Electron self-trapping and fluctuation density-of-states tail at the critical point

合集下载

《声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率》范文

《声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率》范文

《声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率》篇一一、引言随着半导体技术的飞速发展,纤锌矿AlGaN多层异质结构因其独特的物理和化学性质,在光电子器件、微电子器件等领域得到了广泛的应用。

电子的迁移率作为衡量材料导电性能的重要参数,对理解材料的电子传输行为至关重要。

尤其在声子散射作用下,电子在AlGaN多层异质结构中的迁移行为更为复杂。

本文旨在探讨声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率,为相关研究提供理论依据。

二、纤锌矿AlGaN多层异质结构概述纤锌矿AlGaN是一种重要的半导体材料,具有优异的物理和化学性质。

其多层异质结构由不同Al组分的AlGaN层交替堆叠而成,具有独特的能带结构和电子传输特性。

这种结构使得电子在多层异质结构中传输时,受到多种散射机制的影响,其中声子散射是一种重要的散射机制。

三、声子散射机制声子散射是指声子与电子之间的相互作用导致电子动量发生变化的过程。

在纤锌矿AlGaN多层异质结构中,声子散射对电子的迁移率具有重要影响。

声子散射机制主要包括晶格振动散射、界面散射等。

这些散射机制使得电子在传输过程中受到阻碍,降低了电子的迁移率。

四、电子迁移率计算与分析为了研究声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率,我们采用了量子力学和统计物理的方法进行计算。

首先,我们建立了纤锌矿AlGaN多层异质结构的模型,并考虑了声子散射的影响。

然后,我们通过计算电子的动量弛豫时间和平均自由程,得到了电子的迁移率。

计算结果表明,声子散射对电子的迁移率具有显著的影响。

在纤锌矿AlGaN多层异质结构中,由于界面处晶格失配和化学键的不连续性,声子散射更加严重。

这使得电子在传输过程中受到更多的阻碍,导致迁移率降低。

此外,我们还发现,随着Al组分的增加,声子散射对电子的迁移率的影响更加明显。

五、结论与展望本文研究了声子散射下纤锌矿AlGaN多层异质结构中电子的迁移率。

通过建立模型和计算,我们发现声子散射对电子的迁移率具有显著影响,特别是在界面处。

一些物理里面名词的中文对照(大部分是材料领域的)

一些物理里面名词的中文对照(大部分是材料领域的)

