2019学年山东省九年级中考第三次模拟数学试卷【含答案及解析】
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2019年山东省菏泽市曹县中考数学三模试卷 解析版
2019年山东省菏泽市曹县中考数学三模试卷一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确选项的序号填涂在答题卡相应的位置.)1.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a42.(3分)如图,数轴上有三个点A、B、C,若点A与B表示的数互为相反数,则点C表示的数是()A.﹣1B.1C.﹣2D.23.(3分)如图,将一个含有45°角的直角三角板摆放在矩形上,若∠1=35°,则∠2的度数为()A.70°B.75°C.80°D.85°4.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣35.(3分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°6.(3分)若直线y=kx+k﹣1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的取值范围是()A.0<n<2B.0<n<4C.2<n<6D.4<n<67.(3分)如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE上的点,且FE=BE,则点F到边CD的距离是()A.3B.C.4D.8.(3分)如图,正方形ABCD的边长为4,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x间的函数关系图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内,)9.(3分)在函数y=中,自变量x的取值范围为.10.(3分)如图,△ABC中,∠ACB=90°,∠B=50°,将△ABC绕点C按顺时针方向旋转后得到△A′B′C′,点B′恰好落在线段AB上,AC、A'B′相交于O,则∠COA′的度数为.11.(3分)观察下列关于自然数的式子:4×12﹣12,4×22﹣32,4×32﹣52,……,根据上述规律,则第2019个式子的值为12.(3分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.13.(3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2=.14.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.(6分)计算:16.(6分)解不等式组17.(6分)如图,▱ABCD中,E、F分别是边AB、CD的中点,求证:∠ADE=∠CBF.18.(6分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图,已知原阶梯式自动扶梯AB的长为6m,坡角∠ABE=45°,改造后的斜坡自动扶梯坡角∠ACB=15°,求改造后的斜坡式自动扶梯AC的长,(精确到0.1m,参考数据;sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)19.(7分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?20.(7分)如图,反比例函数y=(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求P A+PB的最小值.21.(10分)某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,(1)求m、n的值;(2)求“C等级”所对应的扇形圆心角的度数;(3)已知成绩等级为A的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率22.(10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC 沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.23.(10分)在△ABC中,∠ABC=90°(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为点M,N,求证:△ABM∽△BCN;(2)如图2,P是BC边上一点,∠BAP=∠C,tan∠P AC=,BP=2cm,求CP的长.24.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.2019年山东省菏泽市曹县中考数学三模试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确选项的序号填涂在答题卡相应的位置.)1.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.2.(3分)如图,数轴上有三个点A、B、C,若点A与B表示的数互为相反数,则点C表示的数是()A.﹣1B.1C.﹣2D.2【分析】首先确定原点位置,进而可得C点对应的数.【解答】解:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是﹣1.故选:A.【点评】此题主要考查了数轴,关键是正确确定原点位置.3.(3分)如图,将一个含有45°角的直角三角板摆放在矩形上,若∠1=35°,则∠2的度数为()A.70°B.75°C.80°D.85°【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=35°,∠4=45°,∴∠3=∠1+∠4=80°,∵矩形对边平行,∴∠2=∠3=80°.故选:C.【点评】此题主要考查了等腰直角三角形的性质、平行线的性质,正确得出∠3的度数是解题关键.4.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5.(3分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDF=∠DBC,由三角形的外角性质求出∠BDF=∠DBC=∠DFC=20°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.6.(3分)若直线y=kx+k﹣1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的取值范围是()A.0<n<2B.0<n<4C.2<n<6D.4<n<6【分析】利用一次函数图象上点的坐标特征可得出n+3=km+k﹣1,2n﹣1=k(m+1)+k ﹣1,二者做差后可得出n=k+4,结合0<k<2即可得出n的取值范围.【解答】解:∵直线y=kx+k﹣1经过点(m,n+3)和(m+1,2n﹣1),∴n+3=km+k﹣1,2n﹣1=k(m+1)+k﹣1,∴n=k+4.又∵0<k<2,∴4<k+4<6,即4<n<6.故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征找出n=k+4是解题的关键.7.(3分)如图,四边形ABCD中,AB=4,BC=6,AB⊥BC,BC⊥CD,E为AD的中点,F为线段BE上的点,且FE=BE,则点F到边CD的距离是()A.3B.C.4D.【分析】过E作EG⊥CD于G,过F作FH⊥CD于H,过E作EQ⊥BC于Q,依据平行线分线段成比例定理,即可得到HP=CQ=3,FP=BQ=1,进而得出FH=1+3=4.【解答】解:如图所示,过E作EG⊥CD于G,过F作FH⊥CD于H,过E作EQ⊥BC 于Q,则EG∥FH∥BC,AB∥EQ∥CD,四边形CHPQ是矩形,∵AB∥EQ∥CD,∴,∵E是AD的中点,∴BQ=CQ=3,∴HP=CQ=3,∵FP∥BQ,∴,∵FE=BE,∴FP=BQ=1,∴FH=1+3=4.故选:C.【点评】本题主要考查了平行线分线段成比例定理的运用,解决问题的关键是作平行线,解题时注意:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边,所得的对应线段成比例.8.(3分)如图,正方形ABCD的边长为4,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x间的函数关系图象大致是()A.B.C.D.【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.【解答】解:当P在AB边上运动时,y=×4x=2x;当P在BC边上运动时,y=×4(8﹣x)=﹣2x﹣16,当P在CD边上运动时,y=×4(x﹣2×4)=2x﹣16,当P在AD边上运动时,y=×4(4×4﹣x)=32﹣2x.大致图象为:.故选:B.【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内,)9.(3分)在函数y=中,自变量x的取值范围为x<.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2﹣4x>0,解得x<.故答案为:x<.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.(3分)如图,△ABC中,∠ACB=90°,∠B=50°,将△ABC绕点C按顺时针方向旋转后得到△A′B′C′,点B′恰好落在线段AB上,AC、A'B′相交于O,则∠COA′的度数为60°.【分析】由三角形的内角和为180°可得出∠A=40°,由旋转的性质可得出BC=B′C,从而得出∠B=∠BB′C=50°,再依据三角形外角的性质结合角的计算即可得出结论.【解答】解:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.【点评】本题考查了旋转的性质、角的计算依据外角的性质,解题的关键是算出∠ACB′=10°.本题属于基础题,难度不大,解决该题型题目时,依据旋转的性质找出相等的角和相等的边,再通过角的计算求出角的度数是关键.11.(3分)观察下列关于自然数的式子:4×12﹣12,4×22﹣32,4×32﹣52,……,根据上述规律,则第2019个式子的值为8075【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解答】解:4×12﹣12①4×22﹣32②4×32﹣52③…4n2﹣(2n﹣1)2=4n﹣1,所以第2019个式子的值是:4×2019﹣1=8075.故答案为:8075.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.12.(3分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.13.(3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2=6.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k 的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=3,解得:k1﹣k2=6.故答案为:6【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.14.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为2.【分析】延长DE交OA于F,如图,先利用一次函数解析式确定B(0,4),A(4,0),利用三角函数得到∠OBA=60°,接着根据菱形的性质判定△BCD为等边三角形,则∠BCD=∠COE=60°,所以∠EOF=30°,则EF=OE=1,然后根据三角形面积公式计算.【解答】解:延长DE交OA于F,如图,当x=0时,y=﹣x+4=4,则B(0,4),当y=0时,﹣x+4=0,解得x=4,则A(4,0),在Rt△AOB中,tan∠OBA==,∴∠OBA=60°,∵C是OB的中点,∴OC=CB=2,∵四边形OEDC是菱形,∴CD=BC=DE=CE=2,CD∥OE,∴△BCD为等边三角形,∴∠BCD=60°,∴∠COE=60°,∴∠EOF=30°,∴EF=OE=1,△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b 为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.(6分)计算:【分析】根据特殊角的三角函数值、负整数指数幂、二次根式的性质和二次根式的乘法法则运算.【解答】解:原式=()2﹣×4+﹣1﹣=﹣2+﹣1﹣6=﹣﹣5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.(6分)解不等式组【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:解不等式①,得x<﹣,解不等式②,得x,所以不等式组的解集为x.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,17.(6分)如图,▱ABCD中,E、F分别是边AB、CD的中点,求证:∠ADE=∠CBF.【分析】先利用平行四边形的性质证得AD=CB,∠A=∠C,AB=CD,得AE=CF,证得△CFB≌△AED后即可得到∠ADE=∠CBF.【解答】证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=CB,AB=CD,又∵点E,F分别是AB,CD的中点∴AE=CF=AB=CD,∴△CFB≌△AED(ASA).∴∠ADE=∠CBF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(6分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图,已知原阶梯式自动扶梯AB的长为6m,坡角∠ABE=45°,改造后的斜坡自动扶梯坡角∠ACB=15°,求改造后的斜坡式自动扶梯AC的长,(精确到0.1m,参考数据;sin15°≈0.26,cos15°≈0.97,tan15°≈0,27)【分析】先在Rt△ABD中,用三角函数求出AD,最后在Rt△ACD中用三角函数即可得出结论.【解答】解:如图,过点A作AD⊥CE于点D,在Rt△ABD中,∠ABD=45°,AB=6m,∴AD=AB•sin45°=6×=6(m).在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC==≈23.1(m),即:改造后的斜坡式自动扶梯AC的长度约为23.1米.【点评】此题主要考查了解直角三角形的应用,锐角三角函数的应用,求出AD是解本题的关键.19.(7分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件,(1)若降价a元,则平均每天销售数量为2a+20件(用含a的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,若降价a元”,列出平均每天销售的数量即可,(2)设每件商品降价x元,根据“平均每天可售出20件,每件盈利40元,销售单价每降低1元,平均每天可多售出2件,每件盈利不少于25元”列出关于x的一元二次方程,解之,根据实际情况,找出盈利不少于25元的答案即可.【解答】解:(1)根据题意得:若降价a元,则多售出2a件,平均每天销售数量为:2a+20,故答案为:2a+20,(2)设每件商品降价x元,根据题意得:(40﹣x)(20+2x)=1200,解得:x1=10,x2=20,40﹣10=30>25,(符合题意),40﹣20=20<25,(舍去),答:当每件商品降价10元时,该商店每天销售利润为1200元.【点评】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.20.(7分)如图,反比例函数y=(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求P A+PB的最小值.【分析】(1)可得点D的坐标为:(m+2,),点A(m,4),即可得方程4m=(m+2),继而求得答案;(2)作点A关于y轴的对称点E,连接BF交y轴于点P,可求出BF长即可.【解答】解:(1)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则P A+PB的值最小.∴P A+PB=PF+PB=BF==2.【点评】此题考查了待定系数法求反比例函数的解析式以及轴对称的性质.注意准确表示出点D的坐标和利用轴对称正确找到点P的位置是关键.21.(10分)某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,(1)求m、n的值;(2)求“C等级”所对应的扇形圆心角的度数;(3)已知成绩等级为A的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率【分析】(1)先求出样本容量,再根据频率=频数÷总人数可得答案;(2)先求出C等级人数,再用360°乘以C等级人数所占比例即可得;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)∵样本容量为15÷15%=100(名),∴m=100×0.51=51(名),n=4÷100=0.04;(2)C等级人数为100﹣4﹣51﹣15=30(名),∴“C等级”所对应的扇形圆心角的度数为360°×=108°;(3)列表如下:∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC 沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC,结合∠ABD=∠AED知∠ABD=∠ACD,从而得出AB=AC,据此得证;(2)作AH⊥BE,由AB=AE且BE=2知BH=EH=1,根据∠ABE=∠AEB=∠ADB 知cos∠ABE=cos∠ADB==,据此得AC=AB=3,利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB=,∴cos∠ABE=cos∠ADB=,∴=.∴AC=AB=3,∵∠BAC=90°,AC=AB,∴BC=3.【点评】本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.(10分)在△ABC中,∠ABC=90°(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为点M,N,求证:△ABM∽△BCN;(2)如图2,P是BC边上一点,∠BAP=∠C,tan∠P AC=,BP=2cm,求CP的长.【分析】(1)利用相似三角形的判定易证△ABM∽△BCN;(2)过P作PM⊥AP,交AC于M,过M作MN⊥PC于N,先证△PMN∽△ABP,求出PN与AB的比,设PN=2t,则AB=t,推出CN=PN=2t,再证△ABP∽△CBA,利用相似三角形对应边的比相等即可求出t的值,进一步求出CP的值.【解答】(1)证明:∵AM⊥MN,CN⊥MN,∴∠M=∠N=90°∴∠MAB+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠MAB=∠CBN,∴△ABM∽△BCN;(2)解:如图2,过P作PM⊥AP,交AC于M,过M作MN⊥PC于N,则∠APB+∠MPN=90°,∠APB+∠BAP=90°,∴∠MPN=∠BAP,又∵∠B=∠N=90°,∴△PMN∽△ABP,∴==tan∠P AC=,设PN=2t,则AB=t,∵∠BAP=∠MPN,∠BAP=∠C,∴∠MPC=∠C,∴CN=PN=2t,∵∠B=∠B=90°,∠BAP=∠C,∴△ABP∽△CBA,∴,∴(t)2=2×(2+4t),解得,x1=2,x2=(舍去),∴PC=CN+PN=4t=4×2=8.【点评】本题考查了相似三角形的判定与性质,等腰三角形的三线合一性质等,解题关键是能够灵活运用相似三角形的判定与性质.24.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,0);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,0);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8,此时P点坐标为(8,0);解方程m2﹣m=﹣m得m1=0(舍去),m2=4,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.。
中考综合模拟考试 数学试卷 附答案解析
(1)求抛物线的解析式;
(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m为何值时,S的值最大,并求S的最大值;
(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.
9.在函数 中,自变量x的取值范围是______.
【答案】x≥4
【解析】
【分析】
根据被开方数为非负数及分母不能为0列不等式组求解可得.
【详解】解:根据题意,知 ,
解得:x≥4,
故答案为x≥4.
【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零..③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
A. B. C. D.
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】47.24亿=4724 000 000=4.724×109.
10.若 ,则 的值是________.
【答案】3
【解析】
【分析】
原式变形后,将m−n的值代入计算即可求出值.
