A fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVM

合集下载

常用电气自动化英语单词

常用电气自动化英语单词

电气常用专业单词1048个able `eibl adj.能够abnormal b`n:ml adj.异常abort `b:t中断,停止absent `bsnt adj. 不在的,缺少的acceleration `rein n. 加速,加速度access `kses vt. 存取,进入,接近action `kn. 动作actuator `ktjueitn.操作执行机构,执行器address `dres 地址adjust `dst 调整,校正adjustable wrench 活扳手adjustable `dstbl 可调整的adjusting screw 调整螺钉adjustment `dstment 调节、调节装置air compressor空压机 km`pres 压缩机air exhaust fan排气扇ig`z:st 排气,抽完air e风,空气alarm `lam 报警align `lain 定位,对准,调整alternating current AC 交流电 :l`t:nt 轮流,交替ambient temp 环境温度ambient `mbit 周围的,环境的ammeter `mit n. 电流表,安培计amp mp n. 安培ampere `mp n. 安培amplifier `mplifai n. 放大器,扩音器analog input `nlg 模拟量输入analog output 模拟量输出analog signal 模拟信号`nlg `signlanalog `nlg 模拟analog-to-digital A/D 模数转换 `diditlangle valve 角伐angle `gl 角度application program 应用程序 .pli`kein 请求,应用arc a:k 电弧,弧光area `eri 面积,区域arrester e`rest 避雷器assemble line装配线,生产线`semblassemble `sembl 安装,组装asynchronous motor 异步马达 ei`sinsatomizing `tm 雾化attention `tenn 注意auto reclose 自动重合闸autoformer 自耦变压器automatic .:t`tik AUTO 自动automatic voltage regulator 自动调压器 `regjuleit auxiliary :g`zilji AUX 辅助的avoid `vid 避免,回避avometer `vmit万用表,安伏欧表计axis `ksis 轴,轴线back pressure 背压back up 支持,备用back wash 反冲洗baffle `bfl 隔板bag filter 除尘布袋balance `blns 平衡,称,天平ball bc:l 球bar ba: 巴,条杆base beis 基础、根据battery `btri n. 电池bearing `bri BRG 轴承bell bel 铃,钟 ring 铃声,环belt tension 皮带张力 `tennbelt belt带,皮带bi rate bai reit n.比特率binary `bainri 二进制,双bit bit 比特二进制black blk 黑色blade bleid 叶片bleed bli:d 放气,放水blow blu 吹blown `blun 熔断的blue blu: 蓝色boiler BLR `bil 锅炉bolt bult 螺栓、拧螺丝boolean `bu:lin n. 逻辑boost bu:st BST增压,提高boost pump BP 升压泵bore b: 孔,腔both b 双方,两者都bottom `btm 底部bracket `br支架,托架,括号brake breik 刹车,制动器,闸break breik 断开,断路、破裂、折断breaker coil 跳闸线路breaker `breik断路器,隔离开关brown braun 棕色brush br 电刷,刷子bucket `bkit 斗,吊斗buffer n. `bf缓冲器bump bmp 碰,撞击burner `b:n 燃烧器button `btn 按钮bypass/by pass BYP 旁路byte bait 字节八位cabinet `kbinit 厨柜,机箱、柜cable `keibl 电缆calculator `klkjuleit 计算器caliber `klib 管径、尺寸、大小cam km 凸轮cancel `knsl 取消、省略capacitance k`psitns n. 容量,电容capacitor k`psit n. 电容器=capacitator card ka:d电子板、卡carton `ka:tn 纸板箱casualty `kjulti 人身事故、伤亡、故障center `sent 中心central control room 中控室central processing unit CPU 中央处理器centrifugal fan 离心风机centrifugal sen`trifjug 离心的change t改变character `krikt 字符charge indicator 验电器、带电指示器:d 充电电荷chassis earth 机壳接地chassis `si 底座、机壳check tek 检查chimney `tmni 烟囱、烟道circuit `s:kit n. 电路circuit breaker 电路断路器circuit diagram 电路图 `daigrcircuitry `s:kitri n.电路,线路circulating water pump 循环水泵circulating 循环 `s:kjuleiticlamp klmp 夹具、钳class of insulation 绝缘等级 .insju`lein class kla:s 类、等级、程度clean kli:n 清洁的、纯净的cleanse kle净化、洗净、消毒CLEARING OF FAULT 故障清除clockwise `klkwaiz 顺时针、右旋的clog klg 障碍,塞满,粘注close kluz 关闭closed-loop 闭环 lu:pcoarse k:s 粗的、不精确的code kud 代号、密码coder `kud 编码器coil kil n.线圈cold kuld 冷,冷的,感冒collect k`lekt 收集colour `kl 颜色command k`ma:nd 命令、指挥communication k.mju:ni`kei通信、通讯compensation kmpen`sein补偿,矫正component km`punnt 元件compress air 压缩空气compress km`pres 压缩compressor km`pres 压缩机computer km`pju:t 计算机condensate kn`denseit 冷凝、使凝结condition kn`din 条件、状况、环境conduct `kndkt 传导conductivity .kndk`tiviti 导电率conductor kn`dkt n.导体,导线configure kn`fig 组态congealer kn`di:l 冷却器、冷冻器connect k`nekt 连接connection k`nekn 联接connector k`nkt 联接器、接线盒console kn`sul 控制台constant `knstnt 恒定的contact `kntkt n.接触,触点,vt.接触,联系contact to earth 接地、触地、碰地 : contact `kntkt 触点contactor `kntkt 电流接触器、触头continuous kn`tinjus 连续的control kn`trl CNTR/CNTPL 控制control panel 控制盘 `pnl 面板,仪表板,屏幕control valve 调节阀 vlvcontroller kn`trul 控制器convert kn`v:tn.转换 vt.使转变,转换…. conveyor kn`vei 传送带,输送机cooktop `kuktp n.炉灶cool ku:l 冷的cooler `ku:l 冷却器cooling fan 冷却风机 fncooling tower 冷却塔 `tau 塔,城堡cooling water pump 冷却水泵cooling `ku:li 冷却copy `kpi 拷贝core k: 铁心、核心、磁心correct k`rekt 正确的,改正correction k`rekn 修正、改正corrosion k`run 腐蚀counter `kaunti n.计数器couple `kpl CPL 联轴器curdle `k:dl 凝固currency `krnsi 流动、流通current `krnt n. 电流,水流、当前、气流current transformer CT 电流互感器 trns`f:m cursor `k:s 光标curve k:v 曲线cutter `kt 切削工具,刀具ccycle 循环、周期、周波cylinder `silind CYL 汽缸,圆柱体cymometer sai`mmit 频率表,频率计damage `dmid 损坏、破坏danger zone 危险区 zundanger `deind 危险、危险物dangerous `deindrs 危险的dank dk 潮湿data base 数据库beis 底部,基层,灯座data pool 数据库 pu:ldata `deit 数据deactivate di:`ktiveit 使无效dead band 死区 ded bnd 区,队debugging di:`bgi n.调试deceleration di:.sel`rein n. 减速,减速度decrease di:`kri:s DEC 减少deep di:p 深度、深的、深default di`f:lt n. 默认值,缺省值degree di`gri: 度、等级delay time 延时 di`lei 延迟,滞后relay `ri:lei 继电器delay di`lei 延迟 ,滞后delete di`li:t 删除,作废defective di`fektiv 有缺陷的,损坏,次品,不完全description dis`kripn 说明、描述detect di`tekt 发现、检定detector di`tekt 检测器,探测器deviate `di:vieit 背离、偏差device di`vais 设备、仪器,装置diagnosis .daig`nusis 诊断diagram `daigrm 图形、图表diameter dai`mit 直径dielectric .daii`lektrik 介质、绝缘的diesel generator 柴油发电机`di:zl `denreit发电机,振荡器differential .dif`ren 差别的,差动的,微分differential pressure DP/DSP 差压 `predigital input/output 数字量输入/输出 `diditl 数字的,数字digital signal 数字信号`diditl`signldigital `diditl 数字的digital-to-analog D/A 数/模转换 `lgdirect current DC 直流电 di`rekt 直接的disassembly .dis`sembli 拆卸disaster shutdown 事故停机 `tdan 停工机,关机disaster di`za:st 事故、故障discharge 排除、放电、卸载disconnect switch 隔离开关disconnect 断开,分离disconnector 隔离器、隔离开关discrete dis`kri:t adj.不连续的,离散的discrete input 开关量输入discrete output 开关量输出disk disk 磁盘diskette dis`ket 磁盘,磁碟display di`splei 显示、列屏dissipation .disi`pein n. 分配,分发distance `distns 距离,间隔distilled water DISTL WTR 蒸馏水 dis`tild 由蒸馏得来的distributed control system DCS 集散控制系统distributed dis`tribju:tid 分布的distributing board 配电盘 dis`tribju:ti b:d double `dbl 两倍的,双重的dowel pin 定位销 `daul 销子 pindown daun 向下的,向下download 下载downtime 停机时间drain DRN 疏水、排放drawing `dr:i 画图.制图 ,图样、牵引drill dril 钻孔、钻头、钻床drive nail 钉钉子drive draiv 驱动、强迫drop drp 滴,点滴,落下dry drai 干、干燥duct dkt 风道、管道dust catcher 除尘器、吸尘器 `kt 捕捉器dust dst 灰尘duty `dju:ti 责任,义务dynamic dai`nmik 动态的dynamometer .dain`mmit 功率表earth connector 接地线、接地 : k`nktearth fault 接地故障 f:ltearth lead 接地线、接地 li:d 引线,领导earth 大地 :eccentricity eksen`trisiti 偏心、扰度edit `edit 编辑efficiency i`fins 效率ejected i`dekt 喷射,驱逐,被放出的ejection i`dekn 弹出,排出,喷出,喷射electric failure 触电 i`lektrik 电的 `feilj 故障,失败electric spark 电火化 spa:kelectric i`lektrik 电的、电动的、导电的electrical machine 电机 m`i:n 机器,机械electrical service 供电 `s:vis 维修,服务,管理electrical i`lektrikl 电的、电气的electric-hydraulic control 电/液控制 hai`dr:lik kn`trolelectrician ilek`trin 电工electrode i`lektred 电极electronic ilek`trnik 电子的、电子学的electrostatic i`lektru`sttik 静电的electrotechnics i`lektru`tekniks 电工学、电工技术element `elimnt元件、零件、单元elevator `eliveit n.电梯,升级机emergency i`m:dnsi EMERG 紧急事故empty `empti排空enable i`neibl 使能够,允许enclosure in`klu n.密封,外壳,包围encoder in`kud 编码器end cover 端盖end 末端、终结energy meter 电度表energy `endi 能、能量engineer .endi`ni 工程师enter `ent 开始、使进入entry `entri 输入equipment i`kwipm设备error `er 错误escape valve 安全阀 is`keipevent i`vent 事件exceed ik`si:d 超过excess ik`ses 超过、过度exciter ik`sait 励磁机exit `eksit 出口expansion iks`nn EXP 膨胀explosion iks`plun 爆炸external eks`t:nl 外部的、表面的extra-high voltage 超高压 `ekstr 额外的,特大的factor `fkt 因素、因数factory `fktri 工厂、制造厂failure `feilj FAIL 失败,故障false f:ls 假的、错误的fan fn 风扇、风机fault f:lt 故障faultless `f:ltlis没有缺陷、完美的faulty operation 误操作 `f:lti .p`rein运算,工作features `fi:t 特点feed fi:d 馈、供给feedback `fi:dbk 反馈fiber optic 光纤 `faib 光纤,纤维 `ptik 光学上的,视觉的field fi:ld n.现场,原野file fail 文件、锉刀fill fil 装填filter `filt n. 过滤器,滤波器 ,滤网,filter differential pressure FILTR DP 滤网压差final `fain 最后的fire pump 消防水泵fire `fai 燃烧、火焰fireproof `faipru:f 防火的、阻燃的fixed fikst 固定的、固定、确定、保护屏flank flk 侧翼、侧面flash lamp 闪光灯flash light 闪光flash fl 闪光、闪烁、闪蒸float-charge浮充电flut 浮动 ta:d 充电,电荷flow flu 流量、流动flowmeter `flumi:t 流量计flue gas 烟气 gs 气体,煤气,毒气,汽油flue flu: 烟道fluid `fluid 液体flux flks n. 流量,通量forbid f`bid 禁止force draft fan 送风机 dr:ft 通风force f:s 强制form f:m 形式、形状、形成、构成format `f:mt 形式、格式frequency `fri:kwnsi 频率friction `frikn n. 摩擦,摩擦力from frm 从、来自、今后full speed 额定频率fully `fuli 充分的、完全的fume fju:m 烟,冒烟function `fkn 功能fuse holder 保险盒 `huldfuse fju:z 保险丝、熔断器fusible cutout 熔断开关`fju:zbl溶解的,可融的`ktaut断流,保险装置gauge ed 仪表、标准gear pump 齿轮泵 i pmpgear shift housing 变速箱 ift换挡,变化 `huzi外壳,套gear i 齿轮gearbox 齿轮箱general control panel总控制屏`denrl普通的,全面的,综合的generator `denreit n. 发电机gland seal 轴封 lnd填料函盖,密封压盖si:l 封,密封,填料glass-paper 砂纸go on 继续goal ul 目的、目标graphics `rfiks 调节阀grease ri:s 图形green ri:n 绿色ground rand地面,场所、接地earth:地球,接地、大地,泥土guide aid 领路人、向导half h:f 一半、一半的halt instruction 停机指令h:lt停机,中断,暂停in`strknhalve ha:v vt. 二等分,平分hammer `hm 锤子hand hnd 手,指针handle`hndlvt.触摸,运用,买卖,处理,操作vi.搬运,易于操纵handwheel `hndwi:l 手轮,驾驶盘hardware `h:dw 硬件havoc `hvk n.严重破坏 vt.损害heat hi:t 热、加热heater `hi:t 加热器heating `hi:ti 加热,供暖hertz `h:ts HZ 赫兹high pressure HP 高压history `histri 历史hold huld 保持hopper `hp 漏斗、料斗hose huz 软管、水龙带hot circuit 通电线路 `s:kithot start 热态启动 st:thot ht 热的,热情的,辣的hydraulic hai`dr:lik 水力的,液压的,油压的,水压的I/O point 输入/输出点inboard `inb:d 内侧idle `aidl 空闲的,空载的、无效的ignitor ig`nait 点火,点燃,点火器impedance im`pi:dns 阻抗import im`p:t 进口、输入、引入impulse `impls 脉冲、冲击、冲量inch int IN 英寸inching `inti 缓动、点动increase in`kri:s INC 增加increment `inkrimnt 增量,加1,递增index `indeks 索引、指标,指针,指数indicate `indikeit 指示,显示,表明indicator `indikeit 指示器inductance in`dktns 电感,自感应induction motor 异步电动机 in`dkn 感应`mut inductive reactance 感抗in`dktiv电感的,感应的ri`ktns 电抗inductor in`d n.电感器,感应器inhibit in`hibit 禁止,抑制,约束init 初使化initial i`nil 初始的,最初的inlet `inlet 入口input/output I/O 输入/输出insert in`s:t 插入inside `in`said 内侧、内部inspection in`spekn 观察、检查inspector in`spekt n.检测install in`st:l 安装instruction in`strkn n. 指令,指导,指示,说明书, instrument panel 仪表盘 `pnlinstrument `instrumnt 仪器insufficient .ins`fint 不足的,不够的insulate `insjuleit 绝缘、隔离insulation .insju`lein 绝缘insulator `insjuleit n.绝缘体integer `intid 整数integral `intirl 积分,积分的interface `int.feis n.分界面,界面,接口interface `int.feis 接口interference .int`firns 干扰、干涉intermediate relay 中间继电器 .int`mi:djt中间的,中级,中频internal in`t:nl 内部的,内部interrupt .int`rpt 中断into `intu 向内、进入,到…里,进入到…之内inverter in`v:t 逆变器、反相器、非门isolator `aisleit 隔离器、刀闸,分离器,绝缘体job db 工作jumper `dmp 跳线、跨接junction box 接线盒 `dknkey ki: 键销、钥匙、键槽keyboard `ki:b:d 键盘kilovolt-ampere KVA 千伏安 `kilvlt`mpekink kik 弯曲、缠绕knack nk 技巧、窍门、诀窍knife-switch 闸刀开关label `leibl 标号、标签,商标,标志laboratory l`brtri 实验室ladder diagram 梯形图 `ld `daigrmladder logic Diagram 逻辑梯形图`ldik`daigrm ladder `ld 梯子、阶梯lamp lmp n.灯、光源last la:st 最后的,末尾的leak li:k 泄漏,漏,漏洞动词leakage li:kid n. 漏,泄漏,渗漏least li:st 最少的、最小的left left 左length le 长度level `levl 液位、水平lever `li:v 杆,杠杆,控制杆lifebelt laifbelt 安全带、保险带lift lift 提、升light run 空转 lait rnlight lait 光,灯,轻,淡,日光,光亮,点,点燃,照亮lightning `laitni 雷电limit `limit LMT 极限、限制limit switch `limit 限位开关limiter `limit 限制器、限位开关line lain 线、直线list list 列表、目录liter `li:t 公升little `litl 小的,少许,少的load lud n. 负荷,负载load thrown on 带负荷 runlocal attendant 现场值班员 `tendnt维护人员,值班人员,服务员local repair 现场检修 ri`p 修理,修补local `lukl 当地的,局部,本地location lu`kein 位置,定位,单元,场所lock lk 闭锁、密封舱、固定logger `1 记录器、拖车logic `ldik 逻辑long l 长loop lu:p 环、回路loose lu:s 松的、不牢固的loosen `lu:sn 松开、松动loss ls 损失、减少low lu 低lower `lu 较低的、降低low-half 下半 h:flub oil pump 润滑油泵lub oil 润滑油lubricate `lu:brikeit LUB 润滑machine m`i:n 机器,机械magnet `mnit 磁main wire 电源线 `waimain mein 主要的,主群组maintain men`tein 维修、维持、保养maintenance manual 检修手册 `mnjul maintenance `meintinns 维护、维护 ,检修、小修make meik 制造 ,是成为make sure 确定 u 的确,对…有把握make up 补充补给malfunction ml`fkn 故障,出错、误动、失灵management `mnidmnt 管理、控制、处理man-machine interaction 人机对话mnm:`i:n.int`kn man-machine interface MMI 人机接口 `int.feis 界面,接口manometer m`nmit 压力表manual reject MRE 手动切换 ri`dekt拒绝,排斥manual `mnjul 手动、手册manual/Auto station M/A STATION 手动/自动切换站mark m:k 型号、刻度、标志、特征master control room 主控室、中央控制室 kn`trl master `m:st主人,主要,控制,师傅,正版material m`tiril n. 