一元一次方程复习课PPT课件
合集下载
北师大版七年级上册数学第五章一元一次方程复习课课件(21张PPT)
12/24/2019
解一解:
4x 8(x 2) 1 40 40
解:
去分母,得 4x 8(x 2) 40
去括号,得 4x 8x 16 40
移项,得 4x 8x 40 16
合并同类项,得 系数化为1,得
12x 24 x2
12/24/2019
指出解方程
(1) 2(x-2)-3=9(1-x)
(2) 2x 5 3x 2 1x 5x 2 0.2
12/24/2019
四、方程ax=b的解的情况
练习:
1、关于x的方程mx-1=5x+3n有无数多个解, 那么分别求出m、n的值.
2、已经关于x的一元一次方程kx=4-x的解为 正整数,求k的整数值.
合并同 运用有理数的加法法则,把
类项 方程变为ax=b(a≠0 ) 的 1)把系数相加
最简形式
2)字母和字母的指数不变
系数化 将方程两边都除以未知
为1
数系数a,得解x=b/a
解的分子,分母位置 不要颠倒
1、试一试
大家判断一下,下列方程的变形是否正确?
为什么?
(1) 由3 x 5,得x 5 3 ; (×)
12/24/2019
列方程解应用题常见的类型
1. 和、差、倍、分问题 6. 数字问题
2. 等积变形问题 3. 调配问题 4. 比例分配问题 5.工程问题
7.行程问题 8.销售中的利润问题 9.储蓄问题 10.年龄问题
列方程解应用题时,先弄清题目是属于上面所 述的哪种类型的问题,再设出末知数,根据各种类型 的数量关系列出方程即可解决问题.
练习4: A、B两车分别停靠在相距115 千米的甲、乙两地,A车每小时行50千 米,B车每小时行30千米,A车出发1.5 小时后B车再出发。 (1)若两车相向而行,请问B车行了多 长时间后与A车相遇? (2)若两车相向而行,请问B车行了多 长时间后两车相距10千米?
7第三章 一元一次一元一次复习课件方程复习(共18张PPT)
通话费
(2) 一个月内通话多少分钟,两种通话方式的费用相同?
0.20元/ 分
0.40元/ 分
解:(1)
“全球通” “神州行”
200分钟 90 元 80 元
300分钟 110 元 120 元
(2)设累计通话 x 分钟,则用“全球通”要收费(_0_._2_X__+_5_0_)_元,
用“神州行”要收费_0_._4_X____元.
分析: ① 为了使每天的产品刚好配套,应使生产的螺帽数量恰好
是螺栓数量的___2_倍_________
x ② 如果分配 名工人生产螺栓, 完成下表:
工人人数(名) 每人平均生产数量(个) 生产总数量(个)
螺栓
X
15
15X
螺帽
60-X
10
10(60-X)
解: 设 分配X名工人生产螺栓 ,列方程得:
_______2__×_1__5_X__=_1_0__(_6_0_-_X__)_________
挑战记忆 年龄问题 分书问题 数字问题 行程问题 工程问题 火眼金睛 总量分量 销售问题 配套问题 方案决策 积分问题
数字问题
13、一个两位数,个位上的数是十位上的数的2倍,如果把 十位与个位上的数对调,那么所得的两位数比原两位数大36, 求:原来的两位数是多少?
分析:设十位上的数字X,则个位上的数是2x
挑战记忆 年龄问题 分书问题 数字问题 行程问题 工程问题 火眼金睛 总量分量 销售问题 配套问题 方案决策 积分问题
行程问题
在行程问题中,我们常常研究这样的三个量: 分别是:___路__程____,___速__度___,___时__间____.
