高三(文)数学第七周考练题文档

合集下载

数学-新马中学2013届高三10月第七周周自主练习数学文

数学-新马中学2013届高三10月第七周周自主练习数学文

淮安市新马中学第7周周测数学文卷说明:本卷考试时间120分钟,满分160分一、填空题:本大题共14小题,每小题5分,共70分,不需写出解答过程,请把答案直接填写在答题纸相应位置上........。

1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =__________2.已知i R b a i ibia ,,(32∈+=-+为虚数单位),则b a += . 3.在△ABC 中,sin cos A Ba b=,则∠B= . 4.执行右边的程序框图,若15p =,则输出的n = .5.若向量→a 、→b 满足|→a |=1,|→b |=2,且→a 与→b 的夹角为π3,则|→a +2→b |=6.函数)2||,0,0()sin(πϕωϕω<>>++=A k x A y 的图象如下,则y 的表达式是7.现有含盐7%的食盐水200 g,需将它制成工业生产上需要的含盐5 %以 上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水x g,则x 的 取值范围是8. 设数列{}n a 中,112,-1n n a a a n +==+,则通项n a = _______。

9.双曲线2214y x -=的渐进线被圆226210x y x y +--+=所截得的弦长为 . 10.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为_11.函数+2sin [,]22y x x ππ=-在区间上的最大值为12.若函数f (x)满足(1)()f x f x +=-,且(1,1]时,(),x f x x ∈-=则函数y=f(x)的图象与函数3log y x =的图象的交点的个数为 。

13.如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅=14.若关于x 的方程222(1)10x x k ---+=,有5个解,则k=ABDCEDABC一、填空题本大题共14小题,每小题5分,共70分1.______________ 2.______________ 3. ______________ 4.______________5. _____________ 6.______________ 7. ______________ 8.______________9. __ 10._____________ 11.______________ 12.______________13.______________ 14.______________二、解答题(本大题共6道题,计90分,解答应写出文字说明,证明过程或演算步骤). 15.(本小题满分14分)在ABC △中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值16.(本小题满分14分)多面体ABCDE 中,1====AE AC BC AB ,2=CD ,ABC AE 面⊥,CD AE //。

高三文科数学小综合专题练习--应用问题

高三文科数学小综合专题练习--应用问题

高三文科数学小综合专题练习——应用问题一、选择题1. 某种细菌经60分钟培养,可繁殖为原来的2倍.10个细菌经过7小时培养,细菌能达到的个数是A.640B.1280C.2560D.51202. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区的时间为A.5.0小时B.1小时C.5.1小时D.2小时 3. 客车从甲地以h km 60的速度行驶1小时到达乙地,在乙地停留了半小时,然后以h km 80的速度行驶1小时到达丙地,下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间的关系图象中,正确的是4. 已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是A. 在1t 时刻,甲车在乙车前面B. 1t 时刻后,甲车在乙车后面C. 在0t 时刻,两车的位置相同D. 0t 时刻后,乙车在甲车前面5. 某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差A.10B.20C.30D.340二、填空题6. 某人向东走了x 千米,然后向右转0120,再朝新方向走了3千米,结果他离出发点恰好tOB As 50 100 15013千米,那么x 的值是___________.7. 里氏震级M 的计算公式为:0lg lg A A M -=,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅是001.0,则此次地震的震级为_________;9级地震的最大振幅是5级地震最大振幅的______倍.8. 某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表 低谷时间段用电价格表 高峰月用电量 (单位:千瓦时) 高峰电价 (单位:元/千瓦时)低谷月用电量 (单位:千瓦时) 低谷电价 (单位:元/千瓦时)50及以下的部分 568.0 50及以下的部分 288.0 超过50至200的部分 598.0 超过50至200的部分318.0超过200的部分 668.0 超过200的部分 388.0若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元(用数字作答).w.w.w.k.s.5.u.c.o.m9.有一批材料可以建成m 200的围墙,如果用此材料在一边靠墙的地方围成一块矩形 场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形最大 面积为________.(围墙厚度不计)10.某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增00x ,八月份销售额比七月份递增00x ,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x 的最小值是________. 三、解答题11. 如图,为了解某海域海底构造,在海平面内一条直线上的C B A ,,三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求DEF ∠的余弦值。

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

上海市市辖区2024高三冲刺(高考数学)部编版测试(押题卷)完整试卷

上海市市辖区2024高三冲刺(高考数学)部编版测试(押题卷)完整试卷

上海市市辖区2024高三冲刺(高考数学)部编版测试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(2)题某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有A.16种B.36种C.42种D.60种第(3)题过的重心作直线,已知与、的交点分别为、,,若,则实数的值为A.或B.或C.或D.或第(4)题从1,2,3,4,5,6,7,8,9这九个数中,随机取出3个不同的数,这3个数的和是偶数的概率是A.B.C.D.第(5)题某学校高一年级进行趣味投篮比赛,规定投进球加2分,没有投进扣1分,已知李同学投篮的命中率为,且每次投篮是否命中相互独立,则经过5次投篮后李同学得分超过5分的概率为()A.B.C.D.第(6)题已知,,则()A.B.C.D.第(7)题已知集合,,则()A.B.C.D.第(8)题已知集合,,则的非空真子集的个数为()A.14B.6C.7D.8二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题现有红、黄、绿三个不透明盒子,其中红色盒子内装有两个红球、一个黄球和一个绿球;黄色盒子内装有两个红球,两个绿球;绿色盒子内装有两个红球,两个黄球.小明第一次先从红色盒子内随机抽取一个球,将取出的球放入与球同色的盒子中;第二次从该放入球的盒子中随机抽取一个球.记抽到红球获得块月饼、黄球获得块月饼、绿球获得块月饼,小明所获得月饼为两次抽球所获得月饼的总和,则下列说法正确的是()A.在第一次抽到绿球的条件下,第二次抽到绿球的概率是B.第二次抽到红球的概率是C.如果第二次抽到红球,那么它来自黄色盒子的概率为D.小明获得块月饼的概率是第(2)题已知点,动点满足,则下面结论正确的为()A.点的轨迹方程为B.点到原点的距离的最大值为5C.面积的最大值为4D.的最大值为18第(3)题抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数.用x表示红色骰子的点数,用y表示绿色骰子的点数,用表示一次试验的结果.定义事件为“”,事件为“为奇数”,事件为“”,则下列结论正确的是()A.与互斥B.与对立C.D.与相互独立三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设是等差数列的前项和,,,当取得最小值时,______.第(2)题已知函数在上单调函数,则的最大值是______.第(3)题定义域和值域均为(常数)的函数和的图象如图所示,给出下列四个命题:①方程有且仅有三个解;②方程有且仅有三个解;③方程有且仅有九个解;④方程有且仅有一个解.其中正确的结论是__________(填写所有正确结论的番号).四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,平面,四边形为直角梯形,.(1)求异面直线与所成角的大小;(2)求二面角的余弦值.第(2)题某乒乓球训练机构以训练青少年为主,其中有一项打定点训练,就是把乒乓球打到对方球台的指定位置(称为“准点球”),在每周末,记录每个接受训练的学员在训练时打的所有球中“准点球”的百分比(),A学员已经训练了1年,下表记录了学员最近七周“准点球”的百分比:周次(x)12345675252.853.55454.554.955.3若.(1)根据上表数据,计算与的相关系数,并说明与的线性相关性的强弱;(若,则认为与线性相关性很强;若,则认为与线性相关性一般;若,则认为与线性相关性较弱)(精确到)(2)求关于的回归方程,并预测第周“准点球”的百分比.(精确到)参考公式和数据:,,.第(3)题已知函数.(1)当时,求函数的单调区间;(2)设函数,若函数在区间上存在正的极值,求实数的取值范围.第(4)题在直角坐标系xoy中,动圆M与圆外切,同时与圆内切,记圆心M的轨迹为E.(1)求E的方程;(2)已知三点T,P,Q在E上,且直线TP与TQ的斜率之积为;(i)求证:P,O,Q三点共线;(ii)若,直线TQ交x轴于点A,交y轴于点B,求四边形OPAB面积的最大值.第(5)题已知数列满足,.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.。

高三数学一轮总复习 第七章 不等式 第四节 基本不等式

高三数学一轮总复习 第七章 不等式 第四节 基本不等式

课时跟踪检测(三十九) 基本不等式及应用一抓基础,多练小题做到眼疾手快1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为________.解析:∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立,∴ab 的最大值为14.答案:142.(2016·盐城调研)若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为________.解析:因为a >0,b >0,1a +1b =1,所以a +b =ab ,则4a -1+16b -1=4b -1+16a -1a -1b -1=4b +16a -20ab -a +b +1=4b +16a -20.又4b +16a =4(b +4a )⎝ ⎛⎭⎪⎫1a +1b =20+4×⎝ ⎛⎭⎪⎫b a+4a b ≥20+4×2b a ·4a b =36,当且仅当b a=4a b 且1a +1b =1,即a =32,b =3时取等号,所以4a -1+16b -1≥36-20=16. 答案:163.已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t =________. 解析:因为a >0,b >0时,有ab ≤a +b24=t 24,当且仅当a =b =t2时取等号.因为ab的最大值为2,所以t 24=2,t 2=8,所以t =8=2 2.答案:2 24.(2016·常州一模)已知x >0,则xx 2+4的最大值为________.解析:因为x x 2+4=1x +4x,又x >0时,x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时取等号,所以0<1x +4x≤14,即x x 2+4的最大值为14. 答案:145.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.解析:依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.答案:20二保高考,全练题型做到高考达标1.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.解析:由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.当且仅当a =b =1时取等号. ∴m +n 的最小值是4. 答案:42.(2015·湖南高考改编)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.解析:由1a +2b=ab ,知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2. 答案:2 23.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.解析:每批生产x 件,则平均每件产品的生产准备费用是800x元,每件产品的仓储费用是x 8元,则800x +x 8≥2 800x ·x 8=20,当且仅当800x =x8,即x =80时“=”成立,∴每批生产产品80件.答案:804.(2016·重庆巴蜀中学模拟)若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是________.解析:1a +1+4b +1=⎝ ⎛⎭⎪⎫ 1a +1+4b +1 a +1+b +14=14⎝ ⎛⎭⎪⎫1+4+b +1a +1+ 4a +1b +1 ≥14(5+24)=94,当且仅当b +1a +1=4a +1b +1,即a =13,b =53时取等号.所以1a +1+4b +1的最小值是94. 答案:945.若一元二次不等式ax 2+2x +b >0(a >b )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,则a 2+b 2a -b 的最小值是________.解析:由一元二次不等式ax2+2x +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,得⎩⎪⎨⎪⎧Δ=4-4ab =0且a >0,a ×1a 2-2a+b =0,所以ab =1且a >0.又已知a >b ,所以a 2+b 2a -b =a -b 2+2aba -b=(a -b )+2a -b ≥22,当且仅当a -b =2a -b 时取等号.所以a 2+b2a -b的最小值是2 2.答案:2 26.已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1,所以x 2+y 2=1+xy . 所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4,解得-2≤x +y ≤2. 当且仅当x =y =1时等号成立. 所以x +y 的最大值为2. 答案:27.(2016·青岛模拟)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为________.解析:因为log 2x +log 2y =log 22xy -1≤log 2⎝ ⎛⎭⎪⎫x +2y 2 2-1=2-1=1,当且仅当x =2y =2,即x =2,y =1时等号成立, 所以log 2x +log 2y 的最大值为1. 答案:18.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:1⊗k =k +1+k =3,即k +k -2=0, ∴k =1或k =-2(舍), ∴k =1.∴f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3,当且仅当x =1x,即x =1时等号成立.答案:1 39.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x4-2x 的最大值.解:(1)y =12(2x -3)+82x -3+32=-⎝⎛⎭⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0,∴3-2x 2+83-2x≥2 3-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)∵0<x <2, ∴2-x >0, ∴y =x4-2x =2·x2-x≤ 2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, ∴当x =1时,函数y =x4-2x 的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.三上台阶,自主选做志在冲刺名校1.(2016·南京名校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则3a +2b的最小值为________.解析:不等式组在直角坐标系中所表示的平面区域如图中的阴影部分所示.由z =ax +by 得y =-a b x +z b,当z 变化时,它表示经过可行域的一组平行直线,其斜率为-a b ,在y 轴上的截距为z b,由图可知当直线经过点A (4,6)时,在y 轴上的截距最大,从而z 也最大,所以4a +6b =12,即2a +3b =6,所以3a +2b =2a +3b 6·⎝ ⎛⎭⎪⎫3a +2b =16⎝ ⎛⎭⎪⎫6+6+4a b +9b a ≥4,当且仅当a =32,b =1时等号成立.所以3a +4b的最小值为4.答案:42.(2015·南京二模)已知函数f (x )=x 2+ax +11x +1(a ∈R).若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:令f (x )=x 2+ax +11x +1≥3(x ∈N *),则(3-a )x ≤x 2+8,即3-a ≤x +8x .因为x +8x≥28=42,当且仅当x =22时取等号,又x ∈N *,当x =2时,x +8x=6;当x =3时,x+8x =3+83<6,因此x +8x 的最小值为3+83,于是3-a ≤3+83,即a ≥-83. 答案:⎣⎢⎡⎭⎪⎫-83,+∞3.(2016·常州期末调研)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积...为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形为区域的总面积最大,最大为676 m 2.。

(上海专用)高考数学总复习 专题07 不等式分项练习(含解析)-人教版高三全册数学试题

(上海专用)高考数学总复习 专题07 不等式分项练习(含解析)-人教版高三全册数学试题

第七章不等式一.基础题组1. 【2017高考某某,3】不等式11x x-> 的解集为 . 【答案】(),0-∞ 【解析】不等式即:1110x--> , 整理可得:10x-> , 解得:0x < ,不等式的解集为:(),0-∞ .2.【2016高考某某文数】若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-【考点】线性规划及其图解法【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目来看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.3. 【2015高考某某文数】若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为.【答案】3【解析】不等式组表示的平面区域如图OAB ∆(包括边界),联立方程组⎩⎨⎧=+=2y x xy ,解得⎩⎨⎧==11y x ,即)1,1(A , 平移直线02=+y x 当经过点A 时,目标函数y x z 2+=的取得最大值,即321max =+=z .【考点定位】不等式组表示的平面区域,简单的线性规划.【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 4. 【2015高考某某文数】下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B【考点定位】同解不等式的判断.【名师点睛】求解本题的关键是判断出022)1(3222>≥++=++x x x . 本题也可以解出各个不等式,再比较解集.此法计算量较大.5. 【2014某某,理5】 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.【答案】22【解析】22222222222x y x y xy +≥⋅=⋅=,当且仅当222x y =时等号成立. 【考点】基本不等式. 6. 【2013某某,文1】不等式21xx -<0的解为______. 【答案】0<x <12【解析】x (2x -1)<0⇒x ∈(0,12). 7. 【2013某某,文13】设常数a >0.若9x +2a x≥a +1对一切正实数x 成立,则a 的取值X 围为______. 【答案】[15,+∞) 【解析】考查均值不等式的应用.由题知,当x >0时,f (x )=9x +2a x ≥229a x x⨯=6a ≥a +1⇒a ≥15.8. 【2012某某,文10】满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是__________. 【答案】-29. 【2011某某,理4】不等式13x x+≤的解为______. 【答案】x <0或12x ≥ 【解析】10. 【2011某某,理15】若a ,b ∈R ,且ab >0.则下列不等式中,恒成立的是( )A .a 2+b 2>2ab B .2a b ab +≥C.11 a b ab+> D .2b a a b +≥ 【答案】D 【解析】11. 【2011某某,文6】不等式1<1x的解为________. 【答案】{x |x <0或x >1} 【解析】12. 【2011某某,文9】若变量x,y满足条件30350x yx y-≤⎧⎨-+≥⎩,则z=x+y的最大值为________.【答案】5 2【解析】13. 【2010某某,理1】不等式042>+-xx的解集为_______________; 【答案】)2,4(-【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 14. 【2010某某,文14】将直线l 1:nx +y -n =0、l 2:x +ny -n =0(n ∈N *,n ≥2)、x 轴、y 轴围成的封闭图形的面积记为S n ,则lim n →∞S n =________.【答案】1【解析】如图阴影部分为直线l 1,l 2与x 轴、y 轴围成的封闭图形.∴S阴=S △OAM +S △OCM =12×|OA |×|y M |+12|OC |×|x M |=12×1×1n n ++12×1×1n n +=1nn +. ∴lim n →∞S n =limn →∞1n n +=lim n →∞111n+=1. 15. 【2010某某,文15】满足线性约束条件232300x y x y x y +≤⎧⎪+≤⎪⎪≥⎨⎪≥⎪⎪⎩的目标函数z =x +y 的最大值是( )A .1 B. 32C .2D .3 【答案】C【解析】如图为线性可行域由2323x y x y +=⎧⎨+=⎩求得C (1,1),目标函数z 的几何意义为直线在x 轴上的截距.画出直线x +y =0,平移,可知:当直线过C (1,1)时目标函数取得最大值,即z max =1+1=2.16. (2009某某,理11)当 0≤x≤1时,不等式kx x≥2sin π成立,则实数k 的取值X 围是____________. 【答案】k≤1【解析】∵0≤x≤1时,不等式kx x≥2sin π成立,设2sinx y π=,y=kx ,做出两函数的图象,∴由图象可知,当k≤1时,kx x≥2sinπ17. (2009某某,文7)已知实数x 、y 满足⎪⎩⎪⎨⎧≤-≥≤,3,2,2x x y x y 则目标函数z=x-2y 的最小值是_________. 【答案】-918. 【2008某某,理1】不等式|1|1x -<的解集是.19. 【2007某某,理5】已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____20. 【2007某某,理13】已知,a b 为非零实数,且a b <,则下列命题成立的是 A 、22a b < B 、22ab a b < C 、2211ab a b< D 、b aa b <21. 【2007某某,理15】已知()f x 是定义域为正整数集的函数,对于定义域内任意的k ,若 ()2f k k ≥成立,则()()211f k k +≥+成立,下列命题成立的是A 、若()39f ≥成立,则对于任意1k ≥,均有()2f k k ≥成立;B 、若()416f ≥成立,则对于任意的4k ≥,均有()2f k k <成立;C 、若()749f ≥成立,则对于任意的7k <,均有()2f k k <成立;D 、若()425f =成立,则对于任意的4k ≥,均有()2f k k ≥成立。

高三数学总复习导与练 第七篇第一节配套课件(教师用) 理

高三数学总复习导与练 第七篇第一节配套课件(教师用) 理

2.实数比较大小的常用方法 (1)作差法:a,b∈R a-b>0⇔a>b; a-b=0⇔a=b; a-b<0⇔a<b. (2)作商法:a,b∈R+ ab>1⇔a>b; ab=1⇔a=b; ab<1⇔a<b.
作商法的适用范围较小,且限制条件较多,因而用的较少,一般问题可以 利用作差法比较大小.
(3)分母(分子)有理化 形如: a+1- a与 a- a-1比较大小. (4)根据不等式的基本性质或常用结论进行比较. (5)利用函数的单调性比较大小.
解:设购买 A 型汽车和 B 型汽车分别为 x 辆、y 辆,则
40x+90y≤1000,
x≥5, y≥6, x,y∈N*,
4x+9y≤100,
x≥5, 即
y≥6,
x,y∈N*.
将实际问题中的不等关系写成相应的不等式时,应注意关键性的文字语言 与对应数学符号之间的正确转换,常见的文字语言有大于、不低于、超过、至少等.
解:(1)因未知 c 的正负或是否为零,无法确定 ac 与 bc 的大小,所以是假命题. (2)因为 c2≥0,所以只有 c≠0 时才正确.c=0 时,ac2=bc2,所以是假命题. (3)a<b,a<0⇒a2>ab;a<b,b<0⇒ab>b2,命题是真命题.
(4)由 a<b<0⇒1a>1b,命题是真命题.
根据不等式的性质求范围时,一定要彻底利用不等式的性质进行变形求解,如不等 式两边同乘一个含字母的式子,必须确定它的正负,同向不等式只能相加,不能相 减等.同时要注意不等式性质应用的条件及可逆性.
通过f(-1),f(1)求f(-2)的范围时,不能把a,b的范围单独求出来,这样容易扩大范 围,必须用整体思想来处理.
第1节 不等关系与不等式

启恩2013届高三文科数学考练试题7

启恩2013届高三文科数学考练试题7

启恩2013届高三文科数学考练试题(7) 时间:60分钟1.若函数()sin ([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ( )(A )2π(B )32π (C )23π (D )35π2.设02x p <<,则“2sin 1x x ?”是“sin 1x x?”的( )条件(A )充分而不必要 (B )必要而不充分(C )充分必要(D )既不充分也不必要 3.已知0,0,w j p ><<直线4π=x 和45π=x 是函数()sin()f x x w j =+图像的两条相邻的对称轴,则j =( )(A )π4 (B )π3 (C )π2 (D )3π44.sin 47sin 17cos 30cos17-=( )(A)2(B )12- (C )12(D25.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) (A )钝角三角形 (B)直角三角形 (C)锐角三角形 (D)不能确定6.已知sin cos αα-=,(0,)απ∈,则sin 2α=( )(A) 1-(B)2-(C)2(D) 17.在中,,BC=2,B =60°,则△ABC 的面积是( ) (A2(B2(C2(D48.已知2()sin ()4f x x π=+若1(lg 5),(lg),5a fb f ==则( )(A )0a b += (B )0a b -= (C )1a b += (D )1a b -=9.在△ABC 中,若60A ∠= ,45B ∠=,BC =,则A C =( ) (A) (B) (C(D210.函数cos 622xxx y -=-的图象大致为( )一、选择题:每小题5分,满分50分。