Abelian group 阿贝尔群,又称Abel群ablation 烧蚀abnormal dispersion 反常色散Abrikosov vortex lattice 阿布里科索夫涡旋线格子Abrikocov vortex state 阿布里科索夫涡旋态absorber 吸收体absorption spectroscopy 吸收光谱abundance 丰度acceptor doping 受主掺杂acceptor impurity 受主杂质accumulation layer 累积层achromatic phase matching 消色差相位匹配achromatic wave plate 消色差波片achromatism 消色差[性]ac Josephson effect 交流约瑟夫森效应,又称交流Josephson效应acoustic compliance 声顺acoustic ohm 声欧[姆]acoustic stiffness 声劲[度]acoustic-optic tensor 声光系数张量acousto-optic effect 声光效应acousto-optic Q-switch 声光Q-开关acousto-optic signal processor 声光信号处理器acousto-optical tunable filter 声光可调滤波器actinide element 锕系元素activated tunneling 激活隧穿active device 有源器件active region 激活区addressing electrode 寻址电极adiabatic theorem,绝热定理adiabatic transformation 绝热变换adiabatic transport,绝热输运adiabaton 浸渐子,绝热子advection 平流aerodynamic sound 空气动力声aersol 气溶胶affinity potential 亲和势aggregate 聚集体aggregation 聚集Aharonov-Bohm (AB) effect AB效应,又称Aharonov-Bohm (AB) 效应Aharonov-Bohm (AB) flux AB磁通,又称Aharonov-Bohm (AB)磁通allowed state 容许态alpha decay ( -decay) 衰变alpha particle ( -particle) 粒子Altshular-Aronov-Spivak (AAS) effect AAS效应,又称Altshular-Aronov-Spivak效应amplification without inversion 无反转放大amplitude limiting 限幅amplitude transformer 变幅杆Andreev reflection 安德列也夫反射,又称Andreev反射Andreev mirror 安德列也夫镜[子],又称Andreev镜[子] Andreev scattering 安德列也夫散射,又称Andreev散射angular resolved photoemission spectroscopy 角分辨光电子谱[学] anisotropic confinement 各向异性限域anisotropic scatterer, 各向异性散射体anisotropy energy 各向异性能anomalon 反常子anomalous power laws 反常幂[次]率anomalous proximity effect,反常临近效应anomaly 反常antidot 同quantum antidot 反量子点antidodal point 腹点antigravity 反引力antihyperon 反超子anti-localization, 反局域化antimeson 反介子anti-exclusive principle 反不相容原理antiferromagnetic interaction 反铁磁相互作用antiferromagnetic semiconductor 反铁磁半导体anti-Stokes scattering 反斯托克斯散射anti-time ordered function, 反时序函数anyon 任意子aphelion 近日点, 远核点areal density 面密度armchair nanotube 扶手椅型纳米管arrayed waveguide gratings 阵列波导光栅artificial atom,人[工]构[造]原子artificial barrier 人工势垒artificial elment 人造元素atom laser 原子凝射器atom optics 原子光学atom trapping 原子陷俘,原子捕获atom waveguide 原子波导atomic clock原子钟atomic diffraction 原子衍射atomic fountain 原子喷泉atomic form factor 原子形状因子atomic time 原子时attenuation 衰减attosecond X-ray pulse 阿秒X射线脉冲Auger process 俄歇过程,又称Auger过程avalanche counter 雪崩计数器avalanche effect 雪崩效应avalanche photodiodes,apd 雪崩光电二极管azimuth 方位角back-action evasion 非干扰[测量]background radiation 本底辐射,背景辐射background temperature 本底温度, 背景温度balanced homodyne detection平衡零拍探测ballistic aggregate 弹道聚集体ballistic aggregation 弹道聚集ballistic electron injection 弹道电子注入ballistic transport弹道输运ballistics 弹道学band bending 带弯曲band index 带指标band of rotation-vibration 振转[谱]带band offset 带阶band repulsion 带排斥band theory 能带论bar 巴(压强单位),杆Barkhausen noise 巴克豪森噪声,又称Barkhausen噪声barn 巴恩(截面单位,10-24厘米2)barrier 势垒barrier curvature 势垒曲率barrier height 势垒高度barrier state 势垒态barrier tunneling 势垒隧穿base-centered orthorhombic lattice 底心正交格[子] base line 基线base material 基质base metal 碱金属basis vector 基矢beam 束,梁beam dump 束流捕集器beam focusing 束流聚焦behaviour 行为,性能Bell inequality贝尔不等式,又称Bell不等式bend resistance,弯曲电阻bent crystal 弯晶Berry phase 贝里相位,又称Berry相位βdecay β衰变βradioactivity β放射性βray β射线βspectum β谱βstability line β稳定线bevatron 吉伏质子加速器(高能质子同步稳相加速器)bicritical point 双临界点bicrystal junction 双晶结big bang model 大爆炸模型binary diffractive optical element 二元衍射光学元件bioastrophysics 天体生物物理学biochip 生物芯片bipolar junction transistor 双极[结]晶体管bit rate 比特率blackness 黑度blaze line 闪耀角bleaching effect 漂白效应blob 团迹,链滴Bloch electron 布洛赫电子,又称Bloch电子Bloch frequency,布洛赫频率,又称Bloch频率Bloch oscillation,布洛赫振荡,又称Bloch振荡Bloch theorem 布洛赫定理,又称Bloch定理blockade 阻塞Blonder-Tinkham-Klapwijk [BTK] model BTK模型body-centered cubic lattice 体心立方格[子]body-centered orthorhombic lattice 体心正交格[子]Bogoliubov [-de Gennes] equations 博戈留波夫[-得简斯]方程,又称Bogoliubov [-de Gennes]方程Boltzmann distribution 玻尔兹曼分布Boltzmann transport equation,玻尔兹曼输运方程bond-angle order 键角有序bond-orientational order 键取向有序bond polarizability 键极化性bond valence 键价boojum 布经(超流氦3中的取向织构)bosonization of field operators 场算符的波色化Bragg peak 布拉格峰,又称Bragg峰Bragg plane 布拉格平面,又称Bragg平面Bragg reflection 布拉格反射,又称Bragg 反射Bragg reflectors 布拉格反射器,又称Bragg 反射器Bragg waveguide 布拉格波导,又称Bragg 波导break junction 断裂结breathing mode呼吸模breeder 增殖反应堆breakup reaction 崩裂反应bright state 亮态brittleness 脆性buffer amplifier 缓冲放大器buffer gas 缓冲气体buffer layer, 缓冲层burn-up 燃耗Büttiker formula, 比特克公式,又称Büttiker公式buzzer 蜂鸣器C-15 structure C-15结构C[a]esium clock 铯钟calorie 卡【洛里】candle 烛光candescence 白热,又称白炽canonical commutation relation 正则对易关系canonical variable 正则变量cantact angle 接触角canted spin order倾斜自旋有序cantilever 悬臂(原子力显微镜中的)canthotaxie眼角[式]排列(另文说明)carbon cycle 碳循环(恒星内部的)carbon nanotube 碳纳米管carrier 载流子carrier concentration 载流子浓度carrier diffuse 载流子扩散carrier reservoir 载流子库Cartesian coordinates 笛卡儿坐标Cauchu-Schwarz inequality Cauchu-Schwarz不等式cavity dark state 腔暗态cavity dumping 腔倒空cavity quantum electrodynamics 腔量子电动力学cavity resonator [谐振]腔共振器14C dating 碳14测年celestial X-ray source 宇宙X 射线源center of inversion 反演中心center of moment 矩心central collision中心碰撞center-of-mass energy 质心系能量centrifuge 离心机centrifugal separation 离心分离ceramic 陶瓷chain folding 链折叠chain statistics 链统计学chalcogenide 硫属化物channel waveguide 沟道波导chaos synchronization 混沌同步chaotic communication 混沌通讯chaotic noise 混沌噪声characteristic impedance 特性阻抗characteristic curve 特征曲线charge-separated plasma 电荷分离等离子体(正负电荷在空间不同区域的等离子体) charge imbalance 电荷不平衡charge ordering 电荷有序charge parity effect,电荷宇称效应charge qubit 电荷量子比特(超导量子比特的一种)charge-phase qubit 电荷-相位量子比特(超导量子比特的一种)charge reservoir 电荷库charge stiffness 电荷劲度(衡量外场作用下电荷被自由加速的难易程度)charge-spin coupling电荷自旋耦合(用于自旋电子学)charge stripe phase 电荷条纹相charge-to-mass ratio 荷质比charge transfer insulator 电荷转移绝缘体charge transfer salt 电荷转移盐charge velocity 电荷速度(见于电荷-自旋分离现象)charging energy,充电能chemical shift 化学位移chiral liquid crystal 手征液晶chiral molecule手征分子,又称手性分子chiral symmetry broken 手征对称[性]破缺chirp啁啾chirped Gaussian pulse 啁啾高斯脉冲chirp filter 啁啾滤波器,又称线性调频滤波器,或色散延迟线chopper 斩波器circumlunar orbit 环月轨道circumsolar orbit 环日轨道circumterrestrial orbit 环地轨道cis-lunar space 月地空间clad 覆盖clamping 箝位classical fluid 经典液体clean limit [干]净极限cleaved coupling cavity 解理耦合腔cloning fidelity克隆保真度closed shell 满壳层,又称闭壳层,英文又称closure shellcluster state簇态CNO cycle 碳氮氧循环coalescence 聚合, 并合code 1,[代]码;2,密码;3,符号coding 编码codirectional coupling 同向耦合coefficient of correlation 关联系数coefficient of elasticity 弹性系数coexistence line 共存线(相图中的)coexisting phase 共存相coherence factor 相干因子coherence length,相干长度coherent atomic recoil 相干原子反冲coherent electron tunneling 相干电子隧道coherent peak 相干峰coherent photoassociation 相干光缔合coherent population oscillation相干布居振荡coherent population trapping相干布居囚禁coherent population transfer相干布居迁移coherent structure 拟序结构coherent terahertz waves相干太赫波coherent transient effects 相干暂态效应coherent trap 相干捕获cold finger 冷头cold fusion 冷聚变collective coordinate 集体坐标collective mode 集体模collective motion 集体运动collective pinning model 集体钉扎模型collinear phase matching 共线相位匹配colloid 胶体,胶质colloidal metal 胶体金属colored noise 色噪声colossal magnetoresistance [CMR] 庞磁电阻commensurate lattice 公度格子compact star 致密星compensated impurity 补偿杂质complementary metal oxide semiconductor [CMOS] 互补金属氧化物半导体complex 1,复合体;2,络合物complex analytical signal theory 复解析信号理论complex-conjugate pulses 复共轭脉冲compliance 1,柔度;2,顺度composite Fermion 复合费米子compression of ultrashort pulses 超短脉冲压缩compressor 压缩器,压机concurrence并发纠缠,又称量子并发condensate 凝聚体condensation energy 凝聚能condenser 冷凝器conductance fluctuation, 电导涨落conductance quantization 电导量子化conduction electron 传导电子confinement 1,约束(等离子);2,限域(凝聚态);3,禁闭(高能)congregating effect 聚集效应conjugate variable 共轭变量conservation of angular momentum 角动量守恒conservation of crystal momentum 晶体动量守恒conservative dislocation motion 保守位错运动(位错沿滑移面平行于Burgers矢量运动无净质量流)conservation of energy 能量守恒conservation law of flux 磁通守恒律conservation of momentum 动量守恒conservation of particle number粒子数守恒contact angle 接触角contact potential 接触势contact resistance 接触电阻continuation 延拓continuous group 连续群contour line 等值线contour map 等值线图contradirectional coupling反向耦合conventional unit cell 惯用单胞,简称单胞convergence factor 收敛因子conversion electron 内转换电子coolant moderator 载热减速剂cooperative diffusion 合作扩散Cooperon, 库珀子Cooper pair box 库珀对盒子coplanar waveguide 共面波导copolymer 共聚物core energy 芯能core nucleus 核芯[核]correlated spontaneous emission 关联自发发射correlation exponent 关联指数cosmic aerodynamics 宇宙气体动力学cosmic age 宇宙年龄cosmic constant 宇宙常量cosmic [microwave] background radiation [CMBR] 宇宙[微波]背景辐射cosmic microwave background 宇宙微波背景cosmic string 宇宙弦cosmochemistry 宇宙化学,天体化学cosmological nucleosynthesis 宇宙核合成cosmos 宇宙co-tunneling 共隧穿Couette flow 库埃特流Coulomb blockade 库仑阻塞Coulomb gap 库仑隙Coulomb interaction 库仑[相互]作用Coulomb island 库仑岛,又称单电子岛(single electron island)Coulomb potential 库仑势Coulomb repulsion 库仑斥力Coulomb staircase 库仑台阶counter telescope 计数器望远镜coupled-channels model 耦合道模型coupled mode theory 耦合模理论coupled waveguides,耦合波导coupled wells耦合阱coupling energy 耦合能coupling strength 耦合强度covalent bond 共价键creep wave蠕波,又称爬波critical assembly [核反应堆]临界装置critical density 临界密度critical dimension 临界维度cross-phase-modulation 交叉相位调制cross field 交叉场cross junction, 十字结crosstalk attenuation 串扰衰减crystal-field splitting 晶[体]场劈裂crystalline anisotropy晶态各向异性crystal symmetry class 晶体对称类cubic lattice 立方格子cuprate 铜氧化物curie 居里(非国际制放射性活度单位)current bias 电流偏置current operator 电流算符cutoff energy,截止能量cyclone 气旋cyclotron effective mass 回旋有效质量D/A converter 等于digital to analog converter 数模转换器damping radiation 阻尼辐射dark current 暗电流dark energy 暗能量dark state 暗态dark-state polariton 暗态光极化子date line 日界线dc Josephson effect 直流约瑟夫森效应,直流Josephson效应dc SQUID (superconducting quantum interference device) 直流超导量子干涉器Debye wave vector 德拜波矢decay heat 衰变热decay time,衰减时间deceleration 减速度decibel 分贝decoherence 退相干,又称消相干decoherence-free 无退相干,又称无消相干decontamination factor 去污因子decoupling epoch 退耦期decoy state 诱骗态deformation potential,形变势degeneracy collapse 简并塌缩degenerate pressure 简并压degenerate star 简并星de Gennes-Taupin length de Gennes-Taupin长度degree of order 有序度de Haas-Shubnikov effect de Haas-Shubnikov效应delay time,延迟时间demultiplexer 解复用器dendrite 1,枝晶;2,枝蔓;3,枝蔓体dense coding 密集编码dense wavelength division multiplexing 密集波分复用density correlation function,密度关联函数density distribution 密度分布density wave 密度波depairing 拆对dephasing length,退相位长度depinning 脱钉[扎]depleted Uranium 贫化铀deplation force 排空力(胶体物理用语)depletion layer 耗尽层descreening 去屏蔽deterministic equation 确定(论)的方程deuterium 氘, 即重氢deuterium oxide 重水dextrorotation 右旋diabatic approach 非绝热近似diagnostics 诊断学diagonal element 对角元diagonal matrix 对角矩阵diagonalization 对角化diamond structure 金刚石结构diblock copolymer 双嵌段共聚物dielectric response function 介电响应函数dielectric function,介电函数dielectric microcavity 介电[质]微腔dielectric reflector 介[电]质反射器differential conductance 微分电导differential input 差分输入differential rotation 较差自转(天文学用语)differential scanning calorimetry 差分扫描量热术diffraction-free beam 消衍射光束diffractive binary optics 衍射二元光学diffuseness [parameter] 弥散参数diffusion constant,扩散常数diffusion current 扩散电流diffusion region 扩散区diffusive transport,扩散输运digit 数字digital circuit 数字电路digital cross connect 数字交叉连接digit[al] to analog converter (DAC) 数模转换器digital micromirror device 数字微镜器件dilation 膨胀dilute phase 稀相dilation symmetry 伸缩对称dimensionless conductance 无量纲电导dimer 二聚体dimerization 二聚化dipole interaction 偶极相互作用dipole giant resonance 偶极巨共振Dirac braket 狄拉克括号Dirac picture 狄拉克绘景, 即相互作用绘景directed diffusion 定向扩散directional bond 定向键directional coupler 定向耦合器directional ordering 取向有序directional quantization 方向量子化direction of magnetization 磁化方向direct lattice 正格子,又称正点阵direct transition 直接跃迁dirty limit 脏极限dirty-metal regime,脏金属区discontinuity 1,不连续[性];2,突变[性] dislocation network 位错网络disordered alloy 无序合金disordered system 无序系统dispersion compensation 色散补偿dispersion-managed solitons 调控色散孤子dissipationless flow 无耗散流dissociation energy 离解能distillable entanglement 可萃取纠缠distinguishable states可区分态distributed Bragg reflector 分布布拉格反射器domain 1,畴;2,[定义]域;3,区域donor level 施主能级dopant 掺杂物doping 掺杂dosimetry 剂量学double-barrier tunneling,双势垒隧穿double exchange interaction 双交换相互作用double heterostructure DH 双异质结doublet state 双重态dressed atom 着衣原子,又称缀饰原子droplet model 小液滴模型Drude model,德鲁德模型duty ratio 占空比d-wave pairing d波配对dyad 并矢dynamical mass 动力学质量(08.02dynamic random access memory [DRAM] 动态随机存储器dynamic screening,动态屏蔽dynamically induced coherence 动态诱导相干dynamo theory 发动机理论dyne 达因early universe 早期宇宙eccentricity 偏心率eclipse 1,食;2,交食edge channel,边缘通道edge dislocation 刃[型]位错edge state,边缘态effective field theory 有效场理论effective Hamiltonian 有效哈密顿量effective mass approximation,有效质量近似Einstein-Podolsky-Rosen thought experiment EPR思想实验Einstein-Podolsky-Rosen effect EPR效应Einstein-Podolsky-Rosen pair EPR对Einstein-Podolsky-Rosen paradox EPR佯谬elastic compliance 弹性顺度elastic deformation 弹性形变electrical isolation 电绝缘electric breakdown 电击穿electric capacity 电容electric resistance 电阻electrical quadrupole moment 电四极矩electrochemical potential 电化学势electromagnetic absorption 电磁吸收electromagnetically induced absorption 电磁感生吸收electromagnetically induced transparency 电磁感生透明electromagnetic-environment effect,电磁环境效应electron backscattering pattern 电子背散射图样electron-beam lithography 电子束刻蚀electron configuration 电子组态electron density 电子密度electron-doped high temperature superconductor 电子掺杂的高温超导体electronegativity 电负性electron-electron interaction,电子-电子相互作用electron-hole pair 电子空穴对electron-hole recombination 电子-空穴复合electron hologram 电子全息术electron transition 电子跃迁electron pair 电子对electron pair tunneling 电子对隧穿electron-phonon coupling 电子声子耦合electron temperature,电子温度electron tunneling 电子隧穿electron waveguide,电子波导electron volt (eV) 电子伏electrorheological effect 电流变效应electrorheological fluid 电流变液Eliashberg equations Eliashberg方程Eliashberg theory of strong coupling Eliashberg强耦合理论elliptical orbit 椭圆轨道elliptic flow 椭圆流emittance 发射度empirical pseudopotential method 经验赝势方法empty lattice approximation 空晶格近似endohedral fullerene 内嵌原子富勒烯end-butt coupling 端面对接耦合energy relaxation length,能量弛豫长度energy transport velocity 能量传输速度ensemble average,系综平均entangled state 纠缠态entanglement 1,纠缠;2,纠缠度entanglement concentration 纠缠浓缩entanglement measure 纠缠度量entanglement monotone 单调纠缠量entanglement of formation 生成纠缠entanglement purification 纠缠纯化entanglement witness 纠缠见证entropy force 熵力envelope function,包络函数epithermal neutron 超热中子epoxy 环氧树脂erbium-doped fiber amplifier 掺饵光纤放大器error correction 纠错Esaki diode 江崎二极管evanescent state,衰逝态even-odd nucleus 偶奇核even parity 偶宇称evolution of inflation 暴涨演化Ewald construction Ewald作图法Ewald sphere Ewald球excess current 过剩电流excess neutron 过剩中子exchange-correlation hole 交换关联空穴exchange-correlation functional 交换关联泛函exchange hole 交换空穴exchange integral 交换积分excitation spectrum 激发谱excluded volume 排除体积exclusion of flux 磁通排斥exclusion principle 不相容原理exotic nucleus 奇特核expanding universe 膨胀宇宙extended [Brillouin] zone scheme 扩展[布里渊]区图式extraterrestrial life 地外生命extravehicular activity(EV A) [太空]舱外活动f-sum rule f求和规则face-centered orthorhombic lattice 面心正交格[子] face-on 正向facsimile 传真,英文简写为faxfacula 光斑Fahrenheit thermometer 华氏温度计faint object 暗天体fan diagram 扇形图F-center F中心Feno lineshape Feno线型Feno resonance Feno共振fan spin order 扇状自旋有序farad (F) 法拉(电容单位)Faraday depolarization 法拉第退偏振Faraday law of electrolysis 法拉第电解定律far-from-equilibrium system,远离平衡态系统far-side 背面(far-side of the moon, 月球背面)far-ultraviolet (FUV) 远紫外fast fission 快裂变fatigue crack 疲劳裂纹fatigue fracture 疲劳断裂fatigue strength 疲劳强度feed [source] 馈源feeder 馈线femto (f) 飞(=10-15)(01)femtosecond pulse shaping 飞秒脉冲成形Fermi age 费米[中子]年龄Fermi age-diffusion equation 费米年龄扩散方程Fermi arc 费米弧Fermi coupling constant 费米耦合常数Fermi energy 费米能量Fermi gas 费米气体Fermi golden rule 费米黄金定则Fermi liquid 费米液体Fermi liquid parameter 费米液体参数Fermi loop 费米环Fermi point 费米点Fermi transition费米跃迁Fermi vacuum 费米真空Fermi velocity 费米速度Fermi wavelength 费米波长Fermi wave vector,费米波矢Fermi’s golden rule费米黄金规则ferrielectric crystal 亚铁电晶体ferrimagnet 亚铁磁体ferroelectric 铁电体ferroelectric crystal 铁电晶体ferromagnet 铁磁体few-cycle pulse少周[期]脉冲few nucleon transfer 少[数]核子转移Feynman path,费曼路径Feynman path integral,费曼路径积分fiber cross connect 光纤交叉连接fiber grating 光纤光栅Fibonacci sequence 斐波那契序列fiducial confidence bar 置信棒fiducial point 基准点field intensity 场强field quantization 场量子化field quantum 场量子field strength 场强figure of merit,又称qualityfactor 品质因数filament 1,丝;2,丝极finite-amplitude wave 有限振幅波,又称大振幅波finite-difference method 有限差分方法finite element method 有限元法finite size effect 有限尺寸效应finite-size scaling 有限尺寸标度first approximation 一级近似first Brillouin zone 第一布里渊区first point of Aries 春分点,英文又称:vernal equinoxfirst point of Cancer 夏至点,英文又称:summer solsticefirst point of Capricornus 冬至点,英文又称:winter solsticefirst point of Libra 秋分点,英文又称:autumnal equinoxFiske steps 费斯克台阶,又称自感应台阶fissility 易裂变性fission 1,裂变;2,分裂fission isomer 裂变同质异能素fission nuclide 裂变核素fission reactor 裂变反应堆fission-spectrum neutron 裂变谱中子fission track dating 裂变径迹年代测定fitting curve 拟合曲线five-fold symmetry 5重对称fixed-range hopping 定程跳跃flash memory 闪速存储器,简称闪存flat spectrum 平谱flattening factor 扁率floating probe 浮置电极,又称浮置探针floating phase 浮置相Floquest theorem 弗洛开定理flow resistance 流阻fluctuating wall 涨落壁fluctuation 涨落(统计物理〕,又称起伏(声学〕fluence 注量fluorescence probe 荧光探剂flux,通量flux 1通量,又称流量;2,注量率;3,焊料;4 助熔剂flux bundle 磁通束flux flow amplifier (FFA) 磁通流放大器flux flow oscillator (FFO) 磁通流振荡器flux flow transistor(FFT)磁通流三极管,又称涡旋流三极管(vortex flow transistor) flux-line lattice 磁通线格子flux line 磁通线flux tube 磁流管flux quantum 磁通量子flux quantization 磁通量子化foam 泡沫focal point 焦点focal ratio 焦比focus 1,焦点;2,震源folding Brillouin zone 折叠布里渊区forbidden beta decay 禁戒b衰变forecast 预报forward bias 正向偏压four-Josephson junction logic (4JL) 四约瑟夫森结逻辑门Fourier analysis 傅里叶分析Fourier transform 傅里叶变换Fourier [transform] nuclear magnetic resonance 傅里叶[变换]核磁共振Fourier [transform] Raman spectroscopy 傅立叶[变换]拉曼谱学four probe method 四探针法four-terminal resistance,4端电阻fractional chain yield 相对链产额fractional cumulative yield 分积累产额fractional distillation 分馏fractional independent yield 分独立产额fractional statistics 分数统计法fragment 1,碎片;2,片段Franck-Condon principle弗兰克-康登原理free electron approximation 自由电子近似free electron gas 自由电子气体free energy 自由能free –free transition 自由-自由跃迁,又称自由态间跃迁freely falling body 自由落体free radical 自由基free spectral range 自由光谱范围freezing point 凝固点Frenkel exciton 弗仑克尔激子frequency conversion 频率转换Frequency division multiplexing 频分复用frequency jitter 频率抖动frequency multiplication 倍频friction 摩擦Friedel oscillation,Friedel振荡Friedel sum rule Friedel求和规则Frohlich interaction Frohlich相互作用front velocity波前速度frustrated magnet 窘组磁体fuel cell 燃料电池Fulde-Ferrell state Fulde-Ferrell态fullerene 富勒烯full moon 满月function 函数functional (1)泛函(2)功能(的)fundamental interaction 基本相互作用fundamental space-filling mode 基本空间填充模fuse (1)熔解(2)保险丝fused silica熔融石英fusion reactor 聚变[核反应]堆fuzzy information 模糊信息fussy mathematics 模糊数学gain-clamping 增益箝位gain efficiency 增益效率Galton plate 伽尔顿板-陈gamma(γ)伽马(地磁场强单位γ=nT)gamma rayγ射线gap 1,隙;2,能隙gap anisotropy 能隙各向异性gap parameter 能隙参数gaseous state 气态gate1,门;2,栅(极)gate voltage 门电压gauge symmetry 规范对称性gauss (G) 高斯(磁感应强度单位G=10-4T)Gaussian fluctuation 高斯涨落Gauss law 高斯定理Gauss surface 高斯面generalized Balmer formula 广义巴尔末公式generalized work 广义功general refractive index 广义折射率(量子信息)geomagnetic declination 地磁偏角geomagnetic inclination 地磁倾角geometrical structure factor 几何结构因子geometrization of gravitation 引力几何化German silver 德银g-factor g因子g-factor of electrons 电子的g因子g shift g移位ghost imaging 鬼成像giant magnetoresistance (GMR) 巨磁电阻Giaever tunneling 盖沃尔隧穿(单电(粒)子隧穿)Gibbs ensemble 吉布斯系综gilbert 吉尔(磁通势单位)Ginzburg-Landau coherence length 金兹堡-朗道(GL)相干长度Ginzburg-Landau equation 金兹堡-朗道(GL)方程Ginzburg-Landau-Abrikosov Go’rkov theory(GLAG)金兹堡-朗道-阿布里科索夫-高里科夫理论Glan-Thompson prism 格兰-汤普森棱镜Glan-Taylor prism 格兰-泰勒棱镜glass phase 玻璃相glassy ceramics 微晶玻璃glassy metal 玻璃态金属Glauber state Glauber态glide axis 滑移轴glide line 滑移线global phase 整体相位(量子信息)goniometer 测角器graded bandgap layer 缓变带隙层Gorter-Casimir two-fluid model 高特-卡西米尔二流体模型Graded index lens (GRIN) 梯度折射率透镜gradient of electric potential 电势梯度gram-molecule 克分子,摩尔(mole)grand free energy 巨自由能granular matter 颗粒物质granular superconductor 颗粒超导体granule 颗粒granularity 颗粒性granular metal 颗粒金属graphite 石墨graphite structure 石墨结构graph [线]图graph state 图态(量子信息)gravitational deflection of light 光线的引力偏折gravity acceleration 重力加速度Gray code 格雷码grazing angle 1,掠射角;2,擦边角greenhouse effect 温室效应group index of refraction 群折射率group theory 群论group velocity dispersion 群速度色散growth 生长growth model 生长模型guest host liquid crystal 宾主型液晶guided wave optics 导波光学gyroscopic effect 回转效应half metal 半金属half metallic magnet 半金属磁体half wave filter 半波滤波器half wave oscillator 半波振子half- wave zone method 半波带法half-wave voltage 半波电压Hall angle 霍尔角Hall coefficient 霍尔系数Hall field 霍尔电场[强度]Hall plateau 霍尔平台Hall resistance 霍尔电阻Hall voltage 霍尔电压halo nucleus 晕核halogen 卤素Hamiltonian matrix哈密顿[量]矩阵hard sphere 硬球hard sphere approximation 硬球近似harmonic generation 谐波产生Hartree-Fock electron 哈特里-福克电子H-center H心health physics 保健物理heat conductivity 1,导热性;2,热导率heat flow vector 热流矢量heat flux 热通量heat switch 热开关heavy electron 重电子heavy element 重元素heavy fermion superconductor 重费米子超导体heavy [fission] fragment 重【裂变】碎片heavy hole 重空穴heavy wall 重壁heavy water 重水hedgehog 猬缺陷height of potential barrier 势垒高度Heisenberg Hamiltonian 海森伯哈密顿量Heisenberg operators 海森伯算符Heisenberg uncertainty principle 海森伯不确定【性】原理Heitler-London theory 海特勒-伦敦理论Helfrich spontaneous curvature model 黑弗里希自发曲率模型helical spin order螺旋自旋有序helium liquefier 氦液化器heptahgedron 七面体Hermite polynomial 厄米多项式Hermitian matrix 厄米矩阵hertz (Hz) 赫兹, 频率单位heterotic superstring theory 杂化超弦理论Heusler alloy 霍伊斯勒合金hexadecapole 十六极hexahedron 六面体hexatic phase 六角相high coherence model 高相干模型high electron mobility transistor 高电子迁移率晶体管(简写:HEMT)high energy particle 高能粒子high-field domain 强场畴high-order dispersion 高阶色散high-order harmonic generation 高阶谐波产生high pass filter 高通滤波器high temperature reservoir 高温热源high temperature superconductor(HTS)高温超导体high vacuum 高真空high voltage electron microscopy 高压电子显微术Hohenberg-Kohn energy functional 霍恩伯格-科恩能量泛函hole-electron recombination 空穴-电子复合hole surface 空穴面(k空间中未占据态区的表面)hole-type high temperature superconductor 空穴型高温超导体holey fiber 多孔光纤hollow core optical fibers 空心光纤holon 空穴子homodyne零拍homodyne detection 零拍探测homolog[ue] 同系物homopolymer 单聚合物honeycomb photonic band gap fiber 蜂窝型光子带隙光纤hopping conductance 跳跃电导hopping energy,跳跃能hopping probability 跳跃概率hopping transport 跳跃输运host 基质host crystal 基质晶体,又称主晶hot carrier 热载流子h/e oscillation h/e振荡h/2e oscillation h/2e振荡Huang equations 黄[昆]方程组Huang-Rhys factor 黄昆-里斯因子Hubbard Hamiltonian 哈勃德哈密顿量Hubbard model 哈勃德模型Hubble time 哈勃时间hybrid bond 杂化键hybrid field effect 混合场效应hydrodynamics 流体[动]力学hydrodynamic mode 流体[动]力学模hydromagnetic disturbance 磁流体扰动hydromagnetic instability 磁流体不稳定性hydrophilic force 亲水力hydrophobic association 疏水缔合hydrophobic force 疏水力hyperbolic point 双曲点hypernucleus 超核hyper-Rayleigh scattering 超瑞利散射hyperspherical coordinate 超球座标hysteresis loop 1,滞后回线;2,磁滞回线hysteresis loss 1,滞后损失;2,磁滞损耗。