其中,路程=__速__度__×__时_间___ 速度=__路_程___÷__时_间___ 时间=__路_程___÷__速_度___
解一元一次方程复习课PPT优选课件
计算要仔细,不要出差错;
方程两边同除以 未知数的系数a
计算要仔细,不要出差错;
2020/10/18
7
解方程:1 ×1 2 2x5× 12 3x×12
6
4
解:去分母,得: 1 2 2 (2 x 5 ) 3 (3 x )
去括号,得: 1 2 4 x 1 0 9 3 x
移项,得: 4 x 3 x 9 1 2 10
2020/10/18
3
1、下列式子中,属于一元一次Hale Waihona Puke 程的是( D )A、 xy3
B、 x2x0
C、 1 3x 9
D、 xy y 1
3
2
2、如果6∵ xa-a2-2=+1 3=0是关于x的一
元一次方程,则a= 3 。
∴ a =3
2020/10/18
4
一元一次方程的有关概念
一元一次方程
只有一个未知数 未知数的次数为1
合并同类项,得: x13
方程两边同
x13
除以-1,得:
2020/10/18
8
当x为何值时,代数式
x
2
1
x
的值与比
3
3
的值
相互多等为1??相反数?
解:依题意得: x1x3
2
3
去分母,得 3(x-1)=2(x+3)
去括号,得 移项,得
3x-3=2x+6 3x-2x=3+6
合并同类项,得
x=9
答:当x=9时,代数式 x 1 的值与 x 3 的值 相等。
2020/10/18
1
小结
一、本章知识结构图
实际问题
实际问题 的答案
一元一次方程ppt课件
计算精度要求
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
中考数学专题《一元一次方程》复习课件(共18张PPT)
购票人数 每人门票价 1~50人 5元 51~100人 100人以上 4.5元 4元
某校八年级(1)班和(2)班共103人(其中(1)班人 数多于(2)班人数)去该风景区参观,如果以班为 单位购票,两班共需付486元. (1)如果两班合起来,作为一个团体购票,可以节 约多少钱? (2)两班各有多少学生?
6.某校校长暑假将带领该校市级”三好 学生”去北京旅游,甲旅行社说:”如果 校长买全票一张,则其余学生可享受半 价优惠”.”乙旅行社说:”包括校长在内 全部按全票价的6折优惠(即按全票价 的60%收费)”,若全票价为240元, (1)设学生数为x,甲旅行社收费为y甲,乙 旅行社收费为y乙,分别计算两家旅行社 的收费(建立表达式); (2)当学生数是多少时,两家旅行社的收费 一样?
专题一、解一元一次方程
灵活选用解方程的步骤解方程
4 11 1. 3 - 8x=3 - 2 x; 1 2 2. 6 (3x-6)= 5 x – 3; 2 (x=3 (x=-20)
)
3x+1 1-2x 3. = -3; 3 7
(x=
67
23
)
1 2 1 1 4. 3 [x- 2 (x-1)]= 3 (x- 2 ).
提请注意
4.列方程时,要注意方程两边应是同一类量,并 且单位要统一. 5.一般情况下,题中所给条件在列方程时不能 重复使用,也不能漏掉不用.重复利用某一个 条件,会得到一个恒等式,无法求得应用题的 解. 6.对于求得的解,还要看它是否符合实际意义, 再写”答”.
实际应用题
1.在某校举办的足球比赛中规定,胜一场得3分, 平一场得1分,负一场得0分,某班足球队参加 了12场比赛,共得22分,已知这个队只输了2 场,那么此队胜了几场?平几场?
某校八年级(1)班和(2)班共103人(其中(1)班人 数多于(2)班人数)去该风景区参观,如果以班为 单位购票,两班共需付486元. (1)如果两班合起来,作为一个团体购票,可以节 约多少钱? (2)两班各有多少学生?
6.某校校长暑假将带领该校市级”三好 学生”去北京旅游,甲旅行社说:”如果 校长买全票一张,则其余学生可享受半 价优惠”.”乙旅行社说:”包括校长在内 全部按全票价的6折优惠(即按全票价 的60%收费)”,若全票价为240元, (1)设学生数为x,甲旅行社收费为y甲,乙 旅行社收费为y乙,分别计算两家旅行社 的收费(建立表达式); (2)当学生数是多少时,两家旅行社的收费 一样?