材料,原料maximum `mksimm 最大,最大值,最高,mean mi:n 平均,平均值、中间的measure `me 度量、测量,量,尺寸mechanical trip vlv 机械跳闸阀 mi`knikl trip 脱扣,解扣mechanical mi`knikl 机械的、力学的mechanism `meknizm 机械、力学、方法、装置、机构medial `mi:djl 中间的、平均的medium `mi:djm 中间的、中等的、装置、介质、工质melt melt 溶解,熔化memory `memri存储,存储器,记忆menu `menju: n. 菜单metal `metl 金属meter `mi:t n.仪表,米,表meter switch 仪表开关method of operation 运行方式.p`rein操作,运转method `med 方法、规律、程序microphone `maikrfn 麦克风、话筒,传声器,扩音器microprocessor maikru`pruses n.微处理器middle `midl MID 中间的,中间,当中,中型mill mil 磨、磨粉机、压榨机 ,铣刀mind maind 头脑、精神、介意minimum `minimm 最小的minor overhaul 小修 main次要,副修科目.auv`h:l检修,大修minute mai`nju:t 分钟misfill 误装mishandle `mis`hndl 胡乱操作、误操纵misread mis`ri:d 错读miss mis 过错,避免,小姐,姑娘,故障,失败miss operation 误动作、误操作 .`reinmistake mis`teik 错误、事故mixer `miks n. 搅拌器,混合器,混频器modem `mudm 调制解调器modify `mdifai 修改、更改modulating valve 调节阀 `mdjuleit vlvmodule `mdju:l n.模块,组件,模数moisture `mist 湿度、湿汽mold muld模具monitor `mnit n.监听器,监视器,监控器 vt.&vi.监控month mn 月more than 超过m: 更多的n 与…相比较,比motor MTR 马达 `mutmotor winding 电动机组绕组 `waindi 绕组,线圈,绕,缠mount maunt 安装、固定mouse maus 鼠标move mu:v 移动multimeter `mltimit 万用表nail neil 钉子、钉钉子naught line 零线 `n:t 零,无neck nek 颈,管颈needlepoint vlv 针阀 `ni:dlpintnegative pressure NEG PRESS 负压negative `negtiv 负的network `netw:k 网络neutral line 中性线 `nju:trl中性的newly `nju:li 最近,重新、新地nipper `nip 钳子、镊子noise remove 消音器 nizri`mu:vnoise niz 噪音no-loading 空载nominal power 额定功率`nminl标称的,额定的`paunominal `nminl 标称的、额定的normal closed contact常闭触点 `kntkt触头,触点,接点normal `n:ml 正常的、常规的normally `n:mli 正常地not available 无效、不能用 `veilbl 可用的,有用的nozzle `nzl 喷嘴number `nmb 数字、号码、数目nut nt 螺母、螺帽occur `k: 发生ohm um n.欧姆oil breaker 油开关 `breikoil gun 油枪 gnoil level 机油平面`levloil il 油oiler `il 注油器,油商oilless lles 缺油的on/off 开/关online nlain 联机的,在线的open circuit 开路 `upn`s:kitopen-loop 开环 lu:poperating panel 操作盘 `preiti`pnloperation .p`rein 操作、运行operational log 运行记录.p`reinloperator keyboard 操作员键盘 `ki:b:doperator station 操作员站 `steinoperator `preit 操作员option switch 选择开关optional `pnl 可选的,选择orbit `:轨道轨迹orientation .rien`tein 方位,定向,定位original `ridnl 初始的、原始的out 出、出口outboard `autb:t 外侧的outage `autid 断电,停机,出故障outlet `autlet 出口output `autput 产量、产品、输出oven `vn n.烤箱over current 过流 `krntover loading 过载 `ludiover voltage 过压 `vltidover `uv 结束,上面的,过分的overcool `uvku:l 过冷却overflow `uv`flu 溢流overhaul .uv`h:l 大修,检修overhead `uvhed 顶部,高空,架空overheat .uv`hi:t 使过热overload `uv`ludn.过载overload protection 过载保护`uv`ludpr`tekn package `pkid 组件、包,插件packaging `pkidi n.包装panel `pnl 屏、盘parameter p`rmit 参数part p:t 部分、部件password `p:sw:d 口令,密码peak pi:k 峰值percent p`sent PCT 百分数percentage p`sentid 百分比perfect `p:fikt 完全的、理想的performance p`f:mns 完成、执行、性能periodic inspection 定期检查 in`speknperiodic piri`dik 周期的、循环的peripheral equipment 外围设备 i`kwipmnt peripheral p`rifrl 周围的,外围设备,周边的permanent `p:mnnt 永久的、持久的permit p`mit 允许PG 编程器phase not together 缺相、失相feiz相t`e共同phase feiz PH 阶段、状态、方面、相phase sequence 相序 `si:kwns 次序,顺序,时序phase voltage 相电压phase-failure protection 断相保护 `feiljphase-in 同步photoelectricity .futuilek`trisiti 光电piezometer .pai`zmit 压力计pilot `pailt 导向、辅助的、控制的pipe paip 管、管道plan pln 计划plant pl:nt 工场、车间plastic `plstik 塑料PLCprogrammable Logic Controller 可编程序逻辑控制器pliers `plaiz 钳子、老虎钳plug socket 插座 `skitplug pl 塞子、栓、插头plus pls 加pneumatic nju`mtik 气动的point pint 点pointer `pint 指针,指示器pole pul 极、柱,极点,电极,电杆pollution p`lu:n 污染portion `p:n 一部分position p`zin POS 位置potential p`tenl 电势,电位potential transformer PT 电压互感器p`tenltrns`f:m power failure 停电 `pau `feilj故障,失败power `pau PWR 功率、电源,能力,动力PPIpoint-to-point Interface点对点接口preblow 预吹preferential .pref`renl n. 优先的,优先权perform p`f:m 预先形成,预制,预成型坯,粗加工的成品preheat `pri:hi:t 预热preheater `pri:hi:t 预热器preliminary pri`liminri 准备工作present pri`zent 出现preset `pri:`set 预设、预置press pres 压,按,压力pressure `pre PRES 压力primary `praimri 初级的、一次的principle `prinspl 原理、原则printer `print 打印机probe prub 探头process pr`ses 过程、方法production pr`dkn 生产、产品、作品program `prurm 程序programmable `prugrmbl adj.可设计的,可编程的prohibit pr`hibit 禁止proportional / integral / derivative PID 比例/积分/微分protection pr`tekn PROT 保护、预防protocol `prutkl n.协议pull pul 拖 ,拉pulse pls 脉冲、脉动pump body 泵体pump pmp 泵purge p:d净化、吹扫push and pull switch 推拉开关push button 按钮push pu 推pushbutton pu`btn n. 按钮pyod `paid 热电偶quality `kwliti 质量quit kwit 停止、离开、推出rack earth 机壳接地 rk 机架,机柜,导轨:radiation fin 散热片.reidi`ein 辐射,发散 fin 散热片radiator `reidieit n. 散热器,冰箱raise reiz 升高range reind 范围、量程rate reit 速度,速率rated power `reitid 额定功率rated `reitid 额定的、比率的ray rei 光线、射线read out 读出、结果传达reading 读数real time 实时的 `ri:lreceive tank 回收箱、接收箱 ri`si:v tkreceive ri`si:v 收到,接到,接收,接待recipe `resipi 处方、配方reclosing 重合闸recovery time 恢复时间 ri`kvrirecovery ri`kvri 恢复、再生rectification .rektifi`kein 整流、检波、调整rectifier `rektifai n.整流器,矫正器red 红色reduction ri`dkn 还原、缩小、降低redundancy ri`dndnsi 冗余、多余reference `refrns REF 参考、参照、证明书reflux `ri:flks 倒流、回流register `redist 寄存器regulate `rejuleit 调节、控制relay `ri:lei n. 继电器release ri`li:s 释放reliability `biliti 可靠性、安全的relief ri`li:f 去载、卸载、释放、解除relieve valve 安全阀、减压阀ri`li:v vlv remove 除去、拆卸renewal ri`njul 更新、更换repair ri`p 修理repairer 修理工、检修工repeat ri`pi:t 重复、反复replace ri`pleis 重新、启动、更换、替换replacement parts 备件、替换零件ri`pleismntp:t request ri`kwest REO 请求require ri`kwai 要求reserve parts 备件 ri`z:vreserved ri`z:vd 备用的reset `ri:set 复位resist ri`zist n.阻抗resistance ri`zistns n.电阻、阻抗resolution .rez`lju:n n. 分辨率response ris`pns 响应restart ri:`st:t 重新启动retighten ri`taitn 重新紧固retract ri`trkt 可伸缩的、缩回return oil 回油 ri`t:nreturn ri`t:n 返回reverse rotation 反转 ri`v:srig ri 安装、装配、调整right rait 右right-of-way 公用线路ring ri 环roller `rul 滚筒、辊子rotary switch 转换开关 `rutrirotate ru`teit 旋转rotation ru`tein 旋转,转动,回转rotor `rut 转子routine ru:`ti:n 例行的、日常的routing inspection 日常检查、日常检测 in`spekn routing maintenance 日常维护 `ru:ti `meintinns rubber `rb 橡胶run back 返回run 运行safe seif安全的、可靠的、稳定的safety cap 安全帽safety `seifti 安全sample `smpl 取样、举例sampling `s:mpli 采样、抽样、取样saw s:锯scale skeil 刻度、衡量、比例尺、测量、铁锈水垢scan skn 扫描schedule `ekju:l 时间表、计划表screen skri:n 屏幕screw driver 螺丝刀screw socket 螺口插座screw skru: 螺杆、螺丝、旋转seal si:l 密封search s:t 寻找、查找second `seknd 秒、第二seep si:p 渗出、渗漏seepage `si:pid 渗漏现象select si`lekt 选择selector si`lekt 选择器self-hold self huld自保持self-running 自启动send send 发送,寄,发射sensor `sens 传感器sequence `si:kwns 顺序、序列service manual 维修说明书series `siri:z n.连续,串联service `s:vis 维修.保养.服务、伺服servo `s:vu 伺服servomotor `s:vut 伺服电机set up 安装、调整、建立set set 设定shaft :ft 轴、手柄、矿井shake eik 摇动、振动shield i:ld 屏蔽shift ift 值、替换shock k 震动,使受电击short circuit 短路short :t 短的、短路、使短路should ud应该,将要show u 展览,显示,指示shut off 关闭 t 关闭,关上shut t 关上,更加shutdown `tdan 停止、停机siccative `siktiv 干燥剂,使干燥的,side said 侧边siemens `si:mz 西门子sifter `sift 筛子、滤波器sign sain 标记、注册signal lamp 信号灯signal `sinl 信号,发信号silencer `sailns 消音器simulation .simju`leinn.仿真,模拟simulator `simjuleit 仿真机single blade switch 单刀开关 bleid 刀刃,刀片single `sil 单个的、个体的site sait 现场size saiz 尺寸、大小skip skip 空指令、跳跃smoke smuk 烟、冒烟smokes-stack 烟囱 stk 烟囱,堆,堆栈smooth smu: 平滑的、光滑的socket wrench 套筒扳手socket `skit 插座software `sft 软件solenoid `sulinid 电磁线圈solid wrench 呆扳手solid `slid 固体、坚固的、固体的source s:s 源、电源spanner `spn 扳手spare sp 备用的、空余的spare parts 备件、备品spark sp:k 火花special tool 专用工具special `spel 特别的、专门的specification .spesifi`kein 技术要求,说明书speed spi:d 速度spray nozzle 喷嘴 sprei 喷雾,喷射spring clutch 弹簧离合器 kl 离合器spring spri 弹簧、春天stack stk 烟囱,堆栈stall st:l 停车、阻止standard `stndd 标准standby `stndbai 备用、待机star st: 星、星形连接start up 启动start st:t 启动、开始starter `st:tn.启动器,启动钮starting conditions 启动条件 `sta:ti 启动,开始,出发start-up sequence 启动程序 `si:kwns 程序,次序,顺序,序列state steit 状态statement `steitmnt 声明、语句station `stein 站、台,岗位,身份,地点,发电厂,位置stator coil 定子线圈stator core 定子铁芯 k:stator `steit 定子status display 状态显示status `steits 状态stability st`biliti 稳定性steam sti:m STM 蒸汽step step 步,步幅step-by-step 步进式,逐步,按部就班的step-by-step motor 步进电动机step-down transformer 降压变压器step-up transformer 升压变压器still stil 仍然 ,还,更stop stp 停止storage battery 蓄电池storage `strid 储存strainer `strein 滤网,过滤器streamline `stri:mlain 流水线stretching `streti拉伸,伸长suction pump 真空泵 `sk n吸入,抽气,superheater `sju:phi:t 过热器supply s`plai 供给support s`p:t 支持、支撑sure u 确信的、可靠的switch swit n. 开关,电闸switch blade 开关闸刀 bleid 刀刃,刀片switch swit 开关、切换switching off 断开 `swit iswitching on 接通switching push button 开关按钮symbol `simbl 符号synchro `sikru同步,同步机synchronization .sikrnai`zei n 同步synchronizer `sikrnaiz 同步器syren `sairn 汽笛、报警器syringe `sirind 注油器system unit 主机system `sistm 系统tab tb 表格,制表tachogenerator `tk`denreit 测速发电机tandem `t m 串联tank tk 箱temperature compensation 温度补偿 kmpen`sei n temperature `temprit 温度tensile `tensail 拉力的、张力的tension `ten n 压力、拉紧、张力terminal `t:minl n. 终端,接线端,电路接头test test 检测、试验tester `test 检测者、检测器text tekst 出口thermal conduction 热传导`:ml 热的kn`dkn传导,导电thermal couple 热电偶 `kpl 电偶,偶合thermal `:ml 热的,热量的,由热驱动的thermometer `mmit 温度计thermostat `:mstt 自动调温器,稳定调节装置,恒温器throttle `rtl 节流thrust rst 冲击、推力thyristor ai`rist 晶闸管tight tai 紧密的、紧固的tighten `taitn 扣紧、变紧time-lag relay 延时继电 time-lag 时间间隔timing `taimi n.计时器,定时器toggle switch `togl 拨动开关token `tukn 标志tong-test ammeter 钳式电流表 t钳tool box 工具箱tool tu:l 工具torque wrench 扭力扳手torque t:k 扭矩、力矩total `tutl 总计的training officer 培训主管 `treini 训练,练习transducer XDUCER 传感器、交流器,变频器transfer 转换transformer XFORMER 变压器,传感器,发送器transmission 传输transmitter XMItEER 变送器transwitch 可控硅开关travel `trvl 过程、运转、进行、移动trigger `tri 触发器trip trip 跳闸、断开tri-way vlv 三通阀trouble `trbl 事故、故障、干扰true tru: 真实的、调整、校正try trai 尝试试图努力tune tju:n 调节,曲调tuning `tju:ni 调谐turn t:n 转动、转向twist drill 麻花钻 twist 扭转,扭曲type taip 类型、标志unbolt `nbult 取下螺栓unclean `n`kli:n 脏的underground cable 地下电缆 `nd地下的under voltage 欠压、电压低uninterrupted power supply UPS不间断电源`nint`rptid连续unit `ju:nit 单元、单位unload `n`lud 减负荷,卸载,放电unlock `n`lk 打开、解锁、释放unprotected `npr`tektid 未保护的、无屏蔽的untight n`tait 松动的up 向上update p`deit 更新、修改、校正upgrade `preid 升级优先级提高/改进up-half 上部、上半 h:fupper `p 上部的,上面的use ju:s 使用,利用user `ju:z 用户,使用者uninsulate n`insjuleit 不绝缘vacuum `vkjum n. 真空,空间,真空吸尘器vacuum pump 真空泵valid `vlid 有效地、正确valley load 低谷负荷 lud 负载,负荷value `vlju: 数值valve vlv n. VLV 阀valve disk 阀芯valve seat 阀座vane vein 叶片variable `vribl 变量variator `vrieit 变化器,变速器v-belt 三角皮带 beltventilation venti`lein VENT 通风ventilator `ventileit 通风机,风扇,通风设备vertical `v:tikl VERT 垂直的vessel `vesl 容器vibrate vai`breit 使震动,摇摆vibration vai`brein 振动viscosity vis`ksiti 粘度video display unit VDU 显示器 `vidiu di`splei vision `vin 视觉,视力,显示visor `vaiz 护目镜、观察孔voltage `vaultid n. 电压,伏特数voltage drop 电压降`vultid drp 滴,落下voltage transformer 电压互感器voltmeter `v:t n. 电压表volume `wlju:m 容积、体积wall temp 壁面温度 w:l 墙,墙壁warning `w:ni 报警wash w 洗washer `w 垫圈、补垫waste weist 浪费、废物watch wt 手表,注视watchdog `wtd 看门狗water `w:t WTR 水wattage `wtid n. 瓦特数wear wi 穿,磨损weather `we 天气week wi:k 星期、周weight weit 重量,重力weld weld 焊接wheel wi:l 轮,车轮,轮子,转盘while wail 一会儿white wait 白色winch wint 卷扬机.windings `waindi 绕组windows `windz 窗口wire `wai 电线、金属丝、接线without wi`aut 没有,不wood wud 木、木制的word w:d 字,词work w:k 工作workshop `w:kp 车间,工场worm drive 蜗杆转动worm w:m 涡轮、螺杆wrench rent 扳手,拧wrong r 错误的、失常的wye Y形接法year j 年yellow `jelu 黄色zero drift 零点漂移 drif t zero `ziru 零,零位zone zun 区、层、带。

