4.4一次函数的应用第3课时(5案)
4.4 一次函数的应用(第3课时) 教学设计
第四章一次函数4. 一次函数的应用(第3课时)枝阳中学禄文夫一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.二、教学任务分析本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息三、教法学法1.教学方法:“问题情境—建立模型—应用与拓展”2.课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺四、教学过程:本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第一环节:情境引入内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前 y 与 x 之间的关系(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?活动目的:通过与上一课时相似的问题,回顾旧知,导入新知学习。
北师大版数学八年级上册《4.4一次函数的应用》教案
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
4.4.3一次函数的应用第3课时(教案)
三、教学难点与重点
1.教学重点
-理解一次函数表达式y=kx+b中的k和b在实际问题中的意义,如速度与时间关系中的斜率k代表速度,截距b代表初始位置。
-学会通过给定条件或图表信息建立一次函数模型,如根据距离和时间的关系确定物体运动的速度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,它描述了两个变量之间的线性关系。一次函数在生活中的应用非常广泛,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设小华骑自行车以每小时10公里的速度行驶,我们如何根据时间来计算他行驶的距离。这个案例展示了如何建立一次函数模型来解决实际问题。
4.4.3一次函数的应用第3课时(教案)
一、教学内容
《4.4.3一次函数的应用第3课时》
1.理解并掌握一次函数在实际问题中的建模过程。
2.应用一次函数解决实际生活中的问题,如速度与时间、单价与总价等关系。
3.通过实例,使学生能够:
a.确定问题中的变量关系,建立一次函数模型。
b.利用一次函数模型进行问题求解,并解释结果的实际意义。
c.能够根据图表或实际情境,分析一次函数的增减性及其在实际问题中的应用。
4.教材案例:结合教材中关于一次函数应用的问题,如“小明骑自行车行驶,速度与时间的关系”、“某商品打折后的价格与原价的关系”等,进行深入讲解与练习。
二、核心素养目标
1.培养学生的模型建构能力:通过实际问题,让学生学会运用一次函数建立数学模型,提高解决实际问题的能力。
校八年级数学上册 4.4 一次函数的应用(第3课时)教案 (新版)北师大版 教案
4.4一次函数的应用(第三课时)教学目标:知识与技能:1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题过程与方法:1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.情感态度与价值观:在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重难点:重点:一次函数图象的应用难点:从函数图象中正确读取信息教学过程(一)课前研究:学生自学教材93--94页,并完成书中问题完成课本P93(二)课中展示:小组合作交流,完成展示。
例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当t=0时,B距海岸0海里,即S=0,故l1表示B到海岸的距离与追赶时间之间的关系;(2)A,B哪个速度快?解:从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.(3)15分钟内B能否追上A?解:可以看出,当t=15时,l1上对应点在l2上对应点的下方,(4)如果一直追下去,那么B能否追上A?解:如图l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,l1与l1交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.(三)应用新知:例观察甲、乙两图,解答下列问题1. 填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节。
4.4 一次函数的应用 北师大版八年级数学上册教案
4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)
4 一次函数的应用(第3课时)学习目标1.能通过函数图象获取信息,掌握两个一次函数图象的应用;(重点)2.能利用同一坐标系内两个函数图象的关系,解决简单的实际问题. (难点)自主学习学习任务一 新课导入1.某工程队在“村村通”工程中修建的公路长度y (米)与时间x (天)之间的关系如图1.根据图象提供的信息,可知该公路的长度是 米.图1 图22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆质量x (千克)与他手中持有的钱(含备用零钱)y (元)的关系如图2所示,结合图象回答下列问题:(1)农民自带的零钱是 ;(2)降价前他每千克土豆出售的价格是 ;(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,他一共带了 千克土豆.学习任务二 探究两个一次函数图象在同一坐标系中的应用1.如图3,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t 时,销售收入= 元, 销售成本=元.(2)当销售量为6 t 时,销售收入= 元, 销售成本=元.(3)当x =3时,销售收入= 元,销售成本= 元;盈利(收入-成本)= 元.(4)当销售量等于 时,销售收入等于销售成本.(5)当销售量 时,该公司盈利(收入大于成本);当销售量 时,该公司亏损(收入小于成本).(6) l 1对应的函数表达式是 ,l 2对应的函数表达式是 .分组讨论.k 1表示 ,b 1表示 ;k 2表示 ,b 2表示 .2.我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图4①),图4②中l 1,l 2分别表示两船相对于海岸的距离s (n mile)与追赶时间t (min)之间的关系.① ②图4根据图象回答下列问题:(1) 表示B 到海岸的距离与追赶时间之间的关系.(2) 速度快.(3)10 min 内B (填“能”或“不能”)追上A .(4)如果一直追下去,那么B (填“能”或“不能”)追上A .(5)当A 逃到离海岸12 n mile 的公海时,B 将无法对其进行检查.照此速度,B (填“能”或“不能”)在A 逃入公海前将其拦截.(6)l 1与l 2对应的两个一次函数s =k 1t +b 1与s =k 2t +b 2中,k 1,k 2的实际意义分别是 ,可疑船只A 与快艇B 的速度分别是 .合作探究如图5,小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?