11.在△ABC中,若3,,3a b A p ===则C 的大小为______ __.12.当函数sin (02)y x x x π=-≤<取得最大值时,x =_______. 13. 函数()cos 2f x x x = 在区间[0,2]p 上的零点个数为 . 14.下图是某算法的程序框图,则程序运行后输出的结果是______ __.三、解答题:满分12分。

第07讲 立体几何-2022年新高考数学新情景、新文化问题(新高考地区专用)(解析版)

第07讲 立体几何-2022年新高考数学新情景、新文化问题(新高考地区专用)(解析版)

第07讲立体几何一、单项选择题1.〔2021·全国高三专题练习〕我国古代数学名著?九章算术?中“开立圆术〞曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术〞相当于给出了球的体积V ,求其直径d的一个近似公式d ≈人们还用过一些类似的近似公式.根据 3.14159π=…判断,以下近似公式中最精确的一个是〔〕 A.d ≈B.d ≈C.d ≈D.d ≈【答案】D 【分析】根据球的体积公式可知332d Vπ=,将四个选项分别化简得到3d ,通过比拟近似值可得结果.【详解】球的体积3432d V π⎛⎫=⨯ ⎪⎝⎭,3632d V V ππ∴==.3.14159π=⋅⋅⋅, 1.570792π∴=⋅⋅⋅.记1d =3116392716d V ∴==;2d =3232 1.5d V V ∴==;3d =3331.57d V ∴=;4d =343117d V ∴=. 27 1.8916≈,11 1.5717≈,2716∴,1.5,1.57,117中,117最接近2π.4d ∴更精确.应选:D.2.〔2021·黑龙江齐齐哈尔·高一期末〕中和殿是故宫外朝三大殿之一,位于紫禁城太和殿与保和殿之间,中和殿建筑的亮点是屋顶为单檐四角攒〔cuán 〕尖顶,表达天圆地方的理念,其屋顶局部的轮廓可近似看作一个正四棱锥.此正四棱锥的侧棱长为侧面与底面所成的锐二面角为θ,这个角接近30°,假设取30θ=︒,那么以下结论正确的选项是〔〕 A .正四棱锥的底面边长为48m B .正四棱锥的高为4m C.正四棱锥的体积为2D .正四棱锥的侧面积为2 【答案】C 【分析】在如下图的正四棱锥中,设底面边长为2a ,根据侧棱长和侧面与底面所成的二面角可求底边的边长,从而可求体高、侧面积以及体积,据此可判断各项的正误. 【详解】如图,在正四棱锥S ABCD -中,O 为正方形ABCD 的中心,SH AB ⊥, 那么H 为AB 的中点,连接,,SO OH AO ,那么SO ⊥平面ABCD ,OH AB ⊥, 那么SHO ∠为侧面与底面所成的锐二面角,设底面边长为2a .正四棱锥的侧面与底面所成的锐二面角为θ, 这个角接近30°,取30θ=︒,∴30SHO ∠=︒,那么OH a =,OS =,SH =.在Rt SAH 中,(222a ⎫+=⎪⎪⎝⎭,解得12a =,故底面边长为()24m ,)12m =,侧面积为21424122S =⨯⨯=,体积3124243V =⨯⨯⨯=.应选:C .3.〔2021·济宁市育才中学高二开学考试〕张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥底面BCD ,BC CD ⊥,且2AB CD ==,1BC =,利用张衡的结论可得球O 的外表积为〔〕A .30B .2C .D .【答案】D 【分析】由BC CD ⊥,AB ⊥底面BCD ,将三棱锥A BCD -放在长方体中,求出外接球的半径以及圆周率的值,再由球的外表积公式即可求解. 【详解】 如下图:因为BC CD ⊥,AB ⊥底面BCD ,1BC =,2AB CD ==, 所以将三棱锥A BCD -放在长、宽、高分别为2,1,2的长方体中, 三棱锥A BCD -的外接球即为该长方体的外接球,外接球的直径3AD ,利用张衡的结论可得2π5168=,那么π=所以球O的外表积为234π9π2⎛⎫== ⎪⎝⎭应选:D.4.〔2021·甘肃〔理〕〕“端午节〞为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子便是端午节食俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为3cm 2,高为6cm 〔不含外壳〕的圆柱状竹筒粽.现有两碗馅料,假设一个碗的容积等于半径为6cm 的半球的体积,那么这两碗馅料最多可包三角粽或最多可包竹筒粽的个数为〔参考数据:444≈.〕〔〕 A .35,20 B .36,20 C .35,21 D .36,21【答案】C 【分析】分别计算正四面体,圆柱和半球的体积,再根据题意将体积相除进行分析即可 【详解】棱长为6cm的正四面体的体积)23116cm 3V =, 底面半径为3cm 2,高为6cm 的圆柱的体积()2323276cm 22V ππ⎛⎫=⨯⨯= ⎪⎝⎭, 半径为6cm 的半球的体积()333146144cm 23V ππ=⨯⨯=.235.5=≈,14464221.32732ππ⨯=≈, 所以这两碗馅料最多可包三角粽35个,最多可包竹筒粽21个. 应选:C5.〔2021·山西高三月考〔文〕〕?九章算术?商功章记载:今有圆困,高一丈三尺三寸、少半寸,容米二千斛,问周几何?即一圆柱形谷仓,高1丈3尺133寸,容纳米2000斛〔1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,3π≈〕,那么圆柱底面圆的周长约为多少?同时也有记载:“邪解立方得二堑堵“,即堑堵是两底面为直角三角形的三棱柱,如下图为一堑堵几何体,6AB =尺,10BC =尺,8BE =尺,2DCF π∠=.现提出一个问题:将圆柱形谷仓中的二千斛米用n 个堑堵分装,那么n 的最小值为〔〕 A .11 B .12 C .13 D .14【答案】D 【分析】根据题意算出圆柱的容积、堑堵的容积,再相除计算即可 【详解】由题知圆柱的体积2000 1.623240V =⨯=〔立方尺〕,堑堵的体积11681024022ABE DCF V AB BE BC -=⋅⋅=⨯⨯⨯=〔立方尺〕,而324013.5240=,所以n 的最小值为14. 应选:D6.〔2021·上海市西南位育中学高二期中〕祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个求积的著名命题:“幂势既同,那么积不容异〞,“幂〞是截面积,“势〞是几何体的高,意思是两个同高的立体,如在等高处截面积相等,那么体积相等.由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所得旋转体的体积为1V ,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为2V ,那么12V V 、满足以下哪个关系式〔〕 A .1212V V =B .1223V V =C .122V V =D .12V V =【答案】D 【分析】由题意可得旋转体夹在两个相距为8的平行平面之间,用任意一个与y 轴垂直的平面截这两个旋转体,设截面与原点距离为||y ,求得截面面积相等,利用祖暅原理知,两个几何体的体积相等. 【详解】如图,两图形绕y 轴旋转所得的旋转体夹在两个相距为8的平行平面之间, 用任意一个与y 轴垂直的平面截这两个旋转体,设截面与原点距离为||y ,所得截面面积21(44||)S y π=-,12S S ∴=,由祖暅原理知,两个几何体的体积相等,即12V V =应选:D 【点睛】关键点点睛:此题考查了祖暅原理的应用,求旋转体的体积的方法,解题的关键祖暅原理,清楚旋转体夹在两个相距为8的平行平面之间,考查学生的额转化思想,数形结合思想,属于较难题.7.〔2021·无锡市第一中学高一期中〕八角红楼是某校现址上最早的教学大楼,她是一座三层的教学楼,中间是四层的八角楼,也是该校最具历史意义的一幢建筑.“以八角红楼为标志,绿树红墙,借锡惠、运河之景,形成大气、优美之校园环境〞是该校校园的整体规划指导思想,因此在此后的综合教育楼等校园建筑的设计中,大多都以坡屋顶、八角顶和八角红楼相照应,形成了现在该校校园建筑的整体风格,给无数校友和国内外来宾留下了深刻的印象,为迎接建党100周年及110年校庆,学校考虑更换楼项红瓦,考虑到拼接重叠、各种可能的其他损耗及后期维护需要,准备按楼顶面积的1.5倍准备红瓦,八角红楼的楼顶可近似看成正八棱锥,正八棱锥的底面边长约为2m ,红瓦整箱出售,每箱50片,每片规格为20cm×30cm ,那么学校至少需要采购红瓦〔〕 A .10箱 B .11箱C .12箱D .13箱【答案】B 【分析】根据正八棱锥的底面为正八边形,侧面为8个全等的等腰三角形,等腰三角形的高即为侧面的侧高,求得其侧面积即可. 【详解】正八棱锥的底面为正八边形,侧面为8个全等的等腰三角形,等腰三角形的高即为侧面的侧高,如下图:∵22tan 8tan41tan 8πππ=-,令tan8t π=,那么221t t =-,即2210t t +-=,解得1t =-1t =-〔舍去〕∴1tan 18A H O H O H π'===',,∴2OO OH '==121=842(2162S A A OH ⋅⋅=⋅⋅=+侧810.828=+所以学校至少需要采购红瓦11箱, 应选:B8.〔2022·全国〕我国古代数学名著?九章算术?中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何?〞这里的“羡除〞,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除〞的体积为〔〕 A .84 B .66C .126D .105【答案】A 【分析】由图可知,中间局部为棱柱,两侧为两个全等的四棱锥,再由柱体和锥体的体积公式可求得结果. 【详解】按照图2中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形, 两条直角边长分别为7、3,直三棱柱的高为6,所以,直三棱柱的体积为11736632V =⨯⨯⨯=.两侧为两个全等的四棱锥,四棱锥的底面为直角梯形, 直角梯形的面积为()1272122S +⨯==,四棱锥的高为3h =,所以,两个四棱锥的体积之和为2121232132V =⨯⨯⨯=,因此,该“羡除〞的体积为1284V V V =+=. 应选:A. 二、多项选择题9.〔2021·山西省长治市第二中学校高一月考〕“阿基米德多面体〞也称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它表达了数学的对称美.如下图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.AB = A .该半正多面体的体积为203B .该半正多面体过,,A B CC .该半正多面体有外接球,且它的的外表积为8πD .该半正多面体有内切球,且它的的外表积为4π 【答案】AC 【分析】根据几何体的体积公式判断A ,作出截面即可判断B ,根据外接球为正四棱柱可以判断C ,根据点到面的距离判断D ; 【详解】解:该半多面体,是由棱长为2的正方体沿正方体各棱的中点截去8个三棱锥所得, 对于A :因为由正方体沿正方体各棱的中点截去8个三棱锥,所以该几何体的体积1120222811323V =⨯⨯-⨯⨯⨯⨯=,故A 正确;过,,A B C 三点的截面为正六边形ABCFED,所以26S ==,故B 错误;,侧棱长为2的正四棱柱的外接球,∴2222(2)2R =++,∴R∴该半正多面体的外接球的外表积22448S R πππ==⨯=,故C 正确.由根据该几何体的对称性可知,如果几何体存在内切球,那么球心一定是正方体的中心,又正方体的中心到半正多面体的四边形的面的距离为1,又顶点到三角形面的距离11111123d ⨯⨯⨯⨯==,所以正方体的中心,到三角形面的距离121233d ⎫==⎪⎭,故几何体不存在内切球,即D 错误;应选:AC10.〔2021·南京师范大学附属中学江宁分校高二开学考试〕大摆锤是一种大型游乐设备〔如图〕,游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为平安束缚,配以平安带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤〞启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤〞启动后,以下结论正确的选项是〔〕 A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,那么θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α. 【答案】ABD 【分析】根据题意建立数学模型进而求解出答案. 【详解】解:因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所以OA 又因为OB ,AB 为定值,所以OA 也是定值, 所以点A 在某个定球面上运动,选项A 正确; 作出简图如下,OB l ⊥,所以2πδθ+=,选项B 正确;因为B α∈,所以不可能有AB//α,选项C 错误;设AB a ,那么4OB a =,OA =, 当AB α⊥时,直线OA 与平面α所成角最大;此时直线OA 与平面αD 正确. 应选:ABD.11.〔2021·广东中山·〕蜂巢是由工蜂分泌蜂蜡建成的.从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理.我国著名数学家华罗庚曾专门研究蜂巢的结构,著有?谈谈与蜂房结构有关的数学问题?,用数学的眼光去看蜂巢的结构,如图,在正六棱柱ABCDEF A B C D E '''''-的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M ABF -,O BCD -,N DEF -,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,那么以下结论正确的有〔〕 A .异面直线DO 与FP 所成角的大小为10928'︒ B .BF MN <C .B ,M ,N ,D 四点共面 D .cos 5444θ'=︒ 【答案】CD 【分析】对于A 选项,由异面直线DO 与FP 所成角范围即可判断;对于B 选项,不妨设正六边形的边长为2AB =,可判断BF MN =;对于C 选项,可以判断四边形BMND 是平行四边形,进而判断;对于D 选项,取BF 的中点G ,连接GA ,GM ,可得MGA θ∠=.在等腰三角形ABF 中,120BAF ∠=︒,可得GB ,GA ,在Rt GMB 中,tan 5444GBGM =︒',进而解得二面角.【详解】解:对于A 选项,由于异面直线DO 与FP 所成角不可能为钝角10928︒',故A 选项不正确;对于B 选项,如图1,不妨设正六边形的边长为2AB =,因为去掉的三个三棱锥全等,故,,M O N 共面,所以BDF 与MON △都是边长为BF MN =,故B 选项错误;对于C 选项,如图1,连接AE ,易知//,AE MN AE MN =,//,AE BD AE BD =,故//,BD MN BD MN =,所以四边形BMND 是平行四边形,因此B ,M ,N ,D 四点共面,故C 选项正确;对于D 选项,如图2,取BF 的中点G ,连接,GA GM ,MF MB =,MG BF ∴⊥,AF AB =AG BF ∴⊥,所以MOA ∠即为平面PBOD 与正六边形底面所成的二面角的平面角,即MGA θ∠=.在等腰三角形ABF 中,120BAF ∠=︒,那么3sin2332GB AB π===,1sin 2162GA AB π===.在Rt MGB △中,tan 5444GB GM '︒=,解得:tan 5444GB GM =='︒Rt G MA △中,cos 5444GA GM θ'∴==︒.故D 选项正确.应选:CD12.〔2021·河北衡水中学〕我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,那么积不容异.这个定理的推广是夹在两个平行平面间的两个几何体,被平行于这两个平面的平面所截,假设截得两个截面面积比为k ,那么两个几何体的体积比也为k .如以下图所示,线段AB 长为4,直线l 过点A 且与AB 垂直,以B 为圆心,以1为半径的圆绕l 旋转一周,得到环体M ;以A ,B 分别为上下底面的圆心,以1为上下底面半径的圆柱体N ;过AB 且与l 垂直的平面为β,平面//αβ,且距离为h ,假设平面α截圆柱体N 所得截面面积为1S ,平面α截环体M 所得截面面积为2S ,那么以下结论正确的选项是〔〕A .圆柱体N 的体积为4πB .212S S π=C .环体M 的体积为8πD .环体M 的体积为28π【答案】ABD 【分析】圆柱体N 的体积为4π,即可判断A ,14S ==222S r r ππ=-外内,即可判断B ,环体M 体积为2V π柱,可判断C 、D. 【详解】由圆柱体N 的体积为4π,应选项A 正确;由图可得14S ==222S r r ππ=-外内,其中(224r =外,(224r =内,故212S S ππ==,应选项B 正确; 环体M 体积为22248V ππππ=⋅=柱,应选项D 正确,选项C 错误应选:ABD 三、填空题13.〔2022·全国高三专题练习〕?九章算术?是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥;鳖臑是四个面均为直角三角形的四面体.在如下图的堑堵111ABC A B C -中,4AB BC ==,AC =假设阳马111C ABB A -的侧棱18C A =,那么鳖臑1C ABC -中,点C 到平面1C AB 的距离为________.【分析】由勾股定理得到ABC 是等腰直角三角形,利用线面垂直的性质可得1CC AC ⊥,分别求解1C BA △和ABC 的面积,然后由等体积法11C C AB C ABC V V --=,列式求解即可. 【详解】解:由4AB BC ==,AC =222AB BC AC +=,所以AB BC ⊥, 故ABC 是等腰直角三角形,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,且AC ⊂平面ABC ,那么1CC AC ⊥,在1Rt C CA 中,AC =18C A =,所以1C C =故在1Rt C CB △中,1C B =那么1111422C BA S AB C B =⋅⋅=⨯⨯△1144822ABC S AB CB =⋅⋅=⨯⨯=△, 设点C 到平面1C AB 的距离为d ,由等体积法11C C AB C ABC V V --=,可得111133C BA ABC S d S CC ⋅⋅=⋅△△,解得d =C 到平面1C AB.. 14.〔2021·广东江门·〕古希腊数学家阿基米德的墓碑上刻着一个圆柱,如下图,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现.我们来重温这个伟大发现吧!记圆柱的体积和外表积分别为1V 、1S ,球的体积和外表积分别为2V 、2S ,那么1221V S V S ⨯=____. 【答案】1 【分析】设球的半径为R ,确定圆柱的底面半径以及高,利用圆柱和球的体积公式以及外表积公式,列式求解即可. 【详解】解:设球的半径为R ,那么圆柱的底面半径为R ,高为2R , 所以23122V R R R ππ=⋅=,3243V R π=,2212226S R R R R πππ==+⋅=,224S R π=⋅,故32122321241463V S R R V S R R ππππ⨯=⨯=. 故答案为:1.15.〔2021·浙江杭州·高一期末〕半正多面体亦称为“阿基米德多面体〞,是由边数不全相同的正多边形为面围成的多面体,如下图.这是一个将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体〞花岗岩石凳,此石凳的棱长为,那么此石凳的体积是________3cm . 【答案】1600003【分析】根据题意,该石凳是由棱长为40cm 的正方体沿各棱中点截去8个三棱锥所得到的,故由正方体的体积减去8个三棱锥的体积,即可求解.【详解】解:由图可知:该石凳是由棱长为40cm 的正方体沿各棱中点截去8个三棱锥所得到的,∴该石凳的体积为:2111600004040408202020cm 323V =⨯⨯-⨯⨯⨯⨯⨯=. 故答案为:1600003. 16.〔2021·辽宁大连·〕甲烷是一种有机化合物,分子式是4CH ,它作为燃料广泛应用与民用和工业中,近年来科学家通过观测数据,证明了甲烷会导致地球外表温室效应不断增加,深入研究甲烷,趋利避害,成为科学家面临的新课题,甲烷分子的结构为正四面体结构,四个氢原子位于正四面体的四个顶点,碳原子位于正四面体的中心,碳原子和氢原子之间形成的四个碳氢键的键长相同,键角相等,请你用学过的数学知识计算甲烷碳氢键之间的夹角余弦值______.【答案】13-.【分析】先作出正四面体ABCD ,O 为该正四面体的中心,连接DO 交面ABC 于E ,那么E 为ABC 的中心,连接AE 交BC 于F ,那么F 为线段BC 的中点,设出该正四面体的棱长,根据E 为ABC 的中心求出AE ,进而求出DE ,设出AO 和DO 〔二者相等〕的长度并通过勾股定理解出,最后用余弦定理即可求得. 【详解】如图,正四面体ABCD ,O 为该正四面体的中心,连接DO 交面ABC 于E ,那么E 为ABC 的中心,连接AE 交BC 于F ,那么F 为线段BC 的中点,设正四面体ABCD 棱长为1,那么AF = 易知点E 是ABC的中心,∴23AE AF ==在Rt DEA中,由勾股定理:DE =AO DO x ==, 在Rt OEA中,由勾股定理:222x x x ⎫=+⇒⎪⎪⎝⎭⎝⎭∴在AOD △中,由余弦定理:22211cos 3AOD +-∠==-.故答案为:13-.四、解答题17.〔2021·河北巨鹿中学高一月考〕正多面体也称柏拉图立体,被誉为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体〔各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等〕.数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a 〔如图〕,把它们拼接起来,使它们一个外表重合,得到一个新多面体. 〔1〕求新多面体的体积;〔2〕求正八面体AEFBH 中二面角A BF C --的余弦值; 〔3〕判断新多面体为几面体?〔只需给出答案,无需证明〕【答案】〔1〔2〕13-;〔3〕七面体.【分析】〔1〕分别取QR 、PT 的中点G 、N ,连接NQ 、NR 、NG ,证明出PT ⊥平面NQR ,计算出NQR △的面积,利用锥体的体积公式可求得正四面体的体积,利用锥体的体积公式可求得正八面体的体积,进而可得出新多面体的体积为正四面体和正八面体体积之积,即可得解;〔2〕在正八面体AC 中,取BF 的中点为M ,连接AM CM 、,分析出AMC ∠为二面角A BF C --的平面角,计算出ACM △三边边长,利用余弦定理可求得结果;〔3〕计算出正四面体相邻面所构成的二面角与正八面体相邻面所构成的二面角互补,由此可得出结论. 【详解】〔1〕分别取QR 、PT 的中点G 、N ,连接NQ 、NR 、NG ,如以下图所示:因为PQ QT =,N 为PT 的中点,那么QN PT ⊥且NQ =,同理可知NQ PT ⊥且NQ =, NQ NR N =,所以,PT ⊥平面NQR ,G 为QR 的中点,那么NG QR ⊥,且NG =,2112224NQR S QR NG a a =⋅=⨯=△,所以正四面体Q PRT -的体积为2311133QNRV SPT a =⋅=⨯=; 如以下图所示:在正八面体中,连接AC 交平面EFBH 于点O ,那么AO ⊥平面EFBH ,所以2EFBG S a =,AO =,所以正八面体的体积为23211223323EFBG V S AO a a =⨯⨯⨯=⨯⨯⨯=,因为新多面体体积为原正四面体体积1V 与正八面体体积2V 之和,所以,新多面体的体积为12V V V =+=〔2〕如图,在正八面体AC 中,取BF 的中点为M ,连接AM CM 、,AB AF =,M 为BF 的中点,那么AM BF ⊥,且2AM =, 同理可知CM BF ⊥,且CM =, 所以,AMC ∠为二面角A BF C --的平面角.2AC AO ==,由余弦定理得2221cos 23MA MC AC ADC MA MC +-∠==-⋅,故二面角A BF C --的余弦值为13-;〔3〕新多面体是七面体.证明如下:由〔2〕可知,正八面体任何相邻面构成的二面角余弦值均为13-,设此角为α.在正四面体中,因为NQ PT ⊥,NR PT ⊥,故QNR ∠为二面角A BF C --的平面角.由余弦定理得2222221cos 23a NQ NR QR QNR NQ NR ∠⎫⎫+-⎪⎪+-===⋅,即正四面体相邻面所构成的二面角θ的余弦值为13,所以180θα+=,因此新多面体是七面体.)18.〔2021·沙坪坝·重庆八中〕?九章算术?中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,如图,在正方体1111ABCD A B C D -中,2AB =,E 为1AA 的中点,F 为1DD 的中点,13AN NB =.〔1〕求证:四棱锥11N EFC B -为阳马;〔2〕求平面NEF 与平面1NFC 所成二面角的大小. 【答案】〔1〕证明见解析;〔2〕2π.【分析】〔1〕根据题意,先证明四边形11EFC B 为矩形,再证明EN ⊥平面11EFC B 即可; 〔2〕建立空间直角坐标系,利用空间向量夹角公式即可解得. 【详解】〔1〕∵E 为1AA 的中点,F 为1DD 的中点,∴11////EF AD B C ,11EF AD B C ==,EF ⊥平面11ABB A ,∴四边形11EFC B 为矩形, ∵111111111,,,22AE A B AN A E A B AA AA AB ==⊥⊥, ∴111ANE A EB NE B E ⊥∽,.又∵EF ⊥平面11ABB A ,∴EF EN ⊥,又1B E EF E ⋂=,∴EN ⊥平面11EFC B , ∴四棱锥11N EFC B -为阳马.〔2〕以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,1DD →为z 轴正方向, 如下图建立空间直角坐标系.那么()()()11112,,0,2,0,1,0,0,1,0,2,2,0,,1,2,,1222N E F C NE NF →→⎛⎫⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,132,,22NC →⎛⎫=- ⎪⎝⎭.设平面NEF 的法向量为()1111,,n x y z →=,那么1111111100210202y z n NE n NF x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩--+=⎪⎩,令z =-1,那么()10,2,1n →=--.同理可得:平面NEF 的法向量25,2,42n →⎛⎫=-- ⎪⎝⎭.那么12cos ,0n n →→<>==,所以平面EFN 与平面1NFC 所成二面角为2π. 19.〔2021·江西高三开学考试〔理〕〕中国是风筝的故土,南方称“鹞〞,北方称“鸢〞,如图,某种风筝的骨架模型是四棱锥P ABCD -,其中AC BD ⊥于O ,4OA OB OD ===,8OC =,PO ⊥平面ABCD . 〔1〕求证:PD AC ⊥;〔2〕试验说明,当12PO OA =时,风筝表现最好,求此时直线PD 与平面PBC 所成角的正弦值.【答案】〔1〕证明见解析;〔2【分析】〔1〕利用PO ⊥平面ABCD 可得PO AC ⊥,再利用AC BD ⊥即可;〔2〕以O 为坐标原点,分别以OB ,OC ,OP 为x ,y ,z 轴正方向,建立空间直角坐标系即可求出;或利用等体积法--P BCD D PBC V V =三棱锥三棱锥也可. 【详解】〔1〕证明:∵PO ⊥平面ABCD ,AC ⊂平面ABCD , ∴PO AC ⊥,又AC BD ⊥,PO BD O =,PO ⊂平面POD ,BD ⊂平面POD ,∴AC ⊥平面POD , 又PD ⊂平面POD . ∴PD AC ⊥.〔2〕解:法一:如图,以O 为坐标原点,分别以OB ,OC ,OP 为x ,y ,z 轴正方向,建立空间直角坐标系O xyz -,那么()4,0,0B ,()0,8,0C ,()4,0,0D -,()002P ,,,∴()4,0,2PB =-,()0,8,2PC =-,()4,0,2PD =--, 设(),,m a b c =为平面PBC 的法向量,那么00m PB m PC ⎧⋅=⎨⋅=⎩,即420820a c b c -=⎧⎨-=⎩,令4c =,那么()2,1,4m =, 设直线PD 与平面PBC 所成角为θ,那么4sin 16PD m PD mθ-⋅===法二:如图,在Rt POB中,由222PB PO OB =+得PB = 在Rt POC中,由222PC PO OC =+得PC = 在Rt POD中,由222PD PO OD =+得PD = 在Rt BOC 中,由222BC BO OC=+得BC =在PBC 中,由222cos 2PB BC PCPBC PB BC +-∠=⨯22225+-==,得sin PBC∠==11sin225PBCS PB BC PBC=⋅⋅⋅∠=⨯=△设点D到平面PBC的距离为h,由--P BCD D PBCV V=三棱锥三棱锥,得111323PBCBD OC OP S h⨯⨯⨯⨯=⨯⨯△,即2PBCBD OC OPhS⨯⨯===△,设直线PD与平面PBC所成的角为θ,那么sinhPDθ===20.〔2021·全国高三专题练习〔理〕〕2022年北京冬奥会标志性场馆——国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带〞,就像速度滑冰运发动高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带〞又象征北京2022年冬奥会.其中“冰丝带〞呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,表达了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如?九章算术?中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在?缀术?提出祖暅原理:“幂势既同,那么积不容异〞,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体假设在所有等高处的水平截面的面积相等,那么这两个几何体的体积相等.〔Ⅰ〕利用祖暅原理推导半径为R的球的体积公式时,可以构造如图②所示的几何体M,几何体M的底面半径和高都为R,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d的平面β截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;〔Ⅰ〕现将椭圆()222210x ya ba b+=>>所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A,B〔如图〕,类比〔Ⅰ〕中的方法,探究椭球A的体积公式,并写出椭球A,B的体积之比.【答案】〔Ⅰ〕答案见解析;〔Ⅰ〕243AV abπ=,体积之比为ba.【分析】〔Ⅰ〕由题意,直接画出阴影即可,然后分别求出图①中圆的面积及图②中圆环的面积即可证明; 〔Ⅰ〕类比〔Ⅰ〕可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上,在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ,证明截面面积相等,由祖暅原理求出出椭球A 的体积,同理求出椭球B 的体积,作比得出答案. 【详解】〔Ⅰ〕由图可知,图①几何体的为半径为R 的半球,图②几何体为底面半径和高都为R 的圆柱中挖掉了一个圆锥,与图①截面面积相等的图形是圆环〔如阴影局部〕 证明如下:在图①中,设截面圆的圆心为1O ,易得截面圆1O 的面积为()22R d π-,在图②中,截面截圆锥得到的小圆的半径为d ,所以,圆环的面积为()22R d π-,所以,截得的截面的面积相等〔Ⅰ〕类比〔Ⅰ〕可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上〔如图〕,在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ;在半椭球截面圆的面积()2222b a d aπ-,在圆柱内圆环的面积为()22222222b b b d a d a aπππ-=-∴距离平面α为d 的平面截取两个几何体的平面面积相等, 根据祖暅原理得出椭球A 的体积为:()222142233A V V V b a b a ab πππ⎛⎫=-=⋅⋅-⋅⋅= ⎪⎝⎭圆柱圆锥,同理:椭球B 的体积为243B V a b π=所以,两个椭球A ,B 的体积之比为ba.【点睛】关键点点睛:此题考查新定义问题,解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,考查学生的空间想象能力与运算求解能力,属于较难题.21.〔2021·九龙坡·重庆市育才中学高三月考〕在陕西汉中勉县的汉江河与定军山武侯坪一带,经常出土有铜、铁扎马钉等兵器文物.扎马钉〔如题21图〔1〕〕是三国时蜀汉的著名政治家、军事家诸葛亮所创造的一。