工控常用英文单词

工控常用英文单词

英文全称缩写中文Aabort 中断,停止abnormal 异常abrader 研磨,磨石,研磨工具absence 失去Absence of brush 无(碳)刷Absolute ABS 绝对的Absolute atmosphere ATA 绝对大气压AC Lub oil pump 交流润滑油泵absorptance 吸收比,吸收率acceleration 加速accelerator 加速器accept 接受access 存取accomplish 完成,达到accumulator 蓄电池,累加器Accumulator battery 蓄电池组accuracy 准确,精确acid 酸性,酸的Acid washing 酸洗acknowledge 确认,响应acquisition 发现,取得action 动作Active power 有功功率actuator 执行机构address 地址adequate 适当的,充分的adjust 调整,校正Admission mode 进汽方式Aerial line 天线after 以后air 风,空气Air compressor 空压机Air duct pressure 风管压力Air ejector 抽气器Air exhaust fan 排气扇Air heater 空气加热器Air preheater 空气预热器Air receiver 空气罐Alarm 报警algorithm 算法alphanumeric 字母数字Alternating current 交流电Altitude 高度,海拔Ambient 周围的,环境的Ambient temp 环境温度ammeter 电流表,安培计Ammonia tank 氨水箱Ampere 安培amplifier 放大器Analog 模拟Analog input 模拟输入Analog-to-digital A/D 模拟转换Analysis 分析Angle 角度Angle valve 角伐Angle of lag 滞后角Angle of lead 超前角anthracite 无烟煤Anion 阴离子Anionic exchanger 阴离子交换器Anode 阳极,正极announce 通知,宣布Annual 年的,年报Annual energy output 年发电量anticipate 预期,期望Aph slow motion motor 空预器低速马达Application program 应用程序approach 近似值,接近Arc 电弧,弧光architecture 建筑物结构Area 面积,区域armature 电枢,转子衔铁Arrester 避雷器Ash 灰烬,废墟Ash handling 除灰Ash settling pond 沉渣池Ash slurry pump 灰浆泵assemble 安装,组装Assume 假定,采取,担任Asynchronous motor 异步马达atmosphere 大气,大气压Atomizing 雾化Attempt 企图Attemperater 减温器,调温器Attention 注意Attenuation 衰減,减少,降低Auto reclose 自动重合闸Auto transfer 自动转移Autoformer 自耦变压器Automatic AUTO 自动Automatic voltage regulator自动调压器Auxiliary AUX 辅助的Auxiliary power 厂用电Available 有效的,可用的Avoid 避免,回避Avometer 万用表,安伏欧表计Axial 轴向的Axis 轴,轴线Axis disp protection 轴向位移,保护Axle 轴,车轴,心捧BBack 背后,反向的Back pressure 背压Back wash 反冲洗Back up 支持,备用Back ward 向后Baffle 隔板Bag filter 除尘布袋Balance 平衡Ball 球Ball valve 球阀Bar 巴,条杆Bar screen material栅形滤网classifierbase 基础、根据Base load 基本负荷Base mode 基本方式Batch processing unit 批处理单元Battery 电池Bearing BRG 轴承before 在…之前bell 铃Belt 带,皮带Bend 挠度,弯曲Besel 监视孔BLAS 偏置,偏压Binary 二进制,双Black 黑色Black out 大停电,全厂停电blade 叶片Bleed 放气,放水Blocking signal 闭锁信号Blow 吹Blow down 排污Blowlamp 喷灯blue 蓝色Bms watchdog Bms看门狗,bms监视器boiler BLR 锅炉Boiler feedwater pump BFP 锅炉给水泵Boil-off 蒸发汽化bolt 螺栓bore 孔,腔boost BST 增压,提高Boost centrifugal pump BST CEP 凝升泵Boost pump BP 升压泵Boot strap 模拟线路,辅助程序bottom 底部Bowl mill 碗式磨brash 脆性,易脆的bracket 支架,托架,括号breadth 宽度break 断开,断路breaker 断路器,隔离开关Breaker coil 跳闸线路breeze 微风,煤粉Brens-chluss 熄火,燃烧终结bridge 电桥,跨接,桥形网络brigade 班,组,队,大队broadcast 广播brownout 节约用电brush 电刷,刷子Brush rocker 电刷摇环Brown coal 褐煤Buchholtz protecter 瓦斯保护bucket 斗,吊斗Buffer tank 缓冲箱built 建立bulletin 公告,公报bump 碰,撞击bunker 煤仓burner 燃烧器Burner management system 燃烧器管理系统Bus section 母线段busbar 母线Busbar frame 母线支架buscouple 母联button 按钮Bypass/by pass BYP 旁路Bypass valve 旁路阀Ccabinet 柜cable 电缆calculator 计算器caliber 管径、尺寸、大小calorie 卡caloric 热的、热量Caloric value 发热量、热值calorific 发热的、热量的Calorific efficiency 热效率cancel 取消、省略capacitance CAPAC 电容Capacitive reactance 容抗capacity 容量、出力、能量card (电子)板、卡carrier 搬运机、载波、带电粒子Carrier protection 高频保护cascade CAS 串级Case pipe 套管casine 壳、箱casual 偶然的、临时、不规则的Casual inspection 不定期检查、临时检查casualty 人身事故、伤亡、故障catastrophe 灾祸、事故Catastrophe failure 重大事故Cat-pad 猫爪cathode 阴板、负极Cathode ray tube CRT 显示器Cation exchanger 阳离子交换器caution 注意Center 中心centigrade 摄氏温标Central control room 中控室Central processing unit CPU 中央处理器Centrifugal 离心的Certificate 证明书、执照Centrifugal fan 离心风机Certification of fitness 合格证书、质量证书Chamber 办公室、会议室Change 改变Channel 通道、频道Character 字符Characteristics 特性、特性曲线Charge 负荷、充电、加注Charge indicator 验电器、带电指示器Chart 图、图线图chassis 底座、机壳Chassis earth 机壳接地Check 检查Check valve CK VLV 截止线、止回线Chemical 化学Chemical dosing 化学加药Chest 室Chief 主要的、首长、首领Chief engineer 总工程师Chief operator 值班长Chimney 烟囱、烟道Chlorine 氯Circuit 电路Circuit breaker 电路断路器Circuit diagram 电路图Circular current 环流Circulating 循环Circulating water pump 循环水泵Circulating cooling water 循环冷却水Clamp 夹具、钳Clarification 澄清Class 类、等级、程度Class of insulation 绝缘等级Clean 清洁的、纯净的Cleanse 净化、洗净、消毒Clear 清除CLEARING OF FAULT 故障清除Clock interface unit CIU 时钟接口单元Clockwise 顺时针、右旋的Close 关闭Closed cooling water 闭式冷却水Closed-loop 闭环Cluster 电池组、组、群Coal 煤Coal ash 煤灰Coal breaker 碎煤机Coal consumption 耗煤量、煤耗Coal crusher 碎煤机Coal handling 输煤设备、输煤装置Coal dust 煤粉Coal-fired power plant 燃煤发电厂Coal hopper 煤斗Coal yard 煤场Coarse 粗的、不精确的Coaxial cable 同轴电缆Code 代号、密码Coil 线圈Coil pipe 蛇形管Cold 冷Cold air 冷风Cold reheater CRH 再热器冷段Cold reserve 冷备用(锅炉)Cold start 冷态启动Cold test 冷态试验Collect 收集Collecting pipe 集水管Collector 收集器Colour 颜色Colour library 颜色库Combin 合并、联合Combustion 燃烧Command 命令、指挥Commission 使投入、使投产Common 共同的、普通的Communication 联系、通讯Commutator 换向器Compensation 补偿Company CO 公司Company limited CO LTD 有限公司Complexity 复杂Complete 完成Component 元件Compress 压缩Compress air 压缩空气Compresser 压缩机Computer 计算机Concrete 混凝土制的Concurrent 同时发生的、一致的Concurrent boiler 直流锅炉Cond press 凝结器压力Condensate 冷凝、使凝结Condensate extraction pump CEP 凝结水泵Condenser COND/CNDER 凝结器Condensive reactance 容抗Condition 条件、状况Conduct 传导Conductivity 导电率Conference 会议、商讨、谈判Congealer 冷却器、冷冻器Configure 组态Connection 联接Connector 联接器、接线盒Console 控制台Consult 商量、咨询、参考Consumption 消费、消耗Consumption steam 汽耗Constant 恒定的Contact 触点Contactor 接触器、触头Contact to earth 接地、触地、碰地Content 目录Contin blwdwn 连排Continuous 连续的Contract 合同Control CNTR/CNTPL 控制Control & instrument 仪控Control loop 控制环Control oil 控制油Control panel 控制盘Controller 控制器Control stage 调节级、控制级Control valve 调节阀Conve cton sh 低温过热器Convection 对流Convertor 运输机、传输机Cool 冷的Cooler 冷却器Cooling 冷却Cooling fan 冷却风机Cooling water pump 冷却水泵Cooling tower 冷却塔Coordinate COORD 协调Coordinate boiler follow协调的锅炉跟随方式modeCoordinate control system 协调控制系统Coordinate turbine follow协调的汽机跟随方式modeCopy 拷贝Core 铁心、核心、磁心Core loss 铁(芯损)耗Corner 角落Correction 修正、改正Corrosion 腐蚀Cost 价格、成本、费用Cost of fuel 燃料费用Cost of upkeep 日常费用、维护费用Coupler 联轴器Coupling 耦合、联轴Couple CPL 联轴器Crane 起重机Critical 临界的Critical speed 临界速度Crusher 碎渣机Current transformer CT 电流互感器Cube 立方(体)Cubicle illumination 箱内照明Curdle 凝固Current 电流、当前Cursor 光标Curve 曲线Custom 习惯、海关Custom keys 用户键Cutter 切削工具Cyanic 青色、深蓝色Cycle 循环、周期、周波Cymometer 频率表Cyclome classifier 旋风分离器Cylinder CYL 汽缸DDaily load curve 日负荷曲线Daily load 日负荷Damage 损坏、破坏Damper DMPR 阻尼器、挡板Danger 危险、危险物Dank 潮湿Danger zone 危险区Data 数据Data base 数据库Data acquisition system DAS 数据采集系统Data highway 数据高速公路Date 日期Data pool 数据库Dc lub oil pump 直流润滑油泵Dead band 死区DEA/DEAE/DDeaerator除氧器EAERDecimeter 分米Decrease DEC 减少Deep 深度、深的、深Default 默认、缺席Degree 度、等级Demand 要求、查问Delay 延迟Delay time 延时Delete 删除Demineralized water 除盐水Demineralizer 除盐装置Deposit 沉积结垢Desalt 除盐设备Description 说明、描述Destination 目标、目的地Desuperheater 减温器Desuperheater water DSH WTE 减温水Detail 细节Detect 发现、检定Deviate 偏离、偏差Device 设备、仪器Diagnosis 诊断Diagram 图形、图表Diagram directory 图目录Diagram number 图形号Diameter 直径Diaphragm 膜片、隔板Dielectric 介质、绝缘的Diesel generator 柴油发电机Difference 差异、差别、差额Differential protection 差动保护Diff press 差压Diff expansion DIFF EXP 胀差Differential pressure DP/DSP 差压Digital 数字的Digital electric hydraulic 电调Digital input/output 数字量输入/输出Digital-to-analog D/A 数/模转换Dioxde 二氧化碳Direct current DC 直流(电)Direct digital control DDC 直接数字控制Disassembly 拆卸Disaster 事故、故障Disc 叶轮Disaster shutdown 事故停机Discharge 排除、放电、卸载Discharge current 放电电流、泄漏电流Disconnector 隔离器、隔离开关Disconnect switch 隔离开关Discrete input/output 离散输入/输出Disk 磁盘Disk manage commands 磁盘管理命令Dispatch 调度、发送派遣Dispatcher 调度员Dispatching station 调度站(局)Disconnector 隔离器、隔离开关Discrete input/output 离散输入/输出Disk 磁盘Displacement 位移Displacement pump 活塞泵Display 显示、列屏Distance 距离Distilled water DISTL WTR 蒸馏水Distributed 分布\分配\配电(水、汽)Distributed control system DCS 集散控制系统Distributed processing unit DPU 分布处理单元Distributing board 配电盘Distribution network 配电网络Distribution substation 二次变电站Disturbance 扰动Diverter vlv 切换线Divided by 除以Design 设计、发明Division 分界、部门Division wall 分割屏Documentation 文件Door 门Dosing pump 加药泵Dowel pin 定位销Down pipe 下降管Download 下载Downtime 停机时间Dozer 推土机Draft 通风、草图Drain DRN 疏水、排放Drain pump 疏水泵Drain tank 疏水箱Drawing 图样、牵引Drill 钻孔、钻头、钻床Drive 驱动、强迫Drn collector 疏水收集器Drop 站Drowned pump 潜水泵Drum 汽包Drum-type boiled 汽包式锅炉Dry 干、干燥Dual 双重的Duct 风道、管道Dust 灰尘Dust helmet 防尘罩Dust catcher 除尘器、吸尘器Duty 责任Dynamic 动态的Dynamometer 功率表EEarth 大地Earth fault 接地故障Earth connector 接地线、接地Earth lead 接地线、接地Eccentricity 偏心、扰度Econ recirc vlv 省煤器再循环线Economizer ECON 省煤器Edit 编辑Efficiency 效率Eject pump 射水泵Ejection 射出Ejector 抽气器Electric 电的Elbow 弯管、弯头Electric-hydraulic control 电/液控制Electrical 电的、电气的Electrical lockout solenoid 电磁阀锁阀vlvElectrical machine 电机Electrical service 供电Electric power industry 电力工业Electrode 电极Electric power company 电力公司Electric power system 电力系统Electronic 电子的、电子学的Electrotechnics 电工学、电工技术Electrostaic precipitator 静电除尘器Electrostatic 静电的Element 元件、零件、单元Elevation ELEV 标高Elevator 升降机Ellipse 椭圆Emergency decree 安规Emerg lub oil 事故润滑油Emerg off 事故停/关闭Emerg seal oil 事故密封油Emergency EMERG 紧急事故Emergency drain 事故疏水Emergency governet/危急遮断器intercepterEmployee 雇员Empty 排空Enclosure 外壳、包围End 末端、终结End cover 端盖Energize 激励、加电Energy 能、能量Energy meter 电度表Energy source 能源Engineer keyboard 工程师键盘Engineer station 工程师站Engineer's console 工程师操作站Engineering 工程Enter 开始、使进入Entry 输入Equalizer valve 平衡线Equipment 设备Erase 删除Error 错误Escape valve 安全线Evaporate 蒸发、冷化Evaporating 蒸发量Event 事件Excess 超过、过度Excess combustion air 过剩燃烧空气Excitation 励磁Exciter 励磁机Exhaust EXH 排汽Exhaust portion 排汽段Exit 出口Expansion EXP 膨胀Expansion tank 扩容箱Expenditure 费用Expert 专家、能手Explosion 爆炸Exponent 指数幂External 外部的、表面的Extinguisher 灭火器Extinguishing medium 灭弧介质Extraction check valve EXTR CHK 抽汽逆止阀VLVExtra-high voltage 超高压Extend 扩展、延伸Exteral 外部的、表面的Extr press 抽汽压力Extr temp 抽汽温度Extraction EXTR 抽汽FFactor 因素、因数Fahrenheit 华式温标Failure FAIL 失败FALSE 假的、错误的Fan 风扇、风机Fan duty 风机负荷Fast cut back FCB 快速切回Fault 故障Faulty operation 误操作Features 特点Feed 馈、供给Feedback 反馈Feed forward 前馈Feed water 给水Feed-water makeup 补给水Fiber optic 光纤Field 磁场、现场Field operator 现场运行人员Figure 数字、图案File 文件Filter 滤网、过滤器Filter differentialFILTR DP 滤网压差pressureFinal 最后的Final super-heater FSH 末级过热器、高过Fine ash silo 细灰库Fire 燃烧、火焰Fire-proof 耐火的、防火的Fire-extinguisher 灭火器Fire-hose 消防水带Fire hydrant 消防栓Fire-fight 灭火Fireproof 防火的、阻燃的Fire pump 消防水泵First stage 第一级、首级First stage guide vane 第一级导叶Flame 火焰Flame check 火检Flame detect cable FLM DET CAB火检电缆Flange 法兰Flange joint 法兰结合面Flank 侧翼、侧面Flash 闪光、闪烁、闪蒸Flash lamp 闪光灯Flash light 闪光Flasher 闪光装置Flexible 灵活的、柔性的Flexible joint 弹性联接器Flip-flop 触发器、双稳态电路Float-charge 浮充电Floppy disk 软磁盘Floppy driver 磁盘机Flow 流量、流动Flowmeter 流量计Flue 烟道Format 形式、格式Flue gas 烟气Fluid 液体Fly ash 飞灰Follow 跟随Forbid 禁止Force 强制Force circulation 强制循环Force draft fan 送风机Forney 福尼(公司)Forward 向前Free end 自由端Frequency 频率From 从、来自Front 前面的Fuel 燃料Fuel safety 燃料保护Full speed 额定频率Fully 充分的、完全的Function 功能Function group 功能组Furnace 炉膛Fuse 保险丝、熔断器Fuse holder 保险盒Fusible cutout 熔断开关Fw bypass 给水旁路GGAIN 增益Gang 班、组Gas 气体、烟气Gate 闸门Gate damper 闸门式挡板Gateway 入口、途径Gauge 仪表、标准Gauge float 水位、指示、浮标Gear 齿轮Gear pump 齿轮泵Gear shift housing 变速箱Gen main breaker 发电机出口总开关General control panel 总控制屏General vlv 总阀Generate 引起、产生Generator 发电机、发生器Gland 密封套Gland heater GLAND HTR 轴封加热器Gland seal 轴封Glass-paper 砂纸Goal 目的、目标Go on 继续Govern vlv GV 调速器、调节器Graphics 调节阀Grease 图形Green 绿色Grid 高压输电网、铅板Grid system 电网系统Gross rating 总出力、总额定值Ground/earth 地、大地Group 组、群Group library 组库HHalt instruction 停机指令Hangers 悬吊管Hardware 硬件Hardness 硬度、困难的Hazardous 危险的、冒险的Header 联箱Heat 热、加热Heater 加热器Heating 加热Heat rate 热效率Heat soak 暖机Hertz HZ 赫兹Hesitate HESI 暂停、犹豫High 高的、高等的、高大的High pressure HP 高压High pressure heater HPH 高压加热器History 历史Historical date reporter HDR 历史数据报告Historical storage &retrieval unit HSR 历史数据报告存储与检索单元Hold 保持Home 家、处所Hopper 漏斗、料斗Hori vib(vibration) 水平振动Horizontal 水平的、横式Horse power 马力Hose 软管、水龙带Hot 热的Hot air 热风Hot rh 再热(器)热段Hot start 热态启动Hot well 热水井Hour 小时Hp cyl cross pipe 高压缸短管Hp turb exh press 高压缸排汽压力Hybrid 混合物Hydraulic 液压Hydrogen 氢(H)Hydrogen purity 氢气纯度Hydrobin/ dewatering bin 脱水仓IIdiostaic 同电位的Idle 空载的、无效的Ignition light oil 轻油点火Ignition 引燃、电火Ignitor 电火器Ignore 忽视Illustrate 说明Impeller 推进器、叶轮Impedance 阻抗Import 进口、引入Impulse 脉冲、冲击、冲量Inch IN 英寸Inching 缓动、点动Income 进线Increase INC 增加Index 索引、指示Indicator 指示器Individual 单个的、独立的Inductive reactance 感抗Input/output I/O 输入/输出Induced draft fan IDF 引风机Inductance 电感Induction motor 异步电动机Industrial water 工业水Industry 工业Inflatable seal 充气密封Inhibit 禁止Initial 最初的Inlet 入口Input group 输入组Insert 插入Inside 内侧、内部Inspection 观察、检查Install 安装Inspection hole 检查孔、人孔Installed capacity 装机容量Instantaneous 即时的、瞬时的Instantaneous power 瞬时功率Instruction 说明书、指南、指导Instrument 仪器Instrument panel 仪表盘Insulate 绝缘、绝热、隔离Insulator 绝缘子Intake 输入端、进线Integer 整数Integral 积分Intensity 强度Interpole 换向板Inter-stage extraction 中间抽头Interface 接口Interference 干扰、干涉Interlock 联锁Intermediate 中间的Internal 内部的Interrogation 质问、问号Interrupt 中断Interval 间隔Interlock auto on 联锁投自动Inverter 逆变器、反向器、非门Invoice INV 发票、发货单、托运Intermediate pressure IP 中压Intermediate relay 中间继电器Invalid 无效的、有病的Investment 投资Ion-exchange 离子交换器IP.cyl 中压缸Isolation 隔离Isolator 隔离、刀闸JJacking oil 顶轴油Jacking pump 顶轴泵Job 工作Jumper 跳线、跨接Junction box 接线盒KKey 键销、钥匙、键槽Keyboard 键盘Key library 键库Key switch 键开关Kilovolt-ampere KVA 千伏安Kink 弯曲、缠绕Knack 技巧、窍门、诀窍Knife-switch 闸刀开关LLabel 标号、标签Laboratory 实验室Labyrinth seal 迷宫密封Ladder 梯子、阶梯Ladder diagram 梯形图Lamp 灯、光源Large platen LARGE PLT 大屏Last 最后的Latch 止动销、挂闸、插锁Leak 泄漏(动词)Leakage 泄漏(名词)Left 左Length 长度Level 液位、水平Lifebelt 安全带、保险带Lift 提、升Light 光亮、点、点燃、照亮Lightning 雷电Light run 空转Lightning arrestor 避雷器Limit LMT 极限、限制Limiter 限制器、限位开关Line 线、直线Line impedance 线路阻抗Lining 衬层、内衬Linkage 连杆List 列表Liter 公升Ljungstrom trisector air容克式空预器preheatersLoad 负荷Load demand compute LDC 负荷指令计算Load impedance 负荷阻抗Load limit 负荷限制Load rejection 甩负荷Load shedding 甩负荷Loading 加负荷Load thrown on 带负荷Local 局部Local attendant 现场值班员Local repair 现场检修Local start 就地启动Local stop 就地停止Location 处所、位置Lock 闭锁、密封舱、固定Logger 记录器、拖车Logic 逻辑Long 长Loop 环、回路Loss 损失、减少Loss of excitation 励磁损失Loss of phase 失相Low 低Low press LP 低压Low press heater LPH 低压加热器Low-half 下半Lower 较低的、降低Lower heating value 低位发热量Low pressure cylinder LPC/LP CYL低压缸Low temperature superheater LT SH 低温过热器Lub oil 润滑油Lub oil pump 润滑油泵Lubricate LUB 润滑MMagenta 品红色Magnet 磁Main 主要的/主蒸汽的/电力网Main oil tank 主油箱Main screen 主屏Main steam 主蒸汽Main transformer 主变压器Maintenance 维护、检修、小修Maintenance manual 检修手册Major overhaul 大修Make up 补充(补给)Makers works 制造厂Malfunction 出错、误动、失灵Management 管理、控制、处理Manhole 人孔、检查孔、出入孔Manifold 各式各样的联箱、集气管Manometer 压力表Man-machine interaction 人机对话Manual 手动、手册Manual reject MRE 手动切换Manual/Auto station M/A STATION手动/自动切换站Mark 型号、刻度、标志、特征Mass memory 大容量存储器Master 主要、控制者Master control room 主控室、中央控制室Master fuel trip MFT 主燃料跳闸Maximum 最高的、最大Maximum continue rate MCR 最大连续率Mechanocaloric 热机的Mean 平均值、中间的Mean water level 平均水位Measure 量度、测量Mechanical 机械的、力学的Mechanical trip vlv 机械跳闸阀Mechanism 机械、力学、方法Medial 中间的、平均的Mediate 间接的、调解Medium 装置、介质、工质Megawatt 兆瓦Memory 存储Metal 金属Meter 集量器、仪表、米Meter switch 仪表开关Method 方法、规律、程序Method of operation 运行方式Mica 云母Mica dielectric 云母电介质Microcallipers 千分尺Microphone 麦克风、话筒Middle MID 中间的Middle-temperature rh MT RH 中温再热器Mill 磨、磨煤机、铣刀Minimum 最小的Minor overhaul 小修Minus 减、负号Minus phase 负相位Minute 分钟Miss operation 误动作、误操作Miss trip 拒跳闸Mistake 错误、事故Mixed bed 混床Mixture 混合物Man-machine interface MMI 人机接口Modem 调制解调器Modify 修改Modulating control 调节控制Modulating valve 调节阀Module 模件Moisture 湿度、湿汽Monitor 监视器、监视Monoxide 一氧化物Month 目Motor MTR 马达Motor control center MCC 马达控制中心Motor winding 电动机组绕组Mouldproof 防霉的Mount 安装、固定Mountain cork 石棉Mouse 鼠标Move 移动Multidrop 多站Multispeed 多速Mult-multi 多、多倍Multimeter 万用表Multiplication 乘Multivibrator 多谐振荡器NName 名、名字Natural 自然的Naught line 零线Needlepoint vlv 针阀Negative 负的Negative pressure NEG PRESS 负压Neon tester 试电表Net ratine/net output 净出力Network 网络Neutral line 中性线Neutral 中性的Neutral point 中性点Next 其次的Night shift 夜班Nipper 钳子、镊子Noise 噪音No-loading 空载Nominal 标称的、额定的Nominal power 额定功率Nominal rating 标称出力、额定出力Non-return vlv 逆止线Non-work 非工作的Normal 正常的、常规的Normal closed contact 常闭触点Normal makeup wtr 正常补水Not available 无效、不能用No touch relay 无触点继电器Non-work pad / n-work pad 非工作瓦Nozzle 喷嘴Number 数字、号码、数目Number of turns 匝数Nut 螺母、螺帽OOccur 发生Odd 奇数Office 办公室Oil 油Oil breaker 油开关Oiler 注油器Oil fuel trip OFT 油燃料跳闸Oil gun 油枪Oil immersed natural 油浸自然冷却coolingOil purifier 油净化装置On-line 在线、联机的On-load test 带负荷试验On/off 开/关Onset 开始、发作Open 开、打开Open-air 露天的、开启的Open-loop 开环Open work 户外作业Operating panel 操作盘Operation 操作、运行Operational log 运行记录Operator 操作员Operator keyboard 操作员键盘Operator station 操作员站Operator's alarm console 操作员报警台Optimal 最优的、最佳的Optimal value 最佳值Optional 可选的Option switch 选择开关。