【详解】解:∵ ,
山东省烟台市2019年中考真题数学试题(含解析)
一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
2019年山东省青岛市市北区中考数学一模试卷(解析版)
2019年山东省青岛市市北区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.在如图所示的数轴上若A、B两点到原点的距离相等,则点B所表示的数是()A. −3B. −2C. 13D. 62.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. 晴B. 浮尘C. 大雨D. 大雪3.亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A. 44×106B. 0.44×108C. 4.4×103D. 4.4×1074.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A. 李飞或刘亮B. 李飞C. 刘亮D. 无法确定5.下列计算正确的是()A. a3+a2=a5B. a8÷a4=a2C. (2a3)2−a⋅a5=3a6D. (a−2)(a+3)=a2−66.如图,AB是⊙O的直径,点C、D在⊙O上,A是弧DC中点,若∠ABD=15°,则∠BOC的度数为()A. 120∘B. 150∘C. 210∘D. 75∘7.如图,一次函数y=-x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B. 有两个相等的实数C. 没有实数根D. 以上结论都正确8.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,连接AE、CF,则下列结论正确的有()个(1)DE=2(2)∠EAG=45°(3)△EAG的面积是18(4)cos∠FCG=√55A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)9.计算:√36+√24√3=______.10.如图,一块正方形地面上铺设了黑、白两种颜色的方砖,它们除颜色外完全相同.一个小球在地面上自由滚动,并随机停留在某块方砖上.小球最终停留在黑砖上的概率是______.11.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点D的坐标为______.12.甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的13,设步行速度为x千米/时,则根据题意可以列出方程______.13.如图,在菱形ABCD中,∠BAD=60°,AB的垂直平分线交对角线AC于点F,垂足为E,若AF=1,则菱形ABCD的面积等于______.14.有一个底面为正方形的棱柱(如图1),底面边长为20cm,棱柱高50cm,现沿着它底面的内切圆进行加工,切掉原来的三条侧棱后,形成的几何体如图2所示,其俯视图如图3所示,则该几何体的表面积为______cm2,体积为______cm3.(柱体的体积=底面积x高)三、计算题(本大题共2小题,共16.0分)15.如图,某公园入口处原有三级台阶,每级台阶高为18cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,求AC的长度.16. 工人师傅用一块长为2m ,宽为1.2m 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)若长方体底面面积为1.28m 2,求裁掉的正方形边长;(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?四、解答题(本大题共8小题,共62.0分)17. 如图,利用尺规在平面内确定一点O ,使得点O 到△ABC 的两边AB 、AC 的距离相等,并且点O 到B 、C 两点的距离也相等(保留作图痕迹,不写作法).18. (1)解不等式组:{x−32<12(x +1)≥x −1(2)化简:(a 2+12a-1)⋅2aa 2−119. 在不透明的口袋中,装有3个分别标有数字1、2、3的小球,它们除标示的数字外完全相同,小红、小明和小亮用这些道具做摸球游戏.游戏规则如下:由小红随机从口袋中摸出一个小球,记录下数字放回摇匀再由小明随机从口袋中摸出一个小球,记录下数字,放回摇匀.如果两人摸到的小球上数字相同,那么小亮获胜;如果两人摸到的小球上数字不同,那么小球上数字大的一方获胜. (1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对三人公平吗?请说明理由.20. 春华中学为了解九年级学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:cm ,测量时精确到1cm );身高 148 151 154 155 157 158 160 161 162 164 人数 1 1 2 1 2 3 4 3 4 5 身高 165 166 167 168 170 171 173 175 177 179 人数2361423111若将数据分成8组,取组距为4cm ,相应的频率分布表(部分)是: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 ______ ______ 167.5~171.5 ______ ______ 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00请回答下列问题:(1)样本数据中,学生身高的众数、中位数各是多少? (2)填写频率分布表中未完成的部分;(3)若该校九年级共有850名学生,请你估计该年级学生身高在172cm 及以上的人数21.在同一平面直角坐标系中,一次函数y1=ax+b与反比例函数y2=kx(k为常数,且k ≠0)的图象交于A、B两点,它们的部分图象如图所示,△BOD的面积是6.(1)求一次函数y1=ax+b与反比例函数y2=kx的表达式;(2)请直接写出不等式y1>y2的解集.22.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点F为AC的中点,连接FD并延长到点E,使FD=DE,连接BF,CE和BE.(1)求证:BE=FC;(2)判断并证明四边形BECF的形状;(3)为△ABC添加一个条件,则四边形BECF是矩形(填空即可,不必说明理由)23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=√2,设EB=x,则BF=√2-x,∵Rt△AEB≌Rt△BFC∴BF=AE=√2-x在Rt△AEB中,由勾股定理,得x2+(√2-x)2=12解得,x1=x2=√22∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,______一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD 面积的n倍?(n>2)(仿照上述方法,完成探究过程)24.如图,在菱形ABCD中,对角线AC=6cm,BD=8cm点P从点B出发沿BA方向匀速运动,速度是1cm/s,点Q从点D出发沿DB方向匀速运动,速度是2cm/s,QE∥AB,与BC交于点E,连接PQ.设运动时间为t(s)(0<t≤4).(1)当PQ⊥AB于P时,求t的值;(2)设四边形BPQE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使BQ平分∠PQE?若存在,求t的值;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵A、B两点到原点的距离相等,A为3,则B为3的相反数,即B表示-3.故选:A.到原点距离相等的点所表示的数互为相反数,故可知B点表示的数为3的相反数.本题考查绝对值的意义及相反数的意义,要正确理解到原点距离相等的两个点所表示的数即为相反数.2.【答案】A【解析】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:用科学记数法正确表示44000000的是4.4×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5-8)2+2×(7-8)2+3×(8-8)2+3×(9-8)2+(10-8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7-8)2+4×(8-8)2+3×(9-8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.本题主要考查折线统计图与方差,解题的关键是根据折线统计图得出解题所需数据及方差的计算公式.5.【答案】C【解析】解:A、a2和a3不能合并,故本选项不符合题意;B、a8÷a4=a4,故本选项不符合题意;C、(2a3)2-a•a5=4a6-a6=3a6,故本选项符合题意;D、(a-2)(a+3)=a2+a-6,故本选项不符合题意;故选:C.根据合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方求出每个式子的值,再得出选项即可.本题考查了合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.6.【答案】B【解析】解:∵A是弧DC中点,∠ABD=15°,∴∠AOC=30°,∴∠BOC=150°,故选:B.根据圆周角定理和平角解答即可.此题考查圆周角定理,关键是根据圆周角定理和平角解答.7.【答案】A【解析】解:∵一次函数y=-x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=-x有两个不相等的实数根,ax2+bx+c=-x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.根据二次函数与一元二次方程的关系判断.本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系是解题的关键.8.【答案】B【解析】解:(1)∵将△ABG沿AG对折至△AFG∴AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,,∴Rt△AFE≌Rt△ADE(HL),∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,GE=3+x,在Rt△ECG中,根据勾股定理,得:(6-x)2+32=(x+3)2,则DE=2;∴(1)正确;(2)∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠EAG=45°;∴(2)正确;(3)∵AF=AB=6,GE=DE+BG=2+3=5,∴S△EAG =AF•GE=×6×5=15;∴(3)错误;(4)过F作FH⊥CG于H,如图所示:则CE=CD-DE=6-2=4,∵△CEG的面积=CG•CE=×3×4=6,∴△CFG的面积=×6=,∴FH•CG=,即FH×3=,解得:FH=,∵GF=BG=3,GH===,∴CH=CG-GH=3-=,CF===,∴cos∠FCG===;∴(4)正确;综上所述:结论正确的有3个;故选:B.(1)由翻折变换的性质证明Rt△AFE≌Rt△ADE,得出EF=DE,设DE=FE=x,则EC=6-x.CG=3,GE=3+x,由勾股定理得出DE=2;(2)由∠BAG=∠FAG,∠DAE=∠FAE,∠BAD=90°,即可得出∠EAG=45°;(3)由S△EAG =AF•GE得出S△EAG=15;(4)过F作FH⊥CG于H,求出FH=,GH=,CH=,CF=,得出cos∠FCG==;综合以上结果即可得出结论.本题考查翻折变换的性质、正方形的性质、全等三角形的判定与性质、直角三角形的性质、勾股定理、三角形面积计算、三角函数等知识,熟练掌握翻折变换的性质与勾股定理是关键.9.【答案】2√3+2√2【解析】解:原式===2+2,故答案为:2+2.先化简二次根式,再分母有理化,继而化简可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.10.【答案】38【解析】解:观察这个图可知:黑色区域(6块)的面积占总面积(16块)的=,则它最终停留在黑色方砖上的概率是,故答案为:.根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.【答案】(4,2)【解析】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为(8×,4×),即(4,2),故答案为:(4,2).应点的坐标的比等于k或-k解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.12.【答案】4.5x-4.53x=12【解析】解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:-=.故答案为:-=.设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.13.【答案】3√32【解析】解:连接DB,∵AB的垂直平分线交对角线AC于点F,∴∠AEF=90°,AB=2AE,∵菱形ABCD中,∠BAD=60°,∴∠FAE=30°,∴AE=,∵菱形ABCD中,∠BAD=60°,∴AD=AB,∴△ADB是等边三角形,∴DB=AB=2AE=,∴AC=2AO=,故答案为:连接BD,根据菱形ABCD的性质得出AD=AB,再由∠BAD=60°得出△ADB是等边三角形,利用含30°的直角三角形的性质和菱形的面积解答即可.本题主要考查了菱形的性质,等边三角形的性质和判定等知识点,解此题的关键是证明△ADB 是等边三角形.14.【答案】900π+1200 3750π+5000【解析】解:(1)由图2可知,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;因此表面积为×2×π×50+×2×π×10×10+2×10×10+2×10×50=(900π+1200)cm2;(2)由几何体的组成部分,可知体积是圆柱体积和长方体体积组成,因此体积为×π×10×10×50+10×10×50=(3750π+5000)cm3,故答案为900π+1200,3750π+5000;通过给出图判断切割后的几何体的组成图形,切割后的几何体是由个圆柱的表面积,2个边长为10cm的正方形,2个边长10cm,50cm的长方形组成;然后再利用圆柱和长方体的表面积和体积公式进行求解;本题考查几何体的视图,不规则几何体的表面积和体积的求法;能够通过给出的视图,判断出组合体的组成图形是解题的关键.15.【答案】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD-AD=270-60=210(cm).∴AC的长度是210cm.答:AC的长度为210cm.【解析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,此题考查了解直角三角形的应用:坡度问题,难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.16.【答案】解:(1)设裁掉的正方形的边长为xm,根据题意,得:(2-2x)(1.2-2x)=1.28,解得:x1=0.2或x2=1.4(舍),所以裁掉的正方形边长为0.2m;(2)∵长不大于宽的3倍,∴2-2x≤3(1.2-2x),解得:0<x≤0.4,设总费用为w,根据题意,得:w=50×2x(3.2-4x)+200×(2-2x)(1.2-2x)=400x2-960x+480=400(x-1.2)2-96,∵对称轴x=1.2且开口向上,∴当0<x≤0.4时,w随x的增大而减小,∴当x=0.4时,w取得最小值,最小值为160元,答:裁掉的正方形边长为0.4m时,总费用最低,最低为160元.【解析】(1)设裁掉的正方形的边长为xm,根据底面矩形的面积公式列出一元二次方程,解之可得;(2)先根据长不大于宽的3倍得出x的取值范围,再根据总费用=侧面的总费用+底面的总费用列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.17.【答案】解:如图,①作线段BC的垂直平分线MN.②作∠BAC的平分线PA交MN于点O.点O即为所求.根据线段垂直平分线的性质以及角平分线的性质即可解决问题.本题考查作图-复杂作图,线段的垂直平分线性质、角平分线的性质等知识,解题的关键是灵活运用线段垂直平分线的性质以及角平分线的性质解决问题,属于中考常考题型.18.【答案】解:(1){x−32<1①2(x +1)≥x −1②,由不等式①,得x <5, 由不等式②,得x ≥-3,故原不等式组的解集为-3≤x <5; (2)(a 2+12a-1)⋅2aa 2−1=a 2+1−2a2a ⋅2a(a+1)(a−1)=(a−1)2(a+1)(a−1) =a−1a+1. 【解析】(1)根据解不等式组的方法可以解答本题; (2)根据分式的减法和乘法可以化简题目中的式子.本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.19.【答案】解:(1)画树状图如下:由树状图知共有9种等可能结果;(2)由树状图知,小红获胜的结果有3种,小明获胜的结果有3中, ∴P (小亮获胜)=39=13,P (小红获胜)=39=13,P (小明获胜)=39=13, ∴游戏对三人公平. 【解析】(1)画树状图列出所有等可能结果;(2)结合树状图,利用概率公式计算出三人获胜的概率,比较大小即可得.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】16 0.32 7 0.14【解析】解:(1)样本数据中,学生身高的众数是167cm 、中位数是=164(cm );(2)补全表格如下: 分 组 频 数 频 率 147.5~151.5 2 0.04 151.5~155.5 3 0.06 155.5~159.5 5 0.10 159.5~163.5 11 0.22 163.5~167.5 16 0.32 167.5~171.5 7 0.14 171.5~175.5 4 0.08 175.5~179.5 2 0.04 合 计501.00(3)估计该年级学生身高在172cm 及以上的人数约为850×(0.08+0.04)=102(人). (1)根据众数的定义以及中位数的定义得出众数、中位数即可; (2)利用图表中不同身高的人数分布情况求出未知的频数和频率即可;(3)利用样本中身高在172cm 及以上的人数估计总体学生身高在172cm 及以上的人数即可. 本题考查了频数分布直方图以及中位数和众数的定义和利用样本估计总体等知识,注意利用频数分布表得出各组人数是解题关键.21.【答案】解:(1)∵B (-1,3)在反比例函数图象上,∴k =3×(-1)=-3,∴反比例函数图的解析式为:y 2=−3x , ∵△BOD 的面积是6, ∴OD =4,D (-4,0),把D (-4,0),B (-1,3)代入y 1=ax +b 得{−a +b =3−4a+b=0,解得{b =4a=1,(2)由图象交点A 、B 两点的坐标可知,当y 1>y 2时,-3<x <-1. 【解析】(1)先根据点B 的坐标求出反比例函数图的解析式;根据反比例函数的几何意义求出点D 的坐标,再运用待定系数法即可求出求一次函数y 1=ax+b 的表达式; (2)观察图象交点A 、B 两点的坐标可知,当y 1>y 2时,x 的取值范围.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,体现了数形结合的思想. 22.【答案】(1)证明:∵AB =AC ,AD 是△ABC 的角平分线,∴BD =CD ,∵FD =DE ,∠BDE =∠CDF , ∴△BDE ≌△CDF (SAS ), ∴BE =CF ;(2)解:四边形BECF 是平行四边形, 理由:∵BD =CD ,ED =FD , ∴四边形BECF 是平行四边形;(3)当AB =BC 时,四边形BECF 是矩形, ∵AB =BC =AC ,∴BD =CD =12BC ,DF =DE =12AC , ∴BC =EF ,∴四边形BECF 是矩形. 【解析】(1)根据等腰三角形的性质得到BD=CD ,根据启动建设性的性质即可得到结论; (2)根据平行四边形的判定定理即可得到结论;(3)根据等边三角形的性质得到BD=CD=BC ,DF=DE=AC ,于是得到结论.本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的判定和性质,正确的识别图形是解题的关键. 23.【答案】不存在【解析】解:探究二:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为3, 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得x 2-x+1=0b 2-4ac=3-4<0,此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍; 探究三:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为4, 所以EF=FG=GH=HE=2,设EB=x ,则BF=2-x , ∵Rt △AEB ≌Rt △BFC ∴BF=AE=2-x在Rt △AEB 中,由勾股定理,得 x 2+(2-x )2=12 整理得2x 2-4x+3=0 b 2-4ac=16-24<0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍, 故答案为:不存在;探究四:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为n , 所以EF=FG=GH=HE=,设EB=x ,则BF=-x ,∵Rt △AEB ≌Rt △BFC∴BF=AE=-x 在Rt △AEB 中,由勾股定理,得 x 2+(-x )2=12整理得2x 2-2x+n-1=0b 2-4ac=8-4n <0, 此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的n 倍. 探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键. 24.【答案】解:(1)如图1,由题意知,BP =t ,QD =2t ,∴BQ =8-2t ,∵四边形ABCD 是菱形,∴AO =12AC =3,BO =12BD =4,AC ⊥BD , 根据勾股定理得,AB =5, 假设存在t ,是PQ ⊥AB , 在Rt △AOB 中,cos ∠ABO =45, 在Rt △BPQ 中,cos ∠PBQ =BPBQ =t8−2t , ∴t8−2t =45, ∴t =3213;(2)如图2,过点Q 作QM ⊥AB 于M ,在Rt △BQM 中,QM =BQ •sin ∠ABQ =(8-2t )•35=245-65t , ∵QE ∥AB ,AB ∥CD , ∴QE ∥CD ,∴∠BQE =∠BDC , ∵∠CBD =∠CBD , ∴∠BEQ ∽△BCD , ∴EQCD =BQBD , ∴EQ5=8−2t 8,∴EQ =5-54t ,∴y =S 四边形BPQE =12(BP +EQ )•QM =12(t +5-54t )(245-65t )=320t 2-185t +12;(3)如图3,假设存在时刻t ,使BQ 平分线∠PQE ,则∠BQP =∠BQE , 过点P 作PN ⊥BQ 于N , ∵QE ∥AB ,∴∠ABQ =∠BQE , ∴∠ABQ =∠BQP , ∴BP =PQ , ∴BN =12BQ =12(8-2t )=4-t , 在Rt △BPN 中,cos ∠PBQ =BN BP =45, ∴4−t t=45,∴t =209. 【解析】(1)先利用勾股定理求出AB=5,再用同角的余角的余弦函数建立方程求解即可得出结论; (2)先利用三角形函数表示出QM ,再判断出△BEQ ∽△BCD ,表示出EQ ,即可得出结论; (3)先判断出BP=PQ ,进而表示出BN ,再用三角函数建立方程求解,即可得出结论. 此题是四边形综合题,主要考查了菱形的性质,相似三角形的性质,锐角三角函数,勾股定理,用方程的思想解决问题是解本题的关键.。