量子测量术语-最新国标

量子测量术语-最新国标

量子测量术语1 范围本文件规定了量子测量相关的基本术语和定义。

本文件适用于量子测量相关标准制定、技术文件编制、教材和书刊编写以及文献翻译等。

2 规范性引用文件本文件没有规范性引用文件。

3 通用基础3.1量子测量quantum measurement利用量子的最小、离散、不可分割特性及量子自旋、量子相干、量子压缩、量子纠缠等特性,大幅提升经典测量性能的测量。

3.2量子计量quantum metrology基于基本物理常数定义国际单位制基本单位,利用量子系统、量子特性或量子现象复现测量单位量值或实现直接溯源到基本物理常数的测量,可用于其他高精度测量研究。

3.3量子传感quantum sensing利用量子系统、量子特性或量子现象实现的传感技术。

3.4量子态quantum state量子系统的状态。

3.5量子费希尔信息quantum Fisher information量子费希尔信息是经典费希尔信息的扩展,表征了量子系统状态对待测参数的敏感性,可用于确定参数测量的最高精度。

3.6海森堡极限Heisenberg limit根据海森堡不确定性关系,在给定的量子态下,量子系统的某个指定的可观测物理量受其非对易物理量测量不确定性的制约所能达到的测量精度极限。

3.7标准量子极限standard quantum limit由量子力学原理决定的噪声极限,即多粒子系统处于真空态时两个正交分量的量子噪声相等且满足海森堡最小不确定关系。