当堂达标1.如图6,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和运动时间,根据图象可知,快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米图6 图7 图52.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.如图7表示的是甲、乙两人前往目的地所行驶的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是( )A.0.5千米B.1千米C.1.5千米D.2千米3.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (时)函数关系的图象是( )A B C D4.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通信时间x (分)与收费y (元)之间的函数关系如图8所示.(1)有月租费的收费方式是 (填“①”或“②”),月租费是 元;(2)分别求出①②两种收费方式中y 与x 之间的函数关系式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.课后提升 如图9,l A 与 l B 分别表示A 步行与B 骑车同一路上行驶的路程s 与时间t 的关系.(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇?(4)若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?在图中表示出这个相遇点C .反思感悟我的收获:我的易错点:图8参考答案当堂达标1.C2.A3.C4.解:(1)①30(2)设y有=k1x+30,y无=k2x,由题意得500k1+30=80,k1=0.1;500k2=100,k2=0.2. 故所求的关系式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300.当x=300时,y有=y无=60.故由题图可知当通话时间在300分钟内时,选择通信收费方式②实惠;当通话时间超过300分钟时,选择通信收费方式①实惠;当通话时间为300分钟时,选择通信收费方式①,②一样实惠.课后提升解:(1)由题图可知,B出发时与A相距10千米.(2)B修理自行车所用的时间为:1.5-0.5=1小时.(3)3小时时两人的路程都是22.5千米,所以,B出发后3小时与A相遇.(4)出发时A的速度为22.5103=256千米/时,B的速度为7.50.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,根据题意得,15x-256x=10,解得x=1213.答:经过1213h与A相遇,图10中点C即为相遇点.图10。
第四章 一次函数4.4一次函数的应用
第四章一次函数§4.4 一次函数的应用(一)一、教学目标1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。
二、能力目标1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
三、情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
四、教学重点一次函数图象的应用五、教学过程1、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
2、讲授新课(1)由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:①干旱持续10天,蓄水量为多少?连续干旱23天呢?②蓄水量小于400万米3时,将发生严重干旱警报。
干旱多少天后将发出严重干旱警报?③按照这个规律,预计持续干旱多少天水库将干涸?请大家根据图象回答问题,有困难的同学,请与同伴互相交流。
分析:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。
当t=10时,V约为1000万米3。
同理可知当t为23天时,V约为750万米3。
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t值。
t约为40天。
(3)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。
当V为0时,所对应的t的值约为60天。
练一练某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x (千米)之间的关系如图所示。
根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。
4.4 一次函数的应用(3)教案(公开课)
一次函数的应用(3)教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息教学过程:1.如图,l 1反映了某公司产品的销售收入与销售量之间的关系,l 2反映了该公司产品的销售成本与销售量之间的关系,根据图意填空:(1)当销售量为2吨时,销售收入=元,销售成本=元;(2)当销售量为6吨时,销售收入=元,销售成本=元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);(5) l 1对应的函数表达式是,l 2对应的函数表达式是。
2.例我边防局接到情报,近海处有一可疑船只正向公海方向行驶.边防局迅速派出快艇追赶(如图),下图中,分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.A B 1l 2l s t根据图象回答下列问题:(1)哪条线表示到海岸的距离与时间之间的关系?(2),哪个速度快?(3)15 min 内能否追上?(4)如果一直追下去,那么能否追上?(5)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃到公海前将其拦截?3. 如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?课时小结本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。
最新北师版八上数学4.4 一次函数的应用(第3课时) 课件
一、 前置学习
4.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、 乙两个蓄水池中水的深度y(米)与注水时间x(小时)之间的函数图象如 图所示,当甲、乙两池中水的深度 相同时, y 的值为 ( A )
二、 合作探究
例1如图,l1反映了某产品的销售收入(单 位:元)与销售量 (单 位:t)之间 的关系,l2反映了该产品的销售成本(单位:元)与销售量之间的关系,当 销售收入大于销售成本时,该产品才开始赢利. 下列说法不正确的是 ( )
三、 达标训练
3.某图书馆开展两种方式的租书业务:一种是使用租书卡,另一种是 使用会员卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的 关系如图所示.