故障诊断技术与监测系统设计 英文翻译

故障诊断技术与监测系统设计 英文翻译

Recent Progress on Mechanical Condition Monitoring and Fault diagnosis Abstract:Mechanical equipments are widely used in various industrial applications. Generally working in severe conditions, mechanical equipments are subjected to progressive deterioration of their state. The mechanical failures account for more than 60% of breakdowns of the system. Therefore, the identification of impending mechanical fault is crucial to prevent the system from malfunction. This paper discusses the most recent progress in the mechanical condition monitoring and fault diagnosis. Excellent work is introduced from the aspects of the fault mechanism research, signal processing and feature extraction, fault reasoning research and equipment development. An overview of some of the existing methods for signal processing and feature extraction is presented. The advantages and disadvantages of these techniques are discussed. The review result suggests that the intelligent information fusion based mechanical fault diagnosis expert system with self-learning and self-updating abilities is the future research trend for the condition monitoring fault diagnosis of mechanical equipments.Keywords: Condition monitoring; Fault diagnosis; Vibration; Signal processing1. IntroductionWith the development of modern science and technology, machinery and equipment functions are becoming more and more perfect, and the machinery structure becomes more large-scale, integrated, intelligent and complicated. As a result, the component number increases significantly and the precision requirement for the part mating is stricter. The possibility and category of the related component failures therefore increase greatly. Malignant accidents caused by component faults occur frequently all over the world, and even a small mechanical fault may lead to serious consequences. Hence, efficient incipient fault detection and diagnosis are critical to machinery normal running. Although optimization techniques have been carried out in the machine design procedure and the manufacturing procedure to improve the quality of mechanical products, mechanical failures are still difficult to avoid due to the complexity of modern equipments. The condition monitoring and fault diagnosis based on advanced science and technology acts as an efficient mean to forecast potential faults and reduce the cost of machine malfunctions. This is the so-called mechanical equipment fault diagnosis technology emerged in the nearly three decades [1, 2]. Mechanical equipment fault diagnosis technology uses the measurements of the monitored machinery in operation and stationary to analyze and extract important characteristics to calibrate the states of the key components. By combining the history data, it can recognize the current conditions of the key components quantitatively, predicts the impending abnormalities and faults, and prognoses their future condition trends. By doing so, the optimized maintenance strategies can be settled, and thus the industrials can benefit from the condition maintenance significantly [3, 4].The contents of mechanical fault diagnosis contain four aspects, including fault mechanism research, signal processing and feature extraction, fault reasoning research and equipment development for condition monitoring and fault diagnosis. In the past decades, there has been considerable work done in this general area by many researchers. A concise review of the research in this area has been presented by [5, 6]. Some landmarks are discussed in this paper. The novel signal processing techniques are presented. The advantages and disadvantages of these new signal processing and feature extraction methods are discussed inthis work. Then the fault reasoning research and the diagnostic equipments are briefly reviewed. Finally, the future research topics are described in the point of future generation intelligent fault diagnosis and prognosis system.2. Fault Mechanism ResearchFault Mechanism research is a very difficult and important basic project of fault diagnosis, same as the pathology research of medical. American scholar John Sohre, published a paper on "Causes and treatment of high-speed turbo machinery operating problems (failure)", in the United States Institute of Mechanical Engineering at the Petroleum Mechanical Engineering in 1968, and gave a clear and concise description of the typical symptoms and possible causes of mechanical failure. He suggested that typical failures could be classified into 9 types and 37 kinds [7]. Following, Shiraki [8] conduced considerable work on the fault mechanism research in Japan during 60s-70s last century, and concluded abundant on-site troubleshooting experience to support the fault mechanism theory. BENTLY NEV ADA Corporation has also carried out a series experiments to study the fault mechanism of the rotor-bearing system [9].A large amount of related work has been done in China as well. Gao et al. [10] researched the vibration fault mechanism of the high-speed turbo machinery, investigated the relationship between the vibration frequency and vibration generation, and drew up the table of the vibration fault reasons, mechanism and recognition features for subsynchronous, synchronous and super-synchronous vibrations. Based on the table they proposed, they have classified the typical failures into 10 types and 58 kinds, and provided preventive treatments during the machine design and manufacture, Installation and maintenance, operation, and machine degradation. Xu et al. [11] concluded the common faults of the rotational machines. Chen et al.[12] used the nonlinear dynamics theory to analyze the key vibration problems of the generator shaft. They established a rotor nonlinear dynamic model for the generator to comprehensively investigate the rotor dynamic behavior under various influences, and proposed an effective solution to prevent rotor failures. Yang et al. [13] adopted vibration analysis to study the fault mechanism of a series of diesel engines. Other researchers have done a lot in the fault mechanism of mechanics since 1980s, and have published many valuable papers to provide theory and technology supports in the application of faultdiagnosis systems [14-18]. However, most of the fault mechanism research is on the qualitative and numerical simulation stage, the engineering practice is difficult to implement. In addition, the fault information often presents strong nonlinear, non stationary and non Gaussian characteristics, the simulation tests can not reflect these characteristics very accurately. The fault diagnosis results and the application possibility may be influenced significantly. As a result, the development of the fault diagnosis technique still faces great difficulties.3. Advanced Signal Processing and Feature Extraction MethodsAdvanced signal processing technology is used to extract the features which are sensitive to specific fault by using various signal analysis techniques to process the measured signals. Condition information of the plants is contained in a wide range of signals, such as vibration, noise, temperature, pressure, strain, current, voltage, etc. The feature information of a certain fault can be acquired through signal analysis method, and then fault diagnosis can be done correspondingly. To meet the specific needs of fault diagnosis, fault feature extraction and analysis technology is undergoing the process from time domain analysis to Fourier analysis-based frequency-domain analysis, from linear stationary signal analysis to nonlinear and nonstationary analysis, from frequency-domain analysis to time-frequency analysis. Early research on vibration signal analysis is mainly focused on classical signal analysis which made a lot of research and application progress. Rotating mechanical vibration is usually of strong harmonic, its fault is also usually registered as changes in some harmonic components. Classical spectrum analysis based on Fourier transform (such as average time-domain techniques, spectrum analysis, cepstrum analysis and demodulation techniques) can extract the fault characteristic information effectively, thus it is widely used in motive power machine, especially in rotating machinery vibration monitoring and fault diagnosis. In a manner of speaking, classical signal analysis is still the main method for mechanical vibration signal analysis and fault feature extraction. However, classical spectrum analysis also has obvious disadvantages. Fourier transform reflects the overall statistical properties of a signal, and is suitable for stationary signal analysis. In reality, the signals measured from mechanical equipment are ever-changing, non-stationary, non-Gaussian distribution and nonlinearrandom. Especially when the equipment breaks down, this situation appears to be more prominent. For non-stationary signal, some time-frequency details can not be reflected in the spectrum and its frequency resolution is limited using Fourier transform. New methods need to be proposed for those nonlinearity and non-stationary signals. The strong demand from the engineering practice also contributes to the rapid development of signal analysis. New analytical methods for non-stationary signal and nonlinear signal are emerging constantly, which are soon applied in the field of machinery fault diagnosis. New methods of signal analysis are main including time-frequency analysis, wavelet analysis, Hilbert-Huang transform, independent component analysis, advanced statistical analysis, nonlinear signal analysis and so on. The advantages and disadvantages of these approaches are discussed below.4. Research on Fault ReasoningAt present, many methods are adopted in the process of diagnostic reasoning. According to the subject systems which they belong to, the fault diagnosis can be divided into three categories: (1) the fault diagnosis based on control model; (2) the fault diagnosis based on pattern recognition; (3) the fault diagnosis based on artificial intelligence. Among them, the fault diagnosis based on control model needs to establish model through theoretic or experimental methods. The changes of system parameters or system status could directly reflect the changes of equipments physical process, and hence it is able to provide basis for fault diagnosis. This technology refers to model establishment, parameters estimation, status estimation, application of observers, etc. Since it requires accurately system model, this method is not economically feasible for the complicated devices in the practice. Pattern recognition conducts cluster description for a series of process or events. It is mainly divided into statistical method and language structure method. The fault diagnosis of equipments could be recognized as the pattern recognition process, that is to say, it recognizes the fault based on the extraction of fault characteristics. There are many common recognition methods, including bayes category, distance function category, fuzzy diagnosis, fault tree analysis, grey theory diagnosis and so on. Recent years, some new technologies have been also applied in the field of the fault diagnosis of rotary machines, such as the combination of fuzzy set andneural network, the dynamic pattern recognition based on hidden markov model, etc.5. Research and Development of Fault Diagnosis DevicesFault diagnosis technology ultimately comes down to the actual devices, and at present research and development of fault diagnosis devices is in the following two directions: (1) Portable vibration monitoring and diagnosis (including data collector system), and (2) On-line condition monitoring and fault diagnosis system. Portable instrument is mainly adopted single-chip microcomputers to complete data acquisition, which has certain ability for signal analysis and fault diagnosis. On-line monitoring and diagnosis system is usually equipped with sensors, data acquisition, alarm and interlock protection, condition monitoring subsystem, etc. And it is also fitted with rich signal analysis and diagnosis software. These software include America BENTLY Corporation 3300, 3500 and DM2000 systems, America Westinghouse Company PDS system, the 5911 system developed by ENTECK and IRD Company, Japan Mitsubishi MHM system, the Danish B&K Company B&K 3450 COMPASS system, etc. China has also successively developed large on-line monitoring and fault diagnosis system, which has been put into use on steam turbine and other important equipments. Based on the realization of condition monitoring of equipments, network diagnostics center can monitor and diagnose the operation of equipments at any time through the network to achieve the long distance information transmission. The remote monitoring system can also achieve the collaborative diagnosis of production equipments, multiple diagnostic systems serve the same piece of equipment, and multiple devices share the same diagnostic system.6. ConclusionsTo achieve a dynamic system condition monitoring and fault diagnosis, primary task is the need to get enough reliable characteristic information from the system. Due to the fluctuation of the system itself and the environment disturbance, reliable signal collection is seriously affected. It is therefore very urgent for advanced signal processing technology to eliminate noise to get true signal. No matter classical or advance fault diagnosis techniques, they have achieved great progress in various applications. In the point of systematic view, every technology is a part of the whole diagnostic system, and the efficient fusion of these parts willprovide best performance for the condition monitoring and fault diagnosis. Thus, the fault mechanism research, signal processing and feature extraction, fault reasoning research and equipment development will connect even tighter to form an effective fault diagnostic expert system in the future. To realize the expert system, the core issue is to break through the bottleneck of knowledge acquisition, update the data model in a reliable manner and provide good generalization ability of the expert system. By doing so, the fault diagnostic expert system can offer accurate estimation of the potential abnormalities, and prevent them before breaking out to ensure the normal operation of the machines. Hence, the loss caused by the machine breakdowns can be minimized significantly.References[1] Wu XK. The fault diagnosis based on information fusion theory and its application in internal combustion engine. Ph.D. thesis, Wuhan University of Technology, 1998.[2] Chen YR. Modern signal processing technology in the application of vibration diagnosis of internal combustion engine. Ph.D. thesis, Wuhan University of Technology, 1998.[3] Qu LS, He ZJ. Mechanical fault diagnostics. Shanghai: Shanghai Science and Technology Press, 1986.[4] Huang WH, Xia SB, Liu RY. Equipment fault diagnosis principle, technology and application. Beijing: Science Press, 1996.[5] Jayaswalt P, Wadhwani AK. Application of artificial neural networks, fuzzy logic and wavelet transform in fault diagnosis via vibration signal analysis: A review. Australian Journal of Mechanical Engineering 2009; 7: 157-172.[6] Daneshi-Far Z, Capolino GA, Henao H. Review of failures and condition monitoring in wind turbine generators. 19th International Conference on Electrical Machines. Rome, Italy; 2010.[7] Sohre JS. Trouble-shooting to stop vibration of centrifugal. Petrop Chem. Engineer 1968; 11: 22-23.[8] Shiraki T. Mechanical vibration lectures. Zhengzhou: Zhengzhou Mechanical Institute; 1984.[9] Bently DW. Forced subrotative speed dynamic action of rotating machinery. USA: ASME Publication, 74-pet-16.[10] Gao JJ. Research on high speed turbine machinery vibration fault mechanism and diagnostic method. Ph.D. thesis, Xi'an Jiaotong University, 1993.[11] Xu M, Zhang RL. Equipment fault diagnosis manual. Xi’an: Xi'an Jiaotong University Press, 1998.[12] Chen YS, Tian JY, Jin ZW, Ding Q. Theory of nonlinear dynamics and applied techniques of solving irregular operation of a large scale gas turbine in a comprehensive way. China Mechanical Engineering 1999; 10: 1063-68.[13] Yang JG, Zhou YC. Internal combustion engine vibration monitoring and fault diagnosis.Dalian: Dalian Maritime University Press, 1994.[14] Wang Y, Gao JJ, Xia SB. The study of causes and features of faults in supporting system for rotary machinery. Journal of Harbin Institute of Technology 1999; 31:104-6.[15] Liu SY, Song XP, Wen BC. Catastrophe in fault developing process of rotor system. Journal of Northeastern University (Natural Science) 2004; 17:159-162.[16] Han J, Zhang RL. Rotating machinery fault mechanism and diagnostic technique. Beijing: China Machine Press, 1997.[17] Chen AH. Research on some nonlinear fault phenomenon of rotating machinery. Ph.D. thesis, Central South University of Technology, 1997.机械状态监测和故障诊断的最新进展摘要:机械设备被广泛的使用在各种工业应用中。

柴油机控制系统故障自诊断功能设计

柴油机控制系统故障自诊断功能设计

— 32 —
参考文献 1 何仁.汽车辅助制动装置.北京: 化学工业出版社,2005. 2 何云堂.新型发动机制动系统.世界汽车,1994( 1) . 3 李玉生.重型汽车发动机排气辅助制动效能的分析研究.
重型汽车,1998( 3) . ( 责任编辑 学 林)
修改稿收到日期为 2007 年 11 月 19 日。
有效性; 故障辨识第 2 步是检查采样数据范围是否
可信, 检查及故障处理过程如图 5 所示; 故障辨识
第 3 步是判断加速踏板与制动间的逻辑关系, 主要
是处理加速踏板机械卡死状态, 保证系统和人员安
全。为了确保不出现误判, 引入了加速踏板与制动
间逻辑判断条件, 具体判断过程如图 6 所示。
电位计 1 与电位计 2 采样及数据转换
汽车技术
·设计·计算·研究·
传感器
执行器
其他控制 单元 诊断仪
控制单元 控制功能
通讯功能
故障自诊断功能 运行状态诊断与监控功能
故障辨识层
故障分类层
故障决策 处理层
故障数据 管理层
诊断测试功能
编程工具
代码下载 编程功能
图 1 柴油机控制系统故障自诊断功能组成及
在控制系统中的位置
2.1 运行状态故障诊断与监控功能
断外, 还互相监控, 确保使用正确的发动机同步位
置计算方法, 得到准确的发动机同步位置。图 7 为
发动机同步位置判断工作流程。
当曲轴传感器信号或凸轮轴传感器信号之一不
可信时采取的处理方法是不一致的; 当信号不可信发
生的时机不一致时采取的处理方法也是不一致的。
— 34 —
开始
发动机转速是否高于一定值? 是
电位

基于1D-CNN的滚动轴承端到端故障诊断方法

基于1D-CNN的滚动轴承端到端故障诊断方法

准确率/%
96.01
99.33
时间/s
0.03
0.03
128伊1 99.77 0.05
由表 2 可以看出,随着卷积核尺寸的增加,模型在测试集中 的准确率随之提高,当卷积核尺寸由 32 增加到 64 时,准确率由 96.01%提升到 99.33%,提高了 3.46%,计算时间变化不大,当卷 积核尺寸由 64 增加到 128 时,准确率提升不多,仅提升 0.44%, 但由于计算参数的增加,计算所消耗的时间增加了 0.02 s,对网 络准确率提升不高,却造成了比较多的资源消耗,因此选择 64伊 1 作为第一层卷积核的尺寸。具体诊断网络模型参数见表 3。
-
--
2.4 实验结果 使用上述数据集,对比所确立的模型进行训练。训练过程
中,全连接层使用 Dropout 防止过拟合问题,Dropout 比率设置 为 0.2,Adam 算法的学习率为 0.001。为了保证模型的可靠性, 在训练工程中,每个数据集迭代 60 次。为了直观地观察模型对 每种故障的识别情况,采用混淆矩阵表示实验结果如图 6 所示, 图中行表示实际分类,列表示预测分类。其中在混淆矩阵中,0~ 9 分别代表不同的类别,具体混淆矩阵标识说明见表 4。
0 引言 旋转机械设备广泛应用在航天、交通、工业制造和风力发电
等重要工程领域[1],其在重大工程中扮演着不可或缺的角色,设 备发生故障或者停机可能造成严重后果。旋转机械设备中滚动 轴承是其非常重要的零部件[2],同时滚动轴承在恶劣工况下容易 出现磨损、裂纹、断裂等故障[3]。因此,采用故障诊断技术对滚动 轴承状态的准确识别,可以有效防止轴承故障引起的意外事故。 传统的故障诊断技术有:自回归滑动平均模型(Autoregressive moving average model,ARMA)[4]、 变 分 模 态 分 解(Variational Mode Decomposition,VMD)[5]、小波分析[6]、概率神经网络(Proba原 bilistic Neural Network,PNN)[7]等得到了广泛的应用。随着大数 据时代的到来,利用海量数据驱动轴承故障诊断算法成为近些 年的研究热点。其中基于深度学习算法的轴承故障诊断成为现 阶段的主流。主要手段如下:首先人为处理原始信号,然后将信 号输入到深度学习算法中,再通过分类器对故障识别。

故障诊断内容和方法

故障诊断内容和方法

设备故障诊断之信号处理摘要:本文首先介绍了设备故障诊断的相关基础内容,进而对设备故障诊断中的信号分析处理进行了简要的叙述,并阐述了其中的小波分析和神经网络的概念。

为了更深的理解相关概念,本文还收入了一则关于柴油机故障诊断的例子。

关键词:设备故障诊断信号分析小波神经网络Abstract: This paper introduces the basis and the relevant contents of fault diagnosis, and thus there is signal analysis in processing on the fault diagnosis being briefly described. Concepts of the wavelet analysis and neural network are elaborated in this paper. For a deeper understanding of certain concepts, an example of fault diagnosis on diesel engine is collected in this paper. Keywords: equipment failure Diagnosis Signal analysis Wavelet Neural network 一、设备故障诊断概述 1、设备故障诊断基本内容和方法机械故障诊断学是一门近三十年内发展起来的新学科。

他随着机器不断完善化、复杂化和自动化而发展起来的。

机器在运行过程中内部零件受到力、摩擦、磨损等多种作用,其运行状态不断变化,一旦发生故障,往往会导致严重后果。

所以必须在事故发生前就查明,并加以消除。

诊断,即根据设备运转过程中产生的各种信息,识别机器(包括设备、工程结构及工艺过程)是否发生了故障,并进行失效分析,达到预防、改进设备设计的目的。

基于小波时频图与SwinTransformer的柴油机故障诊断方法

基于小波时频图与SwinTransformer的柴油机故障诊断方法

状态。文献[12]中对柴油机振动信号进行 Gabor变换得到 时频分布图,对其提取故障特征参数后通过SVM 进行故障 诊断。文献[13]中通过平滑伪维格纳分布将柴油机振动信 号转换为时频图像用于识别柴油机各故障状态。但是,通
防突发事故具有重大意义[3]。 柴油机的故障诊断方法主要包括基于物理模型、基于
1 柴油机故障诊断方法
中进行故障诊断。然而,上述模型的特征提取方法均是基于 基于小波时频图与SwinTransformer的柴油机故障诊
为故障特征,最后将选取的分量输入到 KFCM 模型进行分 特征进行自动提取后,完成故障状态识别。通过公开数据
类。文献[10]中提出一种基于改进 VMD和堆叠稀疏自编 集和实验室的实测数据对提出的柴油机故障诊断方法的可
码器的柴油机故障诊断方法,首先对通过 VMD 分解后的 行性及有效性进行验证。
各分量提取小波能量特征和时域特征,其次对得到的特征 进行混合并构建特征向量,最后输入到堆叠稀疏自编码器
混合模型和基于数据驱动模型的方法。基于物理模型的故 障诊断方法适用于零部件级的状态识别,例如部件的裂纹、 疲劳、磨损等。但构建物理模型需要深入了解柴油机的故 障和失效机理,全面考虑部件受到的物理、化学过程,导致 建 模 过 程 比 较 困 难 ,不 适 用 于 系 统 级 的 设 备[4]。 基 于 混 合 模型的诊断方法将各种诊断方法进行融合研究,以准确、客 观地识别设备的不同工作状态。但由于涉及到多方法或者 多模型的融合,导致其计算量过大或者建模困难,因此在实 际应用中并不多[5]。随着人工智能技术和计算机技术的快 速发展,基于数据驱动模型的故障诊断方法是当前研究的 主流方向,该方法通过不同类型的传感器采集到可以表征 设备工作状态的信号,运用不同的特征提取方法和模式识 别 技 术 对 其 故 障 类 型 进 行 识 别[6]。 以 柴 油 机 为 例 ,由 于 工 作环境复杂(受到高温、高压、恶劣环境的影响),对其采集 原始信号时,通常以采集振动信号为主。由于振动信号具 有采集方便、简易可行,且不需要拆解机体和改变柴油机结 构的优势。因此,基于振动信号的柴油机故障诊断方法已 成为国内外研究的热点[7]。