3.8散粒噪声shot noise散粒噪声,或称泊松噪声,是一种遵从泊松过程的噪声。

对于电子或光子,其散粒噪声来源于电子或者光子离散的粒子本质。

3.9量子真空涨落quantum vacuum fluctuation真空能量密度的随机扰动,是海森堡不确定原理导致的结果。

3.10量子噪声quantum noise测量过程中由于量子系统的海森堡不确定性引发的噪声。

3.11量子投影噪声quantum projection noise测量过程中由于量子投影测量结果的随机性所引发的噪声。

物理专业英语词汇(S)_数学物理英语词汇

物理专业英语词汇(S)_数学物理英语词汇

s branch s 分支s d exchange interaction s d 交换相互酌s d mixing s d 混合s d problem s d 问题s matrix s 矩阵s orbital s 轨函数s process s 过程s quark s 夸克s wave s 波s/n ratio 信噪比saccharimeter 糖量计saccharometer 砂糖检糖计sachs moment 萨克斯矩saddle point method 最陡下降法safety facfor 安全因子safety factor 定全系数sagitta 天箭座sagittal beam 弧矢光束sagittarius 人马座sagnac effect 萨尼亚克效应saha ionization theory 萨哈电离论saha's equation 萨哈公式saha's formula 萨哈公式sakata model 坂田模型salt 盐sample 样品sampling 抽样sampling oscilloscope 取样示波器sampling theorem 抽样定理saros 萨罗斯周期satellite 卫星satellite line 光谱线的伴线satellite observation 人造卫星观测satellite reflection 卫星反射saturable absorber 选择性饱和滤光器非线性滤光器saturable dye 饱和染料saturable reactor 饱和电抗器saturated steam 饱和水蒸汽saturated vapor 饱和水蒸汽saturated vapor pressure 饱和蒸汽压saturated vapor pressure curve 饱和蒸气压曲线saturation 饱和saturation current 饱和电流saturation curve 饱和曲线saturation magnetization 饱和磁化saturation point 饱和点saturation pressure 饱和压力saturation state 饱和态saturation temperature 饱和温度saturation value 饱和值saturation vapor pressure 饱和蒸气压saturation voltage 饱和电压saturn 土星sausage instability 腊肠形不稳定性savart plate 萨瓦尔板savart's polarizing plate 萨瓦尔偏振光镜sawtooth generator 锯齿形波发生器saxon woods potential 萨克逊伍兹势scalar coupling 标量耦合scalar curvature 标量曲率scalar field 标量场scalar particles 标量粒子scalar potential 标量势scalar quantity 标量scale 度标scale factor 标度因子scale height 标高scale invariance 扩张不变性scale of two circuit 二进位定标电路scaling circuit 定标电路scaling invariance 标度无关性scaling law 标度律scaling theory 标度理论scan 扫描scandium 钪scanning 扫描scanning auger microanalysis 扫描俄歇微区分析scanning electron microscope 扫描电子显微镜scanning laser acoustic microscope 扫描激光声显微镜scanning total reflection 扫描全反射scanning transmission electron microscope 扫描透射电子显微镜scanning tunneling microscope 扫描隧道电子显微镜scattered light 漫射光scattered radiation 散射辐射scattered wave 散射波scattered x rays 散射 x 射线scattering 散射scattering amplitude 散射辐度scattering angle 散射角scattering center 散射中心scattering chamber 散射室scattering coefficient 散射系数scattering cross section 散射截面scattering factor 散射因子scattering formula 散射公式scattering length 散射长度scattering matrix 散射矩阵scattering medium 散射介质scattering operator 散射算符scenograph 透视仪schaefer bergmann's diffraction pattern 夏费贝尔格曼衍射图样schering bridge 沃电桥schlieren chamber 超快扫描照相机schlieren method 纹影照相法schlieren pattern 纹影图样schmid factor 施密得因数schmidt camera 施密特望远镜schmidt lines 施密特线schmidt number 施密特数schmidt rule 施密特定则schmidt telescope 施密特望远镜schmidt value 施密特值schmitt trigger 施密特触发器schoenflies' symbol 熊夫利符号schottky barrier 肖脱基势垒schottky barrier gate field effect transistor 肖脱基势结型场效应晶体管schottky defect 肖脱基缺陷schottky diode 肖脱基二极管schottky disorder 肖脱基缺陷schottky effect 散粒效应schottky transistor 肖脱基晶体管schrot effect 散粒效应schultz method 舒尔茨法schulz gage 舒尔茨真空计schumann region 舒曼区schumann resonance 舒曼共振schur's lemma 舒尔引理schwarzschild exterior solution 施瓦茨席尔德外部解schwarzschild interior solution 施瓦茨席尔德内部解schwarzschild radius 施瓦茨席尔德半径schwinger function 施温格函数schwinger model 施温格模型sciameter x射线测定器science 科学scientist 科学工走scintigram 闪烁图scintillation 闪光;闪烁scintillation counter 闪烁计数器scintillation crystal 闪烁晶体scintillation screen 闪烁屏scintillation spectrometer 闪烁谱仪scintillator 闪烁体scintilloscope 闪烁仪sclerometer 硬度计scleronomic system 与时间无关的系统scmitt trigger circuit 施密特触发器scorpius 天蝎座scotopic vision 暗视觉scram 紧急停堆scratch hardness 划痕硬度screen grid 屏栅screening 屏蔽screening constant 屏蔽常数screening effect 屏蔽效应screening number 屏蔽常数screw axis 螺旋轴screw dislocation 螺型位错screw pinch 螺旋箍缩sculptor 玉夫座scutum 盾牌座seaquake 海震search light 探照灯second harmonic generation 二次谐波发生second law of thermodynamics 热力学第二定律second order phase transition 二级相跃迁second quantization 二次量子化second sound 第二声second viscosity 第二粘性secondary battery 二次电池secondary cell 二次电池secondary circuit 次级电路secondary component 次级成分secondary cosmic rays 次级宇宙线secondary defect 二次缺陷secondary electron 次级电子secondary electron induced by ion bombardment 离子轰恍应二次电子secondary electron multiplier 二次电子倍增管secondary emission 二次电子发射secondary extinction 次级衰减secondary ion emission 次级离子发射secondary ion mass spectrometry 次级离子质谱法secondary ionization 次级电离secondary paticle beam 次级粒子束secondary quantum number 次量子数secondary radiation 次级辐射secondary spectrum 次级光谱secondary standard 二次标准secondary thermometer 二次温度计secondary x rays 二次 x 射线seconds pendulum 秒摆sector velocity 面积速度secular acceleration 长期加速secular equation 永恒方程secular parallax 长期视差secular perturbation 长期微扰secular precession 长期岁差sedimentation coefficient 沉降系数sedimentation equilibrium 沉降平衡sedimentation velocity 沉降速度seebeck effect 塞贝克效应seed crystal 晶种seeing 能见度seger cone 测温锥segment 段segmentation 分割segregation 偏析seiche 静震seismic focus 震源seismic intensity 地震强度seismic wave 地震波seismoelectricity 地震电学seismogeomagnetism 地震地磁学seismogram 地震记录图seismograph 地震仪seismology 地震学seismometer 地震计seismophysics 地震物理学seismoscope 验震器selected area diffraction 选区衍射selection 选择selection rule 选择规则selective absorption 选择性吸收selective growth 选择性生长selective reflection 选择反射selectivity 选择性selector 选择器selenium 硒selenium cell 硒光电池selenium rectifier 硒整流selenochronology 月球年代学selenodesy 月球测量学selenography 月面学selenomorphology 月貌学selenophone 照相录声机selenotectonics 月球构造学self absorption 自吸收self acting control 自行控制self adjoint extension 自伴扩张self adjoint operator 自伴算符self blocking 阻挡效应self canalization 自沟道效应self channeling 自沟道效应self collision 自碰撞self compression 自压缩self consistent field 自洽场self correlation 自相关self diffusion 自扩散self diffusion coefficient 自扩散系数self energy 自能self excitation 自激self excited generator 自激发电机self excited oscillation 自激振荡self excited oscillation circuit 自激振荡电路self focusing beam 自聚焦束self inductance 自感self induction 自感应self intensification 自增强self locking 自同步self mode locking 自锁模self operated control 自行控制self oscillation 自激振荡self oscillatory system 自激振荡系统self quenching counter 自灭式计数管self reversal 自反转self rotation 固有转动self similarity 自相似self sustained oscillations 连续振荡self sustaining discharge 自续放电self sustaining fusion 自续聚变self trapped electron 自俘获电子self trapped exciton 自俘获激子self trapping 自陷获selsyn motor 自动同步机sem 扫描电子显微镜semi 半semi channeling 半沟道效应semi classical method 半经典方法semi classical theory 半经典论semi group 半群semi insulator 半绝缘体semicircular spectrometer 半圆形光谱仪semicircular spectroscope 半圆形光谱仪semiconducting glass 半导电玻璃semiconductive polymer 半导电聚合物semiconductor 半导体semiconductor detector 半导体探测器semiconductor device 半导体装置semiconductor diode 半导体二极管semiconductor doped glass 半导体掺入玻璃semiconductor heterostructure 半导体异质结构semiconductor laser 半导体激光器semiconductor laser diode 半导体激光二极管semiconductor memory 半导体存储器semiconductor metal contact 半导体金属接触semiconductor microcrystallite 半导体微晶semiconductor quantum well structure 半寻体量子阱结构semiconductor rectifier 半导体整流semiconductor superlattice 半导体超点阵semiempirical molecular orbital method 半经验分子轨道法semileptonic decay 半轻子衰变semimetal 半金属semipermeable membrane 半透膜sense of rotation 旋转方向sensibility 灵敏度sensible heat 显热sensitive element 敏感元件sensitive tint 灵敏色辉sensitive tint plate 灵敏色辉片sensitivity 敏感度sensitized fluorescence 敏化荧光sensitometer 感光计sensitometry 感光度测定sensor 敏感元件sensor test 传感圃验separate excitation 他激separated function type synchrotron 分离机能型同步加速器separately excited generator 他激电机separating surface 界面sequence 序列serber force 塞伯力series connection 串联series generator 串激发电机series of spectrum lines 光谱线系series resistance 串联电阻series resonance 串联共振serpens 巨蛇座servoamplification 伺服放大servomechanism 伺服机构servomotor 伺服电动机sextans 六分仪座sextet 六重态seyfert galaxy 赛弗特星系shade 阴影shadow 阴影shadow effect 阴影效应shadow method 阴影法shadow microscope 阴影电子显微镜shadow scattering 衍射散射shallow water wave 浅水波shannon theorem 香农定理shape memory effect 形状记忆效应shaping circuit 形成电路sharp series 锐系列shearing force 剪切力shearing interferometer 错位干涉仪shearing modulus 剪切殚性模量shearing strain 剪切应变shearing strength 抗剪强度shearing stress 剪切应力sheet model 薄板模型shell 壳shell model 壳模型shf 超高频shield 屏蔽shield of a pile 屏蔽shielding material 屏蔽材料shift 位移shiva laser 希瓦激光器shive wave machine 沙伊布的波动实验器shock 冲击shock heating 冲花加热shock tube 花管shock tunnel 花管shock wave 冲花shockley partial dislocation 肖克利局部位错shockley state 肖克利态shore hardness 肖氏硬度short circuit 短路short focus lens 短焦距的透镜short life 短命short range correlation 短程关联short range interaction 短程相互酌short range order 短程有序short range order parameter 短程有序度short take off and landing aircraft 短距起落机short wave 短波shot effect 散粒效应shot noise 散粒噪声shower 簇射shower counter 簇射计数器shower particle 簇射粒子shubnikov de haas effect 舒勃尼科夫德哈斯效应shubnikov group 舒勃尼科夫群shunt 分路shunt generator 并励发电机shutter 快门si prefixes si 词头si unit si 单位side pressure 侧压side quark s 夸克sideband 边带sideband instability 边带不稳定性sidereal day 恒星日sidereal time 恒星时sidereal year 恒星年siderite 石铁陨星siderolite 石铁陨星siderostat 定星镜siemens 闻子sievert 违特sight 视觉sigma bond 键sigma electron 电子sigma model 模型sigma orbital 轨函数sigma pi interaction 相互酌signal 信号signal generator 信号发生器signal lamp 信号灯signal reproduction 信号的再生signal to noise ratio 信噪比signal velocity 信号速度signs of the zodiac 黄道十二宫silencer 消声器silent discharge 无声放电silicon 硅silicon diode 硅二极管silicon photocell 硅光电池silicon semiconductor detector 硅半导体探测器silver 银silver oxide cell 氧化银电池similarity 相似similarity law 相似定律similarity parameter 相似准则similarity theory 相似理论similarity transformation 相似变换similitude criterion 相似准则similitude theorem 相似定理simple harmonic motion 简谐运动simple pendulum 单摆simple tone 纯音simulation 模拟simulator 模拟器simultaneity 同时性simultaneously measurable 同时可测定sine 正弦sine condition 正弦条件sine curve 正弦曲线sine galvanometer 正弦检疗sine wave 正弦波sine wave generator 正弦波振荡器single bond 单键single closed shell nuclei 单闭合壳核single crystal 单晶single crystal diffraction 单晶衍射single crystal growing 单晶生长single electron tunneling 单电子隧道贯穿single mode fiber 单模纤维single particle energy 单粒子能single particle level 单粒子能级single particle transition probability 单粒子跃迁几率single phase alternating current 单相交流single wavelength laser 单波长激光器singlet 单线singlet state 单态singular integral 奇异积分singular matrix 奇异矩阵singular point 奇点singularity of space time 时空奇点sink 汇点sintering 烧结sinusoid 正弦曲线sinusoidal wave 正弦波siphon 虹吸siren 验音盘site selection spectroscopy 位置选择光谱学size effect 尺寸效应skew quadrupole magnet 斜四极磁铁skew ray 不交轴光线skin depth 囚深度skin effect 囚效应skin friction 表面摩擦skin layer 表层sky radiation 天空辐射skylab 天空实验室skyrme force 斯基尔姆力skyshine 天空回散照射slater determinant 斯莱特行列式slavnov taylor identity 斯拉夫诺夫泰勒恒等式slide 滑动slide resistance 滑触变阻器slide rheostat 滑触变阻器sliding friction 滑动摩擦slip 滑移slip plane 滑移面slit 狭缝slit function 狭缝函数slit spectrograph 狭缝摄谱仪slit width 缝隙宽slot antenna 狭缝天线slow acting relay 时滞继电器slow neutron 慢中子slow neutron capture 慢中子俘获slow positron beam 慢正电子束slowing down 减速slowing down density 减速密度slowing down length 慢化长度slowing down of neutrons 中子减速slowing down power 慢化本领small angle scattering 小角散射small angle scattering camera 小角散射照相机small calorie 克卡smectic crystal 近晶型液晶smectic phase 碟状液晶分子相smelting 熔解smith interferometer 史密斯干涉仪smoothing circuit 平滑电路snoek peak 斯诺依克峰so group 特殊正交群soap bubble model 皂泡模型sodium 钠sodium chloride structure 食盐结构sodium discharge lamp 钠灯sodium nitrate structure 硝酸钠结构sodium vapour lamp 钠灯sodiumlamp 钠灯soft component 软成分soft magnetic material 软磁材料soft mode 软模soft phonon 软声子soft superconductor 第一类超导体soft x ray spectroscopy 软 x 射线光谱学softening 软化softening point 软化点softening temperature 软化温度software 软件sol 溶胶solar activity 太阳活动solar apex 太阳向点solar battery 太阳电池solar beam plan 阳光计划solar calendar 阳历solar cells 太阳电池solar constant 太阳常数solar corona 日冕solar cosmic rays 太阳宇宙线solar cycle 太阳活动周solar day 太阳日solar eclipse 日食solar energy 太阳能solar energy storer 太阳能贮藏器solar flare 太阳耀斑solar furnace 太阳炉solar halo 日晕solar magnetic field 太阳磁场solar neutrino 太阳中微子solar neutrino unit 太阳中微子单位solar noise 太阳噪声solar physics 太阳物理学solar radiation 太阳辐射solar radio radiation 太阳射电辐射solar radioastronomy 太阳射电天文学solar spectrum 太阳光谱solar system 太阳系solar telescope 太阳望远镜solar time 太阳时solar wind 太阳风solar x ray 太阳 x 射线solar year 太阳年solarization 曝光过度酌soldering 钎焊solenoid 螺线管solid 固体solid angle 立体角solid body 固体solid helium 固体氦solid of revolution 族转体solid phase 固相solid solution 固溶体solid solution hardening 固溶体硬化solid state 固态solid state counter 固体计数器solid state detector 固体探测器solid state electronics 固体电子学solid state laser 固体激光器solid state physics 固体物理学solid state pinch effect 固体箍缩效应solid state plasma 固体等离子体solid state relay 固体继电器solidification 凝固solidification point 结晶温度solidifying point 凝固点solidus 固相线solitary wave 孤立波soliton 孤立子solstice 二至点solubility 溶解度solubility product 溶解度积solute 溶质solution 溶液;解solution velocity 溶解速度solvation 溶剂化solvent 溶媒sommerfeld radiation condition 拴菲辐射条件sonagraph 声图仪sonar 声呐sonde 探头sondheimer oscillation 松德亥姆振动sone 宋sonic depth finder 声深度观察装置sonic holography 声全息学sonics 应用声学sonoluminescence 声发光sonometer 弦音计soret effect 俗效应sorption 吸着sorption pump 吸着泵sound 声sound absorbent 吸声体sound absorption 吸声sound absorption coefficient 吸声率sound absorption factor 吸声率sound absorptivity 吸声率sound analyser 声音分析器sound effect 声效应sound energy 声能sound field 声场sound field calibration 声场校准sound insulation 隔声sound intensity 声强sound level 声级sound level meter 声级计sound navigation and ranging 声呐sound output 声功率sound power level 声功率级sound pressure 声压sound proof chamber 隔音室sound quality 音质sound quantum 声子sound radiation 声辐射sound rays 声线sound recording 录声sound reflection 声反射sound reflector 声音反射器sound refraction 声折射sound reproduction 声的重发sound source 声源sound spectrum 声谱sound velocity 声速sound vibration 声振动sound volume 声量sound wave 声波sound wave luminescence 声波发光sounding compass 发声罗盘source 源source follower 源跟踪器源极输出器source of energy 能源source of heat 热源source of light 光源source of sound 声源south pole 南极space 空间space astronomy 空间天文学space charge 空间电荷space charge density 空间电荷密度space charge effect 空间电荷效应space charge factor 电子管导电系数space charge layer 空间电荷层space charge limited current 空间电荷限制电流space clock 宇宙钟space communication 宇宙通讯space density 空间密度space distribution 空间分布space filtering 空间滤波space flight 宇宙飞行space group 空间群space inversion 空间反射space junk 空间垃圾space laboratory 天空实验室space lattice 空间点阵space navigating plant 航天工厂space plant 太空工厂space plasma physics 空间等离子体物理学space potential 空间电位space probe 宇宙探测器航天探测器space quantization 空间量子化space reflection 空间反射space research 宇宙空间研究space science 空间科学space shuttle 航天飞船space station 宇宙空间站space telescope 空间望远镜space time 时空space time quantization 时空量子化space velocity 空间速度space very long baseline interferometry 空间甚长基线干涉测量法space vlbi 空间甚长基线干涉测量法spallation 散裂spallation reaction 散裂反应spark 火花spark breakdown 火花哗spark chamber 火花室spark counter 火花计数器spark discharge 火花放电spark gap 火花隙spark line 火花谱线spark spectrum 火花光谱sparking 放花spatial frequency filtering 空间频率的滤波spatial frequency spectrum 空间频率谱spatial parity conservation law 空间宇称守恒律spatial quantization 空间量子化spatial velocity 空间速度spationautics 宇宙航行学speaker 扬声器special function 特殊函数special orthogonal group 特殊正交群special theory of relativity 狭义相对论special unitary group 特殊酉群specific acoustic impedance 比声阻抗specific binding energy 比结合能specific conductance 导电率specific electronic charge 电子的比电荷specific gravity 比重specific gravity bottle 比重瓶specific heat 比热specific heat at constant pressure 定压比热specific heat at constant volume 定体比热specific impulse 比冲量specific ionization 比电离specific power 功率密度specific ray constant 比常数specific resistance 电阻率specific surface 比表面积specific viscosity 比粘度specific weight 比重specification 说明speckle 斑纹speckle holography 斑纹全息学speckle interferometry 斑纹干涉学speckle pattern 斑纹图样speckle shearing interferometry 斑纹切位变干涉测定spectacle lens 眼镜片spectacles 眼镜spectral analysis 光谱分析spectral characteristic 光谱特性spectral colour 谱色spectral density 谱线密度spectral distribution 光谱分布spectral distribution curve 光谱分布曲线spectral function 谱函数spectral ghost 光谱鬼线spectral intensity 谱强度spectral line 谱线spectral line width 谱线宽度spectral luminous efficiency 光谱发光效率spectral purity 谱纯度spectral reflectance 光谱反射系数spectral reflection factor 光谱反射系数spectral representation 谱表示spectral sensitivity 谱灵敏度spectral sequence 光谱序spectral series 谱线系spectral term 谱项spectral type 光谱型spectrobologram 分光变阻测热图spectrobolometer 分光变阻测热计spectrofluorimeter 分光荧光计spectrofluorometer 分光荧光计spectrogram 光谱图spectrograph 分光谱仪spectrohelioscope 太阳光谱观测镜spectrometer 光谱仪spectrometry 光谱测定法spectrophotofluorometer 荧光分光光度计spectrophotography 光谱摄影学spectrophotometer 分光光度计spectrophotometry 光谱测定法spectrophysics 光谱物理学spectroradiometer 辐射谱仪spectroscope 分光镜spectroscopic analysis 光谱分析spectroscopic binary 分光双星spectroscopic lamp 光谱灯spectroscopic notation 光谱学符号spectroscopic parallax 分光视差spectroscopic photography 分光摄影术spectroscopy 光谱学spectrum 光谱spectrum locus 光谱轨迹spectrum selector 光谱选挥器spectrum variable 光谱变星speech analysis 语音分析speech processing 语音处理speed 速率speed of propagation 传播速度spent fuel 烧过的核燃料sphalerite structure 闪锌矿型结构spherical aberration 球面象差spherical albedo 球面反照率spherical astronomy 球面天文学spherical coordinates 球坐标spherical mirror 球面镜spherical nucleus 球形核spherical pendulum 球摆spherical photometer 球形光度计spherical tensor 球面张量spherical wave 球面波spherically symmetric potential 球对称势spherometer 球面仪spherulite 球粒spica 角宿spiking oscillation 脉冲尖峰振荡spin 自旋spin correlation 自旋相关spin density matrix 自旋密度矩阵spin density wave 自旋密度波spin doublet 自旋双重态spin echo 自旋回波spin exchange relaxation 自旋交换张弛spin flip 自旋反转spin flip laser 自旋反转激光器spin flip raman laser 自旋反转喇曼激光器spin fluctuation 自旋涨落spin glass 自旋玻璃spin hamiltonian 自旋哈密顿函数spin incoherence 自旋非相干性spin magnetic moment 自旋磁矩spin magnetic resonance 自旋磁共振spin matrix 自旋矩阵spin orbit coupling 自旋轨道耦合spin orbit interaction 自旋轨道相互酌spin orbit splitting 自旋轨道劈裂spin phonon interaction 自旋声子相互酌spin polarization 自旋极化spin quantum number 自旋量子数spin reorientation 自旋再取向spin resonance 自旋共振spin spin interaction 自旋自旋相互酌spin sublevel 自旋亚能级spin wave 自旋波spinel 尖晶石spinel structure 尖晶石型结构spinodal curve 旋节线spinodal decomposition 旋节线分解spinon 自旋振子spinor 旋量spinor field 旋量场spiral arm 旋臂spiral galaxy 旋涡星系spiral growth 螺旋形生长spiral nebula 旋涡星云splitting 分裂splitting factor 破裂系数splitting of spectral lines 谱线的分裂spontaneous emission 自发发射spontaneous fission 自发裂变spontaneous magnetization 自发磁化spontaneous optical rotatory power 自发旋光本领spontaneous polarization 自发极化spontaneous radiation 自发辐射spontaneous strain 自发变形spontaneous symmetry breakdown 自发对称破缺spontaneous transition 自发跃迁sporadic e layer 分散 e 层sporadic reflection 异常反射spot size 光斑尺寸spout 龙卷spread function 扩展函数spring 弹簧spring balance 弹簧秤spur 径迹spurion 虚假粒子spurious count 虚假计数spurious impulse 虚假计数spurious radiation 寄生辐射sputnik 卫星sputter ion pump 溅射离子泵sputtering 飞溅square well potential 矩形势阱squeezed state 压缩态squid 超导量子干涉仪stability 稳定度stability conditions 稳定条件stability theory of flow 聊稳定性理论stabilization 稳定化stabilizer 稳定器stable element 稳定元素stable isotope 稳定同位素stable nucleus 稳定核stacking fault 堆垛层错stacking fault tetrahedron 堆垛层错四面体stagnation 滞止stagnation point 滞点staircase magnetization curve 阶梯磁化曲线stalling 失速standard atmosphere 标准大气;标准大气压standard barometer 标准气压计standard big bang model 标准大爆炸模型standard candle 标准烛光standard capacitor 标准电容器standard cell 标准电池standard clock 标准钟standard conditions 标准条件standard cosmology 标准宇宙论standard deviation 均方根误差standard electrode 标准电极standard frequency 标准频率standard illuminant 标准光源standard instrument 标准仪器standard leak 标准漏孔standard light source 标准光源standard model 标准模型standard observer 标准观测员standard pressure 标准压力standard resistance 标准电阻standard resistance thermometer 标准电阻温度计standard resistor 标准电阻standard signal generator 标准信号发生器standard state 标准状态standard stimuli 标准剌激standard temperature 标准温度standard thermometer 标准温度计standard time 标准时standardization 标准化standing wave laser 驻波激光器standing wave ratio 驻波比standing wave type accelerator cavity 驻波型加速撇振腔standing waves 驻波stanton number 斯坦顿数star 星star atlas 星图star catalog 星表star cloud 星云star cluster 星团star formation 恒星形成stark effect 斯塔克效应stark spectroscopy 斯塔克光谱学stark switching method 斯塔克开关法starquake 星震starting voltage 始发电压state 态state density 态密度state function 态函数state variable 态变数state vector 态矢量static ac dc converter 静止变流static characteristic 静态特性static charge 静电荷static electricity 静电static induction transistor 静电感应晶体管static pressure 静压static pressure tube 静压statics 静力学stationary field 恒定场stationary gaussian markovian process 平稳高斯马尔可夫过程stationary motion 稳定运动stationary point 逗留点stationary process 平稳过程stationary random process 平稳随机过程stationary satellite 同步卫星stationary state 定态stationary universe 稳定宇宙stationary wave method 驻波法stationary waves 驻波statistical average 统计平均statistical distribution 统计分布statistical ensemble 统计系综statistical equilibrium 统计平衡statistical estimation 统计估计statistical factor 统计因数statistical fluctuation 统计起伏statistical inference 统计推断statistical law 统计定律statistical mechanics 统计力学statistical model 统计模型statistical operator 统计算符statistical optics 统计光学statistical physics 统计物理学statistical sum 统计和statistical thermodynamics 统计热力学statistical weight 统计权重stator 定子steady flow 稳定流steady state 稳态steady state universe 稳定宇宙steam 汽steam engine 蒸汽机stefan boltzmann constant 斯忒藩玻耳兹曼常数stefan boltzmann law 斯蒂芬玻尔兹曼定律stellar association 星协stellar astronomy 恒星天文学stellar cosmogony 恒星演化学stellar evolution 恒星演化stellar foramtion 恒星形成stellar interferometer 恒星干涉仪stellar magnitude 星等stellar photometry 恒星测光stellar population 星族stellar spectrograph 恒星摄谱仪stellar spectroscopy 恒星光谱学stellar spectrum 恒星光谱stellar statistics 恒星统计学stellar structure 恒星结构stellar supercluster 超星系团stellarator 仿星器step 度step function 阶跃函数stepping motor 脉冲电动机stereocomparator 体视比较仪stereographic projection 球极平面投影stereography 立体画法stereoisomer 立体异构体stereoisomerism 立体异构stereophotography 立体摄影术stereophotometer 立体光度计stereophotometry 立体光度测量法stereophotomicrograh 立体显微照相仪stereophysics 立体物理学stereopicture 立体相片stereoplanigraphy 精密立体测量法stereoptics 立体摄影光学stereoradiograph 立体射线照相仪stereoregularity 立体规则性stereoscope 体视镜stereoscopic effect 立体视效应stereoscopic television 立体电视stereoscopic vision 立体视觉stereospectrogram 立体谱图stereotelemeter 立体遥测仪stereotelemetry 立体遥测术stereotelevision 立体电视steric effect 立体效应steric hindrance 空间障碍stern gerlach experiment 斯特陡抢帐笛轺stern volmer equation 斯特段侄匠眺sternheimer effect 斯特叮默效应stickiness 粘附性stiff chain 刚性链stiffness 刚性stilb 熙提stimulated brillouin scattering 受激布里渊散射stimulated compton scattering 受激康普顿散射stimulated emission pumping spectroscopy 受激发射激发光谱学stimulated raman scattering 受激喇曼散射stimulated rayleigh scattering 受激瑞利散射stimulated scattering 受激散射stimulus 刺激stochastic cooling 随机冷却stochastic differential equation 随机微分方程stochastic differentiation 随机微分stochastic integral 随机积分stochastic process 随机过程stochastic quantization 随机量子化stoichiometric equation 化学计量方程stoichiometry 化学计量学stokes component 斯托克斯分量stokes equation 斯托克斯方程stokes law 斯托克斯定律stokes line 斯托克斯线stokes paradox 斯托克斯佯谬stokes's approximation 斯托克斯近似stol aircraft 短距起落机stoner theory 斯托纳理论stopping power 阻止本领storage capacity 存储容量storage counter 存储计数器storage oscilloscope 存储示波器storage ring 储存环straggling 离散strain 应变strain ellipsoid 应变椭球strain gage 应变计strain tensor 应变张量strange attractor 奇异吸引子strange particle 奇异粒子strange quark s 夸克strangeness 奇异性stratified fluid 分层铃stratosphere 平零stray capacity 杂散电容stray current 涡流stray light 杂散光stray radiation 杂散辐射streak camera 超快扫描照相机stream 流stream function 怜数streamer chamber 冲烈streamer discharge 菱放电streamline 吝streamline flow 层流strength 强度strength function 力函数strength of materials 材料强度stress 应力stress concentration 应力集中stress concentration factor 应力集中系数stress cracking 应力断裂stress ellipsoid 应力椭球stress function 应力函数stress intensity factor 应力强度因数stress of electromagnetic field 电磁场的应力stress relaxation 应力弛豫stress strain diagram 应力应变图stress tensor 应力张量stress wave 应力波string 弦string electrometer 弦线静电计string galvanometer 弦线电疗string model 弦模型strip tensometer 应变计stripping reaction 涎反应stroboscope 频闪观测器stroboscope polarimeter 频闪观测偏振计stroboscopic disc 频闪观测盘strong convergence 强收敛strong coupling 强耦合strong electrolyte 强电解质strong focusing 强聚焦strong focusing synchrotron 强聚焦同步加速器strong interaction 强相互酌strontium 锶strouhal number 斯特劳哈尔数structural phase transition 结构相变structural relaxation 结构弛豫structural stability 结构稳定性structure 结构structure constant 结构常数structure factor 结构因子structure function 结构函数structure image 结构象structure invariant 结构不变量structure semi invariant 结构半不变量sturm liouville equation 施图尔姆刘维方程su group 特殊酉群su model su模型su symmetry su对称性subboundary 亚晶界subcritical 次临界的subharmonic 次谐波subjective brightness 亮度sublattice 亚晶格sublattice magnetization 亚晶格磁化sublevel 次能级sublimation 升华sublimation heat 升华热sublimation nuclei 升华核sublimation pump 升华泵submarine earthquake 海震subroutine 子程序subsonic flow 亚声速流subsonic velocity 亚声速subspace 子空间substance 物质substitution method 置换法substitutional solid solution 替代式固溶体substratosphere 副平零subsystem 子系统subtractive colour mixtures 减法混色successive phase transition 逐次相变suction 吸入suction pump 吸气泵suction pyrometer 吸入式高温计sudden approximation 瞬时近似sulfur 硫sulfur cycle 硫循环sulphur 硫sulphuric acid 硫酸sum over states 统计和sum rule 求和定则summer solstice 夏至sun 太阳。