专题一、解一元一次方程
灵活选用解方程的步骤解方程
4 11 1. 3 - 8x=3 - 2 x; 1 2 2. 6 (3x-6)= 5 x – 3; 2 (x=3 (x=-20)
)
3x+1 1-2x 3. = -3; 3 7
(x=
67
23
)
1 2 1 1 4. 3 [x- 2 (x-1)]= 3 (x- 2 ).
提请注意
4.列方程时,要注意方程两边应是同一类量,并 且单位要统一. 5.一般情况下,题中所给条件在列方程时不能 重复使用,也不能漏掉不用.重复利用某一个 条件,会得到一个恒等式,无法求得应用题的 解. 6.对于求得的解,还要看它是否符合实际意义, 再写”答”.
实际应用题
1.在某校举办的足球比赛中规定,胜一场得3分, 平一场得1分,负一场得0分,某班足球队参加 了12场比赛,共得22分,已知这个队只输了2 场,那么此队胜了几场?平几场?
第四章 一元一次方程 复习课件(共32张PPT)
等量关系:加工螺栓的人数+加工螺母的人数=100, 加工的螺母的总个数=2×加工的螺栓的总个数。
解:设分配x人加工螺栓,则加工螺母的为(100-x)人,依题意得 18x×2=(100-x)×24。 解得x=40, 则100-x=60(人)。 答:应分配40名工人加工螺栓,60名工人加工螺母。
►考点九 方案设计问题
鲁教(新课标版)六年级数学上册
准备好课本,练习本
四、实际问题与一元一次方程
1. 列方程解决实际问题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
准备好课本,练习本和昨天 的作业题
用一根绳量井深,把绳3折来量,井外余4尺,把 绳4折来量,井外余1尺,求绳长和井深。
如果租用45座的客车,还有15人没有座,如果租用同样数 量的60座的客车,则除多出一辆外,其余客车正好坐满。 已知租用45座的客车每辆每天租金250元,租用60座的客车 每辆每天租金300元,租哪种客车更合算?租几辆?
解:设这种服装每件进价为x元,根据题意,得 x(1+30%)×0.9-x=17, 解得x =100。 所以这种服装的进价为100元。
►考点五 储蓄问题
例5 2011年12月银行一年定期储蓄的年利率为2.25%,小明 的奶奶当时按一年定期存入一笔钱,且一年到期后取出本金及利 息共1022.5元,则小明的奶奶存入银行的钱为多少元?
【解析】 设当工厂生产产品为x件时, 方案一所需费用为(0.5x×2+30000)元, 方案二所需费用为(0.5x×14)元。 先求出当两种方案所需费用相等时x的值,进而求出最适合的方案。
解:设分配x人加工螺栓,则加工螺母的为(100-x)人,依题意得 18x×2=(100-x)×24。 解得x=40, 则100-x=60(人)。 答:应分配40名工人加工螺栓,60名工人加工螺母。
►考点九 方案设计问题
鲁教(新课标版)六年级数学上册
准备好课本,练习本
四、实际问题与一元一次方程
1. 列方程解决实际问题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
准备好课本,练习本和昨天 的作业题
用一根绳量井深,把绳3折来量,井外余4尺,把 绳4折来量,井外余1尺,求绳长和井深。
如果租用45座的客车,还有15人没有座,如果租用同样数 量的60座的客车,则除多出一辆外,其余客车正好坐满。 已知租用45座的客车每辆每天租金250元,租用60座的客车 每辆每天租金300元,租哪种客车更合算?租几辆?