2020_2021学年新教材高中数学第七章概率7.2古典概型一课一练含解析第一册

2020_2021学年新教材高中数学第七章概率7.2古典概型一课一练含解析第一册

第七章概率§2 古典概型知识点1 古典概型的辨析1。

☉%757¥**0@%☉(2020·福建莆田六中单元训练)下列模型中,是古典概型的为().A。

从一部分零件中任意抽取一个,测其长度B.种一粒种子,观察它是否能够发芽C。

抛掷一枚均匀的骰子,观察向上的面的点数D。

统计甲、乙两人射击的成绩,分析两人击中靶子的概率答案:C解析:根据古典概型的定义进行判断.选项A中长度的值出现的可能性不一定相同,因此不是古典概型;选项B中发芽与不发芽的可能性不一定相等,不是古典概型;选项D不是随机试验,故不是古典概型;选项C中,出现的结果为1点至6点,结果是有限个,并且由于骰子均匀,因此每个点数向上的可能性相同,满足古典概型的两个特点,因此是古典概型.2。

☉%@27*83#@%☉(2020·山西怀仁一中单元训练)下列问题中是古典概型的是( ).A。

种下一粒杨树种子,求其能长成大树的概率B。

掷一枚质地不均匀的骰子,求出现1点的概率C。

在区间[1,4]上任取一个数,求这个数大于1。

5的概率D。

同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率答案:D解析:A,B两项中的各个样本点的发生不是等可能的;C项中样本点总数无限;D项中各个样本点的发生是等可能的,且是有限个。

故选D。

3.☉%*4*@28¥4%☉(多选)(2020·湖南岳阳一中月考)下列概率模型中,不是古典概型的有()。

A。

从区间[1,10]内任意取出一个数,求取到1的概率C.从含有1的10个整数中任意取出一个整数,求取到1的概率B。

向一个正方形ABCD内投掷一点P,求P恰好与A点重合的概率D.向上抛掷一枚不均匀的旧硬币,求正面朝上的概率答案:ACD解析:根据古典概型的定义考虑,AC中的样本点有无限多个,因此不属于古典概型。

D中硬币不均匀,则“正面朝上”“反面朝上”出现的可能性不相等,不是古典概型。

4.☉%#0216#¥@%☉(2020·湖北团风中学单元检测)下列试验中,是古典概型的有(填序号)。

【推荐】山东省2016届高三数学(文)优题精练:圆锥曲线 Word版含答案[ 高考]

【推荐】山东省2016届高三数学(文)优题精练:圆锥曲线 Word版含答案[ 高考]
14、如图,已知圆C与y轴相切于点T(0,2),与x轴正
半轴相交于两点M,N(点M必在点N的右侧),且
已知椭圆D: 的焦距等于 ,且过点
( I )求圆C和椭圆D的方程;
(Ⅱ)若过点M斜率不为零的直线与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
15、已知椭圆 : 的焦距为 ,离心率为 ,其右焦点为 ,过点 作直线交椭圆于另一点 .
山东省2016届高三数学文优题精练
圆锥曲线
一、选择、填空题
1、(2015年高考)过双曲线 的右焦点作一条与其渐近线平行的直线,交 于点 .若点 的横坐标为 ,则 的离心率为.
2、(2014年高考)已知双曲线 的焦距为 ,右顶点为 ,抛物线 的焦点为 ,若双曲线截抛物线的准线所得线段长为 ,且 ,则双曲线的渐近线方程为 。
(1)求椭圆C的方程;
(2)A,B为椭圆C上满足△AOB的面积为 的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设 =t ,求实数t的值.
4、(滨州市2015届高三一模)已知椭圆 的左右焦点分别是 ,且 的坐标为 ,离心率为 。
直线 与椭圆 交于 两点,当 时,M是椭圆C的上顶点,且 的周长为6.
(I)求椭圆C的标准方程;
(II)点P(2, ),Q(2,- )在椭圆上,A,B是椭圆上位于直线PQ两侧的动点。当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由。
6、(菏泽市2015届高三一模)椭圆 过点 ,离心率为 ,左右焦点分别为 ,过点 的直线交椭圆于 两点。
(1)求椭圆 的方程;
(Ⅰ)求椭圆 的方程;
(Ⅱ)过原点的直线与椭圆 交于 两点( 不是椭圆 的顶点),点 在椭圆 上,且 ,直线 与 轴、 轴分别交于 两点.

高三一轮复习第七次数学周练习

高三一轮复习第七次数学周练习

高三下学期第七周数学周测试题一.选择题(共8小题,每小题5分)1.已知集合A={x|y=},B={x∈R|a≤x≤a+l},若A∩B=∅,则实数a的取值范围为()A.[﹣3,2]B.(﹣∞,﹣3)∪(2,+∞)C.[﹣2,1]D.(﹣∞,﹣3]∪[2,+∞)2.当1<m<2时,复数(3+i)+m(2﹣i)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.4.已知m,n,s,t∈R*,m+n=4,+=9,其中m,n是常数,且s+t的最小值是,点M(m,n)是曲线﹣=1的一条弦AB的中点,则弦AB所在直线方程为()A.x﹣4y+6=0B.4x﹣y﹣6=0C.4x+y﹣10=0D.x+4y﹣10=0 5.已知0.5a=5b=3,则()A.ab<0<a+b B.ab<a+b<0C.a+b<ab<0D.a+b<0<ab6.如图所示,△ABC的面积为,其中AB=2,∠ABC=60°,AD为BC边上的高,M为AD的中点,若,则λ+2μ的值为()A.B.C.D.7.单位正四面体的外接球内接的最大正三角形边长为()A.B.C.D.8.已知函数在(0,1)内恰有3个极值点和4个零点,则实数ω的取值范围是()A.B.C.D.二.多选题(共4小题)(多选)9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增(多选)10.下列选项中正确的是()A.若平面向量,满足,则的最大值是5B.在△ABC中,AC=3,AB=1,O是△ABC的外心,则的值为4C.函数f(x)=tan(2x﹣)的图象的对称中心坐标为,k∈Z D.已知P为△ABC内任意一点,若,则点P为△ABC的垂心(多选)11.已知数列{a n}的前n项和为S n,a1=1,S n+1=S n+2a n+1,数列的前n项和为T n,n∈N*,则下列选项正确的是()A.数列{a n+1}是等比数列B.数列{a n+1}是等差数列C.数列{a n}的通项公式为D.T n>1(多选)12.如图,抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C交于M,N 两点,过点M,N分别作准线l的垂线,垂足分别为M1,N1,准线l与x轴的交点为F1,则()A.直线F1N与抛物线C必相切B.C.|F1M|•|F1N|=|F1F|•|MN|D.|FM1|•|FN1|=|FF1F|•|M1N1|三.填空题(共4小题,每小题5分)13.已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项和的最大值为.14.《九章算术》中的“商功“篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵ABC﹣A1B1C1中,M是A1C1的中点,AB=2AA1=2AC,,,若,则x+y+z =.15.已知函数f(x)=在区间(a,a+)上存在极值,则实数a的取值范围是.16.过抛物线y2=2px(p>0)焦点F的直线与抛物线的交于点A,B,O是坐标原点,且满足,S△AOB=,则p=()A.2B.C.4D.高三下学期第七周数学周测试题参考答案与试题解析一.选择题(共8小题)1.已知集合A={x|y=},B={x∈R|a≤x≤a+l},若A∩B=∅,则实数a的取值范围为()A.[﹣3,2]B.(﹣∞,﹣3)∪(2,+∞)C.[﹣2,1]D.(﹣∞,﹣3]∪[2,+∞)【分析】可求出A={x|﹣2≤x≤2},然后根据A∩B=∅可得出a的范围.【解答】解:A={x|4﹣x2≥0}={x|﹣2≤x≤2},B={x|a≤x≤a+1},且A∩B=∅,∴a>2或a+1<﹣2,∴a<﹣3或a>2,∴a的取值范围为(﹣∞,﹣3)∪(2,+∞).故选:B.【点评】本题考查了一元二次不等式的解法,交集和子集的定义,交集的运算,考查了计算能力,属于基础题.2.当1<m<2时,复数(3+i)+m(2﹣i)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据已知条件,结合复数的四则运算,以及复数的几何意义,即可求解.【解答】解:(3+i)+m(2﹣i)=3+2m+(1﹣m)i,∵1<m<2,∴3+2m>0,1﹣m<0,∴复数(3+i)+m(2﹣i)在复平面内对应的点(3+2m,1﹣m)位于第四象限.故选:D.【点评】本题主要考查复数的四则运算,以及复数的几何意义,属于基础题.3.第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.【分析】建立平面直角坐标系,可得双曲线的渐近线方程,由O4(﹣13,﹣11)在渐近线上,可得a,b的关系,即可求得离心率.【解答】解:如图建立平面直角坐标系,依题意,可得双曲线的渐近线方程为,由O4(﹣13,﹣11)在渐近线上,可得﹣11=•(−13)即可得,则双曲线C的离心率为=.故选:B.【点评】本题考查了双曲线的渐近线、离心率,属于中档题.4.已知m,n,s,t∈R*,m+n=4,+=9,其中m,n是常数,且s+t的最小值是,点M(m,n)是曲线﹣=1的一条弦AB的中点,则弦AB所在直线方程为()A.x﹣4y+6=0B.4x﹣y﹣6=0C.4x+y﹣10=0D.x+4y﹣10=0【分析】由已知求出s+t取得最小值时m,n满足的条件,再结合m+n=4求出m,n,再用点差法求出直线的斜率,从而得直线方程.【解答】解:∵,当且仅当,即取等号,∴,又m+n=4,又m,n为正数,∴可解得,设弦两端点分别为(x1,y1),(x2,y2),则,两式相减得,∵x1+x2=4,y1+y2=4,∴,∴直线方程为,即x﹣4y+6=0.故选:A.【点评】本题考查了直线与双曲线的综合运用,属于中档题.5.已知0.5a=5b=3,则()A.ab<0<a+b B.ab<a+b<0C.a+b<ab<0D.a+b<0<ab 【分析】化简得a=log0.53<0,b=log53>0,从而可得ab<0,化简=+,从而比较大小.【解答】解:∵0.5a=5b=3,∴a=log0.53<0,b=log53>0,∴ab<0,=+=log35+log30.5=log32.5,又∴0<log32.5<1,∴0<<1,∴ab<a+b<0,故选:B.【点评】本题考查了指数式与对数式的互化及对数的运算,属于基础题.6.如图所示,△ABC的面积为,其中AB=2,∠ABC=60°,AD为BC边上的高,M为AD的中点,若,则λ+2μ的值为()A.B.C.D.【分析】根据三角形的面积公式可求得BC,再根据AD为BC边上的高,求出BD,从而可得出点D的位置,再根据平面向量的线性运算将用表示,再根据平面向量基本定理求出λ,μ,即可得解.【解答】解:,所以BC=3,因为AD为BC边上的高,所以,因为M为AD的中点,所以=,又因为,所以,所以.故选:C.【点评】本题考查平面向量的基本定理,考查学生的运算能力,属于中档题.7.单位正四面体的外接球内接的最大正三角形边长为()A.B.C.D.【分析】由题意首先求得外接球半径,然后计算外接球内接的最大正三角形边长即可.【解答】解:如图为单位正四面体A﹣BCD.过点A作面BCD的垂线交面于点E,F为外接球球心,则E为△BCD的中心,,∴.不妨设AF=R.在Rt△BEF中,由勾股定理,得.即,解得.∴最大正三角形的边长为.故选:C.【点评】本题主要考查球与多面体的切接问题,空间想象能力的培养等知识,属于基础题.8.已知函数在(0,1)内恰有3个极值点和4个零点,则实数ω的取值范围是()A.B.C.D.【分析】由第4个正零点小于1,第4个正极值点大于等于1可解.【解答】解:,因为x∈(0,1),所以,又f(x)在(0,1)内恰有3个极值点和4个零点,所以,解得,所以实数ω的取值范围是.故选:A.【点评】本题考查了根据函数的零点和极值点求参数的取值范围,考查了转化思想,属中档题.二.多选题(共4小题)(多选)9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增【分析】化简函数f(x),根据函数的单调性与对称性和周期性,判断选项中的命题是否正确即可.【解答】解:函数f(x)=|sin x||cos x|=|sin x cos x|=|sin2x|,画出函数图象,如图所示;所以f(x)的对称轴是x=,k∈Z;所以x=是f(x)图象的对称轴,A正确;f(x)的最小正周期是,B正确;f(x)是偶函数,没有对称中心,C错误;x∈[,]时,2x∈[,π],sin2x≥0,所以f(x)=|sin2x|是单调减函数,D错误.故选:AB.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了命题真假的判断问题,是基础题.(多选)10.下列选项中正确的是()A.若平面向量,满足,则的最大值是5B.在△ABC中,AC=3,AB=1,O是△ABC的外心,则的值为4C.函数f(x)=tan(2x﹣)的图象的对称中心坐标为,k∈ZD.已知P为△ABC内任意一点,若,则点P为△ABC的垂心【分析】对A选项,根据平面向量数量积的定义与性质,函数思想即可求解;对B选项,根据三角形外心的性质,向量的线性运算及向量数量积的几何定义即可求解;对C选项,根据正切函数的图象性质即可求解;对D选项,根据向量数量积的性质,三角形垂心的概念即可求解.【解答】解:对A选项,∵,∴====≤=5,∴的最大值是5,∴A选项正确;对B选项,∵在△ABC中,AC=3,AB=1,O是△ABC的外心,∴====4,∴B选项正确;对C选项,令,可得x=,k∈Z,∴f(x)=tan(2x﹣)的图象的对称中心坐标为(,0),k∈Z,∴C选项错误;对D选项,∵,∴,∴,∴PB⊥CA,同理P A⊥BC,PC⊥AB,∴点P为△ABC的垂心,∴D选项正确.故选:ABD.【点评】本题考查平面向量数量积的定义与性质,函数思想,三角形外心的性质,正切函数的图象性质,三角形垂心的概念,属中档题.(多选)11.已知数列{a n}的前n项和为S n,a1=1,S n+1=S n+2a n+1,数列的前n项和为T n,n∈N*,则下列选项正确的是()A.数列{a n+1}是等比数列B.数列{a n+1}是等差数列C.数列{a n}的通项公式为D.T n>1【分析】由a n+1=S n+1﹣S n=2a n+1可得,,可判断A,B的正误,再求出a n,可判断C的正误,利用裂项相消法求T n,可判断D的正误.【解答】解:因为S n+1=S n+2a n+1,所以a n+1=S n+1﹣S n=2a n+1,a n+1+1=2a n+2,即,且a1+1=2,所以数列{a n+1}是首项为2,公比为2的等比数列,故A正确,B错误;所以,即,故C正确;因为,所以,故D错误;故选:AC.【点评】本题考查了等比数列的判断和裂项相消求和,属于中档题.(多选)12.如图,抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C交于M,N 两点,过点M,N分别作准线l的垂线,垂足分别为M1,N1,准线l与x轴的交点为F1,则()A.直线F1N与抛物线C必相切B.C.|F1M|•|F1N|=|F1F|•|MN|D.|FM1|•|FN1|=|FF1F|•|M1N1|【分析】选项A,联列方程,整理成y的一元二次方程,用判别式判定是否恒为零即可;选项B,由•=4m2≥0知,选项B正确;选项C,计算得|F1F||MN|=8m2+8,|F1M||F1N|=4m2+8,两式不恒等,故C不正确;选项D,先计算•,从而得⊥,由等面积法知选项D正确.【解答】解:由已知F(1,0),F1(﹣1,0),设过点F的直线方程为:x=my+1,设点M(my1+1,y1),N(my2+1,y2),则M1(﹣1,y1),N1(﹣1,y2),F1(﹣1,0),由,得y2﹣4my﹣4=0,所以y1+y2=4m,y1y2=﹣4,选项A:直线F1N的方程为y=(x+1),联立方程组得:,所以y2﹣4[(m+)y﹣1]=0,Δ=16(m+)2﹣16不恒为零,故选项A不正确;选项B:由题得=(my1+2,y1),=(my2+2,y2),而•=m2y1y2+2m(y1+y2)+4+y1y2=4m2≥0,所以cos<•>=≥0,所以∠MF1N≤,故B正确;选项C:|F1F|=2,|MN|=|x1+x2+2|=|m(y1+y2)+4|=4m2+4,所以|F1F||MN|=8m2+8;|F1M|2=(my1+2)2+y12,|F1N|2=(my2+2)2+y22,所以|F1M|2•|F1N|2=[(my1+2)(my2+2)]2+y22(my1+2)2+y12(my2+2)2+y12y22=(4m2+4)2﹣32m2+64m2+48=16(m2+2)2,所以|F1M||F1N|=4(m2+2)=4m2+8,所以选项C不正确;选项D:∵=(﹣2,y1),=(﹣2.y2),∴•=4+y1y2=4﹣4=0,∴⊥,在△M1FN1中,S=|M1N1|•|F1F|=|FM1||FN1|,故D正确.故选:BD.【点评】本题考查抛物线的应用,属于中档题.三.填空题(共4小题)13.已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项和的最大值为8.【分析】由题意,分类讨论,求出数列的前5项,从而得出结论.【解答】解:已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项分别为0,﹣2,0,﹣2,0;或0,﹣2,﹣4,﹣2,0;或0,2,0,2,0;或0,2,4,2,0;故当{a n}前5项分别为0,2,4,2,0 时,前5项的和最大,为0+2+4+2+0=8,故答案为:8.【点评】本题主要考查等差数列的定义,数列求和,属于基础题.14.《九章算术》中的“商功“篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵ABC﹣A1B1C1中,M是A1C1的中点,AB=2AA1=2AC,,,若,则x+y+z=.【分析】根据已知条件,结合空间向量的线性运算,即可求解.【解答】解:由图可知:,又因为,所以,所以,所以,所以,.故答案为:.【点评】本题主要考查空间向量的线性运算,属于基础题.15.已知函数f(x)=在区间(a,a+)上存在极值,则实数a的取值范围是(,1).【分析】求函数f(x)的导数,利用f′(x)=0求出极值点,再结合题意列出不等式求解集即可.【解答】解:因为函数f(x)=,x>0,所以f′(x)=﹣,令f′(x)=0,解得x=1,当f′(x)>0,即0<x<1,函数单调递增,当f′(x)<0,即x>1,函数单调递减,所以1是函数的极值点,又因为函数f(x)在区间(a,a+)(a>0)上存在极值,所以a<1<a+,解得<a<1,所以实数a的取值范围是(,1).故答案为:(,1).【点评】本题主要考查了利用导数研究函数的单调性和极值的应用问题,也考查了运算求解能力,是中档题.16.过抛物线y2=2px(p>0)焦点F的直线与抛物线的交于点A,B,O是坐标原点,且满足,S△AOB=,则p=()A.2B.C.4D.【分析】过A,B作抛物线准线的垂线,垂足分别为C,D,由AB=3FB,丨AC丨=2丨BD丨,求得丨BE丨,可得直线AB的方程,与抛物线联立方程,表示|AB|的长,进而可表示三角形的面积,根据面积求得p的值【解答】解:不妨设直线AB的斜率k>0,过A,B作抛物线准线的垂线,垂足分别为C,D,过B作BE⊥AC于E,由AB=3FB,∴=2,丨丨=2丨丨,即丨AC丨=2丨BD丨,∴E为AC的中点,即丨AE丨=丨AB丨,∴丨BE丨==丨AB丨,由S△OAB=S OAF+S OBF=丨BE丨•丨OF丨=p丨AB丨,S△OAB=丨AB丨,∴由丨AE丨=丨AB丨,则直线AB斜率为k AB=±2,直线AB的方程y=2(x ﹣1),,整理得:8x2﹣10px﹣8p2=0,则x1+x2=,则丨AB丨=x1+x2+p=+p,∴S△OAB=(+p),∴(+p)=,解得p=2.【点评】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,抛物线的焦点弦公式,考查计算能力,属中档题.。