二氧化钛

二氧化钛
PACS: 68.55.Ln; 71.55.Ht; 79.60.Bm
It is widely recognised that the electrical properties of many technologically important oxides are strongly influenced by electronic states associated with defects and segregated dopants or impurities at surfaces and grain boundaries. Model studies of oxides by the established techniques of contemporary surface science have yielded a rich body of information about electronic states associated with oxygen vacancy defects at single crystal surfaces. B3~ contrast most work on electronic states associated with dopants has been restricted to polycrystalline ceramic material. There is a traditional scepticism in the surface science community about the value of work on polycrystalline samples [1] and therefore an urgent need to initiate experiments on doped single-

First-principle study of excitonic self-trapping in diamond

First-principle study of excitonic self-trapping in diamond

a rXiv:mtrl -th/9522v14Fe b1995First-principle study of excitonic self-trapping in diamond Francesco Mauri ∗and Roberto Car Institut Romand de Recherche Num´e rique en Physique des Mat´e riaux (IRRMA)IN-Ecublens 1015Lausanne,Switzerland Abstract We present a first-principles study of excitonic self-trapping in diamond.Our calculation provides evidence for self-trapping of the 1s core exciton and gives a coherent interpretation of recent experimental X-ray absorption and emission data.Self-trapping does not occur in the case of a single valence exciton.We predict,however,that self-trapping should occur in the case of a valence biexciton.This process is accompanied by a large local relaxation of the lattice which could be observed experimentally.PACS numbers:61.80.−x,71.38.+i,71.35+z,71.55.−iTypeset using REVT E XDiamond presents an unusually favorable combination of characteristics that,in connection with the recent development of techniques for the deposition of thin diamondfilms,make this material a good candidate for many technological applications.Particularly appealing is the use of diamond in electronic or in opto-electronic devices,as e.g.UV-light emitting devices.Moreover,diamond is an ideal material for the construction of windows that operate under high power laser radiation or/and in adverse environments.It is therefore interesting to study radiation induced defects with deep electronic levels in the gap,since these can have important implications in many of these applications.Excitonic self-trapping is a possible mechanism for the formation of deep levels in the gap.The study of such processes in a purely covalent material,like diamond,is interesting also from a fundamental point of view.Indeed,excitonic self-trapping has been studied so far mostly in the context of ionic compounds,where it is always associated with,and often driven by,charge transfer effects.In a covalent material the driving mechanism for self-trapping is instead related to the difference in the bonding character between the valence and the conduction band states.Both experimental data and theoretical arguments suggest the occurrence of self-trapping processes in diamond.In particular,a nitrogen(N)substitutional impurity induces a strong local deformation of the lattice[1–3]that can be interpreted as a self-trapping of the donor electron.The structure of a1s core exciton is more controversial[4–9].Indeed the similarity between an excited core of carbon and a ground-state core of nitrogen suggests that the core exciton should behave like a N impurity.However,the position of the core exciton peak in the diamond K-edge absorption spectra is only0.2eV lower than the conduction band minimum[4,7,8],while a N impurity originates a deep level1.7eV below the conduction band edge[10].On the other hand,emission spectra[8]suggest that a1s core exciton should self-trap like a N impurity.Finally,we consider valence excitations.In this case experimental evidence indicates that a single valence exciton is of the Wannier type,i.e.there is no self-trapping.To our knowledge,neither experimental nor theoretical investigations on the behavior of a valence biexciton in diamond have been performed,although simple scalingarguments suggest that the tendency to self-trap should be stronger for biexcitons than for single excitons.In this letter,we present a detailed theoretical study of excitonic self-trapping effects in diamond.In particular,we have investigated the Born-Oppenheimer(BO)potential energy surfaces corresponding to a core exciton,a valence exciton and a valence biexciton in the context of density functional theory(DFT),within the local density approximation(LDA) for exchange and correlation.Our calculation indicates that the1s core exciton is on a different BO surface in absorption and in emission experiments.Indeed X-ray absorption creates excitons in a p-like state as required by dipole selection rules.Subsequently the system makes a transition to an s-like state associated to a self-trapping distortion of the atomic lattice,similar to that found in the N impurity case.These results provide a coherent interpretation of the experimental data.In addition,our calculation suggests that self-trapping should also occur for a valence biexciton.This is a prediction that could be verified experimentally.Let us start by discussing a simple model[11,12].In diamond,the occupied valence and the lower conduction band states derive from superpositions of atomic sp3hybrids having bonding and antibonding character,respectively.Thus,when an electron,or a hole,or an electron-hole pair is added to the system,this can gain in deformation energy by relaxing the atomic lattice.Scaling arguments suggest that the deformation energy gain E def∝−1/N b, where N b is the number of bonds over which the perturbation is localized.This localization,due to quantum confinement.The in turn,has a kinetic energy cost E kin∝+1/N2/3bbehavior of the system is then governed by the value of N b that minimizes the total energy E sum=E def+E kin.Since the only stationary point of E sum is a maximum,E sum attains its minimum value at either one of the two extrema N b=1or N b=∞.If the minimum occurs for N b=1,the perturbation is self-trapped on a single bond which is therefore stretched.If the minimum occurs for N b=∞,there is no self-trapping and the perturbation is delocalized.When N p particles(quasi-particles)are added to the system,one can showthat,for a given N b,E def scales as N2p,while E kin scales as N p.As a consequence,the probability of self-trapping is enhanced when N p is larger.This suggests that biexcitons should have a stronger tendency to self-trap than single excitons[12,13].In order to get a more quantitative understanding of self-trapping phenomena in dia-mond,we performed self-consistent electronic structure calculations,using norm-conserving pseudopotentials[14]to describe core-valence interactions.The wave-functions and the electronic density were expanded in plane-waves with a cutoffof35and of140Ry,respec-tively.We used a periodically repeated simple cubic supercell containing64atoms at the experimental equilibrium lattice constant.Only the wave-functions at theΓpoint were con-sidered.Since the self-trapped states are almost completely localized on one bond,they are only weakly affected by the boundary conditions in a64atom supercell.The effect of the k-point sampling was analysed in Ref.[3]where similar calculations for a N impurity were performed using the same supercell.It was found that a more accurate k-point sampling does not change the qualitative physics of the distortion but only increases the self-trapping energy by20%compared to calculations based on theΓ-point only[3].In order to describe a core exciton we adopted the method of Ref.[15],i.e.we generated a norm conserving pseudopotential for an excited carbon atom with one electron in the1s core level andfive electrons in the valence2s-2p levels.In our calculations for a valence exciton or biexciton we promoted one or two electrons,respectively,from the highest valence band state to the lowest conduction band state.Clearly,our single-particle approach cannot account for the(small)binding energy of delocalized Wannier excitons.However our approach should account for the most important contribution to the binding energy in the case of localized excitations.Structural relaxation studies were based on the Car-Parrinello(CP) approach[16].We used a standard CP scheme for both the core and the valence exciton, while a modified CP dynamics,in which the electrons are forced to stay in an arbitrary excited eigenstate[12,17],was necessary to study the BO surfaces corresponding to a valence biexciton.All the calculations were made more efficient by the acceleration methods of Ref.[18].Wefirst computed the electronic structure of the core exciton with the atoms in the ideal lattice positions.In this case the excited-core atom induces two defect states in the gap:a non-degenerate level belonging to the A1representation of the T d point group,0.4eV below the conduction band edge,and a3-fold degenerate level with T2character,0.2eV below the conduction band edge.By letting the atomic coordinates free to relax,we found that the absolute minimum of the A1potential energy surface correponds to an asymmetric self-trapping distortion of the lattice similar to that found for the N impurity[3].In particular, the excited-core atom and its nearest-neighbor,labeled a and b,respectively,in Fig.1, move away from each other on the(111)direction.The corresponding displacements from the ideal sites are equal to10.4%and to11.5%of the bond length,respectively,so that the (a,b)-bond is stretched by21.9%.The other atoms move very little:for instance the nearest-neighbor atoms labeled c move by2.4%of the bond length only.This strong localization of the distortion is consistent with the simple scaling arguments discussed above.As a consequence of the atomic relaxation,the non-degenerate level ends up in the gap at1.5eV below the conduction band edge,while the corresponding wavefunction localizes on the stretched bond.The3-fold degenerate level remains close to the conduction band edge,but since the distortion lowers the symmetry from T d to C3v,the3-fold degenerate level splits into a2-fold degenerate E level and a non-degenerate A1level.In Fig.2we report the behavior of the potential energy surfaces corresponding to the ground-state,the A1and the T2core exciton states as a function of the self-trapping dis-tortion.Notice that the distortion gives a total energy gain of0.43eV on the A1potential energy surface.The same distortion causes an increase of the ground-state energy of1.29 eV.Our calculation indicates that the core-exciton behaves like the N impurity[3],support-ing,at least qualitatively,the validity of the equivalent core approximation.The similar behavior of the A1level in the core exciton and in the N impurity case was also pointed out recently in the context of semi-empirical CNDO calculations[9].The differences between the core exciton and the impurity[3]are only quantitative:in particular,the relaxationenergy and especially the distance of the A1level from the conduction band edge are smaller for the core exciton than for the N impurity.Our results suggest the following interpretation of the experimental data of Refs.[4,8]: (i)During X-ray absorption the atoms are in the ideal lattice positions.Dipole transitions from a1s core level to a A1valence level are forbidden,but transitions to the T2level are allowed.In our calculation the T2level is0.2eV lower than the conduction band edge,in good agreement with the core exciton peak observed in X-ray absorption spectra[4,8].(ii) On the T2BO potential energy surface the lattice undergoes a Jahn-Teller distortion which lowers its energy(see Fig.2).(iii)Since the LO phonon energy in diamond(0.16eV)is comparable to the energy spacing between the A1and the T2surfaces,which is less than 0.2eV after the Jahn-Teller distortion,the probability of a non-adiabatic transition from the T2to the A1surface is large.(iv)On the A1level the system undergoes a strong lattice relaxation resulting in a localization of the exciton on a single bond.(v)The self-trapping distortion induces a Stokes shift in the emitted photon energy.If the atomic relaxation were complete the Stokes shift would be equal to1.9eV,which correponds(see Fig.2) to the energy dissipated in the T2-A1transition(0.2eV),plus the energy gained by self trapping on the A1surface(0.43eV),plus the energy cost of the self-trapping distortion on the ground-state energy surface(1.29eV).The data reported in Ref.[8]show a shift of about1eV in the positions of the peaks associated to the1s core exciton in X-ray absorption and emission spectra.The emission peak is very broad,with a large sideband that corresponds to Stokes shifts of up to5eV.As pointed out in Ref.[8],this large sideband is likely to be the effect of incomplete relaxation. This is to be expected since the core exciton lifetime should be comparable to the phonon period[8].As a consequence,the atomic lattice would be able to perform only a few damped oscillations around the distorted minimum structure during the lifetime of the core exciton.We now present our results for the valence excitations.While in the case of a single exciton the energy is minimum for the undistorted crystalline lattice,in the case of a biex-citon wefind that the energy is minimized in correspondence of a localized distortion of theatomic lattice.This is characterized by a large outward symmetric displacement along the (111)direction of the atoms a and b in Fig.1.As a result the(a,b)-bond is broken since the distance between the atoms a and b is increased by51.2%compared to the crystalline bondlength.This distortion can be viewed as a kind of local graphitization in which the atoms a and b change from fourfold to threefold coordination and the corresponding hy-bridized orbitals change from sp3to sp2character.Again,in agreement with the model based on simple scaling arguments,the distortion is strongly localized on a single bond.As a matter of fact and with reference to the Fig.1,the atoms c and d move by1.2%of the bondlength,the atoms e and f move by2.3%,and the atoms not shown in thefigure by less than0.9%.The self-trapping distortion of the biexciton gives rise to two deep levels in the gap: a doubly occupied antibonding level,at1.7eV below the conduction band edge,and an empty bonding level,at1.6eV above the valence band edge.Both states are localized on the broken bond.In Fig.3we show how different BO potential energy surfaces behave as a function of the self-trapping distortion of the valence biexciton.In particular,from thisfigure we see that,while for the biexciton there is an energy gain of1.74eV in correspondence with the self-trapping distortion,the same distortion has an energy cost of1.49eV for the single exciton,and of4.85eV for the unexcited crystal.We notice that,while DFT-LDA predicts self-trapping for the valence biexciton,it does not do so for the single exciton,in agreement with experiment.Similarly to the case of the core exciton the major experimental consequence of the self-trapping of the valence biexciton is a large Stokes shift in the stimulated-absorption spontaneous-emission cycle between the exciton and the biexciton BO surfaces.As it can be seen from Fig.3,this Stokes shift should be equal to3.23eV,i.e.to the sum of the energy gain of the biexciton(1.74eV)and of the energy cost of the exciton(1.49eV) for the self-trapping relaxation.The fundamental gap of diamond is indirect.Thus the spontaneous decay of a Wannier exciton in an ideal diamond crystal is phonon assistedand the radiative lifetime of the exciton is much longer than in direct gap semiconductors. However,after self-trapping of the biexciton,the translational symmetry is broken and direct spontaneous emission becomes allowed.As a consequence the radiative life time of the self-trapped biexciton is much smaller than that of the Wannier ing the DFT-LDA wavefunctions,we obtained a value of∼7ns for the radiative lifetime of the biexciton within the dipole approximation.This is several orders of magnitude larger than the typical phonon period.Therefore the self-trapping relaxation of the valence biexciton should be completed before the radiative decay.A self-trapped biexciton is a bound state of two excitons strongly localized on a single bond.Thus the formation of self-trapped biexcitons requires a high excitonic density.To realize this condition it is possible either to excite directly bound states of Wannier excitons, or to create a high density electron-hole plasma,e.g.by strong laser irradiation.In the second case many self-trapped biexcitons could be produced.This raises some interesting implications.If many self-trapped biexcitons are created,they could cluster producing a macroscopic graphitization.Moreover,since the process of self-trapping is associated with a relevant energy transfer from the electronic to the ionic degrees of freedom,in a high density electron hole plasma biexcitonic self-trapping could heat the crystal up to the melting point in fractions of a ps,i.e in the characteristic time of ionic relaxation.Interestingly,melting ofa GaAs crystal under high laser irradiation has been observed to occur in fractions of a ps[19].In Ref.[19]this phenomenon has been ascribed to the change in the binding properties due to the electronic excitations.Our study on diamond leads one to speculate that in a sub-picosecond melting experiment self-trapping phenomena could play an important role.In conclusion,we have studied excited-state BO potential energy surfaces of crystalline diamond within DFT-LDA.Our calculation predicts self-trapping of the core exciton and provides a coherent description of the X-ray absorption and emission processes,which com-pares well with the experimental data.Moreover,we also predict self-trapping of the valence biexciton,a process characterized by a large local lattice relaxation.This implies a strong Stokes shift in the stimulated absorption-spontaneous emission cycle of about3eV,whichcould be observed experimentally.It is a pleasure to thank F.Tassone for many useful discussions.We acknowledge support from the Swiss National Science Foundation under grant No.20-39528.93REFERENCES∗Present address:Departement of Physics,University of California,Berkeley CA94720, USA.[1]C.A.J.Ammerlaan,Inst.Phys.Conf.Ser.59,81(1981).[2]R.J.Cook and D.H.Whiffen,Proc.Roy.Soc.London A295,99(1966).[3]S.A.Kajihara et al,Phys.Rev.Lett.66,2010(1991).[4]J.F.Morar et al,Phys.Rev.Lett.54,1960(1985).[5]K.A.Jackson and M.R.Pederson,Phys.Rev.Lett.67,2521(1991).[6]J.Nithianandam,Phys.Rev.Lett.69,3108(1992).[7]P.E.Batson,Phys.Rev.Lett.70,1822(1993).[8]Y.Ma et al,Phys.Rev.Lett.71,3725(1993).[9]A.Mainwood and A.M.Stoneham,J.Phys.:Condens.Matter6,4917(1994).[10]R.G.Farrer,Solid State Commun.7,685(1969).[11]W.Hayes and A.M.Stoneham,Defects and defect processes in nonmetallic solids,(Wiley&Sons,New York,1985)pags.29-38.[12]F.Mauri,R.Car,(to be published).[13]The number of equal particles that can be accommodated on one bond of the crystal inthe same quantum state is limited by the Pauli principle.Thus no more than two holes or/and two electrons with opposite spins can be localized on one bond of a sp3bonded semiconductor.[14]G.Bachelet,D.Hamann,and M.Schl¨u ter,Phys.Rev.B26,4199(1982).[15]E.Pehlke and M.Scheffler,Phys.Rev.B47,3588(1993).[16]R.Car and M.Parrinello,Phys.Rev.Lett.55,2471(1985).[17]F.Mauri,R.Car and E.Tosatti,Europhys.Lett.24,431(1993).[18]F.Tassone,F.Mauri,and R.Car,Phys.Rev.B50,10561(1994).[19]orkov,I.L.Shumay,W.Rudolph,and T.Schroder,Opt.Lett.16,1013(1991);P.Saeta,J.-K.Wang,Y.Siegal,N.Bloembergen,and E.Mazur,Phys.Rev.Lett.67, 1023(1991);K.Sokolowski-Tinten,H.Schulz,J.Bialkowski,and D.von der Linde, Applied Phys.A53,227(1991).FIGURESFIG.1.Atoms and bonds in the ideal diamond crystal(left panel).Atoms and bonds after the self-trapping distortion associated with the valence biexciton(right panel).In this case the distance between the atoms a and b increases by51.2%.A similar but smaller distortion is associated with the core exciton:in this case the(a,b)distance is increased by21.9%.FIG.2.Total energy vs self-trapping distortion of the core-exciton.Thefigure displays the BO potential energy surfaces correponding to the ground-state,the A1,and the T2core exciton states.FIG.3.Total energy as a function of the self-trapping distortion of the biexciton.The BO energy surfaces correponding to the ground state,the valence exciton,and the valence biexciton are shown in thefigure.a b ce df(111)ground stateA 1−core excitonT 2−core excitonconduction ideal lattice distorted latticeground statebi−excitonexcitondistorted lattice ideal lattice。