【最新】山东省聊城市中考数学模拟试卷(含答案)
山东省聊城市中考数学模拟试卷(含答案)(考试时间:120分钟分数:100分)一.选择题(共12小题,每小题3分,满分36分)1.计算的结果是()A.0 B.1 C.﹣1 D.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个4.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C.D.5.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFB B.AD=DFC.=D.=6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.47.某商品的标价为150元,八折销售仍盈利20%,则商品进价为()元.A.100 B.110 C.120 D.1308.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨9.已知x a=2,x b=3,则x3a﹣2b等于()A.B.﹣1 C.17 D.7210.解不等式组,该不等式组的最大整数解是()A.3 B.4 C.2 D.﹣3 11.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2 B.C.D.12.一次函数y=(k﹣1)x﹣k的大致图象如图所示,关于该次函数,下列说法错误的是()A.k>1B.y随x的增大而增大C.该函数有最小值D.函数图象经过第一、三、四象限二.填空题(共5小题,满分15分,每小题3分)13.计算(+2)(﹣2)的结果是.14.因式分解:x2y﹣4y3=.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x 和y元,根据题意,可列方程组为.16.同一个圆的内接正方形和正三角形的边心距的比为.17.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;三.解答题(共7小题,满分49分)18.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?21.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.22.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.23.我们定义:有一组邻角相等且对角线相等的凸四边形叫做“邻对等四边形”.概念理解(1)我们们所学过的特殊四边形中的邻对等四边形是;性质探究(2)如图1,在邻对等四边形ABCD中,∠ABC=∠DCB,AC=DB,AB>CD,求证:∠BAC与∠CDB互补;拓展应用(3)如图2,在四边形ABCD中,∠BCD=2∠B,AC=BC=5,AB=6,CD=4.在BC的延长线上是否存在一点E,使得四边形ABED为邻对等四边形?如果存在,求出DE的长;如果不存在,说明理由.24.如图,已知抛物线y=ax2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式.(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交轴BC于点N,求MN的最大值.第26题图(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x 轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P 的坐标.答案一.选择题1.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.【解答】解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.【点评】本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.4.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:这15个人的总成绩10x+5×90=10x+450,除以15可求得平均值为.故选:D.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5.【分析】依据∠ADC=∠BCD=90°,∠CAD=∠BCF,即可得到△ADC∽△CFB;过D作DM∥BE交AC于N,交AB于M,得出DM垂直平分AF,即可得到DF=DA;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,可得b=a,依据,即可得出=;根据E是CD边的中点,可得CE:AB=1:2,再根据△CEF∽△ABF,即可得到=()2=.【解答】解:∵BE⊥AC,∠ADC=∠BCD=90°,∴∠BCF+∠ACD=∠CAD+∠ACD,∴∠CAD=∠BCF,∴△ADC∽△CFB,故A选项正确;如图,过D作DM∥BE交AC于N,交AB于M,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴DF=DA,故B选项正确;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,即b=a,∴,∴=,故C选项错误;∵E是CD边的中点,∴CE:AB=1:2,又∵CE∥AB,∴△CEF∽△ABF,∴=()2=,故选D选项正确;故选:C.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质的综合应用,正确的作出辅助线构造平行四边形是解题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形6.【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【解答】解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质. 7.【分析】根据(1+利润率)×进价=标价×八折列方程,可得结论.【解答】解:设商品进价为x 元,根据题意得:150×80%=(1+20%)x ,x =100,答:商品进价为100元.故选:A .【点评】本题考查了一元一次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.【分析】利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.【解答】解:∵四边形ABCD 是平行四边形,∴OA =OC ,CD ∥AB ,∴∠ECO =∠FAO ,(故小雨的结论正确),在△EOC 和△FOA 中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),∴S △EOC =S △AOF ,∴S 四边形AFED =S △ADC =S 平行四边形ABCD ,∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确,∵△EOC ≌△FOA ,∴EC =AF ,∵CD =AB ,∴DE =FB ,DE ∥FB ,∴四边形DFBE 是平行四边形,∵OD =OB ,EO ⊥DB ,∴ED =EB ,∴四边形DFBE 是菱形,无法判断是正方形,故小何的结论错误,【点评】本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x a=2,x b=3,∴x3a﹣2b=(x a)3÷(x b)2=23÷32=.故选:A.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.10.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此可得其最大整数解.【解答】解:解不等式(x﹣1)≤1,得:x≤3,解不等式1﹣x<2,得:x>﹣1,则不等式组的解集为﹣1<x≤3,所以不等式组的最大整数解为3,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【分析】如图,连接BD,先利用勾股定理逆定理得△ABD是直角三角形,再根据正切函数的定义求解可得.【解答】解:如图所示,连接BD,则BD2=12+12=2、AD2=22+22=8、AB2=12+32=10,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,则tan∠BAC===,故选:B.【点评】本题主要考查解直角三角形,解题的关键是构建直角三角形并掌握勾股定理逆定理、正切函数的定义.12.【分析】根据一次函数的增减性确定有关k的不等式组,求解即可.【解答】解:∵观察图象知:y随x的增大而增大,且交与y轴负半轴,函数图象经过第一、三、四象限,∴,解得:k>1,∵该函数没有最小值,故选:C.【点评】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二.填空题(共5小题,满分15分,每小题3分)13.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【分析】首先提公因式y,再利用平方差进行分解即可.【解答】解:原式=y(x2﹣4y2)=y(x﹣2y)(x+2y).故答案为:y(x﹣2y)(x+2y).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.【分析】设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据:购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元列出方程组求解即可;【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,【点评】本题主要考查二元一次方程组的应用能力,根据题意准确抓住相等关系是解题的根本和关键.16.【分析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【解答】解:设⊙O的半径为R,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点评】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.17.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.三.解答题(共7小题,满分49分)18.【分析】根据平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的定义,推知∠DAE+∠ADF=90°,即可得到∠AGD=90°.【解答】证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.【点评】本题考查了平行线的性质以及角平分线的定义的运用.解题时注意:两直线平行,同旁内角互补.19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=6.经检验,x=6是原方程的解.答:这种大米的原价是每千克6元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,和已知组成方程组,求出方程组的解,再根据根与系数的关系求出m即可.【解答】解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1,即实数m的取值范围是m<1;(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.【点评】本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.23.【分析】概念理解(1)根据邻对等四边形的定义可得;性质探究(2)延长CD到点E,使CE=AB,根据“SAS”可证△ABC≌△ECB,可得∠BAC=∠BEC,AC=BE,可得∠BEC=∠BDE=∠BAC,根据平角的性质可得结论;拓展应用(3)存在,在BC的延长线上截取CE=CD=4,连接AE,BD,根据等腰三角形的性质和三角形外角的性质可得∠DEC=∠ABC,根据“SAS”可证△ACE≌△BCD,可得AE =BD,即四边形ABED为邻对等四边形,根据△ABC∽△DEC,可得DE的长.【解答】解:概念理解(1)∵矩形的对角线相等,且邻角相等∴矩形是邻对等四边形(2)如图,由AB>CD,则延长CD到点E,使CE=AB,∵AB=CE,∠ABC=∠ECB,BC=BC,∴△ABC≌△ECB(SAS)∴∠BAC=∠BEC,AC=BE,∵AC=BD∴BD=BE,∴∠BEC=∠BDE=∠BAC,∵∠BDC+∠BDE=180°∴∠BDC+∠BAC=180°即∠BAC与∠CDB互补;拓展应用(3)在BC的延长线上存在一点E,使得四边形ABED为邻对等四边形,如图,在BC的延长线上截取CE=CD=4,连接AE,BD,∵AC=BC,∴∠ABC=∠BAC,∵∠ACE=∠ABC+∠BAC,∴∠ACE=2∠ABC,且∠BCD=2∠ABC,∴∠ACE=∠BCD,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD,∵CD=CE,∴∠DEC=∠EDC,∵∠BCD=∠DEC+∠EDC,∴∠BCD=2∠DEC,且∠BCD=2∠ABC,∴∠DEC=∠ABC,∴四边形ABED为邻对等四边形,∵∠ABC=∠DEC=∠CAB=∠CDE,∴△ABC∽△DEC∴即∴DE=【点评】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,等腰三角形的性质,相似三角形的判定和性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24.【分析】(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.【解答】解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,故直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c得,解得.故抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).【点评】本题考查了二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.。
2019年山东省济宁市中考数学试卷和答案解析
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)(2019•济宁)下列四个实数中,最小的是( ) A .2-B .5-C .1D .42.(3分)(2019•济宁)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒3.(3分)(2019•济宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)(2019•济宁)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率 D .调查济宁市居民日平均用水量5.(3分)(2019•济宁)下列计算正确的是( ) A 2(3)3-=-B 3355-C 366=±D .0.360.6-=-6.(3分)(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -= B .5005004510x x -= C .500050045x x-= D .500500045x x-= 7.(3分)(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)(2019•济宁)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)(2019•济宁)已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5- B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
2019年山东省泰安市中考数学试题及参考答案(word解析版)
2019年山东省泰安市中考数学试题及参考答案与解析(全卷共150分,考试时间120分钟)第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π2.下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a43.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米4.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④5.如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.27.不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<28.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.309.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.11.如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π12.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.15.如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.16.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.17.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.18.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF 折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B (5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.25.(14分)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.参考答案与解析第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π【知识考点】算术平方根;实数大小比较.【思路分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反尔小.【解答过程】解:∵||=<|﹣3|=3∴﹣<(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.【总结归纳】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负数的绝对值为正数“.2.下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答过程】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.【总结归纳】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:42万公里=420000000m用科学记数法表示为:4.2×108米,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答过程】解:①是轴对称图形且有两条对称轴,故本选项正确;②是轴对称图形且有两条对称轴,故本选项正确;③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误.故选:A.【总结归纳】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【知识考点】平行线的性质.【思路分析】过点E作EF∥11,利用平行线的性质解答即可.【解答过程】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.【总结归纳】此题考查平行线的性质,关键是根据平行线的性质解答.6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【知识考点】折线统计图;算术平均数;中位数;众数;方差.【思路分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项.【解答过程】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故B选项正确;平均数为(6+7×2+8×3+9×2+10×2)=8.2,故C选项正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故D选项错误;故选:D.【总结归纳】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<2【知识考点】解一元一次不等式组.【思路分析】先求出两个不等式的解集,再求其公共解.【解答过程】解:,由①得,x≥﹣2,由②得,x<2,所以不等式组的解集是﹣2≤x<2.故选:D.【总结归纳】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.30【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【解答过程】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,故选:B.【总结归纳】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.9.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【知识考点】切线的性质.