数学-新马中学2013届高三10月第七周周自主练习数学理

数学-新马中学2013届高三10月第七周周自主练习数学理

淮安市新马中学2013届高三年级第七周周自主练习数学试卷Ⅰ(理科)2012/10/201.已知集合{}0,1,2M =,},|{M a a x x N ∈-==,则集合N M ⋂= ▲ .{}0 2.若2(31)i 25i a a a -+-=+,其中i 是虚数单位,则实数a 的值为 ▲ .2. 3.函数11()2x y -=的值域是___▲___.(0,+∞)4.已知平面向量a =(-1,1),b =(x -3,1),且a ⊥b ,则x = 5、已知函数y =sin (x ωϕ+)(ω>0,0<2πϕ≤)的部分图象 如图所示,则ϕ的值_6..在平面直角坐标系xOy 中,已知圆C 的圆心在第一象限,圆C与x 轴交于A (1,0),B (3,0)两点,且与直线x -y +1=0相切,则圆C 的半径为 ▲ .2 7设表示等比数列}{n a (*N n ∈)的前n 项和,已知3510=S S ,则=515S S▲ .7 8. 在ABC ∆中,角,,A B C 的对边分别为c b a ,,,若c A b B a 53cos cos =-,则tan tan AB=____▲____.49. 若椭圆3)0(12222ab a by a x 上横坐标为>>=+的点到左焦点的距离大于它到右准线的距离,则椭圆离心率e 的取值范围是 .10如图,在△ABC 中,2,120===∠AC AB BAC o,D 为BC 边上的点,且0=⋅BC AD ,EB CE 2=,则=⋅AE AD ____▲____.111.已知正数x ,y 满足2x+y-2 =0,则2x y xy +的最小值为 .9212.在平面直角坐标系xOy 中,设点()11P x y ,、()22Q x y ,,定义:1212()d P Q x x y y =-+-,. 已知点()10B ,,点M 为直线220x y -+=上的动点,AB CDE 学校________ ___ 班级 ______ _____ 姓名 ___________ 考号_____ ___装订线内请勿答题则使()d B M ,取最小值时点M 的坐标是 ▲ .()312,13.设R x ∈,||)21()(x x f =,若不等式k x f x f ≤+)2()(对于任意的R x ∈恒成立,则实数k 的取值范围是 ▲ . 2≥k14.在平面直角坐标系xOy 中,设A 、B 、C 是圆x 2+y 2=1上相异三点,若存在正实数λμ,,使得OC =OA OB λμ+ ,则()223λμ+-的取值范围是 ▲ . ()2+∞,15.(本小题满分14分)设ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,且满足 (2a+c)BC ·BA +c CA ·CB =0. (Ⅰ)求角B 的大小;(Ⅱ)若23b =,试求AB ·CB 的最小值.15解:(Ⅰ)因为(2)0a c BC BA cCA CB +⋅+⋅=,所以(2)cos cos 0a c ac B cab C ++= 即(2)cos cos 0a c B b C ++=,则(2sin sin )cos sin cos 0A C B B C ++= ……4分所以2sin cos sin()0A B C B ++=,即1cos 2B =-,所以23B π=………………8分(Ⅱ)因为22222cos 3b ac ac π=+-,所以22123a c ac ac =++≥,即4ac ≤当且仅当a c =时取等号,此时ac 最大值为4…………12分所以AB CB ⋅ =21cos 232ac ac π=-≥-,即A BC B ⋅ 的最小值为2-………………………14分16.已知m 为实常数.命题:p 方程22126x y m m -=-表示焦点在y 轴上的椭圆;命题q :方程22111x y m m +=+-表示双曲线. (1)若命题p 为真命题,求m 的取值范围; (2)若命题q 为假命题,求m 的取值范围;(3) 若命题p 或q 为真命题,且命题p 且q 为假命题,求m 的取值范围.16. 解:(1)据题意6020(6)2m m m m -<⎧⎪>⎨⎪-->⎩,解之得0<m <2;故命题p 为真命题时m 的取值范围为(0,2);…………4分(2)若命题q 为真命题,则(1)(1)0m m +-<,解得11m -<<,故命题q 为假命题时m 的取值范围(,1][1,)-∞-+∞ ;…………9分(3)由题意,命题p 与q 一真一假,从而当p 真q 假时有02,1 1.m m m <<⎧⎨≤-≥⎩或解得12m ≤<;当p 假q 真时有02,1 1.m m m ≤≥⎧⎨-<<⎩或解得10m -<≤;故m 的取值范围是(1,0][1,2)- .…………14分17. (本小题满分14分)现有一张长为80cm ,宽为60cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失。

广东省深圳市龙岗区龙城高级中学2021届高三上学期第七周周测语文试卷Word版含答案

广东省深圳市龙岗区龙城高级中学2021届高三上学期第七周周测语文试卷Word版含答案

龙城高级中学2021届高三语文周测【全卷总分100分,限时90分钟】一、古代诗歌阅读〔此题共2小题,22分〕〔一〕阅读这首唐诗,完成1~2题。

与东吴生相遇①〔唐〕韦庄十年身事各如萍,白首相逢泪满缨。

老去不知花有态,乱来唯觉酒多情。

贫疑陋巷春偏少,贵想豪家月最明。

且对一尊开口笑,未衰应见泰阶②平。

【注】①原诗题下有注:“及第后出关作。

〞此时诗人已59岁。

②泰阶:星名。

古人认为泰阶星现,预兆风调雨顺,民康国泰。

1.以下对这首诗的理解和分析,不正确的一项为哪一项〔3分〕A.首句诗人用随风漂泊的水上浮萍,形象地刻画了自己的“十年身事〞;“各〞字说明东吴生与自己同是天涯沦落人,彼此同病相怜。

B.颔联饱含辛酸,诗人觉得年华老去,与娇艳美丽的花朵相比早已没有了青春样态,只好在心情烦乱中借酒浇愁。

C.颈联使用了比照的手法,“贫〞与“贵〞,“陋巷〞与“豪家〞的强烈反差凸显了乱离社会的种种世态炎凉,暗含诗人对统治者压制人才的控诉。

D.诗人身处唐末乱世,历经沧桑,虽然直到晚年才科举及第,但仍心怀施展才华、报效朝廷的志向和国泰民安、天下太平的心愿,令人敬佩。

2.本诗以“泪〞开始,以“笑〞结尾,你认为矛盾吗?请结合诗意谈谈你的理解。

〔8分〕〔二〕阅读这首清诗,完成3~4小题。

帐夜①吴兆骞穹帐连山②落月斜,梦回孤客尚天涯。

雁飞白草年年雪,人老黄榆夜夜笳。

驿路几通南国使,风云不断北庭③沙。

春衣少妇空相寄,五月边城未著花。

【注】①诗人因科场案而流放宁古塔〔今黑龙江省宁安〕二十余年,此诗约作于抵宁古塔三年之时。

②连山:就着山势。

③北庭:汉时北匈奴所居之地,这里指诗人所居之地。

3.以下对这首诗的理解和赏析,不正确的一项为哪一项〔3分〕A.首联从梦醒起笔,绕开梦本身写眼前实景,虚中写实,表达了诗人处境难耐又无可奈何的愁苦。

B.颔联“夜夜笳〞与“落月斜〞照应,既点明“夜〞的题意,也暗示诗人夜夜有笳声、难以成眠的原因。

C.颈联“几通〞言时间之漫长、来使之稀少,“南国〞“北庭〞言路途之遥远、生活环境之迥异。

高考数学热点必会题型第7讲 导数之二阶导数的应用(原卷及答案)

高考数学热点必会题型第7讲 导数之二阶导数的应用(原卷及答案)