(1)分别写出使用会员卡和租书卡的租书金额y(元)与 租书时间x(天)之间的函数表达式; (2)若两种卡的使用期限为一年,则在这一年中如何选 择这两种租书方式比较划算.
二、 合作探究
例2某专营商场销售一 种品牌电脑,每台电脑的进货价是0.4万元.图 中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的 关系,已知商场每天的房租、水电、工资等固定支出为3万元.
(1)直线l1对应的函数表达式是 ________ ,每台电脑的 销售价是 _____万元; (2)写出商场一天的总成本y2(万元)与 销售量 x(台)之间 的函 数表达式 ___________ ; (3)在直角坐标系中画出第(2)小题的图象(标上l2); (4)通过计算说明:每天销售量达到多少台时,商场可以盈 利?
4.4 一次函数的应用(第3课时)
一、 前置学习
1.已知一次函数l1:y1=k1x+b1 和l2:y2= k2x+b2. (1)当y1=y2 时,由方程k1x+b1=k2x+ b2 可求得此时自变量x 的 值,对应的就是两条图象的_______横坐标. (2)当y1>y2 时,在图象上对应的就是直线l1 在直线l2 的______ 时 横坐标的取值范围. (3)当y1<y2 时,在图象上对应的就是直 线l1 在直线l2 的______ 时 横坐标的取值范围.
北师大版八年级数学上册:4.4 《一次函数的应用》教案3
北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。
本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。
但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。
三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。
2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。
3.提高学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。
六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。
2.准备课件,展示一次函数在实际问题中的应用。
3.准备练习题,巩固学生对一次函数应用的理解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。
让学生思考如何用数学语言描述这种关系,引出一次函数的概念。
2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。
引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。
3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。
八年级数学上册教学课件《一次函数的应用(第3课时)》
这里不能 出现k1,b 两个字母,
如果出现
就代错值.
O 1 23 4 5 6
x/ 吨
探究新知
(5)l1对应的函数表达式是 l2对应的函数表达式是
y/元
l1
6000
5000
4000
3000
2000
1000
O 1 23 4 5 6
4.4 一次函数的应用
y=1000x
,
y=500x+2000 .
l2
x/ 吨
探究新知
4.4 一次函数的应用
(6)l1与l2对应的两个一次函数y=k1x +b1与y=k2x+b2中,k1,k2
的实际意义各是什么?可疑船只A与快艇B的速度各是多少? 解: k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A
的速度是0.2海里/分,快艇B的速度是0.5海里/分.
s /海里
s /海里
8
l2 A
6
l1 B
4
2
O 2 4 6 8 10 12 1415 t /分
探究新知
4.4 一次函数的应用
(4)如果一直追下去,那么B能否追上 A?
解:如图延伸l1 、l2 相交于点P. 因此,如果一直追下去,那么B一定能追上A.
s /海里
8 6 4
l2 A P l1 B
2
O 2 4 6 8 10 12 14 t /分
2000
1000
O 1 23 4 5 6
x/ 吨
探究新知
4.4 一次函数的应用
(2)当销售量为6吨时,销售收入= 6000 元,销售成本=5000元;
(3)当销售量为 4吨时,销售收入等于销售成本;
4.4 一次函数的应用(第3课时)导学案
子洲三中 “双主”高效课堂 导学案2014-2015学年第一学期 姓名: 组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学§4.4.1 一次函数的应用(第1课时)乔智一、 教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维; 二、教学过程: 第一环节:情境引入内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少?(2)试求降价前 y 与 x 之间的关系(3)由表达式你能求出降价前每千克的土豆价格是多少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?第二环节:问题解决 例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36km /h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km /h .(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?内容2:深入探究例2 我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇 B 追赶(如图),下图中1l , 2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与时间之间的关系?海岸公海AB(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?第三环节:反馈练习内容:观察甲、乙两图,解答下列问题1.填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2.根据1中所填答案的图象填写下表:项目主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)红线绿线3.根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.批改日期月日线型。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。
北师版八年级数学上册课件(BS) 第四章 一次函数 一次函数的应用 第3课时 两个一次函数图象的应用
(2)某出租车公司一次性改装了100辆出租车,正常营运多少天后共节省 燃料费40万元?