【思路分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC =180°﹣∠A=61°,由等腰三角形的性质得出∠OCD=∠ODC=61°,求出∠DOC=58°,由直角三角形的性质即可得出结果.【解答过程】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.【总结归纳】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答过程】解:画树状图如图所示:∵共有25种等可能的结果,两次摸出的小球的标号之和大于5的有15种结果,∴两次摸出的小球的标号之和大于5的概率为=;故选:C.【总结归纳】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.11.如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π【知识考点】垂径定理;弧长的计算;翻折变换(折叠问题).【思路分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.【解答过程】解:连接OA、OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.【总结归纳】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【知识考点】垂线段最短;矩形的性质;轨迹.【思路分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.【解答过程】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.【总结归纳】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.【知识考点】根的判别式.【思路分析】根据方程有两个不相等的实数根可得△=(2k﹣1)2﹣4(k2+3)>0,求出k的取值范围;【解答过程】解:∵原方程有两个不相等的实数根,∴△=(2k﹣1)2﹣4(k2+3)=﹣4k+1﹣12>0,解得k;故答案为:k.【总结归纳】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.【知识考点】由实际问题抽象出二元一次方程组.【思路分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答过程】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.15.如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.【知识考点】含30度角的直角三角形;扇形面积的计算.【思路分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【解答过程】解:连接OC,作CH⊥OB于H,∵∠AOB=90°,∠B=30°,∴∠OAB=60°,AB=2OA=6,由勾股定理得,OB==3,∵OA=OC,∠OAB=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠COB=30°,∴CO=CB,CH=OC=,∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.【总结归纳】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.16.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据对称轴方程求得b,再解一元二次方程得解.【解答过程】解:∵二次函数y=x2+bx﹣5的对称轴为直线x=2,∴,得b=﹣4,则x2+bx﹣5=2x﹣13可化为:x2﹣4x﹣5=2x﹣13,解得,x1=2,x2=4.故意答案为:x1=2,x2=4.【总结归纳】本题主要考查的是抛物线与x轴的交点,利用抛物线的对称性求得b的值是解题的关键.17.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.【知识考点】规律型:点的坐标;一次函数的性质;一次函数图象上点的坐标特征.【思路分析】根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决.【解答过程】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),【总结归纳】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF 折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】连接EC,利用矩形的性质,求出EG,DE的长度,证明EC平分∠DCF,再证∠FEC=90°,最后证△FEC∽△EDC,利用相似的性质即可求出EF的长度.【解答过程】解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE=AD=6由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC=×180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC===3,∴,∴FE=2,故答案为:2.【总结归纳】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答过程】解:原式=(+)÷(﹣)=÷=•=,当a=时,原式==1﹣2.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次根式的运算能力.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【知识考点】频数(率)分布表;扇形统计图.【思路分析】(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),所以a=12,b=7;(2)=27°,所以“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),所以成绩高于80分的共有900人.【解答过程】解:(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),∴a=12,b=7;(2)=27°,∴“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),∴成绩高于80分的共有900人.【总结归纳】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键.21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B (5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【知识考点】反比例函数综合题.【思路分析】(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;(2)分三种情况,①当AB=PB时,得出PB=5,即可得出结论;②当AB=AP时,利用点P与点B关于AD对称,得出DP=BD=4,即可得出结论;③当PB=AP时,先表示出AP2=(9﹣a)2+9,BP2=(5﹣a)2,进而建立方程求解即可得出结论.【解答过程】解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=,∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).【总结归纳】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,根据总价=单价×数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答过程】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种粽子最多能购进1000个.【总结归纳】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.【知识考点】相似形综合题.【思路分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA =PF即可解决问题.(2)证明△AEP∽△DEC,可得=,由此即可解决问题.(3)利用(2)中结论.求出DE,AE即可.【解答过程】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵PA=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)用A、B、C三点坐标代入,用待定系数法求二次函数表达式.(2)设点P横坐标为t,用t代入二次函数表达式得其纵坐标.把t当常数求直线BP解析式,进而求直线BP与x轴交点C坐标(用t表示),即能用t表示AC的长.把△PBA以x轴为界分成△ABC与△ACP,即得到S△PBA=AC(OB+PD)=4,用含t的式子代入即得到关于t的方程,解之即求得点P坐标.(3)作点O关于直线AB的对称点E,根据轴对称性质即有AB垂直平分OE,连接BE交抛物线于点M,即有BE=OB,根据等腰三角形三线合一得∠ABO=∠ABM,即在抛物线上(AB下方)存在点M使∠ABO=∠ABM.设AB与OE交于点G,则G为OE中点且OG⊥AB,利用△OAB面积即求得OG进而得OE的长.易求得∠OAB=∠BOG,求∠OAB的正弦和余弦值,应用到Rt△OEF即求得OF、EF的长,即得到点E坐标.求直线BE解析式,把BE解析式与抛物线解析式联立,求得x的解一个为点B横坐标,另一个即为点M横坐标,即求出点M到y轴的距离.【解答过程】解:(1)∵二次函数的图象经过点A(3,0)、B(0,﹣2)、C(2,﹣2)∴解得:∴二次函数表达式为y=x2﹣x﹣2(2)如图1,设直线BP交x轴于点C,过点P作PD⊥x轴于点D设P(t,t2﹣t﹣2)(t>3)∴OD=t,PD=t2﹣t﹣2设直线BP解析式为y=kx﹣2把点P代入得:kt﹣2=t2﹣t﹣2∴k=t﹣∴直线BP:y=(t﹣)x﹣2当y=0时,(t﹣)x﹣2=0,解得:x=∴C(,0)∵t>3∴t﹣2>1∴,即点C一定在点A左侧∴AC=3﹣∵S△PBA=S△ABC+S△ACP=AC•OB+AC•PD=AC(OB+PD)=4∴=4解得:t1=4,t2=﹣1(舍去)∴t2﹣t﹣2=∴点P的坐标为(4,)(3)在抛物线上(AB下方)存在点M,使∠ABO=∠ABM.如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EF⊥y轴于点F∴AB垂直平分OE∴BE=OB,OG=GE∴∠ABO=∠ABM∵A(3,0)、B(0,﹣2),∠AOB=90°∴OA=3,OB=2,AB=∴sin∠OAB=,cos∠OAB=∵S△AOB=OA•OB=AB•OG∴OG=∴OE=2OG=∵∠OAB+∠AOG=∠AOG+∠BOG=90°∴∠OAB=∠BOG∴Rt△OEF中,sin∠BOG=,cos∠BOG=。
中考考前模拟考试 数学试卷 含答案解析
C. D.
【答案】A
【解析】
【分析】
根据题意可得等量关系:原计划种植的亩数 改良后种植的亩数 亩,根据等量关系列出方程即可.
【详解】设原计划每亩平均产量 万千克,则改良后平均每亩产量为 万千克,
根据题意列方程为: .
故选 .
【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
【详解】把x=1代入 得:y=1,
∴A(1,1),把x=2代入 得:y= ,
∴B(2, ),
∵AC//BD// y轴,
答案与解析
一、选择题
1.−2的倒数是()
A.2B. C. D.
【答案】D
【解析】
【分析】
求一个数的倒数,即1除以这个数.根据倒数的定义求解即可.
【详解】−2的倒数:1÷(-2)=
故答案选D.
【点睛】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.也可利用分子分母交换位置来求一个数的倒数.
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
7.在平行四边形 中,若 的角平分线交于点 ,则 的形状是()
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定
8.衡阳市பைடு நூலகம்生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为 万千克,根据题意,列方程为
∴∠E=90°,
∴△ADE是直角三角形,
山东省烟台市2019年中考数学真题试题(含解析)
山东省烟台市2019年中考数学真题试题(含解析)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
2019年山东省潍坊市中考数学试卷和答案解析
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)(2019•潍坊)2019的倒数的相反数是( )A .2019-B .12019-C .12019D .20192.(3分)(2019•潍坊)下列运算正确的是( )A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a = 3.(3分)(2019•潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资111.00210⨯元.数据111.00210⨯可以表示为( )A .10.02亿B .100.2亿C .1002亿D .10020亿4.(3分)(2019•潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A .俯视图不变,左视图不变B .主视图改变,左视图改变C .俯视图不变,主视图不变D .主视图改变,俯视图改变5.(3分)(2019•潍坊)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是( )A .2.5B .2.6C .2.8D .2.96.(3分)(2019•潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y +=-+--C .22224(2)a ab b a b +-=+D .222(1)ax ax a a x -+-=--7.(3分)(2019•潍坊)小莹同学10个周综合素质评价成绩统计如下: 成绩(分)94 95 97 98 100 周数(个) 1 2 2 4 1这10个周的综合素质评价成绩的中位数和方差分别是( )A .97.5 2.8B .97.5 3C .97 2.8D .97 38.(3分)(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD . ②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 9.(3分)(2019•潍坊)如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .10.(3分)(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =11.(3分)(2019•潍坊)如图,四边形ABCD 内接于O ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1612.(3分)(2019•潍坊)抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230(x bx t t ++-=为实数)在14x -<<的范围内有实数根,则t 的取值范围是( )A .211t <B .2tC .611t <<D .26t <二、填空题(本题共6小题,满分18分。
2019学年山东省潍坊市中考一模数学试卷【含答案及解析】
2019学年山东省潍坊市中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列各组数中互为相反数的是()A、3和B、−和-3C、-3和D、-|-3|和-(-3)2. 在某次体育测试中,九年级某班7位同学的立定跳远成绩(单位:m)分别为:2.15、2.25、2.25、2.31、2.42、2.50、2.51,则这组数据的中位数是()A、2.15B、2.25C、2.31D、2.423. 如图是一个由6个大小相同、棱长为1的小正方体搭成的几何体,关于它的下列说法中正确的是()A、主视图的面积为6B、左视图的面积为2C、俯视图的面积为5D、三种视图的面积都是54. 2014年,潍坊市扎实推进农村中小学校舍标准化建设,完成投资约11.64亿元,全面改善了农村学校的办学条件,推动了全市义务教育的均衡发展.数字“11.64亿”用科学记数法可表示为()A、11.64B、11.64×108C、 1.164×109D、116.4×1075. 如图,直线l是一条河,A、B两地相距5km,A、B两地到l的距离分别为3km、6km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()6. 已知实数x、y同时满足三个条件:①x-y=2-m,②4x-3y=2+m,③x>y,那么实数m的取值范围是()A、m>-2B、m<2C、m<-2D、m>27. 如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于()A、15°B、30°C、45°D、60°8. 关于x的方程mx2−x-1=0有两个实数解,则m的取值范围是()A、m≥-B、0<m≤5C、-≤m≤5且m≠0D、0<m≤5且m≠09. 如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(0,4)、(-3,0),点E、F分别为AB、BO的中点,分别连接AF、EO,交点为P,点P坐标为()A、(-,)B、(-,2)C、(-1,)D、(-1,2)10. 已知反比例函数y=的图象如图,则二次函数y=2kx2-x+k2的图象大致为()11. 如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A、0.5cmB、1cmC、1.5cmD、2cm12. 如图,等腰梯形OABC的顶点B、C在第一象限,点A的坐标为(5,0),点D为边AB 的中点,反比例函数y=(x>0)的图象经过C,D两点,若∠COA=60°,则k的值和梯形的面积分别是()A、,4B、2,4C、4,12D、4,6二、填空题13. 分解因式:x2-y2+2y-1= .14. 若关于x的分式方程有增根,则m的值为.15. 有三张背面完全相同的卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是.16. 二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2= .17. 如图,扇形AOB的圆心角为45°,半径长为,BC⊥OA于点C,则图中阴影部分的面积为.(结果保留π)18. 在平面直角坐标系A中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;….按此规律,.则点B2014的坐标是三、解答题19. 为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图(图1)和扇形统计图(图2);(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史?(3)若该校共有学生540人,请估算全校有多少学生选修篮球课?20. 某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:(1)求y与x之间的函数关系式;(2)若该商品的销售单价在45元~80元之间浮动,①销售单价定为多少元时,销售利润最大?此时销售量为多少?②商场想要在这段时间内获得4550元的销售利润,销售单价应定为多少元?21. 如图,⊙O是△ABC的外接圆,AB=AC,连结CO并延长交⊙O的切线AP于点P.(1)求证:∠APC=∠BCP;(2)若sin∠APC=,BC=4,求AP的长.22. 如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:=1.732)(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?23. 如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.24. 已知抛物线m的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C(点B在点C的左侧),若△ABC为等边三角形.①求m的值;②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使得以点P、C、B、D为顶点构成的四边形是菱形?若存在,请写出点P的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
山东省济宁市2019年中考数学试题(含答案解析)