高考数学热点必会题型第5讲导数之二阶导数的应用——每天30分钟7天掌握一、重点题型目录【题型】一、利用二阶导数求函数的极值(极大值或极小值) 【题型】二、利用二阶导数求函数的单调性 【题型】三、利用二阶导数求参数的范围 【题型】四、利用二阶导数证明不等式 【题型】五、利用二阶导数与函数的对称性求值 【题型】六、利用二阶导数与函数的凹凸性求值 二、题型讲解总结第一天学习及训练【题型】一、利用二阶导数求函数的极值(极大值或极小值)例1.(2022·广西北海·一模(理))已知()12,,x x m ∈+∞()0m >,若12x x <,121112x x x x -->恒成立,则正数m 的最小值是( ) A .1eB .1C .11e+D .e例2.(2022·湖南·高二期中)已知二次函数()2f x ax bx c =++的图象过点()0,1-,且当0x >时,()ln f x x ≥,则ba的最小值为( )A .2-B .12-C .e -D .1e-例3.(2021·江苏·高二专题练习)设函数()()(1)(3,4)x x kf x e e x k -=--=,则( )A .3k =时,()f x 在0x =处取得极大值B .3k =时,()f x 在1x =处取得极小值C .4k =时,()f x 在0x =处取得极大值D .4k =时,()f x 在1x =处取得极小值例4.(2022·重庆市育才中学模拟预测)已知函数()()32012x a f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ). A .1B .2C .3D .4例5.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【题型】二、利用二阶导数求函数的单调性例5.(2022·湖北·竹溪县第二高级中学高三阶段练习)若19ln sin a ⎛⎫= ⎪⎝⎭,ln9b =-,ln(ln 0.9)c =-, 则( )A .c<a<bB .c b a <<C .a b c <<D .a c b <<例6.(2022·河南·模拟预测(理))己知22e 2e e e a a b b a b -=-,则( ) A .0a b +≥B .0a b +≤C .0ab ≥D .0ab ≤例7.(2022·黑龙江·嫩江市第一中学校高三期末(理))若22sin 4sin cos 41-=-+a a b b b b a ,则( ) A .2a b >B .2a b <C .|||2|>a bD .|||2|<a b例8.(2022·浙江省春晖中学模拟预测)在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭第二天学习及训练【题型】三、利用二阶导数求参数的范围例9.(2022·辽宁·东北育才双语学校模拟预测)设函数()2ln f x x x=+,()0,6x ∈,()f x 的图像上的两点()11,A x y ,()22,B x y 处的切线分别为1l ,2l ,且12x x <,1l ,2l 在y 轴上的截距分别为1b ,2b ,若12l l ∥,则12b b -的取值范围是( ) A .2ln 2,23⎛⎫- ⎪⎝⎭B .2ln 2,1ln 23⎛⎫-+ ⎪⎝⎭C .2ln 2,03⎛⎫- ⎪⎝⎭D .()1ln 2,2+例10.(2022·河南·南阳中学高三阶段练习(文))若关于x 的不等式32ln 42x x x x ax +≤++恒成立,则实数a 的取值范围为( ) A .[)1,-+∞B .[)1,+∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[),e +∞例11.(2022·全国·高二课时练习)已知函数()22e 1ln x f x x kx x ⎛⎫=-+ ⎪⎝⎭,若函数()f x 有唯一极值点,则实数k 的取值范围为( )A .()(]{}2,00,4e 2e ∞-⋃⋃B .(),4e ∞-C .()4e,∞+D .[)4e,∞+例12.(2021·江苏·高二单元测试)若关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,则实数m 的取值范围是( )A .15,4ln 2⎡⎫+∞⎪⎢⎣⎭ B .15,8ln 2⎡⎫+∞⎪⎢⎣⎭ C .15,4ln 2⎛⎤-∞ ⎥⎝⎦D .15,8ln 2⎛⎤-∞ ⎥⎝⎦【题型】四、利用二阶导数证明不等式例13.(2022·辽宁朝阳·高二期末)已知函数()f x 为偶函数,且当0x ≥时,2()e cos x f x x x =+-,则不等式(3)(21)0f x f x ---<的解集为( ) A .42,3⎛⎫- ⎪⎝⎭B .(,2)-∞-C .(2,)-+∞D .4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭例14.(2022·全国·高二专题练习)已知123a =,()11e b e =+,134c =,则a ,b ,c 的大小关系为( ). A .b a c >>B .c b a >>C .c a b >>D .a b c >>例15.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5例16.(2023·全国·高三专题练习)已知()f x 是R 上的偶函数,当[)0,x ∈+∞时,()2cos 12x f x x =-+,且()()21f x a f x +<+对x ∀∈R 恒成立,则实数a 的取值范围是___________.第三天学习及训练【题型】五、利用二阶导数与函数的对称性求值例17.(2022·四川·成都七中模拟预测(理))对于三次函数()32f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3211533212g x x x x =-+-,则122014201520152015g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2014B .2013C .20155D .1007例18.(2022·广东广州·高二期末)对于三次函数()()320ax bx d a f x cx =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()()320ax bx d a f x cx =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3232g x x x =-+,则1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .0 B .1C .32-D .32例19.(2022·全国·高三专题练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212例20.(2016·湖南衡阳·高三阶段练习(文))设函数()y f x ''=是()y f x '=的导数.某同学经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠都有对称中心()()0,x f x ,其中0x 满足()00f x ''=.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .2016【题型】六、利用二阶导数与函数的凹凸性求值例21.(2022·陕西渭南·高二期末(理))给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数.记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四个函数在π0,2⎛⎫⎪⎝⎭上是凸函数的有( )①()sin cos f x x x =+,②()e x f x x -=-,③()ln 2f x x x =-,④3()21f x x x =-+-. A .4个B .3个C .2个D .1个例22.(2023·全国·高三专题练习)设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________.例23.(2021·江苏扬州·高三阶段练习)函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<高考数学热点必会题型第5讲导数之二阶导数的应用——每天30分钟7天掌握一、重点题型目录【题型】一、利用二阶导数求函数的极值(极大值或极小值) 【题型】二、利用二阶导数求函数的单调性 【题型】三、利用二阶导数求参数的范围 【题型】四、利用二阶导数证明不等式 【题型】五、利用二阶导数与函数的对称性求值 【题型】六、利用二阶导数与函数的凹凸性求值 二、题型讲解总结第一天学习及训练【题型】一、利用二阶导数求函数的极值(极大值或极小值)例1.(2022·广西北海·一模(理))已知()12,,x x m ∈+∞()0m >,若12x x <,121112x x x x -->恒成立,则正数m 的最小值是( ) A .1eB .1C .11e+D .e【答案】B 【分析】不等式121112x x x x -->化简可得()()11221ln 1ln x x x x ->-,利用导数研究函数()()1ln f x x x =-的单调性,结合已知条件和函数的单调性可求m 的最小值.【详解】由121112x x x x -->,化简可得121112ln ln x x x x -->,即()()11221ln 1ln x x x x ->-.令()()1ln f x x x =-,则原不等式可化为()()12f x f x >, 由已知()f x 在(),m +∞上为单调递减函数,又()11ln ln 1x f x x x x x -=-+=-+-',令()1ln 1u x x x =-+-,则()2110u x x x-'=-≤在()0,∞+上恒成立,所以()u x 在()0,∞+上单调递减,又()10u =,所以当()0,1x ∈时,()0u x >,当()1,x ∈+∞时,()0u x <.故当()0,1x ∈时,0fx,当()1,x ∈+∞时,()0f x '<.即()f x 在()0,1上单调递增,在()1,+∞上单调递减.所以m 1≥.所以正数m 的最小值是1, 故选:B .例2.(2022·湖南·高二期中)已知二次函数()2f x ax bx c =++的图象过点()0,1-,且当0x >时,()ln f x x ≥,则ba的最小值为( )A .2-B .12-C .e -D .1e-【答案】D【分析】将元不等式变形为ln 1()x ax b g x x++≥=,利用导数研究()g x 的单调性可得当直线y ax b =+与()g x 相切时ba取得最小值,根据导数的几何意义和直线的点斜式方程求出切线方程,进而得出(2ln 1)()b x x h x a x+-==,利用二次求导研究()h x 的单调性,求出max ()h x 即可.【详解】由()1f x =-知1c =-,∴()21f x ax bx =+-,∴()ln 1ln x f x x ax b x +≥⇔+≥,令ln 1()(0)x g x x x +=>,则1()0eg =, 2ln ()xg x x-'=,令()01g x x '>⇒<,令()01g x x '<⇒>,所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 如图,若y ax b =+图象在()g x 图象上方,则01x <<,要使y ax b =+图象在()g x 图象上方,则ba表示x 轴截距的相反数,ba的最小值即为截距的最大值,而当截距最大时,直线y ax b =+与()g x 相切, 记切点为00(,)x y ,则0020ln ()x g x a x -'==,又00ln 1()x g x x +=, 所以00000220000ln ln 1ln 2ln 1()x x x x y x x x x x x x -+-+=-+=+, 有()0002ln 1ln x x b a x +-=,设()()2ln 1(01)ln x x h x x x+=<<, 则()()2222ln 1ln 12(ln )ln 1()(ln )(ln )x x x x h x x x -++-'==,故当1(0,)ex ∈时,函数()0h x '>,当1(,1)e x ∈时,()0h x '<,故当(0,1)x ∈时,函数()h x 在1(0,)e上单调递增,在1(,1)e 上单调递减,此时max 11()()e eh x h ==,综上,b a的最小值为1e -.故选:D.例3.(2021·江苏·高二专题练习)设函数()()(1)(3,4)x x kf x e e x k -=--=,则( )A .3k =时,()f x 在0x =处取得极大值B .3k =时,()f x 在1x =处取得极小值C .4k =时,()f x 在0x =处取得极大值D .4k =时,()f x 在1x =处取得极小值 【答案】D【分析】先对()f x 求导并整理,当3k =时,令2()(2)4x g x x e x =++-,对()g x 二次求导判断其单调性,得()g x 在R 上单调递增,由函数零点存在定理确定零点所在区间,从而得()f x 的单调性即可判断;当4k =时,令2()(3)5x h x x e x =++-,同理求导,判断单调性即可判断.【详解】解:由()()(1)x x k f x e e x -=--,得 1()()(1)()(1)x x k x x k f x e e x k e e x ---'=+-+--12(1)(1)1k x x x x k e x k e--⎡⎤=-++--⎣⎦, 当3k =时,22(1)()(2)4x x x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(2)4x g x x e x =++-,222()2(2)1(25)1x x x g x e x e x e '=+++=++, 222()22(25)(412)x x x g x e x e x e ''=++=+,所以当3x <-时,()0g x ''<,()g x '在(),3-∞-上单调递减; 当3x >-时,()0g x ''>,()g x '在()3,-+∞上单调递增, 所以6()(3)10g x g e -''≥-=->,所以()g x 在R 上单调递增,又2(0)240,(1)330g g e =-<=->,则()g x 在区间()0,1上存在唯一零点0x , 当0x x <时,()0g x <,即()0f x '<,()f x 在()0,x -∞单调递减; 当0x x >时,()0g x >,即()0f x '>,()f x 在()0,x +∞单调递增; 所以()f x 在0x x =处取得唯一极值,故选项A 、B 错误;当4k =时32(1)()(3)5x x x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(3)5x h x x e x =++-,则222()2(3)1(27)1x x x h x e x e x e '=+++=++, 222()22(27)(416)x x x h x e x e x e ''=++=+,所以当<4x -时,()0h x ''<,()h x '在(),4-∞-上单调递减; 当4x >-时,()0h x ''>, ()h x '在()4,-+∞上单调递增; 所以8()(4)10h x h e -''≥-=->,则()h x 在R 上单调递增, 又(0)0,(1)0h h <>,则()h x 在区间()0,1上存在唯一零点t , 则令()0f x '=,得1x =或(0,1)x t =∈, 当x t <或1x >时,()0f x '>,()f x 单调递增, 当1t x <<时,()0f x '<,()f x 单调递减,所以()f x 在x t =处取得极大值,在1x =处取得极小值,选项C 错误,选项D 正确. 故选:D.【点睛】关键点点睛:解答本题的关键是,利用二次求导判断导函数的单调性,然后再利用函数零点存在定理确定零点所在区间,从而得原函数的单调性.例4.(2022·重庆市育才中学模拟预测)已知函数()()32012xa f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ).A .1B .2C .3D .4【答案】B【分析】首先利用导数求解函数的单调性,再根据函数值域与定义域的关系即可得出结论.【详解】根据题意,求导可得,()()204x a f x ae x a a '=-->, ∴()1022xx a f x ae x a e x ⎛⎫''=-=-> ⎪⎝⎭( x e x >),∴f x 在R 上单调递增,又∴当0x =时,()00f '= ∴当0x <时,0f x,即函数()f x 在,0上单调递减,当0x >时,0fx,即函数()f x 在0,上单调递增,故有()()min 02f x f a ==-,即得()[)2,f x a ∈-+∞,所以根据题意,若使()()min 2f f x a =-,需使()f x 的值域中包含[)0,+∞, 即得202a a -≤⇒≤, 故a 的最大值为2. 故选:B.【点睛】求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 例5.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x x h x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值.【详解】依题意,ln 2x x x k x +<-,令()ln 2x x x h x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =, 故选:C【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.【题型】二、利用二阶导数求函数的单调性例5.(2022·湖北·竹溪县第二高级中学高三阶段练习)若19ln sin a ⎛⎫= ⎪⎝⎭,ln9b =-,ln(ln 0.9)c =-, 则( )A .c<a<bB .c b a <<C .a b c <<D .a c b <<【答案】A【分析】先由对数的运算法则把,,a b c 转化成同底的对数,再构造函数,利用导数判断单调性,进而,,a b c 的真数的大小关系,最后利用ln y x =的单调性判断,,a b c 的大小. 【详解】由对数的运算法则得1ln 9ln 9b =-=,10ln(ln 0.9)ln ln 9c ⎛⎫=-= ⎪⎝⎭.令函数()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 在R 是单调递减.11sin 99∴<令函数()()sin ln 1,0,6g x x x x π⎛⎫=-+∈ ⎪⎝⎭,则()1cos 1g x x x '=-+,令函数()1cos ,0,16h x x x x π⎛⎫=-∈ ⎪+⎝⎭,则()()21sin 1h x x x '=-++,()h x '在0,6π⎛⎫ ⎪⎝⎭上单调递减,且()211010,06216h h ππ⎛⎫''=>=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭, ()000,,06x h x π⎛⎫'∴∃∈= ⎪⎝⎭, 所以()h x 在()00,x 上单调递增,在0,6x π⎛⎫⎪⎝⎭单调递减.又()1600,06616h h πππ⎛⎫===-> ⎪+⎝⎭+ ()0h x ∴>在0,6π⎛⎫ ⎪⎝⎭恒成立 ()0g x '∴>,即()g x 在0,6π⎛⎫⎪⎝⎭上单调递增 ()()0=0g x g ∴>,则()sin ln 1x x >+ 当19x =时,1110sinln 1ln 999⎛⎫>+= ⎪⎝⎭. 又ln y x =在()0,∞+上单调递增10ln19∴> 1011ln ln ln sin ln 999⎛⎫⎛⎫∴<< ⎪ ⎪⎝⎭⎝⎭ c a b ∴<<故选:C【点睛】利用导数判断函数值大小应注意的问题: 在构造函数时需要视具体情况而定在判断导函数的正负时,尽量不要求二阶导数,而是把原导函数令为一个新函数,再求导判断正负来得到原导函数的单调性.例6.(2022·河南·模拟预测(理))己知22e 2e e e a a b b a b -=-,则( ) A .0a b +≥ B .0a b +≤C .0ab ≥D .0ab ≤【答案】C【分析】变形()()22e e 2e e 2e b a a b b b a b =---,构造函数()2e 2e x xf x x =-,通过二次求导可知函数单调性,然后利用单调性可得a 、b 符号.【详解】()()22e e 2e e 2e b a a b b b a b =---,设()2e 2e x xf x x =-,则()()()22e 21e 2e e 1x x x xf x x x =-+=--',设()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,()g x 单调递减,当0x >时,()0g x '>,()g x 单调递增,所以()()00g x g ≥=,所以()()2e 0xf xg x '=≥,()f x 单调递增.当a b ≥时,()()e 0bb f a f b =-≥,故此时0a b ≥≥;当a b ≤时,()()e 0bb f a f b =-≤,故此时0a b ≤≤,所以0ab ≥.故选:C .例7.(2022·黑龙江·嫩江市第一中学校高三期末(理))若22sin 4sin cos 41-=-+a a b b b b a ,则( ) A .2a b > B .2a b < C .|||2|>a b D .|||2|<a b【答案】C【分析】构造函数2()sin f x x x x =+,利用导数判断单调性,结合奇偶性单调性来比较大小. 【详解】令2()sin f x x x x =+,∴22()sin()()sin ()-=--+-=+=f x x x x x x x f x ,∴()f x 是偶函数, ∴()sin cos 2(cos 1)(sin )=++=+++'f x x x x x x x x x ,令()sin g x x x =+,则()cos 10='+≥g x x ,∴()g x 在(0,)+∞上单调递增,当0x ≥时,()(0)0g x g ≥=,此时()0f x '>,∴()f x 在(0,)+∞上单调递增.由22sin 4sin cos 41-=-+a a b b b b a 可得22sin 2sin 2(2)1+=++a a a b b b ,即()(2)1=+f a f b ,∴()(2)>f a f b ,∴()f x 是偶函数,则(||)(|2|)>f a f b ,∴|||2|>a b . 故选:C.