柴油机故障诊断测试系统设计

柴油机故障诊断测试系统设计

价值工程0引言柴油机作为机车、船舶等常用机械的动力设备,它的运行安全是生产安全的重要组成部分,随着科技的不断发展,柴油机的检测技术也日益发达,相应诊断的准确性得到了提高,诊断技术进入了智能化的阶段,我们现在已经可以利用时频分析等信号分析与处理方法来处理柴油机表面振动信号[6]。

最出名的是声振诊断法,它如今已成为大多数柴油机诊断系统的技术基础,为柴油机故障诊断专家系统提供必需的技术参数[4]。

许多先进国家已逐步将声振诊断技术应用到船舶柴油机上。

我国在近30年来在对往复式内燃机故障诊断方面也取得了一些突破性进展,实现了在不解体的条件下诊断一些常见的柴油机故障[8][9]。

目前,国外用声振诊断技术来研究柴油机的故障已取得了一些成果[5]。

其应用范围也会必然越来越广泛[3]。

本文就是针对柴油机振动动力学进行研究和分析,并在此基础上进行故障诊断测试系统设计的。

1柴油机受力分析及其与振动间的关系以正置单列式柴油机为例来研究某一缸,其机构运动简图如图1所示。

活塞距离上止点的位移可表示为x=A ′A =A ′O-AO =R+L-(AC +CO )=R+L-Lcos 茁-Rcos 兹=R (1-cos 兹)+L (1-1-姿2sin 2兹姨)则有:v=dx dt =R 棕sin (兹+茁)cos 茁(1)a=d 2x =R 棕2cos (兹+茁)cos 茁+姿cos 2兹cos 2茁姨姨(2)其中:姿=sin 茁。

对于一个固定的机构来说,姿是固定不变的,表示曲柄半径与连杆长度之比。

棕表示曲柄回转的角速度,可近似认为恒定不变。

1.1缸内气体压力可表示为:p=14p g 仔D 2(3)式中:p g ———缸内气体表压值(Pa ),D ———气缸直径(m )。

燃气压力本来在机体内平衡不外传,是柴油机的内动力,但由于其自身的剧烈变化运动也会产生倾覆力矩,因而会导致柴油机产生振动。

在柴油机燃气缸内部,曲轴每转两周产生一个燃气压力高峰,因此,曲轴回转频率约是燃气压力频率的一倍之多。

汽车部件英语词汇

汽车部件英语词汇

汽车部件英语词汇:Cable高压线Caliper卡钳,夹钳Cam bearing凸轮轴轴承A/C空调压缩机Absorber缓冲器Acceleration 力口速Accessories 附件Accumulator 蓄压器Actuator作动器Adjusting washer 调整垫片Adjustment 调整Advance plate点火提前作用板Air brakes空气煞车Air chamber 空气室Air cleaner空气滤清器Air-conditioner compressor 空调压缩机Air filter空气滤清器Air-flow sensor空气流量感知器Air-fuel mixture空气燃油混合汽Air-fuel ratio空气燃油混合比Air hose空气管Air-pollution 空气污染Air-reserve tank 储气筒Air spring 空气弹簧Air supply system空气供给系统Air suspension 空气悬吊Alternator 发电机Annulus内齿轮,环轮Anti-lock brake system防止煞车死锁系统Antifreeze compounds 防冻剂Armature 电枢Asbestos 石棉Aspect ratio 高宽比Atmosphere 大气Automatic transmission 自动变速箱Automatic transmission fluid 自动变速箱油Automobile 汽车Automotive 汽车的Auxiliary-air device 辅助空气装置Axle车轴Axle bearing车轴轴承Backlash后座力Baffle plate 导流板Balance weight 平衡配重Ballast resistor 外电阻Ball joint球接头Battery 电瓶Battery voltage 电瓶电压BDC下死点Bearing 轴承Bearing cap 轴承盖Bias ply偏角线层Bleeding放空气Block汽缸体Blow-by gas 吹漏气Boost增压Bore缸径Bowl vent valve球形通风阀Bracket 支架Brake band制动带Brake drum煞车鼓Brake fluid 煞车油Brake horsepower 制动马力Brake hose煞车软管Brake lights 煞车灯Brake light switch 刹车灯开关Brake line煞车油管Brake pedal煞车踏板Brake shoe刹车蹄片Braking lining煞车来令片Breaker cam白金的凸轮Breaker plate白金底板Bucket valve tappet桶状的汽门挺杆Bumpers保险杆Bypass hose旁通水管Camber夕卜倾Cam set assembly 凸轮总成Camshaft凸轮轴Camshaft sensor凸轮轴位置感知器Camshaft sprocket凸轮轴正时炼轮Camshaft timing gear凸轮轴正时齿轮Cap clamp set分电盘盖弹簧夹组Carbon point 碳棒Carburetor 化油器Caster后倾Catalytic converters 触媒转换器Centrifugal advance 离心提前Centrifugal advance mechanism 离心点火提前机构Chain炼条Charcoal活性碳Charcoal canister 活性碳罐Chassis 底盘Check valve 止回阀Circuit电路,油路Clamp束环Clearence 间隙Clearence volume 余隙容积Clutch离合器Clutch disc (disk)离合器片Clutch fork离合器拨叉Clutch input shaft离合器输入轴Clutch pedal离合器踏板Clutch pedal free travel离合器踏板自由间隙Clutch pressure plate 离合器压板Clutch shaft离合器轴Coilpack点火线圈总成Coil spring圈状弹簧Coil wire主高压线Cold-start冷车起动Cold-start valve冷车起动阀Combustion 燃烧Combustion chamber 燃烧室Combustion pressure 燃烧压力Combustion process 燃烧过程Combustion-ignition engine 压缩点火引擎Combustion ratio 压缩比Combustion ring 压缩环Combustion stroke 压缩行程Components 组件Compound planetaty复合行星齿轮Compressor 压缩机Computer计算机Condenser电容器Connecting rod 连杆Connecting-rod bearing 连杆轴承Connecting-rod bolt连杆轴承螺丝Connecting-rod cap 连杆轴承盖Constant velocity joint 等速万向接头Contact-point ignition system 白金式点火系统Contact-point set 白金组Control arm 控制臂Control pulse控制脉冲Coolant冷却液Coolant control engine vacuum switch 温控真空开关Coolant gallery 冷却水道Coolant temperature indicator 水温指示表Coolant temperature sensor 水温感知器Cooling system 冷却系统Coupling point 耦合点Crankcase曲轴箱Crankpin曲轴销Crankshaft 曲轴Crankshaft main bearing 曲轴主轴承Crankshaft sensor曲轴位置感知器Crankshaft sprocket曲轴正时炼轮Crankshaft timing gear 曲轴正时齿轮Cross flow横流式Cylinder 汽缸Cylinder head 汽缸盖Cylinder head bolt hole 汽缸盖螺丝孔Cylinder head screw 汽缸盖螺丝Cylinder liner 汽缸套Cylinder wall 汽缸壁Detonation control system 爆震控制系统Dial gauge or indicator 千分表Diameter 直径Diaphragm 膜片Diesel Engine柴油引擎Differential 差速器Differential case 差速器壳Differential pinion差速器小齿轮Differential side gear 差速器边齿轮Dipstick机油量量尺Direct drive直接驱动Disk brake碟式煞车Distributor 分电盘Distributor-cap 分电盘盖Distributor drive gear分电盘驱动齿轮Distributor housing 分电盘外壳Distributorless ignition system(DLI)无分电盘的点火系统Distributor shaft 分电盘轴Diverter valve紧急控制阀Diverter valve vacuum supply hose 紧急控制阀的真空管DOHC双顶上凸轮轴式Drive line驱动系Drive pinion驱动小齿轮Drive shaft 驱动轴Drop center type 落心式Drum煞车鼓Drum brake鼓式煞车Dry cylinder liner 干式汽缸套Dump valve释放阀Dust seal 尘封Dust shield 防尘罩Dynamic balance 动平衡Dynamometer 动力计Earth wire搭铁线Eccentric偏心轮Economizer 省油器EGR control valve EGR 控制阀EGR delay solenoid EGR 延迟线圈EGR delay timer EGR 时间延迟阀EGR temperature valve EGR 温控阀EGR valve EGR 阀Electronic control unit(ECU)电子控制单位,计算机Electronic devices 电子设备Electronic fan 电动风扇Electronic ignition system 电子点火系统Electronic sensor 电子感知器Electronic spark timing(E.S.T.)电子点火正时Electric fuel pump 电动汽油泵Emission control system 废气控制系统End play端间隙Engine引擎Engine fan引擎风扇Ethylene glycol 乙烯乙二醇Evaporative emission control(EEC)汽油蒸汽控制系统Exhaust camshaft排汽门凸轮轴Exhaust emission 废气Exhaust gases 废气Exhaust-gas recirculation(EGR)废气再循环系统Exhaust manifolds 排汽歧管Exhaust port排汽门孔Exhaust stroke 排汽行程Exhaust valve 排汽门Exhaust wastegate 排汽旁道阀Expander 衬环Expansion tank副水箱,油汽膨胀室Expansion valve 膨胀阀External-combustion engine 夕卜燃机Fan belt风扇皮带Fast-idle快怠速Fault diagnosis 故障诊断Feedback-control 回馈控制Final drive最终传动Fires点火Firing mate点火相对缸Firing order点火顺序Fitting 接头Fixed pin固定式活塞销Fixing plate 固定板Flame arrester火焰抑制器Fluid液体Fluid coupling液体耦合器Flywheel 飞轮Formula 公式Four-stroke-cycle Engine 四行程引擎Four wheel alignment 四轮校正Four wheel steering 四轮转向Freezing point 冰点Fresh air inlet新鲜空气入口Friction disk磨擦片,离合器片Friction horsepower 摩擦马力Front oil seal 前油封Front suspension 前悬吊Front-wheel alignment 前轮校正Front-wheel drive 前轮驱动Fuel燃油Fuel enrichment function 燃油增浓功能Fuel filter汽油滤清器Fuel metering system燃油计量系统Fuel pump 汽油泵Fuel pump gasket汽油泵垫片Fuel rail汽油分供管Fuel-system 燃油系统Fuel supply system燃油供给系统Fuel tank 油箱Fuel-tank cap 油箱盖Full-floating pin全浮式活塞销Full-load全负荷Fuse保险丝Gasket垫片(圈)Gasoline engine 汽油引擎Gear齿轮Gear box齿轮箱Gear lubricant齿轮润滑油Gear oil齿轮油Gear oil pump齿轮油泵Gear ratio齿轮比Gearshift变速排档杆Governor调速器Governor spring离心配重弹簧Governor weight 离心配重Grease黄油Ground搭铁Hall effect霍尔效应Head gasket 汽缸床Heat-control valve 热控阀Heat energy 热能Heat range热度等级Heater control valve 暖气控制阀Heater core暖气风箱Heater fan暖气马达Heater hose暖气水管High speed cam高速凸轮High-voltage surge 高压电Horsepower 马力Hose水管,橡皮油管Housing 外壳Hub assembly轮毂总成Hydraulic 液压Hydraulic brake 液压煞车Hydraulic brake booster液压煞车增压器Hydraulic valve lifter液压式汽门举杆Ignition coil点火线圈Ignition distribution 点火分配Ignition module点火计算机Ignition signal 点火讯号Ignition switch 点火开关Ignition system 点火系统Ignition timing 点火正时Indicated horsepower 指示马力Inertia 惯性Injection valve 喷油嘴In-line four cylinder engine 线列四缸引擎Inside diameter 内径Insulated plier 绝缘夹Intake air temperature sensor 进气温度感知器Intake camshaft进汽门凸轮Intake manifolds 进汽歧管Intake port进汽门孔Intake stroke进汽行程Intake valve 进汽门Integral steering 整体式转向Interference angle 干扰角Internal-combustion engine 内燃机Internal gear内齿轮,环齿轮Jack千斤顶Joint constant velocity 等速接头Journal 轴颈Jumper wire 跨线Kickdown switch强迫换档开关Kingpin大王销Kingpin inclination 大王销倾斜Knock sensor爆震感知器Knuckle steering 转向节。

FAULT DIAGNOSIS APPARATUS FOR ELECTRICALLY OPERATE

FAULT DIAGNOSIS APPARATUS FOR ELECTRICALLY OPERATE

专利名称:FAULT DIAGNOSIS APPARATUS FORELECTRICALLY OPERATED SMOKINGDEVICES发明人:Felix FERNANDO,Stephane AntonyHEDARCHET,Noori Moyad BRIFCANI申请号:US15568616申请日:20160422公开号:US20180107989A1公开日:20180419专利内容由知识产权出版社提供专利附图:摘要:There is provided an apparatus for providing maintenance services for anelectrically operated smoking device, the apparatus including an input including an electrical connector configured to engage electrical contacts on the electrically operated smoking device; and a controller connected to the input and being configured to automatically perform electrical testing of the electrically operated smoking device and to provide a test report based on an outcome of the electrical testing, or to perform a software update or a software reset of the electrically operated smoking device, or to provide both a test report and perform a software update or a software reset of the electrically operated smoking device, when the electrically operated smoking device is connected to the input. There is also provided a system and a method of providing maintenance services to a user of an electrically operated smoking device using a publically accessible automatic testing apparatus.申请人:Philip Morris Products S.A.地址:Neuchatel CH国籍:CH更多信息请下载全文后查看。

fault diagnosis under label and data scarcity

fault diagnosis under label and data scarcity

fault diagnosis under label and data scarcityFault diagnosis under label and data scarcity refers to the challenge of identifying and classifying faults in a system when there is limited labeled data available for training a fault diagnosis model.Label scarcity occurs when there is a lack of labeled examples for different fault types in the system. It can be challenging to collect a sufficient amount of labeled data for each type of fault, especially if the faults are rare or occur unpredictably. Without enough labeled data, it becomes difficult to train a robust and accurate fault diagnosis model.Data scarcity, on the other hand, refers to the limited amount of data available for training a fault diagnosis model. This can occur when there are only a few instances of each fault type, or when the data collection process itself is costly or time-consuming. Insufficient data can result in a model that fails to generalize well to new and unseen faults or produces unreliable diagnoses. Addressing fault diagnosis under label and data scarcity requires creative solutions such as:1. Active Learning: Using an active learning approach can help optimize the labeling process by actively selecting samples for labeling that are most informative and representative of the different fault types. This can help maximize the utilization of limited labeling resources.2. Transfer Learning: Leveraging pre-trained models or knowledge from related domains or systems can be useful in cases wherelabeled data is scarce. By transferring knowledge from a similar system, the model can be initialized with some level of fault diagnosis capability, reducing the need for extensive training on limited labeled data.3. Data Augmentation: Generating additional synthetic data by augmenting the available dataset can help address data scarcity. Techniques such as data interpolation, noise injection, and data synthesis based on known fault characteristics can be used to expand the training data and increase the model's ability to learn.4. Semi-Supervised Learning: Incorporating unlabeled data in addition to labeled data can aid in training a model under data scarcity. Techniques such as self-training and co-training can leverage unlabeled data to improve fault diagnosis performance by maximizing the information available during training.5. Ensemble Methods: Combining multiple weak models or classifiers can help compensate for the scarcity of labeled data. Ensemble techniques such as bagging, boosting, or stacking can improve fault diagnosis accuracy by aggregating the predictions from multiple models with diverse perspectives.Overall, fault diagnosis under label and data scarcity is a challenging problem, but combining these techniques can help mitigate the limitations and improve the performance of fault diagnosis systems in real-world scenarios.。

基于定性仿真的故障诊断方法流程

基于定性仿真的故障诊断方法流程

基于定性仿真的故障诊断方法流程英文回答:Fault diagnosis plays a crucial role in ensuring the reliable and efficient operation of complex systems. Traditional fault diagnosis methods often rely on quantitative data analysis, such as statistical analysis and signal processing. However, in some cases, qualitative information can also provide valuable insights for fault diagnosis. Qualitative simulation is a powerful tool that can be used to analyze the behavior of dynamic systems based on qualitative knowledge.The process of qualitative simulation-based fault diagnosis typically involves the following steps:1. Model construction: First, a qualitative model of the system under consideration needs to be developed. This model captures the qualitative relationships between the variables and their behaviors. For example, in a powersystem, the qualitative model may describe the qualitative relationships between voltage, current, and power.2. Fault scenario generation: Next, fault scenariosneed to be generated based on the available information about the system. A fault scenario represents a specific combination of fault conditions that may occur in the system. For example, in a manufacturing process, a fault scenario may represent a specific combination of component failures.3. Qualitative simulation: The generated faultscenarios are then simulated using the qualitative model. During the simulation, the qualitative model is used to predict the qualitative behavior of the system underdifferent fault conditions. For example, the qualitative model may predict that the voltage will decrease and the current will increase in a power system when a fault occurs.4. Fault diagnosis: Based on the results of the qualitative simulation, fault diagnosis can be performed. The goal of fault diagnosis is to identify the most likelyfault scenario that matches the observed behavior of the system. This can be done by comparing the simulated behavior with the actual behavior of the system. For example, if the simulated behavior matches the observed behavior, the corresponding fault scenario can be considered as the most likely cause of the fault.5. Validation and refinement: Finally, the diagnosed fault scenario needs to be validated and refined. This can be done by further analyzing the system behavior and collecting additional data if necessary. The goal is to ensure the accuracy and reliability of the fault diagnosis results.In summary, the process of qualitative simulation-based fault diagnosis involves model construction, fault scenario generation, qualitative simulation, fault diagnosis, and validation/refinement. This approach can provide valuable insights for fault diagnosis in complex systems and complement traditional quantitative methods.中文回答:故障诊断在确保复杂系统的可靠和高效运行方面起着至关重要的作用。