济宁市二0一九年高中段学校招生考试数学试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.16的倒数是A . 6B . 6-C .16D .16-2. 单项式39m x y 与24n x y 是同类项,则m n +的值是A .2B .3C .4D .5 3. 下列图形是中心对称图形的是4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是A .41.610-⨯B .51.610-⨯C .76.810-⨯D .56810-⨯5. 下列哪个几何体,它的主视图、俯视图、左视图都相同的是A B C D 6.21121x x --在实数范围内有意义,则x 满足的条件是 A .12x ≥ B .12x ≤ C .12x = D .12x ≠7. 计算()322323a a a a a -+-÷g 的结果为A .52a a -B .512a a-C .5aD .6a8. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A.18B. 16C. 14D.129. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1.将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为»BD,则图中阴影部分的面积是 A. 6π B. 3πC.122π-D. 1210. 如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB . 点P 从A出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表 示y 与x 的函数关系的是A. ① B .④ C.②或④ D. ①或(第9题) (第10题)③第Ⅱ卷(选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分.11. 分解因式:22ma mab mb++=.212. 请写出一个过(1,1),且与x轴无交点的函数表达式: .13. 《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果,那乙得到甲所有钱的23么乙也共有钱48文.甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为.14. 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为.(第14题)15.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444F E D C B A 的面积是 .三、解答题:本大题共7小题,共55分. 16.(6分)解方程: 211.22x x x=---17.(6分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是 ;(2)根据计算,请你补全两个统计图;(第15题)(第17题)(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (个)与销售单价x (元)有如下关系:y =﹣x +60(30≤x ≤60).设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O 的直径AB =10,弦AC =8,D 是»BC的中点,过点D 作DE ⊥AC 交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;再一次折叠纸片,使点 A 落在EF 上,并使折痕经过点B ,得到折痕BM ,(第19题)图1同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2.折叠该纸片,探究MN 与BM 的数量关系.写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点.(1)求m 的取值范围,写出当m 取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C 1①当1n x ≤≤-时,y 的取值范围是13y n ≤≤-,求n 的值; ②函数C 2:22()y x h k =-+的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,半径为5的圆内或圆上.设函数C 1的图象顶点为M ,求点P 与点M 距图2(第20题)离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线C:33y =()0x>上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON 的自相似点;当点M的坐标是()3,3,点N的坐标是()3,0时,求点P的坐标;(第22题)(第22题)(2) 如图3,当点M 的坐标是()3,3,点N 的坐标是()2,0时,求△MON 的自相似点的坐标;(3) 是否存在点M 和点N ,使△MON 无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.数学试题参考答案及评分标准说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数. 一、选择题 (每小题3分,共30分)11. 2()m a b +; 12. 1y x =(答案不唯一); 13. 148,2248.3x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩;14. 0a b +=; 15.18. 三、解答题(共55分) 16.解:方程两边乘(2)x -,得221x x =-+.………………………………2分解得1x =-.…………………………………4分检验:当1x =-时,20x -≠.…………………………………………5分所以原分式方程的解为1x=-. ………………………………………6分17.解:(1) 40 (1)分(2)(每填对一图得2分)(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.……………6分18.解:(1)()30=-⋅w x y()()=-⋅-+3060x x2901800=-+-x x所以w与x的函数关系式为:2901800=-+-(30≤x≤w x x60)…………2分(2)()2290180045225=-+-=--+. ………………………………3分w x x x∵﹣1<0,∴当x =45时,w 有最大值.w 最大值为225.………………………………4分答:销售单价定为45元时,每天销售利润最大,最大销售利润225元.……5分(3)当w =200时,可得方程()245225200x --+=.解得x 1=40,x 2=50.………………………………………………………6分∵50>48,∴x 2=50不符合题意,应舍去.答:该商店销售这种健身球每天想要获得200元的销售利润,销售单价应定为40元.……………………………………………………………7分19.证明:(1)连接OD,∵D 是»BC的中点,∴»»BD DC = ∴BOD BAE ∠=∠ ∴OD ∥AE ,∵DE ⊥AC ,∴90.ADE ∠=o ∴90.AED ∠=o ∴OD ⊥DE .∴DE 是⊙O 的切线.……………………………………………………………4分 (2)过点O 作OF ⊥AC 于点F ,∵10,AC = ∴1110 5.22AF CF AC ===⨯= ∵∠OFE=∠DEF=∠ODE=90°, ∴四边形OFED 是矩形,∴FE=OD=12AB .∵12AB =,∴FE=6 ∴AE=AF+FE=5+6=11.……………………………………………………… 8分 20. 解:(1)30MBN ∠=o ………………………………………………………… 1分证明:连接AN, ∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN=AB, ∴△ABN 是等边三角形. ∴60ABN ∠=o .∴1302NBM ABM ABN ∠=∠=∠=o .……………………………3分(2)1.2MN BM =………………………………………………………………… 4分折纸方案:如图,折叠三角形纸片BMN ,使点N 落在BM 上,并使折痕经过点M ,得到折痕MP,同时得到线段PO. …………………………………………………………… 6分 证明:由折叠知MOP MNP ≅V V ,∴1,30.2MN OM OMP NMP OMN B =∠=∠=∠==∠o 90.MOP MNP ∠=∠=o∴90.BOP MOP ∠=∠=o∵OP OP =,∴MOP BOP ≅V V∴MOP MNP ≅V V .∴1.2MO BO BM ==∴1.2MN BM = …………………………………………………………8分21. 解:(1)由题意可得:()()20,25420.m m m m ≠⎧⎪⎨---->⎡⎤⎪⎣⎦⎩解得:25,12m <且0,m ≠当2m =时,函数解析式为:22y x x =+.……………………… 3分(2)函数22y x x =+图象开口向上,对称轴为1,4x =-∴当14x <-时,y 随x 的增大而减小. ∵当1n x ≤≤-时,y 的取值范围是13y n ≤≤-, ∴ 223n n n +=-. ∴ 2n =-或0n =(舍去). ∴2n =-.……………………………………………………… 6分(3)∵221122,48y x x x ⎛⎫=+=+- ⎪⎝⎭∴图象顶点M 的坐标为11,48⎛⎫-- ⎪⎝⎭, 由图形可知当P 为射线MO 与圆的交点时,距离最大. ∵点P 在直线OM 上,由11(0,0),(,)48O M --可求得直线解析式为:1,2y x =,设P (a,b ),则有a=2b , 根据勾股定理可得()2222PO b b =+求得2,1a b ==.∴PM 最大时的函数解析式为()2221y x =-+.…………………………… 9分22.解:(1)在△ONP 和△OMN 中, ∵∠ONP=∠OMN ,∠NOP=∠MON∴△ONP ∽△OMN ∴点P 是△M0N 的自相似点.……………………………………………………… 2分 过点P 作PD ⊥x 轴于D 点.tan 3MNPOD ON∠== ∴60AON ∠=o . ∵ONP OMN ≅V V ,∴90MON ∠=o , ∴90OPN ∠=o . 在Rt △OPN 中,3cos 60OP ON ==o .313cos 602OD OP ==⨯=o .333sin 604PD OP ==⨯=o.∴33(,)44P .……………………… 4分图(2)①如图2,过点M 作MH ⊥x 轴于H 点, ∵ (3,3)M ,(2,0)N∴23OM =,直线OM 的表达式为3y x =.2ON = ∵1P 是△M0N 的自相似点,∴△1PON ∽△NOM 过点1P 作1PQ ⊥x 轴于Q 点, ∴111, 1.2PO PN OQ ON === ∵1P 的横坐标为1,∴331.33y =⨯= ∴131,P ⎛⎫ ⎪ ⎪⎝⎭. -------------------6分 如图3,△2P NM ∽△NOM , ∴2P N MNON MO=∴223P N = . ∵2P 的纵坐标为23, ∴23333x =∴2x =, ∴2232,3P ⎛⎫⎪ ⎪⎝⎭.综上所述,31,P ⎛⎫⎪ ⎪⎝⎭或图2,3⎛⎫ ⎪ ⎪⎝⎭.-------------------------------------------------------9分 (3)存在,M N .-------------------------------------------------------------11分。
2019年山东省济南市平阴县第二中学中考数学三模试卷(解析版)
2019年山东省济南市平阴县第二中学中考数学三模试卷一.选择题(共12小题,满分48分,每小题4分)1.下列各数中,其相反数等于本身的是()A .﹣1B .0C .1D .20182.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A .44×108B .4.4×109C .4.4×108D .4.4×10103.下列运算正确的是()A .x 3+x 2=x 5B .2x 3•x 2=2x 6C .x 6÷x 3=x 2D .(3x 3)2=9x 64.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A .B .C .D .5.下列图案中既是中心对称图形,又是轴对称图形的是()A .B .C .D .6.Windows 2000下有一个有趣的“扫雷”游戏.如图是“扫雷”游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷.现在还剩下A 、B 、C 三个方格未被探明,其他地方为安全区(包括有数字的方格),则A 、B 、C 三个方格中有地雷概率最大的方格是()A B2C 2A.A B.B C.C D.无法确定7.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°8.已知关于x的方程x2+mx﹣2=0有一个根是2,则m的值为()A.﹣1B.1C.﹣3D.39.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2B.x≤3C.x≤﹣2D.x≥310.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A.2B.2+C.1+D.11.如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S△OMN =9,则a的值是()A .B .C .D .12.如图,在四边形ABCD 中,DC ∥AB ,AD =4,CD =3,sin A =sin B =,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD →DC →CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是()A .B .C .D .二.填空题(共6小题,满分24分,每小题4分)13.分解因式:a 3﹣25a =.14.计算:﹣2+(﹣2)0=.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为.16.如图,△ABC 在平面直角坐标系内,三个顶点坐标分别为A (0,3),B (3,4),C (2,2).以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2:1,点A 1的坐标是.17.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为;18.如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y随着自变量x的增大而.三.解答题(共9小题,满分78分)19.(6分)先化简,再求值:(3x+2y)2﹣(3x+y)(3x﹣y),其中x=2,y=3.20.(6分)解不等式组:21.(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD 相交于点O,求证:OA=OE.22.(8分)如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.23.(8分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017年地铁每小时客运量是20022017年客运240万人所用的时间比2002年客运240万人所年地铁每小时客运量的4倍,用的时间少30小时,求2017年地铁每小时的客运量?24.(10分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.25.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C (6,0),过点C作x轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.26.(12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,F分别在边BC、CD上,点E、则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)27.(12分)如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴上,并且OA=OC=4OB,动点P在过A、B、C三点的抛物线上.(1)求抛物线的函数表达式;(2)在直线AC上方的抛物线上,是否存在点P,使得△PAC的面积最大?若存在,求出P点坐标及△PAC面积的最大值;若不存在,请说明理由.(3)在x轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2019年山东省济南市平阴县第二中学中考数学三模试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、x3+x2,无法计算,故此选项错误;B、2x3•x2=2x5,故此选项错误;C、x6÷x3=x3,故此选项错误;D、(3x3)2=9x6,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D 符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选:C.【点评】掌握好中心对称与轴对称的概念.判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合.6.【分析】根据图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,即可得出B,C均不是地雷,即可得出答案.【解答】解:根据题意分析可得:B,C一定不是地雷,∴A处是雷,则B,C处均不地雷,P(A)=1;P(B)=0;P(C)=0.故A、B、C三个方格中有地雷概率最大的是A.故选:A.【点评】此题主要考查了概率的求法与运用,根据已知得出右边2靠近B,C,此时B,C均不是地雷是解决问题的关键.7.【分析】根据平行线的性质,可得∠2=∠3,又根据互为余角的定义,可得∠1+∠3=90°,解答出即可.【解答】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,又∵直尺的两边平行,∴∠2=∠3,∴∠2=55°.故选:C.【点评】本题主要考查了平行线的性质和余角,熟练掌握两直线平行,同位角相等.8.【分析】把x=2代入方程x2+mx﹣2=0得4+2m﹣2=0,然后解关于m的方程即可.【解答】解:把x=2代入方程x2+mx﹣2=0得4+2m﹣2=0,解得m=﹣1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.【分析】先把(3,0)代入y=kx+b得b=﹣3k,则不等式化为k(x﹣4)+6k≥0,然后在k<0的情况下解不等式即可.【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.【分析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.【解答】解:在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=则tan75°=tan∠CAD=故选:B.【点评】此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.=k+2k,=2+,k,11.【分析】由点M的坐标得到OM=3,由直线l经过点M(3,0),且平行于y轴,可知点N的横坐标为3,代入抛物线y=ax2,求得点N的纵坐标,即求得MN的长度,再代入S△OMN=9,即可求得a的值.【解答】解:∵直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,∴点N的横坐标为3,代入抛物线方程得:y=9a,即MN=﹣9a.∵S△OMN=OM•MN=9,OM=3,MN=﹣9a,解得:a=故选:B.【点评】本题是二次函数的综合题型,其中涉及到的知识点有交点坐标和三角形的面积求法.由已知点通过找到中间量来求得未知点从而解决问题.12.【分析】过点Q做QM⊥AB于点M,分点Q在线段AD、DC、CB上三种情况考虑,根据三角形的面积公式找出s关于t的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q作QM⊥AB于点M.当点Q在线段AD上时,如图1所示,∵AP=AQ=t(0≤t≤4),sin A=,∴QM=t,∴s=AP•QM=t2;当点Q在线段CD上时,如图2所示,∵AP=t(4≤t≤7),QM=AD•sin A=,∴s=AP•QM=t;当点Q在线段CB上时,如图3所示,∵AP=t(7≤t≤11﹣t,sin B=,∴QM=(11﹣t),∴s=AP•QM=﹣(t2﹣11t),+3(利用解直角三角形求出AB=+3),BQ=4+3+4﹣t=.∴s =﹣(t 2﹣11t )的对称轴为直线t =∵t <11,∴s >0..综上观察函数图象可知D 选项中的图象符合题意.故选:D .【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q 在线段AD 、DC 、CB 上三种情况找出s 关于t 的函数关系式是解题的关键.二.填空题(共6小题,满分24分,每小题4分)13.【分析】首先提取公因式a ,再利用平方差进行分解即可.【解答】解:原式=a (a 2﹣25)=a (a +5)(a ﹣5).故答案为:a (a +5)(a ﹣5).【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【分析】原式利用算术平方根定义,以及零指数幂法则计算即可得到结果.【解答】解:原式=3﹣2+1=2,故答案为:2【点评】此题考查了实数的运算,算术平方根,以及零指数幂,熟练掌握运算法则是解本题的关键.15.【分析】根据扇形面积公式计算即可.【解答】解:设扇形的半径为为R ,则解得,R =4故答案为:4=6π,,.是解题的关键.【点评】本题考查的是扇形面积计算,掌握扇形面积公式S =16.【分析】利用位似图形的性质得出对应点位置,进而得出答案.【解答】解:如图所示:△A 1B 1C 1即为所求,则点A 1的坐标是:(﹣3,2).故答案为:(﹣3,2).【点评】此题主要考查了位似变换以及坐标与图形的性质,得出对应点位置是解题关键.17.【分析】过点C 作CE ⊥y 轴于E ,根据正方形的性质可得AB =BC ,∠ABC =90°,再根据同角的余角相等求出∠OAB =∠CBE ,然后利用“角角边”证明△ABO 和△BCE 全等,根据全等三角形对应边相等可得OA =BE =4,CE =OB =3,再求出OE ,然后写出点C 的坐标,再把点C 的坐标代入反比例函数解析式计算即可求出k 的值.AB =BC ,【解答】解:如图,过点C 作CE ⊥y 轴于E ,在正方形ABCD 中,∠ABC =90°,∴∠ABO +∠CBE =90°,∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE ,∵点A 的坐标为(﹣4,0),∴OA =4,∵AB =5,∴OB ==3,在△ABO 和△BCE 中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故答案为:y=.【点评】此题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.18.【分析】根据一次函数的单调性即可直接得出答案.【解答】解:∵x=﹣2时,y=﹣6,x=5时,y=2,根据一次函数的单调性可得:函数值y随着自变量x的增大而增大.故答案为:增大.【点评】本题考查了一次函数的性质,属于基础题,关键是掌握一次函数的基本性质.三.解答题(共9小题,满分78分)19.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2+12xy+4y2﹣9x2+y2=5y2+12xy,当x=2,y=3时,原式=5×32+12×2×3=45+72=117.【点评】本题考查的是整式的混合运算,掌握完全平方公式,平方差公式以及合并同类项的法则是解题的关键.20.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.21.【分析】根据翻转变换的性质得到BE=BC=AD,∠EBD=∠CBD,根据平行线的性质得到∠ADB=∠CBD,根据等腰三角形的判定定理得到OB=OD,计算即可.【解答】证明:由折叠的性质可知,BE=BC=AD,∠EBD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ADB=∠EBD,∴OB=OD,∴OA=OE.【点评】本题考查的是翻转变换的性质、平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;(2)根据相似三角形的判定和性质即可得到结论;(3)根据三角函数的定义即可得到结论.