【点睛】本题求解的关键是把等量关系转化为不等关系,通过构造函数,研究函数的性质来求解,一次导数解决不了问题时,考虑二次导数.例8.(2022·浙江省春晖中学模拟预测)在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <, ∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12ea ≥时,设()()()()4h x f x g x x =-≥, 则()()()22e 2e 2e 2e 22exxx h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2ex x x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数, 即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立, ∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则()()()()()()334455f g f g f g ⎧>⎪>⎨⎪≤⎩,即232425e 2e 4e 3e 9e 4e a a a ⎧>⎪>⎨⎪≤⎩, 解得32944e 3e a ≤<. 则实数a 的取值范围为3294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【点睛】已知整数零点个数,求参数的取值范围,要从特殊点,特殊值缩小参数的取值范围,再利用导函数及放缩法进行求解,最终得到关于参数的不等关系,进行求解.第二天学习及训练【题型】三、利用二阶导数求参数的范围例9.(2022·辽宁·东北育才双语学校模拟预测)设函数()2ln f x x x=+,()0,6x ∈,()f x 的图像上的两点()11,A x y ,()22,B x y 处的切线分别为1l ,2l ,且12x x <,1l ,2l 在y 轴上的截距分别为1b ,2b ,若12l l ∥,则12b b -的取值范围是( ) A .2ln 2,23⎛⎫- ⎪⎝⎭B .2ln 2,1ln 23⎛⎫-+ ⎪⎝⎭C .2ln 2,03⎛⎫- ⎪⎝⎭D .()1ln 2,2+【答案】C【分析】利用导数求切线方程,结合两条切线平行,得到12x x , 的取值区间;再利用一阶导数求出相应点的切线方程,再求y 轴上的截距,然后确定12b b - 的单调性,然后就可以确定它的取值范围. 【详解】因为()2ln f x x x =+而()121206x x x x ∈<,,,,所以()22212x f x x x x-'=-+=, 在点1112ln A x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭;在点2222ln B x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭;所以()1111211112124ln ln 1b x x x x x x x ⎛⎫⎛⎫=-+-++=+- ⎪ ⎪⎝⎭⎝⎭;2224ln 1b x x =+-; 令()4ln 1b x x x =+- ,则()22414x b x x x x-'=-+= 11212121224444ln 1ln 1ln xb b x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为12l l ∥ ,所以2211222121x x x x -+=-+,且124x x << 所以211112x x +=,112102x x x =-> ,12x > ,12246x x <<<< 所以112122224482ln 2ln 2x b b x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭,令()12822ln2g x b b x x =-=-+- ,()46x ∈, 则()()()222481022x g x x x x x -'=-=-<-- 所以()12822ln 2g x b b x x =-=-+-在()46,单调递减. 所以()122ln 203b b ⎛⎫-∈- ⎪⎝⎭,. 故选:C例10.(2022·河南·南阳中学高三阶段练习(文))若关于x 的不等式32ln 42x x x x ax +≤++恒成立,则实数a 的取值范围为( )A .[)1,-+∞B .[)1,+∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[),e +∞【答案】B 【分析】等价于2ln 42x a x x x x≥-+-,设函数()2ln 42x f x x x x x =-+-,利用导数求出函数()f x 的最大值即得解.【详解】解:依题意,2ln 42x a x x x x≥-+-, 设函数()2ln 42x f x x x x x =-+-,则()224ln 3x x x f x x---+=', 令()24ln 3h x x x x =---+,故()21420h x x x x'=---<, 所以函数()h x 在()0,∞+上单调递减,而()10h =, 故当()0,1x ∈时,()0f x '>,当()1,x ∈+∞时,()0f x '<, 故函数()f x 在()0,1上单调递增,在()1,+∞上单调递减, 故()max ()11==f x f ,则1a ≥. 故选:B .例11.(2022·全国·高二课时练习)已知函数()22e 1ln x f x x kx x ⎛⎫=-+ ⎪⎝⎭,若函数()f x 有唯一极值点,则实数k 的取值范围为( )A .()(]{}2,00,4e 2e ∞-⋃⋃B .(),4e ∞-C .()4e,∞+D .[)4e,∞+【答案】A【分析】求出原函数的导函数并化简得到()2212e 1x x f x x kx ⎛⎫-'=-⎪⎝⎭,1x =为导函数的零点,进而设()()22e 10xg x x kx=->,然后再通过导数方法判断出函数()g x 的零点,进一步得到函数()f x 的单调区间,最终确定出极值点个数求出答案.【详解】由题意,()22e 10,ln x x f x x kx x ⎛⎫>=-+ ⎪⎝⎭,则()()223222e 1112e 1x x x x x f x kx x x kx -⎛⎫--'=-=- ⎪⎝⎭, 设()()22e 10xg x x kx=->,()22221e x x g x k x -'=⋅⋅.当0k >时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '>单调递增,()min 14e12g x g k⎛⎫==- ⎪⎝⎭ (1)若04e k <≤,则()()min 0g x g x ≥≥,则()0,1x ∈时,()()0,f x f x '<单调递减,()1,x ∈+∞时,()()0,f x f x '>单调递增,所以()f x 有唯一极值点1x =. (2)若24e<2e k <,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=->,22211212ee e 22212e 2e 112e 10112e 2e 2e g k k ⋅⎛⎫=-=->-> ⎪⎝⎭⋅⋅,结合函数()g x 的单调性可知,函数()g x 分别在110,,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭上存在唯一一个零点12,x x ,于是()10,x x ∈时,()0f x '<,()f x 单调递减,()12,x x x ∈时,0f x ,()f x 单调递增,()2,1x x ∈时,()0f x '<,()f x 单调递减, ()1,x ∈+∞时,0fx,()f x 单调递增,所以()f x 有12,,1x x 三个极值点;(3)若22e k =,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=-=,221212e e 2212e 12e 1012e 2e g k ⋅⎛⎫=-=-> ⎪⎝⎭⋅,结合函数()g x 的单调性可知,函数()g x 在10,2⎛⎫⎪⎝⎭上存在唯一一个零点3x ,于是()30,x x ∈时,()0f x '<,()f x 单调递减,()3,1x x ∈时,0f x ,()f x 单调递增,()1,x ∈+∞时,0fx ,()f x 单调递增,所以()f x 有3x x =唯一一个极值点;(4)若22e k >,则()22e 110g k=-<,又102x <<时,()22e 211x g x kx kx =->-,所以102x <<且2x k<时,()0g x >.设()()e 1xh x x x =->,()e 1e 10x h x '=->->,所以函数()h x 在()1,+∞上单调递增,故()()221e 10e e xxh x h x x >=->⇒>⇒>,于是1x >时,()22211x xg x kx k>-=-,所以1x >且2kx >时,()0g x >. 结合函数()g x 的单调性可知,函数()g x 分别在()10,,1,+2⎛⎫∞ ⎪⎝⎭上存在唯一一个零点45,x x ,于是()40,x x ∈时,()0f x '<,()f x 单调递减,()4,1x x ∈时,0fx,()f x 单调递增,()51,x x ∈时,()0f x '<,()f x 单调递减, ()5,x x ∈+∞时,0f x,()f x 单调递增,所以()f x 有45,1,x x 三个极值点.当0k <时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '>单调递增,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '<单调递减,()max 14e102g x g k⎛⎫==-< ⎪⎝⎭,即()0g x <恒成立,于是()0,1x ∈时,()()0,f x f x '>单调递增,()1,x ∈+∞时,()()0,f x f x '<单调递减,所以()f x 有唯一极值点1x =.综上所述:k 的取值范围为(){}2,0(0,4e]2e -∞⋃⋃.故选:A.【点睛】本题非常复杂,注意以下两个方面:∴对函数求完导之后一定要因式分解,()2212e 1x x f x x kx ⎛⎫-'=- ⎪⎝⎭,现在只需要考虑()()22e 10xg x x kx =->的零点即可;∴因为导函数()f x '有一个零点1,所以在讨论函数()()22e 10xg x x kx=->的零点时一定要注意它的零点是否为1,方法是将x =1代入得到()222e 1102e g k k=-=⇒=,以此作为讨论的一个分界点. 例12.(2021·江苏·高二单元测试)若关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,则实数m 的取值范围是( )A .15,4ln 2⎡⎫+∞⎪⎢⎣⎭ B .15,8ln 2⎡⎫+∞⎪⎢⎣⎭ C .15,4ln 2⎛⎤-∞ ⎥⎝⎦D .15,8ln 2⎛⎤-∞ ⎥⎝⎦【答案】D【分析】把给定不等式转化为214ln x m x -≤在[]2,4上有解,构造函数()214ln x g x x-=,[]2,4x ∈,探讨该函数最大值即可得解.【详解】由[]2,4x ∈,得ln 0x >,又关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,所以214ln x m x -≤在[]2,4上有解,即2max14ln x m x ⎛⎫-≤ ⎪⎝⎭,令()214ln x g x x -=,[]2,4x ∈,则()()()()2224124ln 12ln 4ln 4ln x x x x x x x x g x x x ⋅--⋅-+'==, 设()12ln h x x x x x=-+,[]2,4x ∈,则()22112ln 212ln 10h x x x x x '=+--=+->,即()h x 在[]2,4上单调递增,则()()13324ln 224ln 220222h x h ≥=-+=->->, 于是有()0g x '>,从而得()g x 在[]2,4上单调递增, 因此,()()max 161151544ln 44ln 48ln 2g x g -====,则158ln 2m ≤, 所以m 的取值范围是15,8ln 2⎛⎤-∞ ⎥⎝⎦. 故选:D【点睛】思路点睛:涉及不等式在给定区间上有解求参数范围问题,常常采用分离参数,构造函数,再求函数最值的思路来解决问题. 【题型】四、利用二阶导数证明不等式例13.(2022·辽宁朝阳·高二期末)已知函数()f x 为偶函数,且当0x ≥时,2()e cos x f x x x =+-,则不等式(3)(21)0f x f x ---<的解集为( ) A .42,3⎛⎫- ⎪⎝⎭B .(,2)-∞-C .(2,)-+∞D .4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【分析】结合导数以及函数的奇偶性判断出()f x 的单调性,由此化简不等式(3)(21)0f x f x ---<来求得不等式的解集.【详解】当0x ≥时,()()()'''2sin s 2cos 0,2,in x x x e x f x f x e x x e x x =++>=++++单调递增,()'01f =,所以()()'0,f x f x >单调递增.因为()f x 是偶函数,所以当0x <时,()f x 单调递减.(3)(21)0,(3)(21)f x f x f x f x ---<-<-,()()22321,321x x x x -<--<-,22269441,3280x x x x x x -+<-++->,()()23402x x x +->⇒<-或43x >. 即不等式(3)(21)0f x f x ---<的解集为4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:D例14.(2022·全国·高二专题练习)已知123a =,()11e b e =+,134c =,则a ,b ,c 的大小关系为( ). A .b a c >> B .c b a >> C .c a b >> D .a b c >>【答案】D【分析】根据题中a ,b ,c 的形式构造函数()()()1ln 1,0f x x x x=⋅+>,利用二次求导的方法判断函数()f x 的单调性,根据单调性即可比较大小. 【详解】因为()1212a =+,()11e b e =+,()1313c =+,所以令()()()1ln 1,0f x x x x=⋅+>,则()()2ln 11xx x f x x -++'=, 令()()()ln 1,01x g x x x x =-+>+,则()()201x g x x -'=<+, ∴()g x 在()0,∞+上单调递减,()()00g x g <=,∴()0f x '<恒成立,∴()f x 在()0,∞+上单调递减. ∴23e <<,∴()()()23f f e f >>,即()()()111ln 12ln 1ln 1323e e +>+>+,所以()()()11123ln 12ln 1ln 13e e +>+>+, 所以()11132314e e >+>,即a b c >>, 故选:D .例15.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x x h x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值. 【详解】依题意,ln 2x x x k x +<-,令()ln 2x x x h x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =,故选:C【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.例16.(2023·全国·高三专题练习)已知()f x 是R 上的偶函数,当[)0,x ∈+∞时,()2cos 12x f x x =-+,且()()21f x a f x +<+对x ∀∈R 恒成立,则实数a 的取值范围是___________. 【答案】33,44⎛⎫- ⎪⎝⎭【分析】利用二次求导法,结合偶函数的性质进行求解即可.【详解】()()()()2cos 1sin 1cos 02x f x x g x f x x x g x x ''=-+⇒==-+⇒=-≥,故()g x 为增函数,当0x ≥时,()()00g x g ≥=,可得()f x 为增函数. 又()f x 为偶函数,故()()f x a f x a +=+,()()22221111f x a f x x a x x x a x x +<+⇔+<+⇔---<<-+恒成立. 因为221331()244x x x -+=-+≥,221331()244x x x -+-=---≤-,所以有3344a -<<,故答案为:33,44⎛⎫- ⎪⎝⎭第三天学习及训练【题型】五、利用二阶导数与函数的对称性求值例17.(2022·四川·成都七中模拟预测(理))对于三次函数()32f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3211533212g x x x x =-+-,则122014201520152015g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2014B .2013C .20155D .1007【答案】A【分析】根据对称中心的定义,由二阶求导可求出对称中心,进而根据对称中心的特征求解. 【详解】()3211533212g x x x x =-+-,所以()()23,21g x x x g x x '''=-+=-,令12102x x -=⇒=,112f ⎛⎫= ⎪⎝⎭,所以()3211533212g x x x x =-+-的对称中心为1,12⎛⎫⎪⎝⎭ ,()()1220141201412,20152015201520152015g x g x g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+-=∴++⋅⋅⋅+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22013100710081007220142015201520152015g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:A例18.(2022·广东广州·高二期末)对于三次函数()()320ax bx d a f x cx =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()()320ax bx d a f x cx =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3232g x x x =-+,则1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .0 B .1C .32-D .32【答案】A【分析】对函数()3232g x x x =-+求导,再求导()g x '',然后令()0g x ''=,求得对称点即可.【详解】依题意得,()236g x x x '=-,()66g x x ''=-,令()0g x ''=,解得x =1,∴()10g =,∴函数()g x 的对称中心为()1,0, 则()()20g x g x -+=, ∴11921831791121010101010101010+=+=+==+= ∴12319010101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.例19.(2022·全国·高三专题练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212【答案】B【分析】通过条件,先确定函数()f x 图象的对称中心点,进而根据对称性求出函数值的和. 【详解】由()3272392f x x x x =-+-,可得()2669f x x x '=-+,()126f x x ''=-,令()1260f x x ''=-=,得12x =,又32111171239222222f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以对称中心为11,22⎛⎫⎪⎝⎭,所以12021220201,12022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…,11010102022202122f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,1201011222f ⎛⎫= ⎪⎝⎭. 所以12320211202110101202220222022202222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B.例20.(2016·湖南衡阳·高三阶段练习(文))设函数()y f x ''=是()y f x '=的导数.某同学经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠都有对称中心()()00,x f x ,其中0x 满足()00f x ''=.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .2016【答案】D【分析】先求出()f x '',结合题意求得函数()f x 的对称中心,进而得到()()12f x f x +-=,进而求出1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可. 【详解】由题意得,()()23,21f x x x f x x '''=-+=-,令()0f x ''=,解得12x =,又3211111153123222212f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的对称中心为1,12M ⎛⎫⎪⎝⎭,则()()12f x f x +-=,1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1120162201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=. 故选:D .【题型】六、利用二阶导数与函数的凹凸性求值例21.(2022·陕西渭南·高二期末(理))给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数.记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四个函数在π0,2⎛⎫⎪⎝⎭上是凸函数的有。