汽车电器系统故障诊断对策及维修方法探讨

汽车电器系统故障诊断对策及维修方法探讨

AUTO AFTERMARKET | 汽车后市场随着全球汽车产业的飞速发展,汽车的功能性与可靠性得到了不断的提升。

汽车电器系统作为汽车重要组成部分,承担着车辆启动、运行、照明、信号传递以及其他各种电子控制等多种功能[1]。

然而,当前汽车电器系统故障诊断技术仍存在一定的局限性,如诊断设备成本高、诊断效率低等问题。

因此,研究汽车电器系统故障诊断对策及维修方法具有重要的现实意义。

本研究旨在探讨汽车电器系统故障诊断对策及维修方法,以提高汽车电器系统的维修质量和故障处理效率。

1 汽车电器系统故障诊断基本原理1.1 汽车电器系统简介汽车电器系统是指在汽车中使用电力作为动力来源,并将电能转换成各种机械运动或电信号,实现对车辆的各种控制功能[2]。

1.2 汽车电器系统主要组成部分1.2.1 蓄电池蓄电池为汽车电器系统提供电力。

在启动汽车发动机、为电子控制系统提供电能、照明和其他电气设备提供电能时发挥关键作用。

蓄电池通常采用免维护蓄电池(也称铅酸电池或Leach battery),其具有使用寿命较长、性能稳定等特点。

1.2.2 启动机启动机是一个机械系统,用于将蓄电池的电能转换成机械能,使发动机成功启动。

启动机在汽车启动过程中起到关键作用。

王开石 郝俊 侯林长春汽车工业高等专科学校 吉林省长春市 130013摘 要:本研究以汽车电器系统为对象,分析其常见故障现象与产生原因。

在分析过程中,采用多种诊断策略及方法对故障现象进行准确判断。

本文旨在提高汽车电器系统的维修质量,缩短故障处理周期。

本文首先介绍汽车电器系统及常见故障;然后介绍了故障诊断策略,重点关注故障诊断用设备与技术手段的使用方法,包括设备类型及其工作原理等内容;同时也介绍了故障维修方法的实施步骤和注意事项。

本文阐述了汽车电器系统故障诊断技术在实际运用过程中所产生的实际价值,并对智能化和云计算等前沿技术的应用作出了展望。

关键词:汽车电器系统 故障诊断对策 维修方法Discussion on Fault Diagnosis Countermeasures and Maintenance Methods of Automotive Electrical SystemsWang Kaishi,Hao Jun,Hou LinAbstract: I n this study, the common fault phenomena and causes of automotive electrical systems were analyzed. In the analysis process, a variety of diagnostic strategies and methods are used to accurately judge the fault phenomenon. This article aims to improve the maintenance quality of automotive electrical systems and shorten the fault handling cycle. This article first introduces automotive electrical systems and common faults;Then, the fault diagnosis strategy is introduced, focusing on the use of equipment and technical means for fault diagnosis, including the type of equipment and its working principle. It also introduces the implementation steps and precautions of the fault repair method. This paper expounds the actual value of automotive electrical system fault diagnosis technology in the actual application process, and looks forward to the application of cutting-edge technologies such as intelligence and cloud computing.Key words: a utomotive electrical system, fault diagnosis countermeasures, maintenance methods汽车电器系统故障诊断对策及维修方法探讨1.2.3 发电机发电机是汽车电器系统的重要组成部分,其主要功能是为汽车电器系统提供电能。

浅析柴油发电机的现场维修与远程故障诊断系统

浅析柴油发电机的现场维修与远程故障诊断系统

Internal Combustion Engine &Parts———————————————————————作者简介:包小平(1970-),男,重庆长寿人,本科,工程师,研究方向为设备管理。

0引言柴油发电机作为企业面临电力不足、电力紧缺等情况的首要选择,其的地位和重要性不言而喻。

因此,为了保障相关企业在特殊电力条件下,电源的正常运行,企业的相关管理人员要组织好柴油发电机的运行维修工作,通过确保柴油发电机的正常运行来确保特殊情况下企业的正常运作。