【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,∴∠ACB =∠ABP =90°,∴∠A +∠ABC =∠ABC +∠CBP =90°,∴∠BAC =∠CBP ;(2)∵∠PCB =∠ABP =90°,∠P =∠P ,∴△ABP ∽△BCP ,∴,∴PB 2=PC •PA ;(3)∵PB 2=PC •PA ,AC =6,CP =3,∴PB 2=9×3=27,∴PB =3,==.∴sin ∠PAB =【点评】本题考查了相似三角形的判定和性质,切线的性质,圆周角定理,三角函数的定义,正确的识别图形是解题的关键.23.【分析】设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.【解答】解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人,由题意得解得x =6,经检验x =6是分式方程的解,答:2017年每小时客运量24万人.【点评】本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时,间关系列出方程是解决问题的关键.24.【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:=90°,(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.【点评】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.25.【分析】(1)将A 点的坐标代入反比例函数y =求得k 的值,然后将A ,C 坐标代入直线解析式解答即可;(2)把x =6代入反比例函数解析式求得相应的y 的值,即得点B 的坐标,进而利用三角形面积公式解答即可;(3)使得以A 、B 、C 、D 为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可.【解答】解:(1)把点A (3,4)代入y =(x >0),得k =xy =3×4=12,故该反比例函数解析式为:y =.把A (3,4),C (6,0)代入y =mx +n 中,可得:,解得:,所以直线AC 的解析式为:y =﹣x +8;(2)∵点C (6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =y ==2.,得则B (6,2).所以△ABC 的面积=;(3)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC .∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2.所以D (3,2).②如图,当四边形ACBD ′为平行四边形时,AD ′∥CB 且AD ′=CB .∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D ′=6.所以D ′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴xD″﹣xB=xC﹣xA即xD″﹣6=6﹣3,故xD″=9.y D″﹣yB=yC﹣yA即yD″﹣2=0﹣4,故yD″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(3)题时,采用了“数形结合”和“分类讨论”的数学思想.26.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF =∠FAE ,在△GAF 和△FAE 中,AG =AE ,∠GAF =∠FAE ,AF =AF ,∴△AFG ≌△AFE (SAS ).∴GF =EF .又∵DG =BE ,∴GF =BE +DF ,∴BE +DF =EF .【类比引申】∠BAD =2∠EAF .理由如下:如图(2),延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠ABM =180°,∴∠D =∠ABM ,在△ABM 和△ADF 中,∴△ABM ≌△ADF (SAS ),∴AF =AM ,∠DAF =∠BAM ,∵∠BAD =2∠EAF ,∴∠DAF +∠BAE =∠EAF ,∴∠EAB +∠BAM =∠EAM =∠EAF ,在△FAE 和△MAE 中,∴△FAE ≌△MAE (SAS ),∴EF =EM =BE +BM =BE +DF ,即EF =BE +DF .故答案是:∠BAD =2∠EAF .【探究应用】如图3,把△ABE 绕点A 逆时针旋转150°至△ADG ,连接AF .∵∠BAD =150°,∠DAE =90°,∴∠BAE =60°.,,又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.27.【分析】(1)先确定A(4,0),B(﹣1,0),再设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a即可;(2)作PD∥y轴,如图,易得直线AC的解析式为y=﹣x+4,设P(x,﹣x2+3x+4)(0<x<4),则D(x,﹣x+4),再用x表示出PD,接着根据三角形面积公式得到S△PAC=•PD•4=﹣2x2+8x,然后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时可直接写出Q点时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4的坐标.【解答】解:(1)∵C(0,4),∴OC=4,∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(﹣1,0),设抛物线解析式为y=a(x+1)(x﹣4),把C(0,4)代入得a•1•(﹣4)=4,解得a=﹣1,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+3x+4;(2)作PD∥y轴,如图,易得直线AC的解析式为y=﹣x+4,设P(x,﹣x2+3x+4)(0<x<4),则D(x,﹣x+4),∴PD=﹣x2+3x+4﹣(﹣x+4)=﹣x2+4x,∴S△PAC=•PD•4=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,S△PAC有最大值,最大值为8,此时P点坐标为(2,6);(3)存在.∵OA=OC=4,∴AC=4,∴当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(﹣4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4﹣4,0),综上所述,Q点的坐标为(0,0)或(﹣4,0)或(4+4,0)或(4﹣4,0).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图形上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。
山东省齐河九年级数学中考模拟试题及答案(3)
2019-2020学年度数学中考模拟试题第I卷(选择题)一、单选题1.(4分)﹣8的相反数是()A.8 B.18C.18-D.-82.(4分)下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )A.B.C.D.3.(4分)据统计国庆黄金周全国大约有7.82亿人出游,用科学计数法表示7.82亿人是()人.A.7.82 B.97.8210⨯C.778.210⨯D.87.8210⨯4.(4分)下列运算,结果正确的是()A.2ab-2ba=0 B.2a2+3a2=6a2C.3xy-4xy=-1 D.2x3+3x3=5x6 5.(4分)某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增大6.(4分)如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°7.(4分)如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A.39πB.29πC.24πD.19π8.(4分)如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =( )A .2B .35C .5D .3109.(4分)甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h ,根据题意可列方程为( )A .600x 6003x+=4 B .6003x 600x -=4 C .600x 6003x -=4 D .600x 6003x -=4×2 10.(4分)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =﹣bx ﹣4ac +b 2与反比例函数a b c y x-+=在同一坐标系内的图象大致为( )A .B .C .D .11.(4分)在数学课上,老师提出如下问题:老师说:“小华的作法正确”请回答:小华第二步作图中①的作法和第二步作图依据的定理或性质是②.()A.①作PQ垂直平分AB②垂线段最短B.①作PQ平分∠APB②等腰三角形三线合一C.①作PQ垂直平分AB②中垂线性质D.①作PQ平分AB②等腰三角形三线合一12.(4分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有A.1个B.2个C.3个D.4个第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(4分)计算:20190=_____.14.(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则ACAE的值为___________________.15.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF2为_____.16.(4分)在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.17.(4分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.18.(4分)在直角坐标系中,直线l1:y x=x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1,作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3,为边长作等边△A3A2B3…,则等边△A2019A2018B2019的边长是______.三、解答题19.(10分)先化简再求值.222142444a a a a a a a ⎛⎫+-+-÷ ⎪---+⎝⎭ ,其中a 为满足不等式组102251a a a -<⎧⎨-<+⎩的整数解 20.(10分)周老师为了了解学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半年的跟踪调查,并将调查结果分成四类A :优;B :良;C :中;D :差.依据调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,周老师一共调查了______名学生;(2)将统计图补充完整;(3)为了共同进步,周老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一对一”帮扶,请用列表法或画树形图的方法求所选的两位同学恰好是两位女同学的概率.21.(10分)如图,在大楼AB 的正前方有一斜坡CD ,CD=13米,坡比DE:EC=1:125,高为DE ,在斜坡下的点C 处测得楼顶B 的仰角为64°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中A 、C 、E 在同一直线上.(1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度;(参考数据:sin64°≈0.9,tan64°≈2).22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(12分)据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).24.(12分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,连接BC(1)如图1,连接AC,作OP⊥AC,垂足为P,求△AOC的面积和线段OP的长;(2)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.25.(14分)如图1,在平面直角坐标系中,O 为坐标原点.直线y kx b =+与抛物线2194y mx x n =-+同时经过(0,3)(4,0)A B 、.(1)求,m n 的值.(2)点M 是二次函数图象上一点,(点M 在AB 下方),过M 作MN ⊥x 轴,与AB 交于点N ,与x 轴交于点Q .求MN 的最大值.(3)在(2)的条件下,是否存在点N ,使AOB ∆和NOQ ∆相似?若存在,求出N 点坐标,不存在,说明理由.参考答案1.A【解析】【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【详解】-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.D【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.3.D【解析】【分析】用科学记数法表示较大的数时,注意a×10n中a的范围是1≤a<10,n是正整数,n为原数的整数部分的位数-1.【详解】解:7.82亿=782000000=7.82×108.故选:D .【点睛】本题考查用科学记数法表示绝对值大于1的数. 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,能正确确定a 和n 是解决此题的关键.4.A【解析】试题分析:根据合并同类项的法则对各选项进行逐一分析即可.解:A 、2ab ﹣2ba=0,故本选项正确;B 、2a 2+3a 2=5a 2≠6a 2,故本选项错误;C 、3xy ﹣4xy=﹣xy≠﹣1,故本选项错误;D 、2x 3+3x 3=5x 3≠5x 6,故本选项错误.故选A .考点:合并同类项.5.B【解析】【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然 2000002250005151a a ++<; 由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变. 故选B .【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.6.C【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=140°,∴∠BAD=40°,∴∠BOD=80°,故选:C.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.7.C【解析】试题解析:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.8.B【解析】过C作CD⊥AB,根据勾股定理得:,S△ABC=4-1212⨯⨯-1212⨯⨯-1112⨯⨯=32,即12CD•AB=32,所以12CD =32,解得:,则sin∠CAB=CDAC=35,故选B.9.C【解析】分析:由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.详解:设特快列车的平均行驶速度为xkm/h,由题意得600 x6003x-=4,故选:C.点睛:此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.10.A【解析】【分析】根据二次函数图象确定-b、b2-4ac、a-b+c的符号,由它的符号判定一次函数图象与反比例函数图象所经过的象限即可.【详解】如图,抛物线y=ax2+bx+c的开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,所以b>0,故﹣b<0.又因为抛物线与x轴有2个交点,所以b2﹣4ac>0,所以直线y=﹣bx+b2﹣4ac经过第一、二、四象限.当x=﹣1时,y<0,即a﹣b+c<0,所以双曲线y=a b cx-+在经过第二、四象限.综上所述,符合条件的图象是B选项.故选:A.11.B【解析】【分析】根据角平分线作法和等腰三角形的性质即可得到结论.【详解】由作法可知第一步作图是作PQ平分∠APB.小华第二步作图的依据是等腰三角形三线合一,故选:B.【点睛】本题考查了作图-基本作图:五种基本作图一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,逐步操作.12.D【解析】【详解】①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AE=AD,∴△BAD≌△CAE(SAS),∴CE=BD,∴故①正确;②∵四边形ACDE是平行四边形,∴∠EAD=∠ADC=90°,AE=CD,∵△ADE都是等腰直角三角形,∴AE=AD,∴AD=CD,∴△ADC是等腰直角三角形,∴②正确;③∵△ADC是等腰直角三角形,∴∠CAD=45°,∴∠BAD=90°+45°=135°,∵∠EAD=∠BAC=90°,∠CAD=45°,∴∠BAE=360°-90°-90°-45°=135°,又AB=AB,AD=AE,∴△BAE≌△BAD(SAS),∴∠ADB=∠AEB;故③正确;④∵△BAD≌△CAE,△BAE≌△BAD,∴△CAE≌△BAE,∴∠BEA=∠AEC=∠BDA,∵∠AEF+∠AFE=90°,∴∠AFE+∠BEA=90°,∵∠GFD=∠AFE,∴∠GDF+GFD=90°,∴∠CGD=90°,∵∠FAE=90°,∠GCD=∠AEF,∴△CGD∽△EAF,∴CD CG EF AE,∴CD•AE=EF•CG.故④正确,故正确的有4个.故选D.13.0【解析】【分析】首先计算乘方,然后计算乘法、减法,求出算式的值是多少即可.【详解】解:20190tan30°==1−1=0.故答案为:0.【点睛】此题主要考查了实数的混合运算,在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.本题的关键是记得特殊角的三角函数.14.7 24【解析】作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,,∴AO=OB=52, ∵12BH•AC=12AB•BC , ∴BH=3412=55⨯, 在Rt △OBH 中,710, ∵EA ⊥CA ,∴BH ∥AE ,∴△OBH ∽△OEA , ∴BH OH AE OA=, ∴771012245OA OH AE BH ===, 故答案为:724. 15.4π. 【解析】【分析】若两个阴影部分的面积相等,那么△ABC 和扇形ADF 的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF 的长度.【详解】解:∵图中两个阴影部分的面积相等,∴S 扇形ADF =S △ABC ,即:245π1,3602AF AC BC ⋅=⋅ 又∵AC =BC =1,∴AF 2=4π. 故答案为4π.【点睛】此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC 和扇形ADF的面积相等,是解决此题的关键,难度一般.16.x1=1,x2=﹣5.【解析】【分析】先阅读题目,根据新运算得出(x+2)2﹣9=0,移项后开方,即可求出方程的解.【详解】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣5,故答案为x1=1,x2=﹣5.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意列方程.17.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y >2,∴y min =2,18.22018【解析】【分析】由直线l :y x =,得△OA 1B 1的边长为1,直线y x =与x 轴的夹角为30°,根据直角三角形的性质,得△A 2B 3A 3的边长是2,以此类推,可得△A n +1A n B n +1边长是2n ,进而即可求解.【详解】∵直线l :y x =与x 轴交于点B 1, ∴B 1(1,0),OB 1=1,△OA 1B 1的边长为1,∵直线y 33x =-与x 轴的夹角为30°,∠A 1B 1O =60°, ∴∠A 1B 1B 2=90°.∵A 1B 2∥x 轴,∴∠A 1B 2B 1=30°,∴A 1B 2=2A 1B 1=2,△A 2B 3A 3的边长是2,同理可得:A 2B 3=4,△A 2B 3A 3的边长是22,以此类推:△A n +1A n B n +1边长是2n ,∴△A 2019A 2018B 2019的边长是22018.故答案为:22018.【点睛】本题主要考查一次函数图象和三角形的综合,掌握一次函数的图象和性质以及含30°角直角三角形的性质,是解题的关键.19.11248,()()a a --+ 【解析】【分析】先算括号内的减法(通分后化成同分母的分式,再按同分母的分式相加减法则计算),同时把除法变成乘法,再根据分式的乘法法则进行计算,求出不等式组的整数解,取使分式有意义的数代入求出即可.【详解】 解:原式=21122(2)4a a a a a ⎡⎤---⋅⎢⎥--+⎣⎦ =212(2)4a a a --⋅-+ =1(2)(4)a a --+, 解不等式组得﹣1<a <1,则a =0, 所以原式=11248-=-⨯. 【点睛】本题考查了分式的加减、乘除法则和不等式组的整数解、分式有意义的条件等知识点,解此题的关键是把分式进行化简和确定字母的值,题目比较好.20.(1)40;(2)如图所示:见解析;(3)所选的两位同学恰好是两位女同学的概率为29. 【解析】【分析】(1)依据B 类的学生人数以及百分比即可得到调查的学生人数;(2)C 类的学生人数为40×35%=14(人),其中男生有14−8=6(人);D 类学生人数为40×7.5%=3(人),其中女生有3−1=2(人);A 类学生人数所占的百分比为3÷40=7.5%;据此可将统计图补充完整;(3)根据树状图可得,共有9种等可能的结果,其中所选的两位同学恰好是两位女同学的情况有2种,即可得到所选的两位同学恰好是两位女同学的概率.【详解】(1)20÷50%=40(人)故答案为:40;(2)C类的学生人数为40×35%=14(人),其中男生有14-8=6(人);D类学生人数为40×7.5%=3(人),其中女生有3-1=2(人);A类学生人数所占的百分比为3÷40=7.5%;如图所示:(3)画树状图如下:共有9种等可能的结果,其中所选的两位同学恰好是两位女同学的情况有2种,∴所选的两位同学恰好是两位女同学的概率为29.【点睛】本题考查的是条形统计图以及扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.21.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC,∴2=AB AC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.22.(1)见解析;(2)15.【解析】【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点睛】本题考查切线的性质,圆周角定理,关键是熟练掌握切线的性质,圆周角定理。
