对。

系统可以降低自身的热力学能来对外做功,如系统发生绝热膨胀过程。

但是,对外做功后,系统自身的温度会下降。

(5)不对。

因为环境对系统进行机械搅拌,做了机械功,这时,所以不符合的使用条件。

使用这个公式,等压和,这两个条件一个也不能少。

(6)对。

因为焓H是状态函数,只要反应的始态和终态都相同,则焓变的数值也相同,与反应具体进行的途径无关,这就是状态函数的性质,“异途同归,值变相等”。

但是,两个过程的热效应是不等的,即。

2.回答下列问题,并简单说明原因。

(1)可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快?(2)与盐酸发生反应,分别在敞口和密闭的容器中进行,哪一种情况放的热更多一些?(3)在一个用导热材料制成的圆筒中,装有压缩空气,圆筒中的温度与环境达成平衡。

如果突然打开筒盖,使气体冲出,当压力与外界相等时,立即盖上筒盖。

过一会儿,筒中气体的压力有何变化?(4)在装有催化剂的合成氨反应室中,与的物质的量之比为,反应方程式为。

分别在温度为和的条件下,实验测定放出的热量对应为和。

但是用Kirchhoff定律计算时计算结果与实验值不符,试解释原因。

答:(1)可逆热机的效率虽高,但是可逆过程是一个无限缓慢的过程,每一步都接近于平衡态。

所以,用可逆热机去牵引火车,在有限的时间内是看不到火车移动的。

所以,可逆功是无用功,可逆热机的效率仅是理论上所能达到的最高效率,使实际不可逆热机的效率尽可能向这个目标靠拢,实际使用的热机都是不可逆的。

(2)当然在密闭的容器中进行时,放的热更多一些。

因为在发生反应的物质的量相同时,其化学能是一个定值。

在密闭容器中进行时,化学能全部变为热能,放出的热能就多。

而在敞口容器中进行时,一部分化学能用来克服大气的压力做功,余下的一部分变为热能放出,放出的热能就少。

(3)筒中气体的压力会变大。

因为压缩空气冲出容器时,筒内的气体对冲出的气体做功。

由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。

当盖上筒盖又过了一会儿,筒内气体通过导热壁,从环境吸收热量使温度上升,与环境达成平衡,这时筒内的压力会增加。

(4)用Kirchhoff公式计算的是反应进度等于1 mol时的等压热效应,即摩尔反应焓变。

用实验测定的是反应达平衡时的等压热效应,由于合成氨反应的平衡转化率比较低,只有25%左右,所以实验测定值会比理论计算的结果小。

如果将反应物过量,使生成产物的数量与化学计量方程的相同,那实验值与计算值应该是等同的。

3.理想气体的绝热可逆和绝热不可逆过程的功,都可用公式计算,那两种过程所做的功是否一样?答:当然不一样,因为从同一个始态出发,绝热可逆与绝热不可逆两个过程不可能到达同一个终态,两个终态温度不可能相同,即T不可能相同,所以做的功也不同。

通常绝热可逆过程做的功(绝对值)总是大于不可逆过程做的功。

4.指出如下所列3个公式的适用条件:(1)(2)(3)答:(1)式,适用于不做非膨胀功()的等压过程()。

(2)式,适用于不做非膨胀功()的等容过程()。

(3)式,适用于理想气体不做非膨胀功()的等温可逆过程。

5.用热力学的基本概念,判断下列过程中,,,和的符号,是,,还是。

第一定律的数学表示式为。

(1)理想气体的自由膨胀(2) van der Waals气体的等容、升温过程(3)反应在非绝热、等压条件下进行(4)反应在绝热钢瓶中进行(5)在273.15 K,101.325kPa下,水结成冰答:(1)W = 0 因为是自由膨胀,外压为零。

Q = 0 理想气体分子之间的相互引力小到可以忽略不计,体积增大,分子间的势能并没有变化,能保持温度不变,所以不必从环境吸热。

U = 0 因为温度不变,理想气体的热力学能仅是温度的函数。

或因为W = 0,Q = 0,所以U = 0。

H = 0 因为温度不变,理想气体的焓也仅是温度的函数。

或因为,U = 0,所以H = 0。

(2)W = 0 因为是等容过程,膨胀功为零。

Q 0 温度升高,系统吸热。

U 0 系统从环境吸热,使系统的热力学能增加。

H 0 根据焓的定义式,。

(3)W 0 反应会放出氢气,要保持系统的压力不变,放出的氢气推动活塞,克服外压对环境做功。

Q 0 反应是放热反应。

U 0 系统既放热又对外做功,使热力学能下降。

H 0 因为这是不做非膨胀功的等压反应,H = Q p。

(4)W = 0 在刚性容器中,进行的是恒容反应,不做膨胀功。

Q = 0 因为用的是绝热钢瓶U = 0 根据热力学第一定律,能量守恒,热力学能不变。

以后,在不考虑非膨胀功的情况下,只要是在绝热刚性容器中发生的任何变化,,和都等于零,绝热刚性容器相当于是一个孤立系统。

H 0 因为是在绝热钢瓶中发生的放热反应,气体分子数没有变化,钢瓶内的温度会升高,导致压力也增高,根据焓的定义式,可以判断焓值是增加的。

或(5)W 0 在凝固点温度下水结成冰,体积变大,系统克服外压,对环境做功。

Q 0 水结成冰是放热过程。

U 0 系统既放热又对外做功,热力学能下降。

相关文档
最新文档