本篇文章将关于柴油发电机的现场维修工作与远程故障诊断系统的开展问题展开相关的探讨。

1柴油发电机概述1.1柴油发电机的含义柴油发电机,顾名思义,是指以柴油为燃料,并在原动机的运作下带动发电机发电的电力装置。

柴油发电机的使用便利,因此,其的用途也极为广泛。

其不仅可以用于家庭的日常供电和发电,还可以服务于各类型企业的日常用电或者承担为各类企业紧急发电的重要任务。

1.2柴油发电机的结构组成笼统而言,柴油发电机是由柴油机和发电机构成的。

柴油机主要由气缸、活塞、气缸盖、进气门、排气门等组件构成。

由于柴油发电机的发电,主要是靠柴油机带动发电机的运作而完成的,因此柴油发电机的机组在柴油发电机运行的过程中就显得十分重要。

其不仅可以检测柴油发电机的整体运行情况,还可以在柴油发电机运行异常的情况下,限制其运行,以达到保护柴油机的目的。

2柴油发电机的工作原理柴油发电机的正常工作是通过柴油机组带动发电机的运转而实现的。

而柴油机组带动发电机运转又需要四个流程。

最初,活塞在密闭的气缸中做重复的上下往返工作,然后,当活塞由上向下运动时,进气门打开,新鲜的空气进入了气缸之中,完成了进气工作。

之后,活塞由下向上运动,进气门和出气门都处于关闭状态,气缸内的温度和压力上升,完成了空气的压缩工作。

当活塞快要到达顶端时,喷油器把相关的燃料传入气缸之中,在这种压力下,活塞向下运行,推动机器的运转。

maketrouble的中文翻译是什么

maketrouble的中文翻译是什么

maketrouble的中文翻译是什么make trouble的中文翻译是什么我们要知道英文make trouble标准的发音,还要知道它准确的中文翻译形式。

一起来看看店铺为大家整理收集了短语make trouble详细的中文翻译吧,欢迎大家阅读!make trouble的中文翻译英 [meik ˈtrʌbl] 美 [mek ˈtrʌbəl]make trouble 基本解释制造麻烦; 拿粗挟细; 掀风鼓浪; 罗唣make trouble的`单语例句1. They try to make money but the aspiring actors cause a lot of trouble.2. I asked Clarence Seedorf to play on the right because with his technical quality I thought he'd make trouble for Siena.3. For example, they will smuggle their agents into China to sow dissension and make trouble.4. If you see it coming, you don't have to flip out and make trouble for yourself down the line.5. Identifying these genes could make it possible to intervene with treatments before children get into trouble.6. All that calorie burning begs the question of how we ought to feed ourselves so as to make our toil and trouble worth it.7. If it is used as a transitive verb, it means to make someone suffer or bring someone unnecessary trouble.8. He told his son not to make trouble any more, the police said.9. He said he worried she would remember his appearance and his license number and later make trouble for him and his family.10. It is obvious the US'core purpose is to contain China's rise by using Japan and the Philippines to make trouble for China. make trouble的双语例句1. However, some exposure make use of the cuniform test imanging a lot of trouble.但一些曝平安装的布局使得楔形尝试条的搁置显像很便当。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Home Search Collections Journals About Contact us My IOPscienceA fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVMThis content has been downloaded from IOPscience. Please scroll down to see the full text.2015 Meas. Sci. Technol. 26 025003(/0957-0233/26/2/025003)View the table of contents for this issue, or go to the journal homepage for moreDownload details:IP Address: 115.154.143.184This content was downloaded on 20/05/2016 at 13:22Please note that terms and conditions apply.1. IntroductionThe valve train is an important component of a diesel engine. However, due to adverse working conditions and a complex structure, faults occur frequently during the operation of the diesel engine. According to statistics, the valve train fault can account for a noticeably large proportion (about 15.1%) of all diesel engine faults [1]. It will inevitably lead to economic loss and even threaten personal safety if not detected in time. Therefore, it is critically important to assess the working condition and identify the fault of the valve train. The fault diagnosis process of a diesel engine valve train can be mainly divided into three stages: signal acquisition, feature extraction and pattern recognition.Many kinds of signals have been used in the fault diag-nosis of diesel engines, including cylinder pressure signal [2],vibration signal [1, 3], temperature signal [4], acoustic emis-sion signal [5], etc. The vibration signal is the most acknowl-edged one, because it can provide a variety of information about the reciprocating and rotating motions, mechanical impacts and high-speed flow of gas. Moreover, the acquisition of vibration signal is very convenient and non-intrusive [3]. Therefore, vibration signal is collected for the fault diagnosis of diesel engine valve train in this paper.After the signal acquisition step, effective fault features need to be extracted. For the past few years, the autoregres-sive (AR) model has attracted increasing attention in feature extraction [6, 7]. As a typical time series analysis method, the AR model can effectively reflect the essential character-istics of a dynamic system, and its AR coefficients are very sensitive to condition variation. Moreover, there is no need to construct a complex mathematical model and study the faultA fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVMLiu Yu, Zhang Junhong, Bi Fengrong, Lin Jiewei and Ma WenpengState Key Laboratory of Engines, Tianjin University, Tianjin 300072, People’s Republic of China E-mail: liuyu2012@Received 24 September 2014, revised 6 November 2014Accepted for publication 18 November 2014Published 17 December 2014AbstractTargeting the non-stationary characteristics of the vibration signals of a diesel engine valve train, and the limitation of the autoregressive (AR) model, a novel approach based on the improved intrinsic time-scale decomposition (ITD) and relevance vector machine (RVM) is proposed in this paper for the identification of diesel engine valve train faults. The approach mainly consists of three stages: First, prior to the feature extraction, non-uniform B-spline interpolation is introduced to the ITD method for the fitting of baseline signal, then theimproved ITD is used to decompose the non-stationary signals into a set of stationary proper rotation components (PRCs). Second, the AR model is established for each PRC, and the first several AR coefficients together with the remnant variance of all PRCs are regarded as the fault feature vectors. Finally, a new separability based directed acyclic graph (SDAG) method is proposed to determine the structure of multi-class RVM, and the fault feature vectors are classified using the SDAG-RVM classifier to recognize the fault of the diesel engine valve train. The experimental results demonstrate that the proposed fault diagnosis approach can effectively extract the fault features and accurately identify the fault patterns.Keywords: diesel, fault diagnosis, non-uniform B-spline, intrinsic time-scale decomposition, directed cyclic graph, relevance vector machine, autoregressive model (Some figures may appear in colour only in the online journal)doi:10.1088/0957-0233/26/2/025003Meas. Sci. Technol. 26 (2015) 025003 (14pp)mechanism before the AR model is established. However, one noticeable problem is that the AR model can only be used to process stationary signals [8], while the vibration signals of a diesel engine valve train are highly transient and non-sta-tionary. Therefore, a non-stationary signal processing method is needed to preprocess the vibration signals before the estab-lishment of the AR model. Empirical mode decomposition (EMD) is a typical non-stationary signal processing method [9, 10], by which a complicated signal can be decomposed into finite stationary intrinsic mode functions (IMFs). Then the fault feature vectors can be obtained by applying AR model to each IMF. It is acknowledged that the application limitation of the AR model can be solved to a certain extent by using EMD, but some inherent deficiencies of EMD, such as the end effects, mode mixing, interpolation method and the unexplainable negative frequency cannot be neglected [11]. Aimed at these problems of EMD, a self-adaptive signal processing method named local mean decomposition (LMD) was proposed by Smith in 2005 [12]. Some researchers have applied LMD to the fault diagnosis of rotating machine and illustrated the LMD method is better than the EMD method in mode mixing, end effects, etc [11, 13, 14]. Nevertheless, LMD is inherently dedicated for the decomposition of the AM-F M signals; when used in the processing of transient impact signals, such as valve collision signal, the algorithm usually does not converge. Intrinsic time-scale decomposi-tion (ITD) is a newly developed signal processing method [15, 16], which decomposes a non-stationary signal into a sum of proper rotation components (PRCs) based on the local characteristic time-scale of signal. Compared with EMD and LMD, more information of the signal can be utilized by ITD and the computational efficiency can also be improved. However, when used to process the complex fault signals of diesel engine valve train, there still remain problems of interpolation method and decomposition termination condi-tion. Therefore, to overcome these drawbacks, an improved ITD method based on non-uniform B-spline interpolation and cumulative variance contribution rate is proposed in this paper. Afterwards, AR model and improved ITD is combined for the feature extraction.Pattern recognition is the last step of fault diagnosis. Artificial neural network (ANN) has once been used in fault diagnosis and provided satisfying results [17, 18]. However with insufficient samples, the inherent deficiencies such as under-fitting and local optimal solution will become obvious issues [19]. Therefore, the application of ANN is limited. Support vector machine (SVM) is an outstanding method of pattern recognition, which is based on statistical learning theory and especially suitable for small sample cases. Additionally, SVM has better generalization ability compared to ANN, and it can guarantee the local and global optimal solution are exactly the same [20, 21]. However, SVM still cannot provide a perfect solution due to the low sparsity of the model and because the margin trade-off parameter must be estimated. Targeting these problems, a sparse probability model called relevance vector machine (RVM) is proposed by Tipping [22]. Compared to SVM, the training of RVM is carried out under Bayesian framework, thus a probabilistic interpretation of its outputs can be obtained. Moreover, the rel-evant vectors required for training are less than that of SVM. Therefore, fault diagnosis with RVM method is more efficient [23]. RVM theory was originally developed for binary-class problem. However, the fault diagnosis of diesel engine is usu-ally a multi-class problem, so a multi-class strategy for RVM is required. Generally, there are three typical methods to extend the binary RVM to multi-class problem, namely, one-against-all, one-against-one and directed acyclic graph (DAG) [24]. The DAG method is more efficient and has no unclas-sifiable regions that usually exist in other typical strategies. However, error accumulation often happens in the classifica-tion process of DAG-RVM. In other words, when classifica-tion error happens in the upper nodes, the misclassification will continue into the following nodes. To solve this problem, a separability based DAG (SDAG) method is proposed, and the SDAG-RVM is applied to the fault diagnosis of diesel engine valve train.The rest of the paper is organized as follows. Section 2 describes the theory of improved ITD and the novel SDAG method is presented for multi-class RVM in section 3. In sec-tion 4, a fault diagnosis approach based on improved ITD and SDAG-RVM is given. In section 5, the proposed approach is applied to the fault diagnosis of diesel engine valve train and compared against other conventional methods. F inally, sec-tion 6 presents the conclusion of the paper.2. Improved ITDIn the original ITD method, the baseline is obtained by using linear interpolation, but linear interpolation is not accurate enough for processing the vibration signal of diesel engine valve train. Additionally, in order to satisfy the ter-mination condition, ITD often produces a large number of pseudo components. Generally, the pseudo components have no obvious physical meaning and lead to an increase of decomposition time. Therefore, to solve these problems, an improved ITD method based on non-uniform B-spline interpolation and cumulative variance contribution rate is proposed.2.1.Non-uniform B-splineB-spline curve not only possesses the advantages of the Bezier curve, but also has good continuity and local properties [25], which can effectively guarantee the accuracy of the interpola-tion results. For any given knot set u, the B-spline curve can be expressed as a linear combination of B-spline basis functions, as given in (1):∑==p u d B u()()ini i k,(1)where d i are the control points, B i,k(u) are the B-spline basis functions, k is the order of the curve. The expression for the basis function B i,k(u) can be derived by means of a recursion formula, as given in equation (2).=≤≤=−−+−−++−++++++−{B u u u u B u u u u u B u u uu u B u ()1if 0otherwise()()()i i i i k i i k ii k i k i k i i k ,01,,11111,1(2)where u i is a no-decreasing knot vector of real num-bers. It can be seen from equation (2) that the knot vector =⋯++U u u u [,,,]n k 011 is also needed for the definition ofthe B-spline curve. For uniform B-spline, the knots are uni-formly distributed, where the influence of the actual length ofthe curve segment is not considered. Aimed at this problem,a more suitable method, called non-uniform knots parameter-ization is used in this paper.In order to make the B-spline curve pass through thedata points =⋯=−+q i m m n k (0,1,,;1)i , generally,two end points of curve and their data are set identical, andthe data points q i are made to correspond to the knot vector u k in the domain of the curve p (u ), as q i have knot point =⋯=−++u i m m n k (0,1,,;1)k 1. According to the request of interpolation at the end points, ⋯u u u ,,k 01 are set as 0, and⋯++++u u u ,,,n n n k 121 are set as 1. Finally, the knot vector can be determined by the accumulated chord length parametric method: =⋯+++⋯+++⋯⋯⎡⎣⎢⎤⎦⎥U l l L l l l L l l l l L0,,0,,,,1,,1m12123123(3)where ∑==L l i ni 1, and l i can be expressed as=−=−+−=⋯−−−l q q x x y y i m ()()1,2,i i i i i i i 11212(4)where x i and y i are the position coordinates of data point ofq i . Then the control point d i can be calculated with the knot vector, in other words, the B-spline curve can be completely specified by the knot vector.Suppose the B-spline curve p (u ) for a parameter value ∈⊂++u u u u u [,][,]t i i k n 11 requires evaluation, the corre-sponding point in the curve can be calculated by DeBoor algo-rithm [26], which is an efficient process for the calculation of equation (1).∑∑===⋯===−−−−p u d B u d B u d ()()()t j nj j k t j i ki lj l j k l t i k k 0,,(5)where==−+=⋯=−−+⋯−−+−⎪⎪⎧⎨⎩d d l a d a d l k j i k i k i l(1)1,2,;,1,,j l j j l j l j l j l 111(6)with=−−++++a u u u u j l t j l j k j l1(7)According to the different precision requirement, a reasonabledensity of knot values can be set, and then the whole B-spline curve p (u ) is obtained by equation (5).2.2. Improved ITDThe detailed improved ITD method is described as follows:Step 1:S uppose x (t ) is a composite signal, identify all its local extreme points (T k , X k ) (k = 1,2,…, M ), where M is the number of extreme points.Step 2:F or any three successive extreme points (T k , X k ), (T k+1, X k+1) and (T k+2, X k+2), the value of baseline control point L k+1 corresponding to T k+1 can be calculated by twice linear transformation as follows:=++−−−=⋯+++++⎧⎨⎩⎡⎣⎢⎤⎦⎥⎫⎬⎭L X X T T T T X X k M 12()1,2,,k k k k k k k k k 11122(8)where the second term in braces is the linear interpolation of extreme points (T k , X k ) and (T k+2, X k+2) at time T k+1. It can be noted that the subscript of L k is from 2 to M − 1. Hence, theboundaries of the data must be extended.Step 3: A pply mirror extension method [10] to the sequence of extreme points, and two additional extreme points (a local maximum and a local minimum) on both ends of the signal are obtained. Then L 0, L 1, L M and L M+1 can be calculated according to equation (8).Step 4: T he baseline L 11(t ) is obtained by using non-uniform B-spline interpolation to fit all control points L k .Step 5: S ubtract the baseline L 11(t ) from the input signal x (t )and the residue is recorded as H 11(t ).