哈特里福克自洽场方法

哈特里福克自洽场方法

哈特里福克自洽场方法The Hartree-Fock self-consistent field method is a powerful tool in quantum chemistry for solving the electronic structure of molecules. This method is widely used to calculate molecular properties such as energy, orbital energies, and electron density. 哈特里福克自洽场方法是量子化学中用来解决分子的电子结构的强大工具。

这种方法被广泛用于计算分子的性质,如能量、轨道能量和电子密度。

One of the key steps in the Hartree-Fock method is the self-consistent field (SCF) procedure, where the electron density is iteratively optimized to minimize the total energy of the system. 在哈特里福克方法中的一个关键步骤是自洽场程序,其中通过迭代优化电子密度来最小化系统的总能量。

The Hartree-Fock method assumes that the wave function of a system can be approximated as a single determinant of Slater determinants, known as a Hartree product. 哈特里福克方法假设系统的波函数可以近似为一个斯莱特行列式的单行列式,称为哈特里乘积。

Although the Hartree-Fock method is a mean field theory and does not account for electron correlation effects, it still provides valuable insights into the electronic structure of molecules. 尽管哈特里福克方法是一个均场理论,不考虑电子相关效应,但它仍然为分子的电子结构提供了宝贵的见解。

国立清华大学材料科学工程学系

国立清华大学材料科学工程学系

Flash memory
Application : mobile phone, digital camera, MP3, PDA, …etc.
Conventional memory
Floating Gate Memory
Emerging Memory
Shortcoming : (1) high programming voltage (2) lower writing speed (3) poor retention and endurance
(1) Hot-electron injection
(2) F -N tunneling
8-15 nm
10-20 nm 5-7 nm
Drain
For the case of floating gate devices, a single defect can discharge the stored memory charge of the devices due to the conductive properties of the floating polysilicon gate
improved retention and endurance
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction - Nanocrystal Memory
10-16 nm
Source
Gate
Gate oxide
3-4 nm Nanocrystal s
Electroceramic thin films Lab. 427R NTHU. MSE
1. Introduction

electron ptychography原理

electron ptychography原理

【Electron Ptychography原理】1. Electron Ptychography介绍Electron Ptychography是一种先进的电子显微镜成像方法,它利用了电子干涉和计算机算法来实现高分辨率的样品成像。

这一技术已经广泛应用于材料科学、生物学和纳米技术领域,为研究人员提供了强大的工具来观察和分析微小尺度下的结构和特性。

2. 电子干涉原理电子干涉是指电子波在空间中叠加形成干涉图样的现象。

在电子系综的情况下,干涉效应可以通过量子力学的形式来描述。

当电子通过样品时,它们会与样品中的原子发生相互作用,导致电子波的相位和振幅发生变化。

通过测量电子波的干涉图样,可以获取有关样品的结构和性质的信息。

3. Ptychography算法Ptychography是一种通过数学算法重建样品的方法,它利用多个不同位置的电子干涉图样来提高成像分辨率。

需要将样品划分为小区域,并在每个区域使用电子束来获取干涉图样。

利用计算机算法对这些干涉图样进行处理,重建出样品的结构和性质信息。

4. Electron Ptychography的优势Electron Ptychography相比传统的电子显微镜成像方法具有很多优势。

它可以实现超高分辨率的成像,可以观察到纳米级甚至亚纳米级的结构。

它对样品的要求较低,即使是非晶态或生物样品也可以进行成像。

它还可以实现三维成像,能够观察样品的立体结构。

5. 应用领域Electron Ptychography已经在许多领域得到了广泛应用。

在材料科学领域,它可以用来研究晶体结构、界面和缺陷等。

在生物学领域,它可以用来观察生物样品的超小结构,如蛋白质、细胞器等。

在纳米技术领域,它可以用来研究纳米材料的性质和制备工艺。

6. 发展趋势随着电子显微镜技术的不断进步,Electron Ptychography也在不断发展。

未来,人们可以期待更高分辨率的成像技术的出现,以及更多领域的应用。

CMR,庞磁阻,巨磁阻

CMR,庞磁阻,巨磁阻
The Hamiltonian of this system is ������������������������ = ������������������ + ������������−������
where
������������������ = − ������������������������������ ���������†��������������� ������������������������ + ������������
1. Introduction
In this paper, I will introduce the microscopic theory, material and one experiment of CMR. I divide my paper into three parts. Part one mainly introduces the microscopic theory. In part two, I will introduce the knowledge about giant magnetoresistance (GMR) and the difference between CMR and GMR to help me understand the CMR. Part three mainly represents an experiment about CMR.
2.1 E-Ph Coupling Effect
Reference [3] mainly tells about the facts that in an intermediate coupling regime the interplay of the Jahn-Teller effect and double-exchange effect is found to produce the behavior of the resistivity and magnetic transition temperature observed in La1−xSrxMnO3 [3]. The Jahn-Teller effect is the key to produce the e-ph coupling and polarons.