解:设这种服装每件进价为x元,根据题意,得 x(1+30%)×0.9-x=17, 解得x =100。 所以这种服装的进价为100元。
►考点五 储蓄问题
例5 2011年12月银行一年定期储蓄的年利率为2.25%,小明 的奶奶当时按一年定期存入一笔钱,且一年到期后取出本金及利 息共1022.5元,则小明的奶奶存入银行的钱为多少元?
【解析】 设当工厂生产产品为x件时, 方案一所需费用为(0.5x×2+30000)元, 方案二所需费用为(0.5x×14)元。 先求出当两种方案所需费用相等时x的值,进而求出最适合的方案。
一元一次方程总复习课件(166张ppt)
一元一次方程总复习课件
本讲之后你应该学会
1.理解一元一次方程的概念
本讲之后你应该学会
2.会求一元一次方程的解
本讲之后你应该学会
3.能利用一元一次方程解决实际问题
教材知识点梳理
一、方程的概念
动脑想一想
汽车匀速行驶途经 王家庄、青山、秀水三 地的时间如表所示,翠 湖在青山、秀水两地之 间,距青山50千米,距 秀水70千米.王家庄到 翠湖的路程有多远?
(2)设未知数;
(3)列方程.
解: 设还需要x辆36座的客车. 列方程
7 + 36x =187.
知识点及时练
(2)学校组织植树活动,已知在甲处植树的 有27人,在乙处植树的有18人.如果要使在甲处植 树的人数是乙处植树人数的2倍,需要从乙队调多 少人到甲队? 找等量关系; 甲处人数=2×乙数人数 设未知数; x 列方程. 解:设需要从乙队调x人到甲队, 列方程 27+x=2×(18-x).
x 50 x 70 3 5
方程
含有未知数的等式叫做方程
教材知识点梳理
一、方程的概念 x 50 x 70 3 5
x 50 方程中, 3 的意义是 从王家庄到青山的车速 x 70 的意义是 从王家庄到秀水的车速 。 5
教材知识点梳理
一、方程的概念
交流和讨论
想一想列方程的过程?
找出问题中的等量关系 写出含有未知数的等式 方程
设字母表示未知数
讨论交流:比较用算术方法和列方程解题的特点
算术方法: 列出的算式表示解题的计算过 程,其中只能 用已知数.对于较复杂的问题, 列算式比较困难.
列方程(代数方法): 方程是根据题中的等 量关系列出的等式.其中既含已知数,又含 未未知数.使问题的已知量与未知量之间的 关系很容易表示,解决问题就比较方便. 所以,从算术到方程是数学的进步.
本讲之后你应该学会
1.理解一元一次方程的概念
本讲之后你应该学会
2.会求一元一次方程的解
本讲之后你应该学会
3.能利用一元一次方程解决实际问题
教材知识点梳理
一、方程的概念
动脑想一想
汽车匀速行驶途经 王家庄、青山、秀水三 地的时间如表所示,翠 湖在青山、秀水两地之 间,距青山50千米,距 秀水70千米.王家庄到 翠湖的路程有多远?
(2)设未知数;
(3)列方程.
解: 设还需要x辆36座的客车. 列方程
7 + 36x =187.
知识点及时练
(2)学校组织植树活动,已知在甲处植树的 有27人,在乙处植树的有18人.如果要使在甲处植 树的人数是乙处植树人数的2倍,需要从乙队调多 少人到甲队? 找等量关系; 甲处人数=2×乙数人数 设未知数; x 列方程. 解:设需要从乙队调x人到甲队, 列方程 27+x=2×(18-x).
x 50 x 70 3 5
方程
含有未知数的等式叫做方程
教材知识点梳理
一、方程的概念 x 50 x 70 3 5
x 50 方程中, 3 的意义是 从王家庄到青山的车速 x 70 的意义是 从王家庄到秀水的车速 。 5
教材知识点梳理
一、方程的概念
交流和讨论
想一想列方程的过程?