四川省成都七中2020届高三下学期第7周文科数学参考答案

四川省成都七中2020届高三下学期第7周文科数学参考答案

y kx 2

x2 2
y2
,消去
1
y
得关于
x
的方程: (1
2k 2 ) x2
8kx
6
0
由直线 l 与椭圆相交于 A、B 两点, 0 64k 2 24(1 2k 2) 0 解得 k 2 3 2
x1
又由韦达定理得
x2
8k 1 2k2
x1
x2
6 1 2k2| AFra bibliotek |1 k 2 | x1 x2 |
成都七中高三第七周(文科)数学参考答案
一、选择题:
CACCB BDDCA CB
二、填空题:
1
13.
3
14.
0,
1 2
15. 0
16. 2 7
三、解答题:
17(. 1)
3 sin C cos C cos2 C 1 2

3 sin 2C 1 cos 2C 1,即 sin(2C ) 1 , 0 C
2
2
6
,2C 6
2

解得 C 。(6 分) 3
(2) m与n 共线,sin B 2sin A 0 。由正弦定理 a b ,得 b 2a ,① sin A sin B
c
3 ,由余弦定理,得 9
a2
b2
2ab cos
a ,②联立①②,
3
.
(12 分)
3
b 2 3
18.(Ⅰ)证明:∵ D 为 AB 的中点,故 E 为 B'B 的中点,三棱柱 ABC A' B'C' 为直三棱柱,
∴平行四边形 ABB' A' 为正方形,∴ DE A' B , ∵ AC BC , D 为 AB 的中点,∴ CD AB , ∵三棱柱 ABC A' B'C' 为直三棱柱, ∴ CD 平面 ABB' A' ,又 A' B 平面 ABB' A' ,∴ CD AB , 又 CD DE D ,∴ A' B 平面 CDE , ∵ CE 平面 CDE ,∴ A' B CE . (6 分)

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

专题07 数列专题(数学文化)一、单选题1.(2022·全国·高三专题练习)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)( ). A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸【答案】B【分析】十二个节气日影长构成一个等差数列{}n a ,利用等差数列通项公式、前n 项和公式列出方程组,求出首项和公差,由此能求出芒种日影长. 【详解】由题意知:∴从冬至日起,依次小寒、大寒等十二个节气日影长构成一个等差数列{}n a ,设公差为d ,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,∴147191393159898552a a a a d S a d ++=+=⎧⎪⎨⨯=+=⎪⎩,解得1135a =,10d =−, ∴芒种日影长为12111135111025a a d =+=−⨯=(寸)2=尺5寸.故选:B2.(2022秋·陕西咸阳·高二武功县普集高级中学校考阶段练习)河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共7层,它们构成一幅优美的图案.若从下往上计算,从第二层开始,每层浮雕像的个数依次是下层个数的2倍,且第三层与第二层浮雕像个数的差是16,则该洞窟的浮雕像的总个数为( ) A .1016 B .512 C .128 D .1024【答案】A【分析】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,分析可知数列{}n a 为等比数列,且公比为2,根据已知条件求出1a 的值,利用等比数列求和公式可求得结果.【详解】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,由题意可知,数列{}n a 为等比数列,且该数列的公比为2,由已知可得3222216a a a a −=−=,可得216a =,故2182a a ==, 因此,该洞窟的浮雕像的总个数为()78128127101612−=⨯=−.故选:A.3.(2022秋·广东广州·高二华南师大附中校考阶段练习)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的13是较小的两份之和,则最小的一份为( ) A .5 B .10 C .15 D .30【答案】B【分析】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >),则由总和为100可求得20a =,再由较大的三份之和的13是较小的两份之和,可得123d a =,从而可求出d ,进而可求出2a d −【详解】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >), 则有()()()()225100a d a d a a d a d a −+−+++++==, ∴20a =,由()232a a d a d a d a d ++++=−+−,得()33323a d a d +=−; ∴123d a =, ∴5d =.∴最少的一份为2201010a d −=−=. 故选:B4.(2022·河北邯郸·统考模拟预测)位于丛台公园内的武灵丛台已经成为邯郸这座三千年古城的地标建筑,丛台上层建有据胜亭,其顶部结构的一个侧面中,自上而下第一层有2块筒瓦,以下每一层均比上一层多2块筒瓦,如果侧面共有11层筒瓦且顶部4个侧面结构完全相同,顶部结构共有多少块筒瓦?( )A .440B .484C .528D .572【答案】C【分析】由题意知每层筒瓦数构成等差数列{}n a,由等差数列求和公式可求得每一面的筒瓦总数,由此可得四个侧面筒瓦总数.【详解】一个侧面中,第一层筒瓦数记为2,自上而下,由于下面每一层比上一层多2块筒瓦,∴每层筒瓦数构成等差数列{}n a,其中12a=,2d=.一个侧面中共有11层筒瓦,∴一个侧面筒瓦总数是()1111111221322⨯−⨯+⨯=,∴顶层四个侧面筒瓦数总和为1324528⨯=.故选:C.5.(2023·全国·高三专题练习)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n放置在n行n列()3n≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1 图2A.91B.169C.175D.180【答案】C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果. 【详解】由题意,7阶幻方各行列和,即“幻和”为12 (49)1757+++=.故选:C6.(2022·全国·高三专题练习)斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有着非常广泛的应用,在数学上,斐波那契数列是用如下递推方法定义的:121a a ==,()*123,.n n n a a a n n N −−=+≥∈ 已知2222123mma a a a a ++++是该数列的第100项,则m =( )A .98B .99C .100D .101【答案】B【分析】根据题意推出2121a a a =,222321a a a a a =−,L ,211m m m m m a a a a a +−=−, 利用累加法可得211mi m m i a a a +==∑,即可求出m 的值.【详解】由题意得,2121a a a =,因为12n n n a a a −−=−,得222312321()a a a a a a a a =−=−,233423432()a a a a a a a a =−=−,L ,21111()m m m m m m m m a a a a a a a a +−+−=−=−,累加,得222121m m m a a a a a ++++=,因为22212m ma a a a +++是该数列的第100项,即1m a +是该数列的第100项,所以99m =. 故选:B.7.(2022春·河南南阳·高二校联考阶段练习)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第50层球的个数为( )A .1255B .1265C .1275D .1285【答案】C【分析】根据题中给出的图形,结合题意找到各层球的个数与层数的关系,得到(1)2n n n a +=,进而求解结论.【详解】解:设各层球的个数构成数列{}n a ,由题意可知,11a =,21212a a =+=+,323123a a =+=++,⋯,1123n n a a n n −=+=+++⋯+, 故(1)1232n n n a n +=+++⋯+=, 50505112752a ⨯∴==, 故选:C .8.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1[0,]3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1[0,]9,21[,]93,27[,]39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是( ).A .7B .8C .9D .10【答案】A【分析】根据三分康托集的构造过程可知:经历第n 步,每个去掉的开区间以及留下的闭区间的区间长度都是13n⎛⎫⎪⎝⎭,根据规律即可求出20212022属于1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,进而根据不等式可求解.【详解】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n步,剩下的最后一个区间为1113n⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由120111121320223n n⎛⎫⎛⎫−⨯<<−⎪ ⎪⎝⎭⎝⎭化简得4044320223nn⎧>⎨<⎩,解得7n=故选:A9.(2022春·江苏南通·高二统考期末)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下头一个2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到30的全部素数过程中剔除的所有数的和为()A.333B.335C.337D.341【答案】B【分析】根据给定条件,求出230的全部整数和,再求出2到30的全部素数和即可计算作答.【详解】2到30的全部整数和123029464 2S+=⨯=,2到30的全部素数和22357111317192329129S=+++++++++=,所以剔除的所有数的和为464129335−=.故选:B10.(2022·全国·高三专题练习)谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯、135⨯、157⨯、L、120212023⨯的和是()A.20222023B.20232022C.10112023D.20231011【答案】C【分析】利用裂项相消法可求得结果.【详解】当N n *∈时,()()1111212122121n n n n ⎛⎫=− ⎪−+−+⎝⎭,因此,11111111111111335572021202323355720212023⎛⎫++++=−+−+−++− ⎪⨯⨯⨯⨯⎝⎭1110111220232023⎛⎫=−=⎪⎝⎭. 故选:C.11.(2022春·四川资阳·高一统考期末)《算法统宗》是中国古代数学名著,书中有这样一个问题:九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传.据此,前五个孩子共分得的棉花斤数为( ) A .362 B .430 C .495 D .645【答案】C【分析】设这八个孩子分得棉花的斤数构成等差数列{}n a ,由题设求得其首项与公差,即可求得结果. 【详解】解:设这八个孩子分得棉花的斤数构成等差数列{}n a , 由题意知:公差17d =, 又12381878179962a a a a a ⨯+++⋯+=+⨯=,解得165a =, 故412351545455651749522a a a a a d a ⨯⨯++=+=⨯⨯=+++. 故选:C .12.(2022秋·江苏淮安·高三校考阶段练习)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2022年是壬寅年,请问:在100年后的2122年为( ) A .壬午年 B .辛丑年C .己亥年D .戊戌年【答案】A【分析】将天干和地支分别看作等差数列,结合1001010÷=,1001284÷=,分别求出100年后天干为壬,地支为午,得到答案.【详解】由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于1001010÷=,余数为0,故100年后天干为壬,由于1001284÷=,余数为4,故100年后地支为午,综上:100年后的2122年为壬午年.故选:A13.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所以论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”,现有高阶等差数列,其前6项分别为1,5,11,21,37,61,……则该数列的第8项为()A.99B.131C.139D.141【答案】D【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为x,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:根据规律补全:由图可得341295yx y−=⎧⎨−=⎩,则14146xy=⎧⎨=⎩.故选:D14.(2023春·广西柳州·高三统考阶段练习)《九章算术》中有一题:今有牛、马、羊、猪食人苗,苗主责之粟9斗,猪主曰:“我猪食半羊.”羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意是:今有牛、马、羊、猪吃了别人的禾苗,禾苗主人要求赔偿9斗粟,猪主人说:“我猪所吃的禾苗只有羊的一半.”羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,牛、马、羊、猪的主人各应赔偿多少粟?在这个问题中,马主人比猪主人多赔偿了()斗.A .35B .95C .3D .215【答案】B【分析】转化为等比数列进行求解,设出未知数,列出方程,求出马主人比猪主人多赔偿了斗数. 【详解】由题意得:猪、羊、马、牛的主人赔偿的粟斗数成等比数列,公比为2, 设猪的主人赔偿的粟斗数为x , 则2489x x x x +++=,解得:35x =,故马主人赔偿的粟斗数为1245x =, 所以马主人比猪主人多赔偿了斗数为1239555−=. 故选:B15.(2021秋·河南商丘·高二校联考期中)《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军2由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军80由旬到达地方城市.下列说法正确的是( ) A .前四天共行1877由旬 B .最后三天共行53由旬C .从第二天起,每天比前一天多行的路程为237由旬 D .第三天行了587由旬 【答案】D【分析】由题意,每天行军的路程{}n a 为等差数列,且12a =,780S =,利用基本量1,a d 表示可得227d =,依次分析,即得解 【详解】由题意,不妨设每天行军的路程为数列{}n a ,则12a =又以后每天均比前一天多行相同的路程,故{}n a 构成一个等差数列,不妨设公差为d 七天一共行军80由旬,即780S = 故71767802S a d ⨯=+=,解得227d =4143188427S a d ⨯=+=,A 错误;567741883728077a a a S S ++=−=−=,B 错误; 由于227d =,故从第二天起,每天比前一天多行的路程为227由旬,C 错误;31225822277a a d =+=+⨯=,D 正确 故选:D16.(2022·全国·高三专题练习)“垛积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫− ⎪⎝⎭万元,则n 的值为( )A .9B .10C .11D .12【答案】B【分析】先依次求出各层货物总价,再利用裂项抵消法进行求解. 【详解】由题意,得第一层货物总价为1万元,第二层货物总价为9210⨯万元, 第三层货物总价为293()10⨯万元,……,第n 层货物总价为19()10n n −⨯万元.设这堆货物总价为y 万元, 则21999123()()101010n y n −=+⨯+⨯+⋅⋅⋅+⨯ 23999992()3()()1010101010n y n =+⨯+⨯+⋅⋅⋅+⨯, 两式相减,得2311999991+()()()()101010101010n n y n −=+++⋅⋅⋅+−⨯,即91()199910()1010()()910101010110nn n n y n n −=−⋅=−⨯−⋅−,则999100100()10()=100(10010)()101010n n ny n n =−⨯−⋅−+⨯,令99100(10010)()=100200()1010n ny n =−+⨯−⨯,得10n =. 故选:B.17.(2021秋·吉林松原·高二长岭县第三中学校考阶段练习)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,则当42m =时,则使1n a =需要的雹程步数为( ) A .7 B .8 C .9 D .10【答案】B1n a =使得需要多少步雹程.【详解】解:根据题意,当42m =,根据上述运算法则得出42→21→64→32→16→8→4→2→1, 所以共需经过8个步骤变成1,故使1n a =需要的雹程步数为8. 故选:B18.(2022·全国·高三专题练习)意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n −−=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅ B .12321n n a a a a a +++++=−C .1352121n n a a a a a −++++=−D .()121)4(3n n n n c c a n a π−−+−≥=⋅【答案】C【分析】A 选项由前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形即可判断;B 选项由()*123,n n n a a a n n −−=+≥∈N 结合累加法即可判断;C 选项通过特殊值检验即可;D 选项表示出221111,44n n n n c a c a ππ−−==,作差即可判断. 【详解】由题意知:前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形,其面积为()211111n n n n n n n S a a a a a a +++++=+=+,A 正确;32143221,,,n n n a a a a a a a a a ++=+=+=+,以上各式相加得,()34223112()n n n a a a a a a a a a +++++=+++++++,化简得2212n n a a a a a +−=+++,即1221n n a a a a ++++=−,B 正确;12345613561,2,3,5,8,817a a a a a a a a a a ======∴++=≠−=,C 错误;易知221111,44n n n n c a c a ππ−−==,()()()221111214()(3)n n n n n n n n n n c c a a a a a a a a n πππ−−−−−+∴−=−=−+=≥,D 正确.故选:C.19.(2023·全国·高三专题练习)如图是美丽的“勾股树”,将一个直角三角形分别以它的每一条边向外作正方形而得到如图①的第1代“勾股树”,重复图①的作法,得到如图②的第2代“勾股树”,…,以此类推,记第n 代“勾股树”中所有正方形的个数为n a ,数列{}n a 的前n 项和为n S ,若不等式2022n S >恒成立,则n 的最小值为( )A .7B .8C .9D .10【答案】C【分析】根据第1代“勾股树”,第2代“勾股树”中,正方形的个数,以此类推,得到第n 代“勾股树”中所有正方形的个数,即n a ,从而得到n S 求解.【详解】解:第1代“勾股树”中,正方形的个数为11321+=−,第2代“勾股树”中,正方形的个数为21721+=−,…, 以此类推,第n 代“勾股树”中所有正方形的个数为121n +−,即121n n a +=−,所以()24122412n n n S n n +−=−=−−−,因为0n a >,所以数列{}n S 为递增数列, 又810122022S =<,920352022S =>, 所以n 的最小值为9. 故选:C .20.(2022·海南省直辖县级单位·“贾宪三角”,后被南宋数学家杨辉引用、n 维空间中的几何元素与之有巧妙联系、例如,1维最简几何图形线段它有2个0维的端点、1个1维的线段:2维最简几何图形三角形它有3个0维的端点,3个1维的线段,1个2维的三角形区域;……如下表所示.从1维到6维最简几何图形中,所有1维线段数的和是( )A .56B .70C .84D .28【答案】A【分析】根据题意可得1n n a a n −−=,可求得()12n a n n +=,即可求解. 【详解】设从1维到n 维最简几何图形的1维线段数构成数列{}n a , 由题意可得21312a a −=−=,32633a a −=−=,431064a a −=−=,…, 以此类推,可得1n n a a n −−=, 所以()()()121321n n n a a a a a a a a −=+−+−++−()11232n n n +=++++=,所以12345613610152156a a a a a a +++++=+++++=. 故选:A.21.(2023·全国·高三专题练习)大衍数列,来源于中国古代著作《乾坤普》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50,通项公式为221,2,2n n n a n n ⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,若把这个数列{}n a 排成下侧形状,并记),A m n 表示第m 行中从左向右第n 个数,则()9,5A 的值为( )A .2520B .2312C .2450D .2380【答案】D【分析】确定()9,5A 在数列{}n a 中的项数,结合数列{}n a 的通项公式可求得结果.【详解】由题可知,设数阵第n 行的项数为n b ,则数列{}n b 是以1为首项,公差为2的等差数列, 数列{}n b的前8项和为87182642⨯⨯+⨯=,所以,()9,5A 是数列{}n a 的第64569+=项,因此,()26919,523802A −==.故选:D.22.(2022·全国·高三专题练习)在归国包机上,孟晚舟写下《月是故乡明,心安是归途》,其中写道“过去的1028天,左右踟躇,千头万绪难抉择;过去的1028天,日夜徘徊,纵有万语难言说;过去的1028天,山重水复,不知归途在何处.”“感谢亲爱的祖国,感谢党和政府,正是那一抹绚丽的中国红,燃起我心中的信念之火,照亮我人生的至暗时刻,引领我回家的漫长路途.”下列数列{}()N n a n *∈中,其前n 项和不可能为1028的数列是( ) (参考公式:2222(1)(21)1236n n n n ++++++=)A .1028n a n =+B .2744125n a n n =−+C .127(1)45n n a n +=−−D .1122n n a −=+【答案】A【分析】利用等差数列、等比数列的前n 项和公式以及参考公式求数列{}n a 前n 项和n S ,令1028n S =,看是否有正整数解即可判定选项A 、B 、D 的正确性;通过分类讨论分别求出2k S 和21k S −,然后可得到20k S <,令211028k S −=,看是否有正整数解即可选项C 的正确性. 【详解】设数列{}n a 的前n 项和为n S , 对于A :由等差数列的前n 项和公式,得: 1()(533)10282n n n a a S n n +==+=, 因为方程无正整数解,即选项A 错误;对于B :不妨令24n b n =,74125n c n =−+, 数列{}n b 和{}n c 的前n 项和分别为n T 和n Q , 则n n n a b c =+,n n n S T Q =+,由参考公式和等差数列的前n 项和公式,得: 22(1)(21)4(123)3n n n n T n ++=++++=,21()44625n n n c C Q n n +==−+, 所以22(1)(21)446102835n n n n n n S T Q n n ++=+=−+=,解得*10N n =∈,即选项B 正确; 对于C :①当*N )2(n k k =∈时, 222222271234(21)(2)245n k S S k k k ==−+−++−−−⨯ 14(3741)045kk =−+++−−<,故此时1028n S ≠; ②当()*21N n k k =−∈时, 22222222171234(23)(22)(21)(21)45n k S S k k k k −==−+−++−−−+−−− 27(3745)(21)(21)45k k k =−++⋅⋅⋅+−+−−− 2(1)(345)7(21)(21)245k k k k −+−=−+−−−27232(21)45k k k =−+−− 令27232(21)102845k k k −+−−=,解得23k =, 即223145n =⨯−=时,1028n S =, 即选项C 正确;对于D :由等比数列的前n 项和公式可知,1(12)112110281222n n n S n n ⨯−=+=+−=−,解得*10N n =∈,即选项D 故选:A .23.(2023·全国·高三专题练习)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50,则此数列的第21项是( ) A .200 B .210C .220D .242【答案】C【分析】由数列奇数项的前几项可归纳出奇数项上的通项公式,从而得到答案.【详解】根据题意,数列的前10项依次是0、2、4、8、12、18、24、32、40、50,其中奇数项为0、4、12、24、40,有22221357113151710,4,12,24,2222a a a a −−−−========⋯故其奇数项上的通项公式为21,2n n a −=故221211=2202a −=, 故选:C24.(2022春·云南红河·高二弥勒市一中校考阶段练习)斐波那契数列(Fibonacci Sequence )又称黄金分割数列,因数学家列昂纳多,斐波那契(Leonardo Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列{}n a 满足:12211,n n n a a a a a ++===+,现从数列的前2022项中随机抽取1项,能被3整除的概率是( ) A .5052022B .2522022C .5042022 D .14【答案】A【分析】依次写出数列各项除以3所得余数,寻找后可得结论.【详解】根据斐波那契数列的定义,数列各项除以3所得余数依次为1,1,2,0,2,2,1,0,1,1,2,…,余数数列是周期数列,周期为8,202225286=⨯+,所以数列的前2022项中能被3整除的项有25221505⨯+=,所求概率为5052022P =, 故选A .25.(2022·高二课时练习)分形几何学是一门以不规则几何形态为研究对象的几何学,它的研究对象普遍存在于自然界中,因此又被称为“大自然的几何学”.按照如图1所示的分形规律,可得如图2所示的一个树形图.若记图2中第n n a ,则6a =( )A .55B .58C .60D .62【答案】A【分析】n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,由题意可得112,n n n n n n a a b b a b ++=+=+,根据初始值,由此递推,不难得出所求.【详解】已知n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,则由于每个白圈产生下一行的一白一黑两个圈,一个黑圈产生下一行的一个白圈2个黑圈,∴112,n n n n n n a a b b a b ++=+=+, 又∵110,1a b ==; 221,1a b ==;332113112a b =⨯+==+=,; 442328,325a b =⨯+==+=;5528521,8513a b =⨯+==+=; 62211355a =⨯+=,故选:A.26.(2022·全国·高三专题练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (n x ',n y '),则200n nn y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .1000【答案】C【分析】求出n n y y '、 ,用错位相减法求和即可.【详解】由条件可得()2020011920011.11 1.12 1.120 1.121 1.1n n nn n y y n =='=+=⨯+⨯++⨯+⨯∑∑①,所以2012202101.11 1.12 1.120 1.121 1.1n nn y y ='⨯=⨯+⨯++⨯+⨯∑②,-②得:2120120212101 1.10.1 1.1 1.1 1.121 1.121 1.11 1.1=−'−⨯=+++−⨯=−⨯−∑n nn y y ,2121221 1.10.121 1.11 1.118.1491.40.10.10.1−+⨯⨯++====−−−−,所以20914n nn y y ='=∑. 故选:C.27.(2022秋·陕西渭南·高二校考期中)图1是中国古代建筑中的举架结构,AA ',BB ',CC ',DD '是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CC k DC =,121BBk CB =,131AA k BA =,已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则2k =( )A .0.75B .0.8C .0.85D .0.9【答案】B【分析】设1111OD DC CB BA ===,则可得关于2k 的方程,求出其解后可得正确的选项 【详解】设11111OD DC CB BA ====,则10.5,DD =111213,,CC k BB k AA k ===, 依题意,有21230.1,0.1k k k k −=+=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以20.530.7254k +=,故20.8k =, 故选:B28.(2022秋·陕西咸阳·高二校考阶段练习)《张邱建算经》记载了这样一个问题:“今有马行转迟,次日减半,疾七日,行七百里”,意思是“有一匹马行走的速度逐渐变慢,每天走的路程是前一天的一半,连续走了7天,共走了700里”.在上述问题中,此马第二天所走的路程大约为( ) A .170里 B .180里C .185里D .176里【答案】D【分析】根据题意,可知此马每天走的路程形成等比数列,利用等比数列的前n 项和公式求得基本量,从而得解.【详解】由题意得,设这匹马的第n 天走的路程为n a ,则有112n n a a +=,7700S =, 所以数列{}n a 是12q =的等比数列, 故71112700112a ⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦=−,解得1350128127a ⨯=,所以21175128176.4127a a q =⨯=≈. 故选:D.29.(2022秋·广东广州·高三校联考阶段练习)如图所示的三角形叫“莱布尼兹调和三角形”,它们是由整数的倒数组成,第n 行有n 个数且两端的数均为()12n n≥,每个数是它下一行左右相邻的两数的和,如111111111,,1222363412=+=+=+⋅⋅⋅⋅⋅⋅,则第8行第4个数(从左往右数)为( )A .1280B .1168C .1140D .1105【答案】A【分析】利用“莱布尼兹调和三角形”的性质,依次运算即可. 【详解】设第n 行第m 个数为(),a n m ,则()15,15a =,()16,16a =,()17,17a =,()18,18a =,故()()()16,25,16,130a a a =−=,()()()17,26,17,142a a a =−=,()()()18,27,18,156a a a =−=,()()()17,36,27,2105a a a =−=,()()()18,37,28,2168a a a =−=,()()()18,47,38,3280a a a =−=, 故选:A.二、多选题30.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有( ) A .将这1864人派谴完需要16天 B .第十天派往筑堤的人数为134 C .官府前6天共发放1467升大米D .官府前6天比后6天少发放1260升大米 【答案】ACD【分析】记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,依题意可得{}n a 是以64为首项,7为公差的等差数列,{}n b 是以192为首项,21为公差的等差数列,再根据等差数列的通项公式及前n 项和公式计算可得;【详解】解:记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,则{}n a 是以64为首项,7为公差的等差数列,即757n a n =+,{}n b 是以192为首项,21为公差的等差数列,即21171n b n =+,所以106479127a =+⨯=,B 不正确.设第k 天派遣完这1864人,则()716418642k k k −+=,解得16k =(负值舍去),A 正确; 官府前6天共发放6519262114672⨯⨯+⨯=升大米,C 正确, 官府前6天比后6天少发放211061260⨯⨯=升大米,D 正确. 故选:ACD31.(2022秋·山西太原·高二太原师范学院附属中学校考阶段练习)若正整数m .n 只有1为公约数,则称m ,n 互质,对于正整数k ,ϕ(k )是不大于k 的正整数中与k 互质的数的个数,函数ϕ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:()21ϕ=,(3)2ϕ=,(6)2ϕ=,(8)4ϕ=.已知欧拉函数是积性函数,即如果m ,n 互质,那么()()()mn m n ϕϕϕ=,例如:(6)(2)(3)ϕϕϕ=,则( ) A .(5)(8)ϕϕ=B .数列(){}2n ϕ是等比数列 C .数列(){}6nϕ不是递增数列D .数列()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于35【答案】ABD【分析】根据欧拉函数定义及运算性质,结合数列的性质与求和公式,依次判断各选项即可得出结果. 【详解】(5)4,(8)4,(5)(8)ϕϕϕϕ==∴=,A 对;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为12n −, ∴()11222=2ϕ−−−=nnn n 为等比数列,B 对;∵与3n 互质的数为1,2,4,5,7,8,10,11,,32,3 1.−−n n共有11(31)323n n −−−⋅=⋅个,∴1(3)23,ϕ−=⋅n n又∵()6=(2)(3)ϕϕϕn n n =126−⋅n ,∴()6ϕn一定是单调增数列,C 错;()1626nn ϕ−=⋅,()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为 111263131156516nn n S ⎡⎤⎛⎫−⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==−<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦−,D 对. 故选:ABD .32.(2022·全国·高三专题练习)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走970.5里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是( ) A .长安与齐国两地相距1530里 B .3天后,两马之间的距离为328.5里 C .良马从第6天开始返回迎接驽马 D .8天后,两马之间的距离为377.5里 【答案】AB【分析】A, 设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,求出良马和驽马各自走的路程即得A 正确;B ,计算得到3天后,两马之间的距离为328.5里,即可判断B 正确; C,计算得到良马前6天共行走了1353里1530<里,故C 不正确;D ,计算得到8天后,两马之间的距离为390里,故D 不正确.【详解】解:设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,则。