Self-trapped excitons at the quartz(0001) surface¤

Self-trapped excitons at the quartz(0001) surface¤

Self-trapped excitons at the quartz(0001)surface ¤J.Song,ab R.M.VanGinhoven,ab L.R.Corrales b and H.Jonsson *a a Department of Chemistry 351700,University of W ashington ,Seattle W A 98195-1700,USAb EMSL ,PaciÐc Northwest National L aboratory ,Richland W A 99352,USA Recei v ed 2nd August 2000First published as an Ad v ance Article on the web 6th No v ember 2000We have studied self-trapped excitons in a -quartz using density functional theory (DFT),both in the crystal and at the (0001)surface.The excitons are triplet excited states that distort the crystal locally.They have a long lifetime,of the order of a millisecond,and become thermally equilibrated.We have calculated the drop in the exciton energy as it approaches the surface from the interior of the crystal.In the subsurface layer of the ÈOH terminated (0001)surface,the energy has dropped by 0.7eV.Another 0.4eV drop occurs as the exciton enters the surface layer,where it breaks o†an OH radical.The drop in energy can be understood from the greater ease of structural distortion at the surface.These calculations illustrate that excitons formed in the bulk could migrate out to the surface and form chemically active surface species.Molecules adsorbed at the surface could also serve as traps for the excitons and could,in principle,be induced to undergo structural or chemical transitions.I.IntroductionPhotoexcitation of oxides can lead to various interesting processes.Recently,much attention has been paid to photocatalysis,in particular on surfaces.There,electronic excitations created TiO 2by photon absorption cause chemical reaction to occur on the oxide surface.1Also,metal oxide particles dispersed in aqueous solutions and exposed to gamma irradiation have been shown to induce radiolysis of water.2,3Clearly,studies of the electronic excitations formed in oxides due to photon absorption,the mechanism of energy transfer and subsequent chemical processes are of great interest.Silica,is a particularly simple and stable oxide which could serve as a model system for SiO 2,studying such photoexcitation processes,although the photon energy required for excitation is too large for large-scale applications.Silica has become widely used as oxide support in model studies of metal/oxide catalysts.4,5Photoinduced defects can also play a role in various silica-based appli-cations such as protective layers on electronic devices,optical Ðbers,and immobilization matrices for hazardous waste.6,7Excitons can play an important role in the long-time evolution of silica.It has been found that triplet state,self-trapped excitons (STE)in quartz have a long lifetime,of the order of milliseconds,before recombining and giving o†blue luminescence.8h 14It has been speculated that STEs can ¤Electronic Supplementary Information available.Colour versions of Fig.1,5and 6are given.See /suppdata/fd/b0/b006289h/DOI:10.1039/b006289h Faraday Discuss .,2000,117,303È311303This journal is The Royal Society of Chemistry 2001(lead to Si ÈO bond breaking and degradation of the silica network.There are also indications that defects can be made mobile and/or anneal out in the presence of excitons.Previous theoretical work has shown that an STE binds to an oxygen vacancy in quartz with a 3eV binding energy and reduces the di†usion activation barrier of the vacancy from 4eV to less than 2eV.15In this article,an overview of results obtained from DFT calculations of STEs in a -quartz is given and new results on STEs at the quartz (0001)surface are presented.Our calculations indi-cate that STEs formed in the quartz crystal would tend to thermally di†use out towards the surface,where surface ÈOH groups can get broken o†to form OH radicals.A competing process would be the thermal activation into a di†erent STE,which is near the singlet Ètriplet crossing,and subsequent non-radiative decay.We Ðrst discuss the methodology used in the calculations,and then the results obtained on STEs in the quartz crystal and,Ðnally,at the quartz surface.II.DFT calculations of STEsA large system is needed to represent STEs in quartz because the self-trapping involves large displacements of atoms and substantial elastic strain.Calculations of such systems can only be handled at an approximate level.High level calculations can only be applied to small clusters with a few atoms.For the highly reliable CCSD(T)method,a single unit is already a large SiO 2calculation.A theoretical study of STEs in quartz must,therefore,Ðnd some practical balance between the approximations in the methodology and errors due to small system size.While DFT applies only to the ground electronic state,16it is possible to study the STEs in quartz because they are triplet states.With a constraint on the spin (two more electrons with spin up than spin down)in a spin-polarized DFT calculation,the lowest triplet state is the lowest energy state available.The basic theorem of DFT,the Hohenberg ÈKohn theorem,holds within the triplet subspace.The calculated atomic forces can be used to relax the atomic structure to local minima on the triplet energy surface,each minimum corresponding to a triplet state exciton.17,18The development of functionals for DFT has,however,mainly focused on singlet states:19There is little experience on how well they can be applied to higher spin states.We have carried out tests of various functionals by calculating singlet Ètriplet (S ÈT)splittings in small clusters where well established wavefunction-based methods can be carried out for comparison.17,20These tests indicate that the PW91functional underestimates the S ÈT splitting in cases where the triplet state is delocalized.Then the semi-local description of exchange becomes problematic in the triplet state.This underestimate is most severe for the perfect crystal,where the calculated S ÈT splitting is6.1eV but the experimental estimate is 8.3eV.10This is consistent with the typical underestimate of band gaps in DFT.The B3LYP functional is more accurate as it involves exact exchange rather than just the semi-local description employed in PW91.The S ÈT splittings are predicted to be larger,and close to,although somewhat smaller than,those calculated by the CCSD(T)method.17,20The inclusion of exact exchange,however,makes it extremely costly to implement B3LYP in calculations where periodic boundary conditions are applied (and the evaluation of atomic forces at that level of theory has not yet been developed).21The B3LYP functional can only be applied to Ðnite clusters at the present time.We have,therefore,developed a procedure where DFT/B3LYP cluster calcu-lations are used to improve on the triplet state energetics of the DFT/PW91conÐgurations that are subject to periodic boundary conditions to eliminate surface e†ects.This is illustrated in Fig.1.The atomic conÐguration is obtained by relaxation of the triplet state using DFT/PW91calcu-lations.Clusters of varying size,up to are then snipped out of the relaxed conÐguration,Si 8O 25,centered on the STE and the edge atoms (chosen to be O-atoms)are then capped with H-atoms to terminate dangling bonds.The direction of the O ÈH bonds is the same as the direction of the broken O ÈSi bonds and are chosen to have a bond length of 0.8to get a similar charge on the A edge O-atoms as interior O-atoms.The S ÈT splitting is calculated at both the PW91and B3LYP level and the di†erence gives the B3LYP correction which is added to the S ÈT splitting calculated using PW91and periodic boundary conditions.The correction is only important for the highly delocalized triplet states (1.2eV for quartz and 0.6eV for the most delocalized STE).This pro-cedure gives an estimate of the triplet-state energy surface which appears to be in good agreement with experimental measurements.304Faraday Discuss .,2000,117,303È311Fig.1The 72atom quartz conÐguration used in the DFT/PW91calculations.Periodic boundary conditions are applied.Calculations have also been carried out on clusters snipped out of the 72atom conÐguration.The outermost atoms in the cluster are O atoms,which get capped with H atoms to reduce surface e†ects.Various wavefunction-based calculations as well as DFT calculations have been carried out for the clusters to assess the accuracy of the quasi-local PW91functional in describing the triplet state and to estimate corrections to the DFT/PW91results.The plane-wave-based spin-polarized DFT calculations were carried out with the VASP code,22using ultrasoft pseudopotentials.23The energy cuto†was 29Ry for the wavefunction and 68Ry for the electron density.The PW9124exchange-correlation functional was used.The importance of using a gradient-dependent density functional rather than the local density approximation when studying silica has been demonstrated by Hamann.25The bulk quartz calculations were done on a 72atom cell (eight unit cells)including just the !point in the k-point sampling.Additional k-points were found to have insigniÐcant e†ect on both structure and singlet Ètriplet splittings.Two kinds of Si ÈO bonds are found in a -quartz.The DFT calculations predict bond lengths of 1.619and 1.615as compared with experimental estimates of 1.612and 1.607A ,A .26Low-energy electron di†raction (LEED)measurements of the (0001)surface of quartz have shown the unreconstructed (1]1)conÐguration to be stable up to 600¡C where a (3]1)or (1]3)reconstruction takes place.27The electronic structure of the surface has been studied by energy loss spectroscopy reÑection (REELS)28where it was found that the surface band gap is 8.8eV,which is very similar to the bulk band gap.29The surface calculations were done with a slab where the upper and lower surface were terminated with ÈOH groups.The surface in contact with water would be expected to be hydroxylated.A total of 84atoms were used in the slab calcu-lations The bottom two layers of Si and O atoms in the slab were held Ðxed in the (Si 20O 48H 16).perfect quartz conÐguration,but other atoms in the slab were allowed to move and relax to a minimum energy conÐguration.The capping O ÈH bonds in the bottom layer were pointed in the direction of the broken O ÈSi points,and the O ÈH distance was chosen to be 0.8to bring the A charge on the O atoms to a similar value as that of bulk O atoms.The B3LYP calculations were carried out using Gaussian basis sets,both the 6-31G*and 6-31G*]s @for the Si and O atoms while H atoms were represented with minimal basis.The cluster corrections were converged both with respect to cluster size and basis set.III.Excitons in the quartz crystalFig.2shows the cluster carved out of the perfect quartz crystal conÐguration.An isosurface for the excess spin density in the triplet state is also shown.The distribution of the excess spin density is quite even over the whole cluster and is largest at the O-atoms.The exciton in perfect quartz isFaraday Discuss .,2000,117,303È311305Fig.2A cluster representing quartz.The 0.02electron isosurface of the excess spin density of Si 8O 25H 18A ~3the triplet state calculated using DFT/B3LYP is shown.The excess spin density mainly resides on the O-atoms and is evenly distributed over the cluster,indicating a highly delocalized exciton.highly delocalized.By breaking the symmetry in various ways and relaxing the system in the triplet state,we have been able to identify three di†erent local minima corresponding to local distortions of the lattice,i .e .STEs.Previously,Fisher,Hayes and Stoneham presented a model for STE in quartz obtained from unrestricted Hartree ÈFock (UHF)calculations on small silica clusters and We (Si 5O 4Si 2O 7).30have found very similar STE conÐguration in our DFT calculations,which have been carried out using signiÐcantly larger clusters,The self-trapping mainly involves the displacement Si 8O 25H 16.of an oxygen atom by 0.96resulting in a formally broken Si ÈO bond (2.5We will refer to A ,A ).this structure as STE-Oc.The S ÈT splitting calculated by the B3LYP corrected DFT is 2.8eV,in excellent agreement with the experimentally measured luminescence,2.6È2.8eV 10h 12(while UHF calculations give S ÈT splitting of 1.6eV).The S ÈT splitting predicted by the DFT calculations seems,therefore,to be quite accurate.When one of the Si ÈO bonds in the 72atom bulk crystal conÐguration is rotated in such a way as to formally break another Si ÈO bond and the system is then relaxed in the triplet state using DFT/PW91,a di†erent STE also involving displacements of mainly O-atoms,is obtained.The structure,captured in a cluster carved out of the 72atom conÐguration,is shown in Fig.3,along with an isosurface of the excess spin density.We will refer to this as STE-Ob.It turns out to beFig.3One of the O-displaced self-trapped excitons,STE-Ob,in a cluster snipped out of a 72Si 8O 25H 18atom bulk conÐguration.The excess spin density is shown (analogous toFig.2)and illustrates a distribution of the hole over the three oxygen atoms while the excited electron is mainly to be found at the adjacent Si atom.Two O-atoms get displaced appreciably,by 0.6and 0.5and the Si-atom gets displaced by 0.2The A ,A .lattice relaxations extend over a large region and no bond is formally broken.306Faraday Discuss .,2000,117,303È311slightly lower in energy in the DFT/PW91calculations,but slightly higher in B3LYP corrected calculations.The distortion involves roughly equally large displacements of two oxygen atoms(by A)0.6and0.5bonded to the same Si atom,as well as displacements of the adjacent Si atoms(byA),Aup to0.25in such a way that three SiÈO bonds are stretched to1.76but not broken.17,18 The singlet and triplet state energy for quartz and the STEs is shown in Fig.4.The luminescence of this STE predicted by the B3LYP corrected calculation is4.3eV.The triplet state surface is veryÑat in this region.In fact,a minimum energy path between these two STEs has a barrier of only0.2eV even though large displacements are involved(one O-atom gets displaced by0.7A A.and another by0.6TheÑatness of the triplet state surface suggests that several local minima, i.e.STEs,may exist and that the system is quiteÑoppy in the excited state,consistent with the large width(ca.1eV)and complex shape of the measured luminescence peak.Luminescence has also been observed at4.0eV in low temperature experiments(at80K),but was tentatively ascribed to defects or impurities.10Our results indicate that there may be an intrinsic STE contri-bution to the emission around4.0eV.Both the emissions centered at2.8and4.0eV seem to have more than one origin,as can be seen from the dependence of the line shape on the excitation energy.12The barrier to go from STE-Ob to STE-Oc is predicted to be on the order of0.2eV(see Fig.4).This estimate was obtained byÐnding the minimum energy path between STE-Ob and STE-Oc(using the Nudged Elastic Band method,31using DFT/PW91,and then applying the B3LYP cluster correction.The low barrier between the STEs and the energetic preference for STE-Oc suggest that room temperature experiments would only be able to detect the2.8eV luminescence.The third STE we have identiÐed mainly involves a displacement of a Si atom.We will refer to it as STE-Si.This STE is obtained when the quartz crystal structure is distorted by displacing one oxygen atom by0.2in the direction of a SiÈO bond and the system is then relaxed in the triplet AAstate using DFT/PW91.In the end,a Si atom has moved by0.9through the plane of three of its neighboring O-atoms.STE-Si turns out to be close to a crossing of the singlet and triplet surfaces. This,we have veriÐed by CAS-SCF calculations.The system is,therefore,expected to undergo non-radiative energy transfer to the singlet ground state if it gets trapped in STE-Si.This bringsFig.4A slice of the triplet and singlet energy surfaces including the perfect quartz crystal conÐguration and the three STEs found in bulk.The conÐgurations are ordered with delocalization of the excess spin density increasing to the left.The conÐgurations were obtained by relaxation of a72atom system subject to periodic boundary conditions using DFT/PW91.A minimum energy path was calculated between the STE-Ob and STE-Oc.Clusters were then snipped out and used to get an improved estimate of the energetics using DFT/ B3LYP calculations,which include exact exchange.The correction is only signiÐcant for the more delocalized states:quartz and STE-Ob.The triplet state surface shows two local minima,the STE-Oc and STE-Ob conÐgurations.The lower energy one has SÈT splitting of2.8eV in close agreement with experimentally measured luminescence.An experimentally observed reduction in the intensity of the2.8eV luminescence with increasing temperature can be explained by the thermal activation from the STE-Oc state to the STE-Si state which is near a SÈT crossing and,therefore,leads to non-radiative decay.Faraday Discuss.,2000,117,303È311307the system back to the perfect crystal state,in agreement with experiments which show that decay of excitons does not lead to structural changes in quartz (unlike amorphous where 1/100SiO 2STEs lead to Si ÈO bond breaking 11).We have studied several possible paths that can take the system from STE-Oc to STE-Si,but in all cases tested to date the system preferred to make the transition through the perfect quartz conÐguration (which at the PW91level is the lowest energy conÐguration,making it hard to calculate a minimum energy path for the transition).Our best estimate of the energy barrier for a thermal transition from STE-Oc to STE-Si is 0.5eV (see Fig.4).Experiments on the temperature dependence of the luminescence intensity have indicated that the system can get thermally activated from the luminescent STE state to a new state from where the system is quenched non-radiatively.10,14The experimentally estimated activation barrier is 0.4eV.The STE-Si state we have found could very likely provide this non-radiative mechanism.The predicted activation energy for the process is even in close agreement with the experimental value.Our calculations,which are summarized in Fig.4,give a microscopic picture of the scenario deduced qualitatively from experimental measurements.14IV.Excitons at the quartz (1000)surfaceIn order to study the behaviour of the STEs near the surface of quartz,we have carried out DFT/PW91calculations on a quartz slab described above and shown in Fig.5.Both sides of the slab are terminated by O-atom layers and capped with H-atoms to saturate dangling bonds.Because of the small thickness of the slab,which is limited by the large computational e†ort in the DFT calculations,it is only possible to represent the STE in the surface and subsurface layers in this slab.A displacement of an O-atom in the second layer gives a STE which is quite similar to the STE-Ob in the crystal.The di†erence is that one of the three stretched bonds,the one pointing towards the surface,becomes longer (1.78while the other two become shorter (1.72as A )A )compared with the STE-Ob in the interior of the crystal.The Si-atom is also displaced more thanFig.5A side view of the 84atom cell used to represent a quartz slab with an ÈOH terminated (Si 20O 48H 16)(0001)surface.Atoms in the bottom two layers are Ðxed in the quartz conÐguration (the capping O ÈH bonds pointing in the direction of the broken O ÈSi points).Other atoms are allowed to relax in the DFT/PW91calculation.The STE is in the surface layer and has broken an OH radical o†the surface layer (top left).308Faraday Discuss .,2000,117,303È311Fig.6The energy of the STE in bulk quartz,near and at the(0001)surface.In the subsurface layer,the STE has dropped in energy by0.7eV as compared with the bulk.In the surface layer,where the STE results in an OH radical being broken o†,the energy drops further by0.4eV.in the crystal,by0.5The calculated SÈT splitting has dropped by0.7eV as compared with A.bulk.This represents a drop in the triplet state energy and/or a rise in the singlet energy.It is difficult to compare the singlet state energy between the crystal and slab conÐgurations,because the two are so di†erent.We will assume here that the singlet state energy of the STE conÐguration is the same in the second layer as in bulk quartz.The triplet state energy is,then,lower by0.7eV in the subsurface layer(see Fig.6).In the surface layer,a similar displacement of an O-atom and subsequent structural relaxation leads to a SiÈO bond rupture and spontaneous formation of an OH radical.The triplet state energy is0.4eV lower than in the subsurface layer and now the singlet state energy has increased signiÐcantly so the SÈT splitting is only0.5eV.This likely represents a non-radiative channel.It is reasonable to expect this drop in the triplet state energy since the energetic cost of distortions of the lattice becomes smaller near the surface where atoms are able to move more freely.This suggests that STEs formed in bulk quartz will tend to di†use out to the surface.Since the lifetime of STEs in quartz is on the order of1ms,and the di†usion barrier is estimated from our calcu-lations to be on the order of0.5eV,the STEs could di†use over a large distance at temperatures around room temperature.The transition into the STE-Si state and subsequent non-radiative decay would be a competing process,however,and in the end it may be that only a small region near the surface feeds STEs into the surface.We have also carried out calculations for the(0001)surface with Si2O double bond recon-structed states.The Si2O terminated surface is produced from the hydroxylated surface by remo-ving the hydrogen atoms on the top surface.ToÐnd an STE state a perturbation to the lattice structure is introduced,as in the crystal case.On the reconstructed surface having Si2O double bonds,two distinct silicon-displaced STEs are found,but the oxygen-displaced STE,STE-Ob, does not appear to exist on this particular surface.The two silicon-displaced STEs have emission energies of1.0and2.5eV.The former is more stable,is likely a non-radiative channel and the Si2O bond has stretched from1.5to1.7A.At this point in time,B3LYP corrections have not been applied to the surface STE conÐgu-rations,but it seems clear from the comparison of the STE-Ob calculations for bulk,subsurface and surface layers that the SÈT splitting decreases as the STE approaches the surface.V.DiscussionOur calculations indicate that as the exciton approaches the surface,the energy is lowered.The increased stability of the STEs at the surface can be ascribed to the lower energetic cost of theFaraday Discuss.,2000,117,303È311309structural distortions favored by the triplet state.The formation of an OH radical at the hydroxyl-ated surface provides one possible mechanism for chemical processes induced by STEs.Experi-mental studies have,for example,demonstrated that radiolysis events can occur when metal oxide particles dispersed in aqueous solutions are exposed to gamma irradiation.2,3Also,one of the proposed mechanisms for photocatalysis at surfaces involves the production of surface TiO 2hydroxyl radicals but from self-trapped holes rather than excitons.1While most STEs are probably formed in the interior of the crystal,far from the surface,it is possible that thermal di†usion can bring the STEs to the surface.It is not clear what the thermal di†usivity of STEs in quartz is.If the perfect crystal is the optimal transition state for the STE hopping from one site to another,our calculations suggest an activation energy of 0.5eV.This is likely an underestimate since the energy of the perfect crystal in the triplet state is underestimated by the DFT calculations,even at the B3LYP level.It is also possible that a lower energy path exists for the STE to hop from one site to another,bypassing the perfect crystal conÐguration.The perfect crystal transition state is highly delocalized and a single thermally activated di†usion hop can in principle bring the exciton a long distance away from the initial STE location.The thermally activated transition to the STE-Si state,which is right at a crossing of the singlet and triplet surface and leads to non-radiative decay,is in competition with the di†usion of the STE.Assuming again the perfect crystal is the transition state,our calculations predict a barrier of 0.5eV,in very good agreement with experimental measurements (0.4eV).The relative activation energy for di†usion and transition into the non-radiative state a†ects,of course,strongly to what extent STEs formed in bulk can fuel surface processes.For some oxides the thermal di†usion mechanism may be active but not for others.VI.AcknowledgementsThis work was supported by the Environmental Management Science Program,Office of Environmental Management,DOE (JS),and the Division of Chemical Sciences,DOE Office of Basic Energy Sciences (LRC),and by DOE-BES grant DE-FG03-99ER45792(RVG,HJ).The calculations were performed on a parallel IBM SP computer at the William R.Wiley Environ-mental Molecular Sciences Laboratory,a national scientiÐc user facility sponsored by DOE Office of Biological and Environmental Research,located at PaciÐc Northwest National Laboratory.References1M.R.Ho†mann,S.T.Martin,W.Choi and D.W.Bahnemann,Chem .Rev .,1995,95,89.2N.G.Petrik,A.B.Alexandrov,T.M.Orlando and A.I.Vall,T rans .Am .Nucl .Soc .,1999,81,101.3 A.B.Alexandrov,A.Y.Bychkov,A.I.Vall,N.G.Petrik and V.M.Sedov,Russ .J .Phys .Chem .,1991,65,1604.4I.Zuburtikudis and H.Saltsburg,Science ,1992,258,1337.5(a )X.Xu and D.W.Goodman,J .Phys .Chem .,1993,97,683;(b )X.Xu and D.W.Goodman,J .Phys .Chem .,1993,97,7711.6S.Rico,in T he Physics and Chemistry of and the Interface ,ed.C.R.Helms and B.E.Deal,SiO 2SiÈSiO 2Plenum,New York,1988,p.75.7W.J.Weber et al .,J .Mater .Res .,1998,13,1434.8T.Tanaka,T.Eshita,K.Tanimura and N.Itoh,Cryst .L attice Defects Amorph .Mater .,1985,11,221.9J.H.Stathis and M.Kastner,Phys .Rev .B ,1987,35,2972.10 C.Itoh,K.Tanimura,N.Itoh and M.Itoh,Phys .Rev .B ,1989,39,11183.11N.Itoh,T.Shimizu-Iwayama and T.Fujita,J .Non -Cryst .Solids ,1994,179,194.12K.S.Song and R.T.Williams,Self -T rapped Excitons ,Springer,Berlin,2nd edn.,1996,p.281.13W.Hayes,M.J.Kane,O.Salminen,R.L.Wood and S.P.Doherty,J .Phys .C ,1984,17,2943.14M.Georgiev and N.Itoh,J .Phys .:Condens .Matter ,1990,2,10021.15J.Song,L.R.Corrales,G.Kresse and H.Jonsson,submitted to Phys .Rev .L ett .16(a )P.Hohenberg and W.Kohn,Phys .Rev .B ,1964,136,864;(b )W.Kohn and L.J.Sham,Phys .Rev .A ,1965,140,1133.17J.Song,H.and L.R.Corrales,Nucl .Instrum .Methods Phys .Res .,Sect .B ,2000,166,167453.Jonsson 18L.R.Corrales,J.Song,R.M.VanGinhoven and H.in NAT O Advanced Studies Institute Pro -Jonsson,ceedings on ““Defects in Silica and Related Dielectrics ÏÏ,ed.G.Pacchioni,in press.19W.Kohn,A.D.Becke and R.G.Parr,J .Phys .Chem .,1996,100,12974.20R.Van Ginhoven,J.Song,M.Dupuis,K.A.Peterson,L.R.Corrales and H.to be published.Jonsson,310Faraday Discuss .,2000,117,303È31121M.Stadele,M.Moukara,J.A.Majewski and P.Vogl,Phys.Rev.B,1999,59,10031.22(a)G.Kresse and J.Hafner,Phys.Rev.B,1993,47,558;(b)G.Kresse and J.Hafner,Phys.Rev.B,1994,Furthmu ller,49,14251;(c)G.Kresse and put.Mater.Sci.,1996,6,16;(d)G.Kresse and J.Furthmu ller,Phys.Rev.B,1996,55,11169.23 D.Vanderbilt,Phys.Rev.B,1990,41,7892.24J.P.Perdew,in Electronic Structure of Solids,ed.P.Ziesche and H.Eschrig,1991.25 D.R.Hamann,Phys.Rev.L ett.,1996,76,660.26W.Hayes and T.J.L.Jenkin,J.Phys.C:Solid State Phys.,1986,19,6211.27 F.Bart and M.Gautier,Surf.Sci.,1994,311,L671.28 F.Bart,M.Gautier,F.Jollet and J.P.Duraud,Surf.Sci.,1994,306,342.29T.H.DiStefano and D.E.Eastman,Solid State Commun.,1971,9,2259.30 A.J.Fisher,W.Hayes and A.M.Stoneham,J.Phys.:Condens.Matter,1990,2,6707.Jo nsson Jo nssonls,H.and G.K.Schenter,Surf.Sci.,1995,324,305;ls,H.and K.W.Jacobsen,in Classical and Quantum Dynamics in Condensed Phase Simulations,ed.B.J.Berne,G.Ciccotti and D.F.Coker,World ScientiÐc,Singapore,1998,ch.16.Faraday Discuss.,2000,117,303È311311。

electron paramagnetic resonance analysis

electron paramagnetic resonance analysis

electron paramagnetic resonance analysisElectron paramagnetic resonance (EPR) analysis, also known as electron spin resonance (ESR), is a spectroscopic technique used to study the properties of unpaired electrons in various systems. This technique allows scientists to investigate the electronic structure and dynamics of paramagnetic species, including free radicals, transition metal ions, and other species with unpaired electrons.EPR analysis involves the application of a magnetic field to the sample, which causes the unpaired electrons to align their spins with the field, resulting in a split energy level system. By manipulating the magnetic field strength and frequency, the absorption and emission of electromagnetic radiation by the unpaired electrons can be measured. This absorption spectrum provides information about the electronic transitions and magnetic properties of the sample.The main applications of EPR analysis include:1. Determination of chemical structure: EPR spectroscopy can provide valuable information about the coordination environment of transition metal ions in complex molecules or materials. By studying the splitting patterns and g-values of EPR signals, scientists can gain insights into the coordination geometry, electronic structure, and bonding properties of paramagnetic compounds.2. Study of free radicals and reactive intermediates: EPR analysis is widely used to investigate the formation, stability, and reactivity of free radicals in chemical reactions, biological systems, andmaterials science. By measuring the intensity and shape of EPR signals, researchers can determine the concentration, spin density, and spin relaxation properties of free radicals, which are crucial for understanding their role in various processes.3. Investigation of magnetic materials: EPR spectroscopy can be used to characterize magnetic materials, such as metal oxides, nanoparticles, and magnetic clusters. By examining the magnetic properties and interactions of unpaired electrons in these materials, scientists can study phenomena such as superparamagnetism, spin crossover, and magnetic ordering.4. Biomedical applications: EPR analysis has important applications in biomedical research and diagnostics. For example, it can be used to measure the concentration of oxygen and other paramagnetic species in biological tissues, monitor oxidative stress, and study the redox properties of biomolecules. EPR imaging techniques, such as electron spin resonance imaging (ESRI), are also being developed for non-invasive imaging of tissues and organs.In summary, electron paramagnetic resonance analysis is a powerful technique for investigating the electronic structure, magnetic properties, and dynamics of paramagnetic species. Its applications range from fundamental research in chemistry and physics to practical applications in materials science, biology, and medicine.。