找出问题中的等量关系 写出含有未知数的等式 方程
设字母表示未知数
讨论交流:比较用算术方法和列方程解题的特点
算术方法: 列出的算式表示解题的计算过 程,其中只能 用已知数.对于较复杂的问题, 列算式比较困难.
列方程(代数方法): 方程是根据题中的等 量关系列出的等式.其中既含已知数,又含 未未知数.使问题的已知量与未知量之间的 关系很容易表示,解决问题就比较方便. 所以,从算术到方程是数学的进步.
一元一次方程复习课课件
解:3(3x 2) 5( x 2)
9x 6 5x 10 9x 5x 10 6
4 x 16 x4
2y 5 3 y 1 (2) 6 4
解: 2 y 5 33 2
y 12
4 y 10 9 3 y 12
4 y 3 y 12 10 9 y 13
(1)
2 1 0 x
(2)7 x 6 y
0
(3)
3x 0
x2 x2
(4) x
2ห้องสมุดไป่ตู้
2x 1 0
(5)
(6) 2 y 3 12
2、大家判断一下,下列方程的变形是否正确
为什么?
由3 x 5, 得x 5 3 ; (×) 7 (2) 由7 x 4, 得x ; (×) 4 1 (3) 由 y 0, 得y 2 ; (×) 2 (4) 由3 x 2, 得x 2 3 . (×)
解:2x=5+1,2x=6,x=3.把x=3代入得: a=2
动手做一做
1. 若 3 x 4 n7 5 0 是一元一次方程, 则 n 2
。
2. 若 x 1 是方程 3 ax x 2 x 5 a 2004 的解,则代数式 a 1
。
解方程:
(1)
3x 2 x 2 5 3
未知数 的值叫方程的解。 2、使方程 左右 两边的值相等的 3、将方程的某些项 变号 后,从方程的一边移到另一边的变 形叫移项,移项的依据是 等式的基本性质1 。 4、解方程的一般步骤 去分母 去括号 (3) 移项 (4)合并同类项(5) 系数化为1 . (1) (2)
练一练:
1、判断下列各式哪些是一元一次方程?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设甲种存款为x万元。则乙种存款为(20 - x)万元
根据题意得:1.4%X+3.7%(20-X)=0.625
解方程得: x = 5
所以 20 – x = 15 答:甲种存款为5万元,乙种存款为15万元
.
15
3、某部队开展支农活动,甲队27人,乙队 19人,现另调26人去支援,使甲队是乙队的2 倍,问应调往甲队、乙队各多少人?
一元一次方程复习
.
1
本章知识结构
等式的性质 等 式
方程
方程的解
一元一次方程 的标准形式
一元一次方 程的解法
一元一 次方程 的应用
解方程
.
2
解一元一次方程的一般步骤
变形名称
注意事项
去分母
防止漏乘(尤其整数项),注意添括号;
去括号
注意变号,防止漏乘;
移
项
移项要变号,防止漏项;
合并同类项 (ax=b)
1
0.03
0.2
解:原方程可化为: 12x103x1
3
2
去分母,得: 2 1 2 x 3 1 0 3 x 6
去括号,得: 24 x3 0 9 x6
移项,得: 4x9x6230
合并同类项,得:
13x34
34
方程两边同除以13,得:
. x 13
13
四 应用题
1、元旦某公园的成人的门票每张8元,儿 童门票半价(即每张4元),全天共售出门 票3000张,收入15600元。问这天售出儿童 门票多少张?
为_1_2_元___;利润率为_20_%____。
.
6
三、选择题
1、方程 x -a = 7 的解是x =2,则a = --------(D )
A. 1 , B. -1 , C. 5 , D. -5 ;
2、方程 x3 12x 去分母后可得-----(B )
2
6
A. 3 x-3 =1+2 x ,B. 3 x-9 =1+2 x ,
x 解:设售出儿童门票 张
根据题意,得:4x8300x0 156
解方程,得: x = 2100
答:共售出儿童票2100张
.