=−H t x t L t ()()()1111(9)Theoretically, H 11(t ) can be regarded as the first PRC, how-ever, for a complex signal, especially for the mechanicalvibration signal, single decomposition cannot ensure a mean-ingful PRC [27]. Therefore, the standard deviation (SD) crite-rion [9], which has been successfully used in EMD, is selected as the criterion for PRC. H 11(t ) is treated as the original signal and steps 1–5 are repeated k times until H 1k (t ) satisfies theSD criterion. H 1k (t ) is the first PRC of x (t ), and is denoted as PRC 1(t ).Step 6: T he PRC 1(t ) is then subtracted from the original signalx (t ), and a new signal u 1(t ) can be obtained. Compared to the original signal, u 1(t ) is a smoothed version, because the highest frequency oscillations have been removed.=−u t x t PRC t ()()()11(10)Step 7: T hen u 1(t ) is treated as the original signal and steps1–6 are repeated p times until cumulative variance contribution rate c is more than 0.99, where c can reflect the contribution of the already obtained PRCs to the original signal [28].∑∑=+==c t t u t Var (PRC ())Var (PRC ())Var (())i pi i p i n 11(11)Step 8: F inally, the original signal x (t ) is decomposed into the sum of p PRCs and a residual signal u p (t )∑=+=x t PRC t u t ()()()i pi p 1(12)2.3. Simulated analysisTo validate the effectiveness and efficiency of the proposed improved ITD method, the following simulated signal x (t ) is considered:ππππ=+=++++x t x t x t t t t t ()()()(1cos (20))sin(200300)2sin (600.25)122(13)where ∈t [0,1]. x 1(t ) is an AM-FM signal, x 2(t ) is a sinusoidal signal. The time domain waveform of the simulated signalis shown in figure 1. For figure 1 and the following figures,the abscissa label t /s stands for time and its unit is seconds. Figures 2 and 3 are the decomposition results of signal x (t ) by using ITD and improved ITD. In order to reduce the endeffects, mirror extension [10] is applied to the boundary forITD and improved ITD.F rom figures 2 and 3, it can be observed that PRC 1 andPRC 2 are in accordance with x 1(t ) and x 2(t ), respectively.Moreover, there are two pseudo components e 1 and e 2 and aresidual signal e 3 in figure 2, while there is no pseudo compo-nent and only a residual signal e in the decomposition result of improved ITD method in figure 3. This illustrates the effec-tiveness of using the cumulative variance contribution rate asthe decomposition termination condition in the improved ITD method. In order to further compare the two methods, correla-tion coefficients cc i and mean square errors mse i between the PRCs and their corresponding signals are calculated:=x t PRC t x t PRC t cc cov ((),())var (())var (())i i i i i (14)Figure 1. The waveform of simulated signal x (t).Figure 2. The ITD decomposition result of x (t)∑=−=Nx n PRC n mse 1[()()]i n Ni i 12(15)where n is the label of sampling point, N is the number ofsampling points. The results are presented in table 1.F rom table 1, it is clear that the PRCs obtained by the improved ITD method have more correlation and smaller error with their corresponding signals, which means that the decom-position results are more accurate. The reason for this is that the improved ITD method adopts the non-uniform B-spline interpolation instead of linear interpolation, which wouldalleviate the problem of low precision and poor smoothness caused by linear interpolation in the original ITD method.3. SDAG-RVM3.1. RVM As a supervised learning method, RVM [22, 29] begins witha series of training samples =x {}n n N 1and their corresponding target vectors =t {}n n N 1, where t stand for the class label, ∈t (0,1)n . From these training samples =x t {,}n n n N 1, we wish to learn a mapping f (x n ) for predicting the target t n . A popularand flexible form for the function f (x ) is as follows:∑=+=f x w K x x w ()(,)n N n n 10(16)where =⋯w w w w (,,)N T 11 is the weight vector, K (x,x n ) is the kernel function and w 0 is the bias. A prior distribution over thevector of model parameters is imposed to construct a Bayesiantraining criterion. RVM adopts a separable Gaussian prior,and for each weight there is a distinct hyper-parameter αi∏αα==−w P N w ()(0,)n N n n 11(17)where αααα=⋯(,,,)N 12. By applying the logistic sigmoid function σ(y ) = 1/(1+e −y ) to y (x ) and adopting the Bernoulli distribution for t x P (), the likelihood function is as follows:∏ασσ=−=−t x w x w P y y (){(;)}[1{(;)}]n Nn t n t 11n n (18)with α the posterior weight distribution conditioned on thedata cannot be obtained using Bayesian rule given byααα=w t t w w t P P P P (,)()()/()(19)where αw t P (,) denotes the weight posterior and αt P ()denotes the marginal likelihood. Thus, a Laplace’s approxi-mation procedure is used.Because αα∝w t t w w P P P (,)()(), for a fixed value of α, find the maximum a posteriori (MAP) weights w MAP is equiv-alent to finding the maximum of∑α=+−−−=⎡⎣⎤⎦()t w w w w P P t y t y A log {()()}log (1)log 112i ni i i i T 1(20)For w MAP , with y i = σ{y (x i ;w )} and ααα=⋯A diag (,,,)N 12for the current values of α. It is a penalized logistic log-likelihood function and requires iterative maximization.Therefore, the iteratively reweighed least-squares (IRLS) isused to estimate the hyper-parameter α and w i . The detailedalgorithm is given in [23]. In the process of optimization,many αi may have large values; find out the correspondingmodel weights and delete them. Then the sparse solution can be obtained, the rest of the samples with ≠w 0i are relevancevectors.Table 1. Comparison of ITD and improved ITD.MethodCorrelation coefficients Mean square errors PRC1PRC2PRC1PRC2ITD 0.97130.97910.04610.0368Improved ITD 0.99310.99090.01060.0100Figure 3. The improved ITD decomposition result of x (t ).3.2. SDAG-RVMIn DAG-RVM [24], a k -class problem can be solved by orga-nizing a tree structure with k (k − 1)/2 internal nodes and k leaf nodes; each internal node corresponds to one binary RVM. The total number of layers in the structure is k and there are i nodes in the i th layer. Suppose the expression ‘m versus n ’ represents the RVM classifier that can discriminate between class m and class n , the j th node in the i th layer node(i ,j ) could be expressed as ‘j versus (k + j − i )’. To classify an unknown sample, starting at the root node, the binary RVM corre-sponding to node(1,1) is evaluated. The node is then exited via the left edge, if the output of the RVM is zero, namely, the sample doesn’t belong to class k ; or the right edge, if the output is one, namely, the sample doesn’t belong to class 1. The next node’s binary RVM is then evaluated, and the sample could finally be classified after k − 1 decisions. The structure of DAG-RVM and its classification principle is illustrated in figure 4.From figure 4, it can be noticed that the DAG is equiva-lent to operating on a list, which is initialized with all of the class labels, and each node eliminates one class label from the list. For any node(i , j ) (i < k ; j < k ; k ∈R), the nodes which connect to node(i , j ) in the next layer are node(i + 1, j ) and node(i + 1, j + 1). Suppose that the list for node(i , j ) is {a 1, a 2,…, a k − i+1}, the lists corresponds to node(i + 1, j ) and node(i + 1, j + 1) should be {a 1, a 2,…, a k − i+2} and {a 2, a 3,…, a k − i+1}, which are obtained by eliminating the first or last elements from the list for node(i , j ). It can be found that any node could be determined by its upper nodes. Therefore, once the order of class labels in the root list for node(1,1) is fixed, the structure of DAG is determined. However, the order of the root list is selected randomly in the original DAG method. Generally, root list is from class 1 to class k , namely, {1, 2,…, k }.For k -class classification problem, there are k ! kinds of order for the root list. If improper order is selected, more classification errors will happen in upper nodes and the error accumulation phenomenon will seriously affect the DAG-RVM. To overcome this issue, the SDAG methodFigure 4.The structure of DAG-RVM and its classification principle.Figure 5.The flow chart of the proposed fault diagnosis method.which can guarantee a proper order of the root list is pre-sented in the following:Step 1: C alculate the class centers c i and variance σi for eachcondition∑==⋯=⋯∈c n x i k m n 1(1,,;1,,)i ix X m i m i(21)∑σ=−−=⋯=⋯∈n x c i k m n 11()(1,,;1,,)i i x X m i i 2m i(22)where i is condition label, k is the number of conditions, X i isthe set of samples belong to the i th condition, n i is the number of samples in the i th condition, m is the sample label.Step 2: C alculate the Mahalanobis distance d ij between any two conditionsFigure 6. Experimental set-up. (a ) Diesel engine; (b ) LMS SCADA III multi-analyzer system and a computer; (c ) 3D accelerometer attached to the first cylinder head; (d) 3D accelerometers attached to the top, center and bottom of the first cylinder block.Figure 7.Schematic diagram of fault diagnosis system.Table 2. Specifications of the WP7 diesel engine.ItemValueNumber of cylinder 6Firing sequence 1-5-3-6-2-4Rating power 220 kW Rating speed 2300 rpm Bore 108 mm Stroke130 mm Compression ratio 18:1Intake typeCharge inter-cooling Intake valve train clearance 0.3 mm Exhaust valve train clearance0.5 mmΣ==−−=⋅⋅⋅=⋅⋅⋅−d d cc cci k j k ()()(1,,;1,,)ij ji i j T ij i j 1(23)where i and j are condition labels, Σij is the covariance matrix of condition i and j .Step 3: I nitialize the candidate condition set S with all condi-tion labels.Step 4: F ind the maximum d mn from all d ij , then compare σm with σn , the condition label corresponding to the smaller variance is placed in the beginning of theroot list, and label it as a 1, the other condition labelis placed at the end of the root list, and label it as a k . Then remove a 1 and a k from S .Step 5: F ind the maximum Mahalanobis distance between condition a 1 and the rest of the conditions in S , and label it as a k − 1. Place a k − 1 left to a k and remove it from S .Step 6: F ind the maximum Mahalanobis distance between condition a k and the rest of the conditions in S , and label it as a 2. Place a 2 right to a 1 and remove a 2 from S .Step 7: R egard a 2 and a k-1 as a 1 and a k , and repeat steps 5–6, a 3 and a k − 2 can be obtained. Recursively, a complete root list {a 1, a 2, …, a k } can be obtained until S = ϕ,where ∈⋯a k {1,2,,}i , i = 1, 2,…, k .After establishing the root list, the structure of SDAG-RVMis determined. More separable classes will be separated at theupper nodes with this structure. Therefore, the error accumu-lation phenomenon can be alleviated.4. The proposed fault diagnosis approach based onimproved ITD and SDAG-RVM The fault diagnosis approach for diesel engine valve trainbased on improved ITD and SDAG-RVM is given as follows:Step 1: C ollect the vibration signals of diesel engine valvetrain in normal and fault conditions and divide theminto two subsets: the training samples and testing samples.Step 2: E ach sample is decomposed into a series of PRCs byimproved ITD method.Step 3: E stablish AR model for each PRC as follows: ∑=−−+=t a t k e t PRC ()PRC ()()i k nik i i 1(24)Table 3. Six work conditions of diesel engine valve train.Work case Intake valve train clearance (mm)Exhaust valve train clearance (mm)Condition10.200.40Tight clearance20.250.45Slightly tight clearance 30.300.50Normal40.350.55Slightly excessive clearance 50.400.60Excessive clearance60.400.60Excessive clearance with bent valve tappetFigure 8. The vibration signals of the diesel engine valve train in normal condition.Figure 9. The vibration signals of the diesel engine valve train in tight clearance condition.where model order n is decided by the most commonly used approach Akaike Information Criterion (AIC) [30], a ik is the AR coefficient and e i (t ) is a Gaussian white noise series with zero mean and variance σi 2. Since the first several a ik contain the major characteristics of dynamic system and the remnant variance σi 2 is closely related to its output characteristics [8],the first several AR coefficients a ik and remnant variance σi 2 of all PRCs are chosen as fault feature vectors.Step 4: C onstruct a multi-class RVM by using SDAG method.Step 5: T he fault features of training samples are used to trainSDAG-RVM.Figure 13.The vibration signals of the diesel engine valve train in excessive clearance with bent valve tappet condition.Figure 10. The vibration signals of the diesel engine valve train in slightly tight clearance condition.Figure 11.The vibration signals of the diesel engine valve train in slightly excessive clearance condition.Figure 12. The vibration signals of the diesel engine valve train in excessive clearance condition.Step 6: T he fault features of testing samples are fed into the trained SDAG-RVM and the working condition can be identified.The flow chart of the fault diagnosis approach is illustrated in figure 5.5. Experiment and application5.1. Experimental rig setupAll the data used in this work have been collected from an exper-imental test rig. The test rig mainly consists of a WP7 diesel engine, a dynamometer, a LMS SCADA III multi-analyzer system and a computer, the test rig and its schematic diagram are shown in figures 6 and 7, respectively. Table 2 summarizes the specifications of the WP7 diesel engine. The dynamometer was coupled to the engine, which allows maintainance of a con-stant speed and load during the tests. The 3D accelerometers were attached to the first cylinder head and the top, center and bottom of the first cylinder block. The angular encoder was used as an external clock in order to synchronize the signals with the crankshaft position. The four accelerometers and the encoderwere sampled at 25 600 samples per second. According toNyquist theorem, this sampling speed allows a maximum band-width of 12.8 kHz. Therefore, it can meet the sampling require-ment for the fault diagnosis of diesel engine. Data acquisitionwas controlled by LMS SCADA III multi-analyzer system and the collected signals were stored in the computer for furtheranalysis.5.2. Fault simulation and data acquisitionSeveral tests were performed to generate a database for the valve train in normal and five fault conditions. The spe-cific parameters of six working conditions are shown in table 3. Abnormal clearances of a valve train (larger or smaller than the clearance specified by the manufacturer) were simulated by adjusting the valve clearance adjust-ment screw of the first cylinder, and the valve tappet was artificially bent.To keep the valve train fault detection as simple as possible, reduce the crankshaft speed fluctuation, and minimize the fuel consumption; the measurement was car-ried out at a speed of 700 rpm, which corresponds to the idle speed of diesel engine. In order to find the optimalFigure 14.The improved ITD decomposition result of diesel engine valve train in excessive clearance condition.。

相关文档
最新文档