2018-2019学年山东省菏泽市成武县中考数学一模试卷(含答案解析)
2019年山东省菏泽市成武县中考数学一模试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在下列四种图形变换中,本题图案不包含的变换是()A.位似B.旋转C.轴对称D.平移2、(3分) 用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是()A.1个B.2个C.3个D.4个3、(3分) 如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为()A.4B.2√5C.18√1313D.12√13134、(3分) 在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外,其余都相同,则随机从口袋中摸出一个球为红色的概率是()A.3 5B.25C.15D.135、(3分) 关于x的一元二次方程(2a-3)x2-2x-1=0有实数根,则a满足()A.a≥1B.a>1且a≠32C.a≥1且a≠32D.a≠326、(3分) ⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是()A.30°B.150°C.30°或150°D.60°7、(3分) 已知二次函数y=ax2+bx+c(a<0)的图象如图,当-5≤x≤0时,下列说法正确的是()A.有最小值-5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值68、(3分) 如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE;②AE=BE;③OD=DE;④∠AEO=∠C;⑤=12.正确结论的个数是()A.2B.3C.4D.5二、填空题(本大题共 6 小题,共 18 分)9、(3分) x=2是一元二次方程x 2+x+k=0的实数根,则2k+1的值是______.10、(3分) 抛物线y=-2(x+5)2-3的顶点坐标是______.11、(3分) 如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______.12、(3分) 如图,在等边△ABC 中,D 为BC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为______.13、(3分) 如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD⊥AB 于点D ,OE⊥AC 于点E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为______.14、(3分) 一般地,当α、β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α-β)=sinα•cosβ-cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=√32×√32+12×12=1.类似地,可以求得sin15°的值是______.三、计算题(本大题共 3 小题,共 19 分)15、(6分) 计算:|-3|+√3tan30°-√12-(2019-π)016、(6分) 解方程:(3x-1)2=4(x+3)2.17、(7分) 一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45°方向上的B 处(参考数据:√3≈1.732,结果精确到0.1)?四、解答题(本大题共 7 小题,共 59 分)18、(8分) 有一边长为3的等腰三角形,它的另两边长分别是关于x 的方程x 2-12x+k=0的两根,求k 的值.19、(8分) 如图,直线y=-x+5与双曲线y=kx (x >0)相交于A ,B 两点,与x 轴相交于点C ,△BOC 的面积为52. (1)求反比例函数的解析式;(2)若将直线y=-x+5向下平移1个单位,说明所得直线与双曲线y=k(x>0)的交点情况.x20、(7分) 在-2,-1,0,1,2这五个数中任取两数m,n,用列表或画树状图的方法求二次函数y=(x-m)2+n的顶点在坐标轴上的概率.21、(10分) 某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为______件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.22、(8分) 如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.23、(9分) 如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O的周长;(3)在(2)的条件下,求阴影部分的面积.24、(9分) (1)如图1中,△ABC为正三角形,点E为AB边上任一点,以CE为边作正△DEC,连结AD.求BEAD 的值.(2)如图2中,△ABC为等腰直角三角形,∠A=90°,点E为腰AB上任意一点,以CE为斜边作等腰直角△CDE,连结AD.求BEAD 的值;(3)如图3中,△ABC为任意等腰三角形,点E为腰AB上任意一点,以CE为底边作等腰△DEC,使△DEC∽△ABC,并且BC=√n AC.连结AD,直接写出BEAD的值.2019年山东省菏泽市成武县中考数学一模试卷【第 1 题】【答案】A【解析】解:A、不符合位似图形的定义,本题图案包含位似变换.符合题意;B、将图形绕着中心点旋转40°的整数倍后均能与原图形重合,本题图案包含旋转变换.不符合题意;C、有9条对称轴,本题图案包含轴对称变换.不符合题意;D、每一组图形中存在平移变换,不符合题意.故选:A.观察本题中图案的特点,根据对称、平移、旋转、位似的定义作答.考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180°后与另一个图形完全重合,它是旋转变换的一种特殊情况.平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同.旋转是指将一个图形绕着一点转动一个角度的变换.位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.【第 2 题】【答案】D【解析】解:由主视图和左视图可得每一层的每一行每一列都要保留一个立方体,故取走的小立方体最多可以是4个.具体可参看图形:故选:D .由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图都相同,由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知最少有2个小立方体.本题考查了学生的观察能力和对几何体三种视图的空间想象能力,关键是由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知最少有2个小立方体解答..【 第 3 题 】【 答 案 】A【 解析 】解:∵cosB=23,∴CB AB =23, ∵AB=6, ∴CB=23×6=4,故选:A .根据cosB=23,可得CB AB =23,再把AB 的长代入可以计算出CB 的长.此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦.【 第 4 题 】【 答 案 】A【 解析 】解:袋子中球的总数为2+3=5,红球有3个,则摸出红球的概率为35,故选:A .让红球的个数除以球的总数即为所求的概率.本题主要考查概率公式的知识点,解答本题的关键是熟练掌握概率公式:概率=所求情况数与总情况数之比.【 第 5 题 】【 答 案 】C【 解析 】解:根据题意得2a-3≠0且△=4-4(2a-3)×(-1)≥0,所以a≥1且a≠32. 故选:C .根据一元二次方程的定义和判别式的意义得到2a-3≠0且△=4-4(2a-3)×(-1)≥0,然后求出两不等式的公共部分即可.本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.【 第 6 题 】【 答 案 】C【 解析 】解:如图,AB 为⊙O 的弦,且AB=OA ,则△ABO 为等边三角形,∴∠AOB=60°,∴∠P=30°,∴∠P′=180°-∠P=180°-30°=150°.∠P 、∠P′都是弦AB 所对的圆周角.所以圆的弦长等于半径,则这条弦所对的圆周角是30°或150°.故选:C.先由弦和两条半径得到等边三角形,则弦所对的圆心角为60度,要求这条弦所对的圆周角分两种情况:圆周角的顶点在弦所对的劣弧或优弧上,利用圆周角定理和圆内接四边形的性质即可求出两种类型的圆周角.本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了一条弦所对的圆周角有两种情形:圆周角的顶点在弦所对的劣弧或优弧上.【第 7 题】【答案】B【解析】解:由二次函数的图象可知,∵-5≤x≤0,∴当x=-2时函数有最大值,y最大=6;当x=-5时函数值最小,y最小=-3.故选:B.直接根据二次函数的图象进行解答即可.本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.【第 8 题】【答案】B【解析】解:∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,==12;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选:B.已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.本题考查的是垂径定理,涉及到了圆心角、弧、弦的关系及垂径定理的推论;垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧.【第 9 题】【答案】-11【解析】解:∵x=2是一元二次方程x2+x+k=0的实数根,∴4+2+k=0,∴k=-6,∴2k+1=-11.由x=2是方程的根,求出k的值,再带入所求代数式即可.本题考查一元二次方程根,代数式求值.能够正确求解k是解题的关键.【第 10 题】【答案】(-5,-3)【解析】∵抛物线y=a(x-h)2+k为(h,k),∴抛物线y=-2(x+5)2-3的顶点坐标是(-5,-3)故答案为(-5,-3).由于抛物线y=a(x-h)2+k的顶点坐标为(h,k),由此即可求解.本题考查了二次函数的顶点坐标,熟练掌握二次函数的顶点式的意义是解题的关键.【第 11 题】【答案】250π【解析】解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位,故答案为:250π.从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.【 第 12 题 】【 答 案 】9【 解析 】解:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC ;∴CD=BC -BD=AB-3;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC ,又∵∠B=∠C=60°,∴△ABD∽△DCE ; ∴AB CD =BD CE ,即AB AB−3=32;解得AB=9.故答案为:9.由∠ADE=60°,可证得△ABD∽△DCE ;可用等边三角形的边长表示出DC 的长,进而根据相似三角形的对应边成比例,求得△ABC 的边长.此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得△ABD∽△DCE 是解答此题的关键.【 第 13 题 】【 答 案 】5cm【 解析 】解:连接OA ,∵OD⊥AB ,OE⊥AC , ∴AE=12AC=12×6=3(cm ),AD=12AB=12×8=4(cm ),∠OEA=∠ODA=90°,∵AB 、AC 是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD 是矩形,∴OD=AE=3cm ,在Rt△OAD 中,OA=√AD 2+OD 2=5cm .故答案为:5cm .首先由AB 、AC 是互相垂直的两条弦,OD⊥AB ,OE⊥AC ,易证得四边形OEAD 是矩形,根据垂径定理,可求得AE 与AD 的长,然后利用勾股定理即可求得⊙O 的半径OA 长.此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.【 第 14 题 】【 答 案 】√6−√24【 解析 】解:sin15°=sin (60°-45°)=sin60°•cos45°-cos60°•sin45°=√32•√22-12•√22=√6−√24. 故答案为√6−√24. 把15°化为60°-45°,则可利用sin (α-β)=sin α•cosβ-cos α•sinβ和特殊角的三角函数值计算出sin15°的值.本题考查了特殊角的三角函数值:应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.也考查了阅读理解能力.【 第 15 题 】【 答 案 】解:原式=3+√3×√33-2√3-1 =3+1-2√3-1=3-2√3.【 解析 】先分别计算特殊三角函数值、零指数幂、绝对值,然后算加减法.本题考查了实数的运算,熟练掌握特殊三角函数值、零指数幂、绝对值的运算是解题的关键.【 第 16 题 】【 答 案 】解:∵(3x-1)2=4(x+3)2,∴(3x-1)2-4(x+3)2=0,则[3x-1+2(x+3)][3x-1-2(x+3)]=0,整理,得:(5x+5)(x-7)=0,则5x+5=0或x-7=0,解得:x=-1或x=7.【解析】先移项,再利用平方差公式分解、整理,进一步求解可得.本题主要考查解一元二次方程-因式分解法,因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【第 17 题】【答案】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=PCAP ,∴PC=20•cos60°=10,∴AC=√202−102=10√3,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC-BC=10√3-10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.【解析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10√3,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC-BC即可.本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【第 18 题】【答案】解:若边长3为等腰三角形的腰长,则3是方程x2-12x+k=0的一个根,把x=3代入得:9-36+k=0,解得:k=27,解方程x2-12x+27=0得:x=3或x=9,由于长为3,3,9的线段不能构成等腰三角形,故应舍去,若边长3为等腰三角形的底边,则方程x2-12x+k=0有两个相等的实根,则△=144-4k=0,解得:k=36,这时方程x2-12x+36=0有两个相等的解为6,且符合题意,故k=36.【解析】若边长3为等腰三角形的腰长,把x=3代入方程 x2-12x+k=0,得到关于k的一元一次方程,解之,求原方程的解,并判断是否符合题意,若边长3为等腰三角形的底边,根据判别式△=0,求k,解方程并判断是否符合题意,即可得到答案.本题考查了根与系数的关系,一元二次方程的解,根的判别式,三角形的三边关系,等腰三角形的性质,正确掌握分类讨论思想,判别式公式,一元二次方程的解法,三角形的三边关系公式,等腰三角形的性质是解题的关键.【第 19 题】【答案】解:令直线y=-x+5与y轴的交点为点D,过点B作BE⊥x轴于点E,如图所示.令直线y=-x+5中y=0,则0=-x+5,解得:x=5,即OC=5.∵△BOC 的面积是52,∴12OC•BE=12×5•BE=52,解得:BE=1.结合题意可知点B 的纵坐标为1,当y=1时,有1=-x+5,解得:x=4,∴点B 的坐标为(4,1),∴k=4×1=4, 即反比例函数的解析式为y=4x ;(2)将直线y=-x+5向下平移1个单位得到的直线的解析式为y=-x+5-1=-x+4,将y=-x+4代入到y=4x 中,得:-x+4=4x ,整理得:x 2-4x+4=0,∵△=(-4)2-4×4=0, ∴平移后的直线与双曲线y=4x 只有一个交点.【 解析 】(1)令直线y=-x+5与y 轴的交点为点D ,过点B 作BE⊥x 轴于点E ,根据一次函数图象上点的坐标特征以及△BOC 的面积是52即可得出BE 的长度,进而可找出点B 的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k 的值,可得反比例函数的解析式;(2)根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及三角形的面积公式,根据三角形的面积公式找出点B 的坐标是解题的关键.【 第 20 题 】【 答 案 】解:画树状图得:∵-2,-1,0,1,2这五个数中任取两数m ,n ,一共有20种可能,其中取到0的有8种可能, ∴顶点在坐标轴上的概率为820=25.【 解析 】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.【第 21 题】【答案】(1)180(2)由题意得:y=(x-40)[200-10(x-50)]=-10x2+1100x-28000=-10(x-55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】解:(1)由题意得:200-10×(52-50)=200-20=180(件),故答案为:180;(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价-进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.【第 22 题】【答案】解:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC,∴AD AC =ACAB,∵AD=2,AB=6,∴2 AC =AC6,∴AC2=12,∴AC=2√3.【解析】由题意,在△ABC中,点D在边AB上,满足∠ACD=∠ABC,∠A=∠A,可证△ABC∽△ACD,再根据相似三角形对应边成比例来解答即可.本题主要考查相似三角形的判定和性质,解题的关键在于熟记各种判定方法,难点在于找对应边.【 第 23 题 】【 答 案 】(1)证明:连接OC ,∵OA=OB ,CA=CB ,∴OC⊥AB ,∴AB 是⊙O 的切线;(2)解:∵由(1)得 OC⊥AB ,∴∠ACO=90°,∴OC=AC ▪tan30°=6×tan30°=2√3,∴⊙O 的周长=2π▪OC=2√3π;(3)∵CA=CB ,∴AB=2AC=12,∵∠A=∠B=30°,∴∠AOB=120°,∴阴影部分的面积=S △AOB -S扇形=12×12×2√3-120×π×(2√3)2360=12√3-4π.【 解析 】 (1)连接OC ,根据等腰三角形的性质求出OC⊥AB ,根据切线的判定得出即可;(2)解直角三角形求出OC ,即可求出答案;(3)根据三角形和扇形的面积公式即可得到结论.本题考查了切线的判定和性质,扇形的面积的计算,等腰三角形的性质,正确的作出辅助线是解题的关键.【 第 24 题 】【 答 案 】解:(1)∵△ABC 和△CDE 都是正三角形,∴∠B=∠ACB=∠DCE=60°,AB=AC ,CE=DC ,∵∠ECB=∠ACB -∠ACE=60°-∠ACE ,∠DCA=∠DCE -∠ACE=60°-∠ACE ,∴∠ECB=∠DCA ,在△ECB 和△DCA 中,{CB=CA∠ECB=∠DCAEC=DC,∴△ECB≌△DCA(SAS),∴BE=AD,则BEAD =1;(2 )∵等腰Rt△ABC和等腰Rt△CDE中,∴∠B=∠ACB=∠DCE=45°,CE=√2DC,BC=√2AC,∴CE DC =BCAC=√2,∵∠ECB=∠ACB-∠ACE=45°-∠ACE,∠ACD=∠DCE-∠ACE=45°-∠ACE,∴∠ECB=∠DCA,∴△ECB∽△DCA,∴BE AD =BCAC=√2;(3)依此类推,当BC=√n AC时,BEAD =√n,理由为:∵等腰△ABC和等腰△CDE中,∴∠B=∠ACB=∠DCE,CE=√n DC,BC=√n AC,∴CE DC =BCAC=√n,∵∠ECB=∠ACB-∠ACE,∠ACD=∠DCE-∠ACE,∴∠ECB=∠DCA,∴△ECB∽△DCA,∴BE AD =BCAC=√n.【解析】(1)由三角形ABC与三角形CDE都为正三角形,得到AB=AC,CE=CD,以及内角为60°,利用等式的性质得到∠ECB=∠DCA,利用SAS得到三角形ECB与三角形DCA全等,利用全等三角形对应边相等得到BE=AD,即可求出所求之比;(2)由三角形CDE与三角形ABC都为等腰直角三角形,利用等腰直角三角形的性质得到CE=√2CD,BC=√2AC,以及锐角为45°,利用等式的性质得到∠ECB=∠DCA,利用两边对应成比例且夹角相等的三角形相似得到三角形ECB与三角形DCA相似,利用相似三角形对应边成比例即可求出所求之比;(3)仿照前两问,以此类推得到一般性规律,求出所求之比即可.此题属于相似形综合题,涉及的知识有:等边三角形的性质,等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.。
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
2019年山东省济宁市中考数学试卷(含答案解析)
2019年山东省济宁市中考数学试卷(含答案解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)下列四个实数中,最小的是()A.﹣B.﹣5C.1D.42.(3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A.65°B.60°C.55°D.75°3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量5.(3分)下列计算正确的是()A.=﹣3B.=C.=±6D.﹣=﹣0.6 6.(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=457.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.8.(3分)将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2 9.(3分)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.1810.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5二、填空题:本大题共5小题,每小题3分,共15分。