解:(2)由题意及图象可知每辆车改装前、后每天的燃料费分别为90元、 50元,所以该出租车公司一次性改装了100辆出租车,正常营运(400 000+ 100×4 000)÷[100×(90-50)]=200(天)后可节省燃料费40万元
(3)由(2)可得y2=7x+560,当y1=y2,即15x=7x+560时,解得x=70.所 以当每月的销售量为70件时,两种方案销售人员的月工资一样多
一、选择题(每小题6分,共6分) 6.如图①,甲、乙两个容器内都装了一定质量的水,现将甲容器中的 水匀速注入乙容器中,图②中的线段AB,CD分别表示两容器中的水的深 度h(cm)与注入时间t(min)之间的函数图象,下列结论错误的是( D ) A.注水前乙容器内水的高度是5 cm B.甲容器内的水4 min全部注入乙容器 C.注水2 min时,甲、乙两个容器中的水的深度相等 D.注水1 min时,甲容器中的水比乙容器中的水深5 cm
A.①②③ B.①② C.②③ D.③
2.(5分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车 同时出发,两车距甲地的距离y(km)与行驶时间x(h)之间的函数图象如图所 示,则下列说法中错误的是( D )
A.客车比出租车晚4 h到达目的地 B.客车的速度为60 km/h,出租车的速度为100 km/h C.两车出发后3.75 h相遇 D.两车相遇时客车距乙地还有225 km
北师版
第四章 一次函数
4 一次函数的应用
第3课时 两个一次函数图象的应用
1.(5分)如图是甲、乙两个探测气球所在位置的海拔y(m)关于上升时间 x(min)的函数图象,有下列结论:①当x=10时,两个探测气球位于同一高 度;②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高.其中 正确的结论有( A )
北师大版数学八年级上册4.一次函数的应用(第3课时)课件
y/元
6000 5000 4000 3000 2000 (0,2000)
l1
y=1000x
关系式设为y1=k1x,
l2
y=500x+2000 只需要一个点的坐标.
y=k1x 4000=4k, k=1000
(4,4000)
l2的图不过原点
y=1000x (0,2000)(4,4000)
1000 O
1 23
O
l2 A l1 B
2 4 6 8 10
t /分
即10分钟内,A行 驶了2海里,B行
P94例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶(如图).
快艇
海
B
岸
A 可疑船
公
海
下图中 l1 ,l2 分别表示两船相对于海岸的距离s与追赶时间t之间
的关系.根据图象回答下列问题:
(1)哪条线表示快艇B到海岸的距离与追赶时间之间的关系?
s /海里
8 6 4 2
北师大版 数学 八年级上册
第四章 一次函数
4.4.3 一次函数的应用
第3课时 复杂一次函数的应用
学习目标
1.进 一 步 训 练 识 图 能 力 , 通 过 函 数 图 象 获 取 信 息 , 解 决 简单的实际问题。
2.在 函 数 图 象 信 息 获 取 过 程 中 , 进 一 步 培 养 数 形 结 合 意 识,发展形象思维。
该公司盈利(收入大于成 6000
本); 当销售量 小于4吨 时,
5000
该公司亏损(收入小于成 4000
本) ;
3000
2000
1000
O
销售收入
《一次函数的应用(3)》参考教案
一次函数的应用(三)教学目标:知识与技能:1.理解作函数图像的方法与代数方法各自的特点;2.掌握利用二元一次方程确定一次函数的表达式;3.进一步理解方程与函数的联系。
过程与方法:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略;2.在对作图像解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化;3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力。
情感态度与价值观:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验。
重点:1、二元一次方程和一次函数的关系;2、能根据一次函数的图象求二元一次方程的近似解难点:方程和函数之间的对应关系即数形结合的意识和能力教学过程:一、复习回忆、引入新课1、同学们:什么叫二元一次方程及二元一次方程的解2、一次函数的图像是什么3、如图,求一次函数的图像的解析式二、合作交流、解读探究问题1:新知探究1.方程x+y=5的解有多少个写出其中的几个解来[方程x+y=5的解有无数多个,如:x=-1 x=0 x=1 x=2 x=3y=6 y=5 y=4 y= 3 y=2 等2.在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x 的图像上吗3.在一次函数y=5-x的图像上任取一点,它的坐标适合方程x+y=5吗4.以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图像相同吗归纳:在上面直角坐标系中描出以x+y=5的解为坐标的点,我们很容易发现这些点都在一次函数y=5-x的图象上.在函数y=5-x的图象上任取一点,它的坐标一定适合方程x+y=5.以x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图象是相同的.综上所述,二元一次方程和一次函数的图象有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图象上.(2)反过来,一次函数图象上的点的坐标都适合相应的二元一次方程.问题2:合作交流问:你能找出下面两个问题之间的联系吗(1)解方程:3x-6=0.(2)已知一次函数y=3x-6,问x取何值时,y=0学生讨论后归纳:一般地,一次函数y=kx+b的图像与x轴的交点的横坐标是一元一次方程kx+b=0的解。