14
2、某公司存入银行甲、乙两种不同性质的存款共20 万元。甲种存款的年利率为1.4%,乙种存款的年利率 为3.7%,该公司一年共得利息6250元,求甲、乙两种 存款各多少元?
解方程,得:x = 14
答:这四个数分别为14,15,21,22。
.
17
思考题
小明在公路上行走,速度每分钟33米, 一辆长为30米的汽车从他的背后驶来,经过 他身旁驶过的时间是3秒,则汽车的速度为 每小时多少千米 ?
.
18
A 5秒, B 6秒, C 8秒, D 10秒;
.
9
5、方程 a 2 x 2 5 x m 3 2 3是一元
一次方程,则a和m分别为-------( B )
A 2和4 ,
B -2 和 4 ,
C 2 和 -4 , D -2 和-4 。
.
10
三 解下列方程
43x32x
( ) 2 x 2 ) 3 (4 x 1 0 9 (1 x )
C. 3 x-3 =2+2 x ,D. 3 x-12=2+4 x ;
.
7
3、某商品提价100%后要恢复原价,则应降价(B )
A 30% , B 50% , C 75% , D 100% ;
.
8
4、小0米处,两人同时起跑,小明多少秒钟追上
小彬 --------------------------------------------( D )
解:设调往甲队x人,则调往乙队(26-x)人
根据题意,得方程:2 7 x 2 1 9 2 6 x
解方程得:x = 21
答:调往甲队21人。调往乙队5人。
.
16
4、日历中2×2方块的四个数的和是72, 求这四个 数。
解:设四个数中最小的数为x,
根据题意,得方程:
x x 1 x 7 x 8 72
2x5 3x
1
6
4
0.010.02 x10.3x1
0.03
0.2
.
11
3. 12x53x
6
4
解、去分母,得: 1 2 2 (2 x5)3 (3x)
去括号,得: 1 2 4x1 0 93x
移项,得: 4x3x91 210
合并同类项,得: x13
方程两边同
x 13
除以-1,得:
.
12
4.
0.01 0.02 x 10.3x
计算要仔细,不要出差错;
方程两边同除以 未知数的系数a
计算要仔细,不要出差错;
.
3
列方程解应用题的一般步骤
1、审题:分析题意,找出题中关键词及数量关系。 2、设元:选择一个适当的未知数用字母表示。 3、列方程:根据等量关系列出方程; 4、解方程,求出未知数的值; 5、检验并作答:检验求得的值是否正确、合理;写出答案。
.
4
练习题
一填空题
1 、 一 个 数 x 的 2 倍 减 去 7 的 差 , 得 36 , 列 方 程 为
_2_x_-_7_=__3_6____;
.
5
2、一根长18米的铁丝围成一个长是宽的2倍的 长方形,这个长方形的面积为 18平方米 ;
3、一件衬衫进货价60元,提高50%后标价,则标 价为 9_0_元___, 八折优惠价为7_2_元____,利润
根据题意得:1.4%X+3.7%(20-X)=0.625
解方程得: x = 5
所以 20 – x = 15 答:甲种存款为5万元,乙种存款为15万元
.
15
3、某部队开展支农活动,甲队27人,乙队 19人,现另调26人去支援,使甲队是乙队的2 倍,问应调往甲队、乙队各多少人?
一元一次方程复习
.
1
本章知识结构
等式的性质 等 式
方程
方程的解
一元一次方程 的标准形式
一元一次方 程的解法
一元一 次方程 的应用
解方程
.