山东省滨州市滨城区2019年中考数学模拟试卷(含答案解析)
2019年山东省滨州市滨城区中考数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<62.下列运算结果为正数的是()A.(﹣1)2017B.(﹣3)0C.0×(﹣2017)D.﹣2+13.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tan A的值为()A.B.C.D.35.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④6.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=07.方程解是()A.B.x=4C.x=3D.x=﹣48.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°10.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)11.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二.填空题(共8小题,满分40分,每小题5分)13.代数式中x的取值范围是.14.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.15.一组数据2,7,x,y,4中,唯一众数是2,平均数是4,这组数据的方差是.16.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB 的位似△CDE,则位似中心的坐标为.17.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为.18.如图,分别以正六边形ABCDEF的顶点A,D为圆心,以AB长为半径画弧BF,弧CE,若AB=1,则阴影部分的面积为.19.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为.20.一列按某种规律排列的数如下:1,﹣1,1,2,﹣2,,3,﹣3,,4,﹣4,,…,则这列数中第2017个数是.三.解答题(共6小题,满分74分)21.先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.22.“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.24.某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?25.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x、y轴的正半轴上,顶点B的坐标为(4,2).点M是边BC上的一个动点(不与B、C重合),反比例函数y=(k>0,x>0)的图象经过点M且与边AB交于点N,连接MN.(1)当点M是边BC的中点时.①求反比例函数的表达式;②求△OMN的面积;(2)在点M的运动过程中,试证明:是一个定值.26.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2019年山东省滨州市滨城区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】由于36<37<49,则有6<<7,即可得到x的取值范围.【解答】解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.2.【分析】根据实数的运算法则即可求出答案.【解答】解:(A)原式=﹣1,故A不是正数,(B)原式=1,故B是正数,(C)原式=0,故C不是正数,(D)原式=﹣1,故D不是正数,故选:B.【点评】本题考查实数运算,解题的关键是熟练运用实数运算法则,本题属于基础题型.3.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.4.【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sin A===,∴tan A==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.5.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.6.【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.【解答】解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.7.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.求解可得.【解答】解:两边都乘以(x﹣1)(x+2),得:2(x﹣1)=x+2,解得:x=4,检验:x=4时,(x﹣1)(x+2)=3×6=18≠0,∴原分式方程的解为x=4,故选:B.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.8.【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到▱ABCD为矩形,故此选项正确;B、当AB=AD时▱ABCD为菱形,故此选项错误;C、当∠ABC=90°时▱ABCD为矩形,故此选项错误;D、当AC⊥BD时▱ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.9.【分析】欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.【点评】此题主要考查了圆周角定理的应用及三角形的外角性质.熟练掌握定理及性质是解题的关键.10.【分析】根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.【解答】解:在y=5x﹣3中,∵5>0,∴y随x的增大而增大;∵﹣3<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;向下平移3个单位,函数解析式为y=5x﹣6;将点(0,﹣3)代入解析式可知,﹣3=﹣3,函数的图象与y轴的交点坐标是(0,﹣3),将点(1,2)代入解析式可知,2=5﹣3=2,故选:D.【点评】本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.11.【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【解答】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确,∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误,故选:D.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合.故选:D.【点评】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二.填空题(共8小题,满分40分,每小题5分)13.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.14.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.15.【分析】根据众数、平均数的概念,确定x、y的值,再求该组数据的方差.【解答】解:因为一组数据2,7,x,y,4中,唯一众数是2,平均数是4,可得x,y中一个是2,另一个为5,取x=2,则y=5,所以S2=[2×(2﹣4)2+(5﹣4)2+(4﹣4)2+(7﹣4)2]=3.6,故答案为:3.6【点评】本题考查了平均数、众数、方差的意义.①平均数平均数表示一组数据的平均程度;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.16.【分析】直接利用位似图形的性质得出位似中心.【解答】解:如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【点评】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.17.【分析】利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再证明DA=DC,从而得到CD=AB=2.【解答】解:由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=2.故答案为2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).18.【分析】连接OB、OC,根据正六边形的性质、扇形面积公式计算.【解答】解:连接OB、OC,∵六边形ABCDEF是正六边形,∴∠A=∠D==120°,∠BOC=60°,∴△OBC为等边三角形,∴OB=BC=AB=1,∴阴影部分的面积=×1××6﹣×2=﹣π,故答案为:﹣π.【点评】本题考查了正多边形和圆、扇形面积公式,解决此题的关键是熟练运用扇形面积公式S=.19.【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=2,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠EFG的值.【解答】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2∴BE=2∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF2=BE2+BF2=12+(AB﹣EF)2.∴EF=∴sin∠EFG===故答案为:【点评】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.20.【分析】将以上数列每3个数分为1组,第n组的三个数为n、﹣n、,再由2017÷3=672…1知第2017个数为第672组第1个数,据此可得.【解答】解:将以上数列每3个数分为1组,则第1组为1、﹣1、1;第2组为2、﹣2、;第3组为3、﹣3、;第4组为4、﹣4、;…∵2017÷3=672…1,∴第2017个数为第672组第1个数,即第2017个数为672,故答案为:672.【点评】本题主要考查数字的变化规律,解题的关键是将数列每3个数分为1组,且第n组的三个数为n、﹣n、.三.解答题(共6小题,满分74分)21.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.【点评】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.23.【分析】(1)连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE =∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【解答】证明:(1)连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,(2分)∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(4分)(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,(7分)∴BD=8,∴在Rt△ABD中,AD====2.(8分)【点评】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.24.【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【点评】本题主要考查二次函数的应用和一元二次方程的应用,由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.25.【分析】(1)①由矩形的性质及M是BC中点得出M(2,4),据此可得反比例函数解析式;②先求出点N的坐标,从而得出CM=BM=2,AN=BN=1,再根据S△OMN =S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN计算可得.(2)设M(a,2),据此知反比例函数解析式为y=,求出N(4,),从而得BM=4﹣a,BN=2﹣,再代入计算可得.【解答】解:(1)①∵点B(4,2),且四边形OABC是矩形,∴OC=AB=2,BC=OA=4,∵点M是BC中点,∴CM=2,则点M(2,2),∴反比例函数解析式为y=;②当x=4时,y==1,∴N(4,1),则CM=BM=2,AN=BN=1,∴S△OMN =S矩形OABC﹣S△OAN﹣S△COM﹣S△BMN=4×2﹣×4×1﹣×2×2﹣×2×1=3;(2)设M(a,2),则k=2a,∴反比例函数解析式为y=,当x=4时,y=,∴N(4,),则BM=4﹣a,BN=2﹣,∴===2.【点评】本题是反比例函数的综合问题,解题的关键是掌握待定系数法求反比例函数解析式、矩形的性质、割补法求三角形的面积.26.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的=﹣x2坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC﹣x+3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.。
中考仿真模拟考试 数学试卷 含答案解析
【解析】
【详解】解:∵△ABC沿DE折叠,使点A与点B重合,
∴EA=EB,
∵∠C=90°,AC=8,BC=6,
∴CE=CA-AE=8-BE,在Rt△BCE中,
∵
∴BE= ,故选D.
考点:1.折叠问题;2.勾股定理.
7. 数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()
故③正确.
故选B.
考点:一次函数的应用.
10.如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B(6,1)两点,当k1x+b< 时,x的取值范围为()
A.x<2B.2<x<6C.x>6D.0<x<2或x>6
【答案】D
【解析】
分析:根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.
【详解】解:2019的相反数的倒数是
故选B.
【点睛】此题考查的是求一个数的相反数和倒数,掌握相反数的定义和倒数的定义是解决此题的关键.
2.”厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )
A. B. C. D.
4.下列运算正确的是( )
A. B. C. D.
5.某校四个环保小组一天收集废纸的数量分别为:10,x,9,8,(单位千克)已知这组数据的众数与平均数相等,则这组数据的中位数是()
A.8 5B.9C.9.5D.8
6.下图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年山东省九年级中考第三次模拟数学试卷【含
答案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 下列计算正确的是
A.-(-3)2=9 B.=3 C.-(-2)0=1 D.=-3
2. 我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学记数法表示为
A.3.7×102 B.3.7×103 C.37×102 D.0.37×104
3. 对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如下:<di
4. 年龄1415161718人数56672td
5. 如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果
∠1=27°,那么∠2的度数为
A.53° B.55° C.57° D.60°
6. 反比例函数y=和正比例函数y=mx的部分图象如图所示.由此可以得到方程=mx的实数根为
A.x=1 B.x=2
C.x1=1,x2=-1 D.x1=1,x2=-2
7. 如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是
二、填空题
8. -3的绝对值等于.
9. (+)×= .
10. 使有意义的x的取值范围是.
11. (2×103)2×(3×10-3) = .(结果用科学计数法表示)
12. 已知⊙O1,⊙O2没有公共点.若⊙O1的半径为4,两圆圆心距为5,则⊙O2的半径可以是.(写出一个符合条件的值即可)
13. 如图,在梯形ABCD中,AB∥CD,∠B=90° ,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则梯形ABCD的周长为 cm.
14. 如图,在□ABCD中,∠A=70° ,将□ABCD绕顶点B顺时针旋转到□A1BC1D1,当
C1D1首次经过顶点C时,旋转角∠ABA1= °.
15. 某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为:.
16. 类别数量(户)(男,男)101(男,女)99(女,男)116(女,女)84合计400td
17. 如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为.
18. 将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C落在ME上,点C的对应点为H,折痕为MG;③翻折纸片,使B落在ME上,点B的对应点恰与H重合,折痕为GE.
根据上述过程,长方形纸片的长宽之比= .
三、计算题
19. 计算:
四、解答题
20. 解不等式组,并写出不等式组的整数解.
21. 已知:如图,在正方形ABCD中,点E、F在对角线BD上,且BF=DE.
(1)求证:四边形AECF是菱形.
(2)若AB=2,BF=1,求四边形AECF的面积.
22. 甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序.
(1)求甲第一位出场的概率;
(2)求甲比乙先出场的概率.
23. 为了解南京市2012年市城镇非私营单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查.整理样本数据,得到下列图表:
市城镇非私营单位1000人月收入频数分布表
(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;
(2)根据这样的调查结果,绘制条形统计图;
(3)2012年南京市城镇非私营单位月平均工资为5034元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?
24. (1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC ;
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC ;
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD .
25. 如图,把长为40cm,宽为30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm.(纸板的厚度忽略不计)
(1)长方体盒子的长、宽、高分别为(单位:cm);(2)若折成的一个长方体盒子的表面积为950cm2,求此时长方体盒子的体积.
26. 2014年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.<di
27. 车型起步公里数起步价格超出起步公里数后的单价普通燃油型39元+2元(燃油附加费)2.4元/公里纯电动型2.59元2.9元/公里td
28. 如图,在□ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.
(1)判断四边形ABED的形状,并说明理由;
(2)判断直线DC与⊙O的位置关系,并说明理由;
(3)若AB=3,AE=6,求CE的长.
29. 问题提出:
平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考
设不在同一条直线上的三点A、B、C确定的圆为⊙O.
(1)当C、D在线段AB的同侧时,
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;
如图②,若点D在⊙O内,此时有∠ACB ∠ADB;
如图③,若点D在⊙O外,此时有∠ACB ∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.
类比学习
(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
此时有,此时有,此时有.
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:.
拓展延伸
(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA,CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN.
则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)
30. 【课本节选】
反比例函数y= (k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=(k>0)的增减性来进行说理.如图,当x>0时.
在函数图象上任意取两点A、B,设A(x1,),B(x2,),
且0<x1< x2.
下面只需要比较和的大小.
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即<.
这说明:x1< x2时,>.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.
同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y= (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2 (a>0,a为常数)的对称性和增减性,并进行说理.
对称性:;
增减性:.
说理:
(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=—时函数取得最小值.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第7题【答案】
第8题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】
第26题【答案】
第27题【答案】。