北师大版八年级上册4.4一次函数的应用(教案)
-强调将实际问题抽象成数学模型的过程。
2.教学难点
-待定系数法求解一次函数解析式的理解和应用。
-难点在于如何从实际问题中抽象出两个方程组成,进而求解k和b的值。
-通过具体例子,解释如何列出方程组,并指导学生进行求解。
-一次函数在实际问题中的应用,如最值问题、效益问题和路程问题。
-难点在于如何将实际问题转化为数学表达式,并找出函数的最大值或最小值。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,如待定系数法求解一次函数解析式,我会通过具体例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如归一问题或计算公式问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图象的绘制及其性质。
-通过案例分析,指导学生如何确定变量之间的关系,并求解最值。
-对一次函数性质的理解,尤其是斜率k对图象的影响。
-难点在于理解斜率k与函数增减性之间的关系。
-通过图象观察和实例分析,帮助学生理解斜率k的正负如何决定函数的增减性。
-数形结合的解题思路。
-难点在于如何将抽象的数学问题与直观的图象结合起来,以简化问题解决过程。
-在求解一次函数解析式的过程中,培养逻辑推理和数学运算能力
-通过对一次函数性质的学习,提升抽象逻辑思维能力
4.增强学生的几何直观和空间观念,提高数形结合的解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1一次函数的应用第3课时
精讲案
第一环节:情境引入
内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克
数与他手中持有的钱数(含备用零钱)的关系,如图所
示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前 y 与 x 之间的关系
(3)由表达式你能求出降价前每千克的土豆价格是多
少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
第二环节:问题解决
内容1:例1
小聪和小慧去某风景区游览,约好在“飞瀑”见
面,上午7:00小聪乘电动汽车从“古刹”出发,
沿景区公路去“飞瀑”,车速为 36km /h ,小慧
也于上午7:00从“塔林”出发,骑电动自行车
沿景区公路去“飞瀑”,车速为26km /h .
(1)当小聪追上小慧时,他们是否已经过了“草
甸”?
(2)当小聪到达“飞瀑”时,小慧离“飞瀑”
还有多少千米?
分析:
当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?
内容2:深入探究
例2 我边防局接到情报,近海处有一可疑
船只A 正向公海方向行驶.边防局迅速派
出快艇 B 追赶(如图),下图中1l , 2l 分
别表示两船相对于海岸的距离s (海里)
与追赶时间t (分)之间的关系.
根据图象回答下列问题:
(1)哪条线表示B 到海岸的距离与时间之间的
关系?
第三环节:反馈练习
内容:观察甲、乙两图,解答下列问题
1.填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.
3.根据1中所填答案的图象求:
(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);
(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?
4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:
(1)用简洁明快的语言概括大意,不能超过200字;
(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.
意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。
说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。
5. 如图,A l 与 B l 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系.
(1)B 出发时与A 相距多少千米?
(2)走了一段路后,自行车发生故障,进行修理,所用的
时间是多少小时?
(3)B 出发后经过多少小时与A 相遇?
(4)若B 的自行车不发生故障,保持出发时的速度前进,
那么经过多少时间与A 相遇?相遇点离B 的出发点多远?
你能用哪些方法解决这个问题?在图中表示出这个相遇点
C .。