2
解一元一次方程的一般步骤
变形名称
注意事项
去分母
防止漏乘(尤其整数项),注意添括号;
去括号
注意变号,防止漏乘;
移
项
移项要变号,防止漏项;
合并同类项 (ax=b)
1
0.03
0.2
解:原方程可化为: 12x103x1
3
2
去分母,得: 2 1 2 x 3 1 0 3 x 6
去括号,得: 24 x3 0 9 x6
移项,得: 4x9x6230
合并同类项,得:
13x34
34
方程两边同除以13,得:
. x 13
13
四 应用题
1、元旦某公园的成人的门票每张8元,儿 童门票半价(即每张4元),全天共售出门 票3000张,收入15600元。问这天售出儿童 门票多少张?
为_1_2_元___;利润率为_20_%____。
.
6
三、选择题
1、方程 x -a = 7 的解是x =2,则a = --------(D )
A. 1 , B. -1 , C. 5 , D. -5 ;
2、方程 x3 12x 去分母后可得-----(B )
2
6
A. 3 x-3 =1+2 x ,B. 3 x-9 =1+2 x ,
x 解:设售出儿童门票 张
根据题意,得:4x8300x0 156
解方程,得: x = 2100
答:共售出儿童票2100张
.
14
2、某公司存入银行甲、乙两种不同性质的存款共20 万元。甲种存款的年利率为1.4%,乙种存款的年利率 为3.7%,该公司一年共得利息6250元,求甲、乙两种 存款各多少元?
解方程,得:x = 14
答:这四个数分别为14,15,21,22。
.
17
思考题
小明在公路上行走,速度每分钟33米, 一辆长为30米的汽车从他的背后驶来,经过 他身旁驶过的时间是3秒,则汽车的速度为 每小时多少千米 ?
.
18
A 5秒, B 6秒, C 8秒, D 10秒;
.
9
5、方程 a 2 x 2 5 x m 3 2 3是一元
一次方程,则a和m分别为-------( B )
A 2和4 ,
B -2 和 4 ,
C 2 和 -4 , D -2 和-4 。
.
10
三 解下列方程
43x32x
( ) 2 x 2 ) 3 (4 x 1 0 9 (1 x )
C. 3 x-3 =2+2 x ,D. 3 x-12=2+4 x ;
.
7
3、某商品提价100%后要恢复原价,则应降价(B )
A 30% , B 50% , C 75% , D 100% ;
.
8
4、小0米处,两人同时起跑,小明多少秒钟追上
小彬 --------------------------------------------( D )
解:设调往甲队x人,则调往乙队(26-x)人
根据题意,得方程:2 7 x 2 1 9 2 6 x
解方程得:x = 21
答:调往甲队21人。调往乙队5人。
.
16
4、日历中2×2方块的四个数的和是72, 求这四个 数。
解:设四个数中最小的数为x,
根据题意,得方程:
x x 1 x 7 x 8 72
2x5 3x
1
6
4
0.010.02 x10.3x1
0.03
0.2
.
11
3. 12x53x
6
4
解、去分母,得: 1 2 2 (2 x5)3 (3x)
去括号,得: 1 2 4x1 0 93x
移项,得: 4x3x91 210
合并同类项,得: x13
方程两边同
x 13
除以-1,得:
.
12
4.
0.01 0.02 x 10.3x
计算要仔细,不要出差错;
方程两边同除以 未知数的系数a
计算要仔细,不要出差错;
.
3
列方程解应用题的一般步骤
1、审题:分析题意,找出题中关键词及数量关系。 2、设元:选择一个适当的未知数用字母表示。 3、列方程:根据等量关系列出方程; 4、解方程,求出未知数的值; 5、检验并作答:检验求得的值是否正确、合理;写出答案。
.
4
练习题
一填空题
1 、 一 个 数 x 的 2 倍 减 去 7 的 差 , 得 36 , 列 方 程 为
_2_x_-_7_=__3_6____;
.
5
2、一根长18米的铁丝围成一个长是宽的2倍的 长方形,这个长方形的面积为 18平方米 ;
3、一件衬衫进货价60元,提高50%后标价,则标 价为 9_0_元___, 八折优惠价为7_2_元____,利润