electron trap 解释

electron trap 解释

电子陷阱是一种能够限制和控制自由电子运动的装置。

在固体物质中,由于晶格结构和杂质的存在,会形成一些捕获电子的能级。

这些导致电子被束缚在特定位置上,无法在晶格中自由移动。

这种电子陷阱通常会影响固体材料的电学性质和导电性能。

电子陷阱可以分为浅层电子陷阱和深层电子陷阱。

浅层电子陷阱一般是由于杂质原子或者空位引起的。

这些浅层能级的存在会导致电子在晶格中的运动受到限制,从而影响了材料的导电性能。

深层电子陷阱则是由于晶格缺陷或者材料内部的能级结构所致。

这些深层电子陷阱对电子的捕获和释放速率较慢,通常会导致材料的稳定性降低,并且影响材料的电子运输性能。

电子陷阱的存在会对半导体器件的性能产生重大影响。

在半导体材料中,电子陷阱会影响材料的载流子浓度和迁移率,从而影响了器件的电子输运性能。

特别是在场效应晶体管等微型器件中,电子陷阱的存在会导致电子在通道中的迁移速度减慢,从而影响了器件的性能和可靠性。

针对电子陷阱的存在,科学家们开展了大量的研究工作,并提出了一系列的电子陷阱修复和控制方法。

通过表面修饰、掺杂和能带工程等手段,可以有效地减轻和控制电子陷阱的影响,从而提高材料的导电性能和器件的性能。

在半导体器件制备中,人们也会采用一系列的技术手段来减小电子陷阱的密度,以提高器件的可靠性和长期稳定性。

电子陷阱是固体材料中一种普遍存在的现象,它对材料的电子输运性能和器件的性能都具有重要的影响。

科学家们对电子陷阱的研究工作还在继续进行,相信随着科研水平的不断提高,人们对电子陷阱的理解和控制技术将不断得到进步,为材料和器件的性能提升提供更多的可能性。

电子陷阱是半导体材料中一个非常重要的概念。

在半导体器件的制备和使用过程中,电子陷阱的存在对器件的性能和可靠性都具有重要的影响。

对电子陷阱的研究和控制已成为半导体材料与器件领域的一个热门课题。

在半导体材料中,电子陷阱形成的机制主要包括晶格缺陷、杂质原子和空位等,并且这些捕获电子的能级通常会影响材料的导电性能。

空穴传输层与钙钛矿调控机理

空穴传输层与钙钛矿调控机理

空穴传输层与钙钛矿调控机理英文回答:The perovskite solar cells have attracted significant attention in recent years due to their high power conversion efficiency and low fabrication cost. However, the performance of perovskite solar cells is highly dependent on the quality and stability of the perovskite layer. One of the key factors that affect the performance of perovskite solar cells is the transport of charge carriers within the perovskite layer.The charge carrier transport in perovskite solar cells is governed by the so-called "perovskite transport layer". This layer, also known as the "hole transport layer" or "electron transport layer", is responsible for facilitating the movement of holes or electrons within the perovskite layer. The choice of material for the transport layer is crucial for achieving high device performance.In the case of hole transport, the most commonly used material is Spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene). Spiro-OMeTAD has been widely used as a hole transport material due to its high hole mobility and good stability. It can efficiently transport holes from the perovskite layer to the electrode, thus reducing charge recombination and improving device efficiency.On the other hand, for electron transport, materials such as TiO2 (titanium dioxide) and SnO2 (tin dioxide) are commonly used. These materials have good electron mobility and can effectively transport electrons from the perovskite layer to the electrode. TiO2, in particular, has been extensively studied and optimized for perovskite solar cells, leading to significant improvements in device performance.The regulation mechanism of the perovskite transport layer is still under investigation. However, it is believed that the choice of material for the transport layer can influence the charge carrier transport and recombinationprocesses within the perovskite layer. The properties of the transport layer, such as its energy levels, morphology, and interface with the perovskite layer, can affect the charge carrier mobility, lifetime, and recombination dynamics.In summary, the perovskite transport layer plays a crucial role in the performance of perovskite solar cells. The choice of material for the transport layer, whether it is for hole or electron transport, can significantly impact the charge carrier transport and recombination processes within the perovskite layer. Further research is needed to fully understand and optimize the regulation mechanism of the perovskite transport layer for achieving even higher efficiency and stability in perovskite solar cells.中文回答:近年来,钙钛矿太阳能电池由于其高转换效率和低制造成本而受到了广泛关注。

fapbi3 相变原理

fapbi3 相变原理

fapbi3 相变原理
FAPbI3(甲基铅三碘化物)是一种钙钛矿太阳能电池材料,具有相变特性。

在光照条件下,FAPbI3经历相变并形成钙钛矿结构,这是一种稳定的结构,有利于光电转换。

以下是FAPbI3相变的基本原理:
1.光照诱导相变: FAPbI3最初是在室温下处于非晶态或非稳定的结构。

当受到光照时,特别是在太阳光照射下,FAPbI3会经历相变,形成稳定的钙钛矿结构。

这个过程通常是可逆的,即在光照结束后,FAPbI3可能会返回到其非晶态或非稳定的结构。

2.钙钛矿结构:光照诱导相变后,FAPbI3的结构将发生改变,从而形成钙钛矿结构。

钙钛矿结构具有优异的光电特性,适用于太阳能电池等光电器件。

3.提高电荷分离效率:钙钛矿结构的形成有助于提高电荷分离效率。

在光照条件下,FAPbI3中的电子和空穴将分离并形成电荷载流子,这有助于产生电流并推动电池的电动势。

4.光电转换效率提升:由于钙钛矿结构的形成,FAPbI3太阳能电池的光电转换效率通常较高。

这使得FAPbI3成为一种备受关注的太阳能电池材料。

需要注意的是,FAPbI3材料的稳定性仍然是一个研究的焦点,因为在长时间使用和不稳定环境下,钙钛矿太阳能电池可能会受到一些退化因素的影响。

因此,科学家们正在寻求提高FAPbI3材料的稳定性,以进一步推动其在太阳能电池领域的应用。

1 / 1。

电子传输层-钙钛矿界面调控及器件性能研究

电子传输层-钙钛矿界面调控及器件性能研究

电子传输层-钙钛矿界面调控及器件性能研究电子传输层/钙钛矿界面调控及器件性能研究导言:钙钛矿太阳能电池由于其高能转换效率、低制备成本和广泛的资源可获得性而备受关注。

作为钙钛矿太阳能电池的关键组成部分之一,电子传输层在界面调控和器件性能提升方面发挥着至关重要的作用。

本文旨在综述电子传输层/钙钛矿界面调控的研究进展以及其对器件性能的影响。

一、电子传输层的作用和特性电子传输层主要承担电子注入和传输的功能,其材料的选择对钙钛矿太阳能电池的性能影响巨大。

一方面,电子传输层应具有良好的导电性能,以提高电子传输的效率;另一方面,电子传输层还能在界面处形成能量防障,防止电子回流至阳极。

因此,合适的电子传输层不仅要提高钙钛矿太阳能电池的效率,还要提高器件的稳定性。

二、电子传输层/钙钛矿界面调控方法电子传输层/钙钛矿界面的性质直接影响到电子注入和电子传输的效率,因此通过界面调控来改善器件的性能具有重要意义。

主要的界面调控方法包括:1. 表面修饰:使用不同的表面修饰剂改变电子传输层的表面特性,以提高其与钙钛矿的界面接触质量;2. 掺杂:适量的掺杂可以改变电子传输层的导电性能,从而优化电子传输的效率;3. 厚度调控:通过控制电子传输层的厚度,调节钙钛矿电池中电子注入和传输的路径,进而提高器件效率;4. 界面能带调控:通过调整不同材料之间的能带匹配关系,优化电子注入和传输的效果。

三、电子传输层/钙钛矿界面调控对器件性能的影响界面的调控对钙钛矿太阳能电池的光电转换效率、开路电压和填充因子等性能参数均有明显的影响。

例如,适当地进行界面工程可以提高电子传输层和钙钛矿之间的电子传输效率,从而提高器件的光电转换效率。

另外,界面的调控还能改变钙钛矿的能带结构,影响器件的开路电压和填充因子。

因此,电子传输层/钙钛矿界面的优化调控对钙钛矿太阳能电池的性能提升至关重要。

四、未来展望随着对钙钛矿太阳能电池的深入研究,将会有更多的界面调控方法被提出,并被应用于电子传输层/钙钛矿界面的调控中。

优质文献解读-离子缔合辅助粘弹性电解质实现固态电池同步耦合界面

优质文献解读-离子缔合辅助粘弹性电解质实现固态电池同步耦合界面

通讯作者
崔光磊,研究员,博士生导师,国家新能源汽车专项高比能固 态锂电池技术项目首席科学家,国家“万人计划”,科技部中青年 科技创新领军人才,国家杰出青年科学基金获得者,国务院特殊津 贴专家。2005年于中国科学院化学所获得有机化学博士学位,2005 年9月至2009年先后在德国马普协会高分子所和固态所从事博士后研 究。2009年2月到中科院青岛生物能源与过程所工作。
目前每年发行52期,总编 Jörn Ritterbusce Articles、Highlights。
关键词: 材料科学,纳米技术,液晶,半导体,超导体,光学,激光器,传感器,多孔材料,发光材料, 陶瓷,生物材料,磁性材料,薄膜,胶体,高级,材料,能源材料
第一作者
背景
由无阻碍的电荷转移激活的电解质/电极异质界面在固态和柔性电池中起重要作用。 但是,连续的电化学循环和机械变形会导致结构错位和不良反应。 一个重要的挑 战是确保电池组件之间的精确接触。
双(三氟甲烷)磺酰亚胺锂(LiTFSI)
平行板流变仪
差示扫描量热法(DSC)
偏振光显微镜(PLM)
小角度X射线散射(SAXS)
链间离子缔合可减轻 金属与酰基之间的相 互作用,从而促进快 速的离子传导
问题与疑虑: 1. 还有哪些高分子可以开发用作聚合物电解质?它们应该具备什么特性? 2. 为何以PLZ为电解质、Zn为负极?若以PL作为电解质、Li作为负极,电池性能如 何? 3. 在柔性电池中,为何电解质也要涂在柔性泡沫镍上?这样会不会有短路的风险?
思考与学习: 1. 可以研究其他经典聚合物 (如纤维素、木质素、壳聚糖等) 能否用作聚合物电介
质; 2. 聚合物电解质的分析和测试方法可以学习与借鉴; 3. Zn负极应用于锂离子电池; 4. 柔性电池的组装与封装工艺。

平面钙钛矿太阳能电池中阳离子-π相互作用对离子迁移和载流子重组的抑制

平面钙钛矿太阳能电池中阳离子-π相互作用对离子迁移和载流子重组的抑制

平面钙钛矿太阳能电池中阳离子-π相互作用对离子迁移和载流子重组的抑制平面钙钛矿太阳能电池是一种新兴的太阳能电池技术,具有高效率、低成本和广泛适用性的特点。

然而,该类型电池的短板之一是阳离子迁移和载流子重组过程的效率问题。

为了克服这些问题,研究人员开始考虑阳离子-π相互作用在抑制离子迁移和载流子重组中的应用。

平面钙钛矿太阳能电池由于具有高度离子活性的阳离子,导致阳离子迁移和载流子重组的问题。

传统的方法是通过掺杂材料来调控阳离子迁移和载流子重组过程,然而,这种方法的效果有限。

相比之下,阳离子-π相互作用提供了一种新的途径来改善阳离子迁移和载流子重组过程的效率。

阳离子-π相互作用是指阳离子与π电子的相互作用。

阳离子的正电荷与π电子的云层相互吸引,从而形成一个稳定的复合物。

这种相互作用的优点是它可以提高阳离子的稳定性,抑制其与其他物质的反应,从而减少阳离子迁移和载流子重组的效果。

在平面钙钛矿太阳能电池中,阳离子-π相互作用可以通过引入含有π电子的分子或聚合物来实现。

这些分子或聚合物可以与钙钛矿表面形成络合物,从而增加阳离子在表面附近的停留时间。

由于阳离子通过与π电子的相互作用形成稳定的络合物,其与其他部分的相互作用减少,从而减少了阳离子的迁移和载流子重组。

实验研究表明,阳离子-π相互作用在改善平面钙钛矿太阳能电池性能方面具有潜力。

通过引入合适的含有π电子的分子可以显著提高电池的开路电压和填充因子,并降低载流子重组速率。

且这种方法不仅适用于传统的钙钛矿材料,也适用于新型的钙钛矿材料。

总之,平面钙钛矿太阳能电池中的阳离子-π相互作用是一种有潜力的方法,可以抑制离子迁移和载流子重组的效果。

通过引入含有π电子的分子或聚合物,可以增加阳离子在平面钙钛矿材料表面的停留时间,从而提高电池性能。

这种方法不仅可以改善传统钙钛矿电池的性能,也适用于新型钙钛矿材料的开发。

然而,目前还需要更多的研究来深入理解阳离子-π相互作用在平面钙钛矿太阳能电池中的机制和影响因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

the whole crystal) [1]. The consideration of the fluctuon problem is crucially dependent on the ratio of the autolocalization radius l to another scale of the system, namely, the correlation length ξ . In particular, a standard phenomenological consideration [2] is inapplicable at the critical point (or the point of the second-order phase transition), where ξ → ∞. At the same time, this case is especially interesting since the fluctuations near the critical point are strongest and the self-trapping conditions fulfill much easier in this case. Here we present a theory for the Lifshitz DOS tails and fluctuon states at the critical point T = Tc . Following Refs. 3, 4 we will use the path integral variational approach developed by Feynman for the problem of polaron in ionic crystal [15, 16]. For simplicity, we start with the case of a scalar order-parameter acting only on the orbital motion of the electron and not on its spin (for example it may be the critical point in ferroelectrics); some generalization will be considered further. Then, in continuum approximation, the Hamiltonian of the system consisting of the electron and the order-parameter field can be written in a simple form 1 − gϕ (r) (1) H = Hf (ϕ) + He (r,ϕ) , He (r,ϕ) = − ∇2 2 r where we have chosen the units = m = 1, m is the electron effective mass, r is the electron coordinate, ϕ (r) is the order-parameter field with its own Hamiltonian Hf (ϕ) and g is the coupling constant; we will choose it in such a way that ϕ varies between −1 and 1. The partition function of the whole system may be transformed to Z =Tre−β Hf (ϕ)−β He (r,ϕ)
Electron self-trapping and fluctuation density-of-states tail at the critical point
M. I. Auslender1 and M. I. Katsnelson2
2 1 Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands (Dated: February 508333v1 [cond-mat.stat-mech] 14 Aug 2005
We consider electron self-trapping due to its interaction with order-parameter fluctuations at the second-order phase-transition or critical point (for example, at the Curie temperature in magnetic or ferroelectric semiconductors). Using Feynman path integral approach the autolocalization energy and the size of the self-trapped state (fluctuon) are estimated. It is shown that the fluctuon states are connected with the Lifshitz tail of the electron density-of-states, the parameters of this tail being determined by the critical exponents.
PACS numbers: 71.23.An, 64.60.Fr, 75.10.Lp, 75.40.Cx
The interaction of the charge carrier in a semiconductor with some order-parameter fluctuations can drastically change its state leading to a self-trapping, or autolocalization [1, 2, 3, 4, 5, 6, 7]. This phenomenon is of crucial importance, for example, for so hot subject as phase separation in magnetic semiconductors and colossal magnetoresistance materials [5, 6, 7], where the magnetization plays the role of the order parameter. Since the band motion of the electron is easier (and, hence, the bandwidth is larger) for ferromagnetically ordered state the electron in antiferromagnetic or magnetically disordered surrounding creates a ferromagnetic region (magnetic polaron, “ferron” [6], or “fluctuon” [2]) and turns our to be self-trapped in this region. Recently, the formation of the magnetic polaron in ferromagnetic semiconductors EuB6 and, possibly, EuO, has been observed (see Refs.8, 9 and references therein). The order parameter can be also of different origin, e.g., electric polarization in ferroelectric semiconductors, or crystallographic order parameter in ordered alloys [2]. Phase transitions in helium monolayers [10] and ultracold atom systems in optical lattices [11] might be novel interesting examples. The “driving force” of the self-trapping is always a band narrowing in disordered state in comparison with the completely ordered one. This intuitive view [12] can be confirmed by a rigorous consideration for the classical s − d exchange (“Kondo lattice”) model on the Bethe lattice [5]; however, for the real lattices it is actually not very accurate. It was demonstrated already in a seminal paper by Brinkman and Rice [1] that the band edges do not depend on the degree of spin disorder and the band narrowing means rather the decrease of the electron density-of-states (DOS) momenta, the DOS near the edges being exponentially small in the disordered state (Lifshitz tails [13, 14]). The fluctuons (we will use this term to emphasize that the magnetic origin of the order parameter is actually not relevant for the problem under consideration) are connected with the Lifshitz tails. The autolocalization region becomes larger when the energy goes closer to the band edge (and the edge itself corresponds to the state with complete ordering in
相关文档
最新文档