2023年高考数学 名校选填压轴题好题汇编(七)(解析版)

2023年高考数学 名校选填压轴题好题汇编(七)(解析版)

2023年新高考地区数学名校地市选填压轴题好题汇编(七)一、单选题1.(2022·广东佛山·高三阶段练习)《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为()045αα︒<<︒,且小正方形与大正方形的面积之比为1:4,则tan α=( )A B C D 【答案】A【解析】设大正方形的边长为a ,则小正方形的边长为()cos sin a αα-,故()222cos sin 14a a αα-=,故112sin c 4os αα-=,即2223sin cos 3tan 3sin cos 8sin cos 8tan 18αααααααα=⇒=⇒=++23tan 8tan 30αα⇒-+=,解得tan α=tan α=.因为045α︒<<︒,则0tan 1α<<,故tan α=. 故选:A2.(2022·广东佛山·高三阶段练习)已知一组数据1234,,,x x x x 的平均数是3,方差是2,则由12341,25,25,25,25x x x x ----这5个数据组成的新的一组数据的方差是( )A .4B .6C .325D .365【答案】C【解析】因为一组数据1234,,,x x x x 的平均数是3,方差是2,所以12341()34x x x x +++=,222212341[(3)(3)(3)(3)]24x x x x -+-+-+-=,所以123412x x x x +++=,22221234(3)(3)(3)(3)8x x x x -+-+-+-=,所以12341,25,25,25,25x x x x ----的平均数为 []123411(25)(25)(25)(25)5x x x x +-+-+-+- []1234112()205x x x x =++++- 1(12420)15=⨯+-=, 所以12341,25,25,25,25x x x x ----的方差为2222212341(11)(251)(251)(251)(251)5x x x x ⎡⎤-+--+--+--+--⎣⎦ 222212341(26)(26)(26)(26)5x x x x ⎡⎤=-+-+-+-⎣⎦ 2222123414(3)4(3)4(3)4(3)5x x x x ⎡⎤=-+-+-+-⎣⎦ 222212344(3)(3)(3)(3)5x x x x ⎡⎤=-+-+-+-⎣⎦ 432855=⨯=, 故选:C3.(2022·广东·东莞四中高三阶段练习)设数列{}n a 的前n 项和为n S ,且11a =,()21nn S a n n=+-,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项和是( )A .25B .920C .511D .1011【答案】C 【解析】由()21nn S a n n=+-得()21n n S na n n =--, 当2n ≥时,()()11141n n n n n a S S na n a n --=-=----, 整理得14n n a a --=,所以{}n a 是公差为4的等差数列,又因为11a =, 所以43n a n =-,从而()()123322212n n n a a S n n n n n n ++=+=+=+, 所以()1111132121n S n n n n n ⎛⎫==- ⎪+++⎝⎭,所以数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项和为111111115112223*********⎛⎫⎛⎫⨯-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C4.(2022·广东·东莞四中高三阶段练习)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l+=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ===甲乙 故选:C.5.(2022·广东深圳·高三阶段练习)如图,双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点为()12,0F -,()22,0F ,过1F ,2F 作圆O :222x y a +=的切线,四条切线围成的四边形12F AF B,则双曲线的方程为( )A .2213x y -=B .2213y x -=C .22122x y -=D .2222135x y -=【答案】B【解析】如图,由题意2c =,因为四边形12F AF B ,所以直角三角形2AOF即212OF OA =,OA =,2AF ==212a AF ⨯=,1a =,b =线的方程为2213y x -=.故选:B.6.(2022·广东深圳·高三阶段练习)设函数()21,,43,.ax x a f x x x x a -<⎧=⎨-+≥⎩若()f x 存在最小值,则a 的取值范围为( )A .⎡⎣B .⎡⎣C .()2,⎡⋃+∞⎣D .()2,⎡⋃+∞⎣【答案】B【解析】若0a =时,()21,0,43,0.x f x x x x <⎧=⎨-+≥⎩,()()min 21f x f ∴==-;若0a <时,当x a <时,()1f x ax =-单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值;若0a >时,x a <时,()1f x ax =-+单调递减,()()21f x f a a >=-,当x a ≥时,()()()2min 1,0243,2a f x a a a ⎧-<<⎪=⎨-+≥⎪⎩,若函数()f x 有最小值,需21102a a ⎧-≥-⎨<<⎩或221432a a a a ⎧-≥-+⎨≥⎩,解得0a <≤.故选:B7.(2022·广东·执信中学高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若sin sin C B A =,λ=b a ,则实数λ的最小值是( )AB.32C.2 D.2【答案】C【解析】由sin sin C B A =,可得sin c A =, 由余弦定理得:2222cos a b c bc A =+- ,两式结合得:222212sin 2sin cos a b A b b A A =+-⨯,即22212sin 1276cos 22a A A A A b =+-=--,即22π7),(0,π)3a A Ab =-+∈, 则当7π12A =时,2max 2()7a b=+2min 2()7b a ==- 故由baλ=2=,故选:C8.(2022·广东·执信中学高三阶段练习)设正实数x 、y 、z 满足22430x xy y z -+-=,则xyz的最大值为( ) A .0 B .2 C .1 D .3【答案】C【解析】因为正实数x 、y 、z 满足22430x xy y z -+-=,则2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==≤=-++-,当且仅当20y x =>时取等号. 故xyz的最大值为1. 故选:C.9.(2022·广东·揭东二中高三阶段练习)函数()()20x af x a x+=>在区间(),1a a +上有最小值,则a 的取值范围是( ) A .01a << B .1a > C .14a << D .4a >【答案】A【解析】∵2()(0)x a af x x a x x+==+>,∵(2222()1x x a x a f x x x x-'=-==,∵当0x <<()0f x '<,当x >()0f x '>, 可知,()f x在上单调递减,在)+∞上单调递增, ∵()f x在x = 又∵在区间(,1)a a +上有最小值,∵1a a <<+,解得01a <<. 故选:A .10.(2022·广东·揭东二中高三阶段练习)已知符号函数()1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn ln ln f x x x=-的零点个数为( ) A .1 B .2C .3D .4【答案】C【解析】当ln 0x =时1x =;当ln 0x >时1x >;当ln 0x <时01x <<.()1,1sgn ln 0,11,01x x x x >⎧⎪∴==⎨⎪-<<⎩.()()1ln ,1sgn ln ln ln ,11ln ,01x x f x x x x x x x ->⎧⎪∴=-=-=⎨⎪--<<⎩.当1x >时令()0f x =,即1ln 0x -=,解得e 1x =>成立; 当1x =时令()0f x =,即ln 0x -=,解得1x =成立;当01x <<时令()0f x =,即1ln 0x --=,解得()10,1ex =∈成立.综上可得解()0f x =得e x =或1x =或1ex =.所以函数()f x 的零点个数为3. 故选:C11.(2022·广东·顺德一中高三阶段练习)已知函数()(2lg 21x f x x =-+,则不等式()()212f x f x ++>-的解集为( )A .1,3⎛⎫-+∞ ⎪⎝⎭B .1,1003⎛⎫- ⎪⎝⎭C .1,3⎛⎫-∞- ⎪⎝⎭D .2,1003⎛⎫- ⎪⎝⎭【答案】A【解析】由()(2lg 21x f x x =-+可知,R x ∈ ,故()()((22lg lg 2121x x f x f x x x -+-=-+--++ (222lg ()2121xx x x x ⋅=-+-+++lg122=-=- ,即()()110f x f x ++-+=,令()()1g x f x =+ ,则()()0g x g x +-=,即()()1g x f x =+为奇函数,因为函数(lg y x =为R 上的单调增函数,221x y =+为R 上的单调减函数故()(2lg 21xf x x =-+为单调增函数,则()()1g x f x =+也单调递增; 不等式()()212f x f x ++>-,即()()21110f x f x ++++>, 即()()()()210,21()g x g x g x g x g x ++>+>-=-,故121,3x x x +>->- ,即()()212f x f x ++>-解集为1,3⎛⎫-+∞ ⎪⎝⎭,故选:A12.(2022·广东广雅中学高三阶段练习)设定义域为R 的函数|1251,0,(){44,0,x x f x x x x --≥=++<若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m=.A .2B .4或6C .2或6D .6【答案】A【解析】请在此输入详解!13.(2022·广东广雅中学高三阶段练习)已知函数(e 3)()x f x x =-,若经过点(0,)a 且与曲线()y f x =相切的直线有三条,则( ) A .3e a -<<- B .e a >-C .3a <-D .3a <-或e a >-【答案】A【解析】()()2e xf x x '=-,设经过点(0,)a 且与曲线()y f x =相切的切点为()()000,3e x x x -,则()()000e 2x f x x '=-.又切线经过()0,a ,故由题意()()00000e e 32xx ax x x --=-有3个解.化简有()()00000e e 32x x a x x x =---,即()02003e 3x a x x =-+-有3个解.设()()2e 33x g x x x =-+-,则()()2e xg x x x '=-+,令()0g x '=有0x =或1x =,故当(),0x ∈-∞时,()0g x '<,()g x 单调递减;当()0,1x ∈时,()0g x '>,()g x 单调递增;当()1,x ∈+∞时,()0g x '<,()g x 单调递减.又()03g =-,()1e g =-,且()()711e g g -=->,()()2e 20g g =-<,故要()02003e 3x a x x =-+-有3个解,则3e a -<<-. 故选:A14.(2022·广东·开平市忠源纪念中学高三阶段练习)已知0a >,函数()21x f x x a+=+在[)1,+∞上的最大值为23,则=a ( ) A .2或3316B .12或3316C .2D .12【答案】C【解析】令()12t x t =+,则22111212x t a x a t t a t t+==++-+++-,函数()21x f x x a+=+在[)1,+∞上的最大值为23且()0f x >,即转化为()()122a g t t t t+=+-的最小值为32.2221(1)()1a t a g t t t +-+'=-=,()0g t t '=⇒=,2≤,即03a <≤时,()g t 在[2,)+∞上单调递增,()min 13()222a g t g +===,解得2a =;2>,即3a >时,2t ≤<()0g t '<,()g t递减,t >()0g t '>,()g t递增,min 3()22g t g===,解得33316a =<,舍去.故2a = 故选:C .15.(2022·湖南省岳阳县第一中学高三阶段练习)设抛物线2:8E y x =的焦点为F ,过点(4,0)M 的直线与E 相交于A ,B 两点,与E 的准线相交于点C ,点B 在线段AC 上,||3BF =,则BCF △与ACF 的面积之比BCF ACFSS=( )A .14B .15C .16D .17【答案】C【解析】如图,过点B 作BD 垂直准线2x =-于点D ,则由抛物线定义可知:||||3BF BD ==, 设直线AB 为4x my =+, ()11,A x y ,()22,B x y ,()2,C C y -,不妨设0m >,则120,0y y ><,所以223x +=,解得:21x =,则22288y x ==,解得:2y =-(1,B -,所以41-+=,解得:m =AB为4x y =+,所以当2x =-42y +=-,解得:C y =-(2,C --, 联立4x my =+与28y x =得:28320y my --=,则1232y y =-,所以1y =2116BCF C ACFC S yy BC SAC y y -====-.故选:C16.(2022·湖南省岳阳县第一中学高三阶段练习)已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0)B.C.(0,1)D.(0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.17.(2022·湖南·邵阳市第二中学高三阶段练习)已知定义在R 上的函数()f x 满足:()f x 为奇函数,()1f x +为偶函数,当01x ≤≤时,()21xf x =-,则()2log 2023f =( )A .9991024-B .252048-C .10242023-D .512999-【答案】A【解析】因为()1f x +为偶函数, 所以()(1)1f x f x -+=+, 所以()(2)f x f x -=+,又()f x 为奇函数,即()()f x f x -=-所以()()()()()242f x f x f x f x f x -=+⇒+=-+=, 所以()f x 的周期为4,()()22222202340964096log 2023log 202312log log 2log 409620232023f f f ff⎛⎫⎛⎫⎛⎫=-==-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22023log 1024220232023999log 211102410241024f ⎛⎫⎛⎫⎛⎫=-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A.18.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数()()221e xf x x a x =++,则“a =是“函数()f x 在1x =-处取得极小值”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A【解析】2222()(2)1e (1)(1)e x xf x x a x a x x a '⎡⎤=++++=+++⎣⎦.∵当a =0时,2()(1)e 0x f x x '=+≥,故()f x 在R 上单调递增,()f x 无最小值. ∵当a ≠0时,令()0f x '=,得x =-1或21x a =--.又211a --<-, 故当21x a <--时,()0f x '>,()f x 单调递增; 当211a x --<<-时,()0f x '<,()f x 单调递减; 当1x >-时,()0f x '>,()f x 单调递增. 故()f x 在x =-1处取得极小值.综上,函数()f x 在x =-1处取得极小值0a ⇔≠.所以“a =是“函数()f x 在x =-1处取得极小值”的充分不必要条件. 故选:A.19.(2022·湖南·邵阳市第二中学高三阶段练习)设函数()f x 的定义域为R ,且()1f x -是奇函数,当02x ≤≤时,()1f x ;当2x >时,()421x f x -=+.当k 变化时,方程()10f x kx --=的所有根从小到大记为12,,,n x x x ⋅⋅⋅,则()()()12n f x f x f x ++⋅⋅⋅+取值的集合为( ) A .{}1,3 B .{}1,3,5C .{}1,3,5,7D .{}1,3,5,7,9【答案】C 【解析】()1f x -为奇函数,()f x ∴图像关于点()0,1对称,由()10f x kx --=得:()1f x kx =+,则方程的根即为()f x 与直线1y kx =+的交点, 作出()f x 图像如图所示,∵当5120k -≥-,即2k ≥时,如图中11y k x =+所示时,()f x 与直线1y kx =+有5个交点125,,,x x x ⋅⋅⋅, ()f x 与1y kx =+均关于()0,1对称,()()()()125505f x f x f x f ∴++⋅⋅⋅+==; ∵当31512020k --≤<--,即12k ≤<时,如图中21y k x =+所示时,()f x 与直线1y kx =+有7个交点127,,,x x x ⋅⋅⋅, ()f x 与1y kx =+均关于()0,1对称,()()()()127707f x f x f x f ∴++⋅⋅⋅+==; ∵当21314020k --<<--,即114k <<时,如图中31y k x =+所示时,()f x 与直线1y kx =+有5个交点125,,,x x x ⋅⋅⋅,()f x 与1y kx =+均关于()0,1对称,()()()()125505f x f x f x f ∴++⋅⋅⋅+==; ∵当211404k -==-时,如图中41y k x =+所示时,()f x 与直线1y kx =+有3个交点123,,x x x , ()f x 与1y kx =+均关于()0,1对称,()()()()123303f x f x f x f ∴++==; ∵当2140k -<-,即14k <时,如图中51y k x =+和61y k x =+所示时,()f x 与直线1y kx =+有且仅有一个交点()0,1,()11f x ∴=.综上所述:()()()12n f x f x f x ++⋅⋅⋅+取值的集合为{}1,3,5,7. 故选:C. 二、多选题20.(2022·广东佛山·高三阶段练习)“提丢斯数列”是18世纪由德国物理学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,…,这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1,1.6,2.8,6.2,10,…,则下列说法中正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9732410⨯+C .“提丢斯数列”的前31项和为30321211010⨯+D .“提丢斯数列”中,不超过300的有11项 【答案】BCD 【解析】对于选项A ,0.710.40.7≠,所以“提丢斯数列”不是等比数列,故A 错误; 对于选项B ,设“提丢斯数列”为数列{}n a ,当3n ≥时,232410n n a -⋅+=,所以979932410a ⨯+=,故B 正确;对于选项C ,“提丢斯数列”的前31项和为122930340.40.7(222)291010321211010++++++⨯+⨯=,故C 正确;对于选项D ,由232430010n n a -⋅+=≤有:11n ≤,所以“提丢斯数列”中,不超过300的有11项,故D 正确. 故选:BCD.21.(2022·广东佛山·高三阶段练习)若224,,a b a b +=∈∈R R ,且0ab ≠,则( )A .||2ab >B .||a b +≤C .22log ||log ||1a b +≤D .111||||a b +< 【答案】BC【解析】对于A ,因为22224||||2||a b a b ab =+=+≥,所以||2ab ≤,当且仅当a b ==时取等,故A 错误;对于B ,因为||a b +≤2≤, 可看作部分圆224(0)x y xy +=≠上的点(,)a b 到直线0x y +=的距离不大于2, 因为圆心(0,0)在直线0x y +=上,半径为22≤恒成立,故B 正确;对于C ,因为||2ab ≤,所以2222log ||log ||log ||log 21a b ab +=≤=,故C 正确;对于D ,因为224,,a b a b +=∈∈R R ,且0ab ≠,令a b ==111||||a b +=>, 故D 错误. 故选:BC.22.(2022·广东佛山·高三阶段练习)九月伊始,佛山市某中学社团招新活动开展得如火如茶,小王、小李、小张三位同学计划从篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为13,且每人选择相互独立,则( ) A .三人选择社团一样的概率为19B .三人选择社团各不相同的概率为89C .至少有两人选择篮球社的概率为727D .在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为57【答案】ACD【解析】对于A ,三人选择社团一样的事件是都选篮球社的事件、都选足球社的事件、都选羽毛球社的事件的和,它们互斥,三人选择社团一样的概率为3113()39⨯=,A 正确;对于B ,三人选择社团各不相同的事件,是小王从3个社团中任选1个,小李从余下两个中任选1个, 最后1个社团给小张的事件,共6个不同结果,因此三人选择社团各不相同的概率为3126()39⨯=,B 不正确; 对于C ,至少有两人选择篮球社的事件是恰有2人选篮球社与3人都选篮球社的事件和,其概率为213332117C C ()()3327⨯+=,C 正确;对于D ,令至少有两人选择羽毛球社的事件为A ,由选项C 知,7()27P A =,小王选择羽毛球社的事件为B , 则事件AB 是含小王只有2人择羽毛球社的事件和3人都择羽毛球社的事件和,其概率113322115()C C ()()3327P AB =⨯+=, 所以在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为()5(|)()7P AB P B A P A ==,D 正确. 故选:ACD23.(2022·广东·东莞四中高三阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则下列选项正确的是( )A .1D D AF ⊥B .直线1A G 与EFC .三棱锥G AEF -的体积为13D .存在实数λ、μ使得1AG AF AE λμ=+ 【答案】BD【解析】对于A ,在正方体1111ABCD A B C D -中,11//DD AA ,易知1AA 与AF 不垂直,故错误; 对于B ,在正方体1111ABCD A B C D -中,取11B C 的中点H ,连接1,A H GH ,如下图, 易知//GH EF ,则1AGH ∠为直线1A G 与EF 夹角或其补角, 2AB =,GH EF ∴=11A H AG = 在1A GH中,2221111cos 2AG GH A H AGH AG GH +-∠==⋅⋅ 因此,直线1A G 与EF对于C ,根据题意作图如下:易知三棱柱ABG DCF -的体积1122224V =⨯⨯⨯=,三棱锥G ABE -的体积211113323ABEV SGB AB BE GB =⋅⋅=⋅⋅⋅⋅=, 四棱锥F AECD -的体积()311133ABCDABEAECD V S FC SSFC =⋅⋅=⋅-⋅=四边形,三棱锥G AEF -的体积12323V V V V =--=,故错误; 对于D ,连接11,D F D A ,作图如下:易知1//AD EF ,则1,,,A E F D 共面,11//AG D F ,则1,,AG AF AE 共面,即存在实数λ、μ使得1AG AF AE λμ=+,故正确; 故选:BD.24.(2022·广东深圳·高三阶段练习)Farey 数列是这样定义的,对任意给定的一个正整数n ,将分母小于等于n 的不可约的真分数按升序排列,并且在第一个分数之前加上01,在最后一个分数之后加上11,这个序列称为n 级Farey 数列,用{}n F 表示.如{}3F 的各项为:01,13,12,23,11,共有5项.则( )A .数列{}n F 都有奇数个项B .6级Farey 数列{}6F 中,中间项为12C .6级Farey 数列{}6F 共有11项D .6级Farey 数列{}6F 各项的和为132【答案】BD【解析】1级Farey 数列{}1F 各项为:01,11,A 错误;6级Farey 数列{}6F :01,16,15,14,13,25,12,35,23,34,45,56,11,共有13项,中间项为12,各项的和为132,故B 正确,C 错误,D 正确. 故选:BD.25.(2022·广东深圳·高三阶段练习)已知函数()()2e 33xf x x x =-+,则( )A .函数()f x 在()0,1上单调递减B .函数()f x 恰有一个零点C .当且仅当e 3m <<时,方程()f x m =恰有三个实根D .若当(],x t ∈-∞(t ∈Z )时,函数()f x 的最大值为3,则t 的最大值为1 【答案】ACD【解析】函数()()2233e 33e 024xxf x x x x ⎡⎤⎛⎫=-+=-+>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,选项B 错误;()()e 1x x f x x =-',0x <或1x >时,()0f x '>,01x <<时,()0f x '<.如图,()f x 在(),0∞-,()1,+∞单调递增,()f x 在()0,1单调递减,选项A 正确;()03f =,()1e f =,当x 趋近正无穷时,()f x 趋近正无穷,当x 趋近负无穷时,()f x 趋近0,选项C 正确;如图,当(],x t ∈-∞(t ∈Z )时,函数()f x 的最大值为3,则一定有0t ≥,而()22e 3f =>,所以t (t ∈Z )的最大值为1,选项D 正确.故选:ACD.26.(2022·广东深圳·高三阶段练习)已知圆柱的轴截面的周长为12,圆柱的体积为V ,圆柱的外接球的表面积为S ,则下列结论正确的是( )A .圆柱的外接球的表面积S 有最大值,最大值为36πB .圆柱的外接球的表面积S 有最小值,最小值为18πC .圆柱的体积V 有最大值,最大值为8πD .圆柱的体积V 有最小值,最小值为4π 【答案】BC【解析】如图,设圆柱的底面半径为r ,高为h ,圆柱的外接球的半径为R , 由4212r h +=,得26r h +=,又2R =03r <<,圆柱的体积为()()222ππ622π3r V r h r r r ===--,则()6π2V r r =-',当02r <<时,0V '>,当2r >时,0V '<,故函数()22π3r r V =-在()0,2上单调递增,在()2,3上单调递减,所以2r =时,V 取最大值8π,所以08πV <≤,圆柱的外接球的表面积()()()()2222224ππ4π4624π269S R r h r r rr ==+=+-=-+,函数()24π269S r r =-+在30,2⎛⎫ ⎪⎝⎭上单调递减,在3,32⎛⎫ ⎪⎝⎭上单调递增,所以32r =时,S 取最小值18π,所以18π36πS ≤<.故选:BC.27.(2022·广东·执信中学高三阶段练习)已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为20x y -=,双曲线的左焦点在直线0x y +上,A 、B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,P A ,PB 的斜率分别为12,k k ,则12k k +的取值可能为( )A .34B .1C .43D .2【答案】CD【解析】根据题意知:12b a =,c =2a =,1b =,双曲线方程为2214x y -=,则()2,0A -,()2,0B ,设()00,P x y ,则220014x y -=,00x >,00y >, 00000201020022242y y x y x x x x k k y =+==+--+,根据渐近线方程知:00102y x <<,故012012x k k y =>+. 故选:CD.28.(2022·广东·执信中学高三阶段练习)若()f x 图像上存在两点A ,B 关于原点对称,则点对[,]A B 称为函数()f x 的“友情点对”(点对[,]A B 与[,]B A 视为同一个“友情点对”)若32,0()e ,0x x x f x ax x ⎧≥⎪=⎨⎪<⎩恰有两个“友情点对”,则实数a 的值可以是( ) A .0 B .12020-C .1e-D .12023-【答案】BD【解析】若()f x 有两个友情点对,则()f x 在(,0)-∞的图像关于原点对称后与(0,)+∞的图像有两个交点.由0x <时,2()=f x ax ;得其关于原点对称后的解析式为2y ax =-.问题转化为3e x y x =与2y ax =-在(0,)+∞上有两个交点,即方程32ex x ax =-有两根,化简得e xx a -=,即y a =-与e x x y =在(0,)+∞上有两个交点.对于e x xy =,求导1e x x y -'=,令10exx y -'=>,解得:1x <, 即:当(0,1)x ∈时,e xxy =单调递增; 令10e xxy -'=<,解得:1x >, 即:当(1,)x ∈+∞时,e x xy =单调递减,1x ∴=为其极大值点,1emaxy =, 又0x →时,0y →;x →+∞时,0y →;画出其大致图像:欲使y a =-与e xxy =在0x >时有两个交点, 则1(0,)e a -∈,即1(,0)e a ∈-.故选:BD29.(2022·广东·揭东二中高三阶段练习)若函数()f x ,()g x 分别是R 上的偶函数、奇函数,且()()()2sin cos f x g x x x +=+,则( ) A .()cos2f x x = B .()sin 2g x x = C .()()()()f g x g f x < D .()()()()f g x g f x >【答案】BD【解析】∵函数f (x ),g (x )分别是R 上的偶函数、奇函数, ∵f (-x )= f (x ),g (-x )=-g (x ) ∵f (x )+g (x )=(sin x +cos x )2=1+sin2x ,∵f (-x )+g (-x )=1-sin2x ,即f (x )-g (x )=1-sin2x , ∵g (x )=sin2x ,f (x )=1,∵f (g (x ))=1,g (f (x ))=sin2<1,∵f (g (x ))>g (f (x )),所以选项B 、D 正确. 故选:BD .30.(2022·广东·揭东二中高三阶段练习)定义一:关于一个函数()()f x x D ∈,若存在两条距离为d 的直线1y kx m =+和2y kx m =+,使得在x D ∈时,()12kx m f x kx m +≤≤+恒成立,则称函数()f x 在D 内有一个宽度为d 的通道.定义二:若一个函数()f x ,关于任意给定的正数ε,都存在一个实数0x ,使得函数()f x 在[)0,x ∞+内有一个宽度为ε的通道,则称()f x 在正无穷处有永恒通道.则下列在正无穷处有永恒通道的函数为( )A .()ln f x x =B .()sin xf x x=C .()f x =D .()e xf x -=【答案】BCD【解析】()ln f x x =,单调递增,且无渐近线,故不存在一个实数0x ,使得函数()f x 在[)0,x ∞+内有一个宽度为ε的通道;()sin xf x x=随着x 的增大,函数值趋向于0,故对于任意给定的正数ε,存在一个实数0x ,使得函数()f x 在[)0,x ∞+内有一个宽度为ε的通道;()f x =x 的增大,函数值增大,有渐近线y x =±,故对于任意给定的正数ε,存在一个实数0x ,使得函数()f x 在[)0,x ∞+内有一个宽度为ε的通道;()e x f x -=随着x 的增大,函数值趋向于0,故对于任意给定的正数ε,存在一个实数0x ,使得函数()f x 在[)0,x ∞+内有一个宽度为ε的通道.故选:BCD31.(2022·广东·顺德一中高三阶段练习)对x R ∀∈,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .x R ∀∈,[]1x x <+ B .[]y x =,x ∈R 的奇函数C .函数[]()y x x x R =-∈的值域为[)0,1D .[][][],,x y R x y x y ∀∈+≤+恒成立【答案】ACD【解析】设{}x 是x 的小数部分,则由取整函数的定义知:[]{}x x x =+,当x 为整数时,{}0x =,则[]=x x ,当x 不为整数时,{}01x <<,则[]x x <,且[]1x x <+成立,即[][]1x x x ≤<+,A ,由取整函数的定义知: [][]1x x x ≤<+,所以x R ∀∈,[]1x x <+成立,故选A 正确;B ,当01x <时,[]0y x ==,当10x -<<时,[]1y x ==-,故[]y x =,x ∈R 不是奇函数,故B 错误;C ,由取整函数的定义知: [][]1x x x ≤<+,所以[]1x x x -<≤,[]01x x ∴≤-<,∴函数[]()y x x x R =-∈的值域为[)01,,故C 正确; D ,由取整函数的定义知: [],,x y R x x ∀∈≤,[]y y ≤,所以[][][][][]⎡⎤+=+≤+⎣⎦x y x y x y ,故D 正确. 故选:ACD .32.(2022·广东·顺德一中高三阶段练习)函数e ()ln x f x x x x=+-,下列结论正确的是( )A .函数()f x 有且仅有一个零点B .1x =是函数()f x 的极值点C .若()f x a ≥恒成立,则(],e 1a ∞∈--D .若()()12f x f x =且12x x ≠,则121x x +>【答案】BCD【解析】因为e ()ln ,0xf x x x x x =+->所以22e e 1(1)(e )()1x x x x x x f x x x x ⋅---+'=-= 令()e ,0x h x x x =->,()e 10x h x '=-> 即函数()h x 在(0,)+∞上单调递增,()(0)1h x h >=所以()01f '=,当01x <<时,()0f x '<,()f x 在()0,1单调递减, 当1x >时,()0f x '>,()f x 在(1,)+∞单调递增 所以min ()(1)e 1f x f ==-,即()e 1f x ≥->0 所以()f x 无零点,则A 错误; 所以()f x 极值点为1x =,则B 正确; 若()f x a ≥恒成立,则e 1a ≤-,则C 正确; ln e ()ln e (ln )xx x f x x x x x x-=+-=--令ln t x x =-,()ln g x x x =-,1()1g x x'=-=0,1x = 当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>即函数()g x 在()0,1上单调递减,在()1,+∞上单调递增,()(1)1g x g ≥=, 即1t ≥,()e t f t t ∴=-当1t ≥,()e 10t f t '=->,()f t ∴在(1,)+∞单调递增 若12()()f x f x =,则12t t =,即1122ln ln x x x x -=-, 变形为:2121ln ln x x x x -=-,即21211ln ln x x x x -=-不妨设0a b >>,要证ln ln 2a b a b a b -+<-,即证21ln 1a a b a b b⎛⎫- ⎪⎝⎭<+ 令2(1)(1),()ln (1)1a t t t t t t b t ϕ-=>=->+,22214(1)()0(1)(1)t t t t t t ϕ-'=-=>++ 所以函数()t ϕ在(1,)+∞单调递增,(1)0ϕ=,即2(1)ln 01t t t -->+恒成立 即ln ln 2a b a b a b -+<-恒成立,则2112211ln ln 2x x x x x x -+=<- 即1221x x +>>,故D 正确. 故选:BCD33.(2022·广东广雅中学高三阶段练习)已知随机变量X 的取值为不大于n (n *∈N )的非负整数,它的概率分布列为:其中i p (0,1,2,3,,i n =⋅⋅⋅)满足[]0,1i p ∈,01i i p ==∑.()E X 为随机变量X 的期望.定义由X 生成的函数()2012n n f x p p x p x p x =+++⋅⋅⋅+,()g x 为函数()f x 的导函数.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X ,此时由生成的函数为()f x ,则( )A .()10g p = B .()011f p <+C .()22524f =D .()()1E X g =【答案】ACD【解析】四个面分别标有1,2,3,4个点数的正四面体型骰子,连续抛掷两次,向下点数之和为X 的取值为2,3,4,5,6,7,8,111(2)4416P X ==⨯=,111(3)2448P X ==⨯⨯=,113(4)34416P X ==⨯⨯=,111(5)4444P X ==⨯⨯=,113(6)34416P X ==⨯⨯=,111(7)2448P X ==⨯⨯=,111(8)4416P X ==⨯=,则X 的分布列为:由题知00p =,10p =,且生成的函数()2012nn f x p p x p x p x =+++⋅⋅⋅+,23456781131311()16816416816f x x x x x x x x ∴=++++++, 2345671335971()()8844882g x f x x x x x x x x '∴==++++++,对于A ,()100g p ==,故A 正确;对于B ,()0113131111116816416816f p =++++++==+,故B 不正确; 对于C ,()2345678113131122522222222168164168164f =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确; 对于D ,()11313112345678516816416816E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()1335971158844882g =++++++=,故D 正确. 故选:ACD34.(2022·广东广雅中学高三阶段练习)若62a =,63b =,则下列不等关系正确的有( ) A .1ba> B .14ab <C .2212+<a b D .1123b a b ⎛⎫+> ⎪⎝⎭【答案】ABD【解析】由62a =,63b =,得66log 2,log 3a b ==,所以666log 2log 3log 61a b +=+==, 对于A ,626log 3log 31log 2b a ==>,所以A 正确对于B ,因为66log 20,log 30a b =>=>,所以2266(log 2log 3)()1444a b ab ++≤==,因为a b ,所以等号不成立,所以14ab <,所以B 正确,对于C ,因为222a b ab +≥,所以222()122b a a b +≥=+,因为a b ,所以等号不成立,所以2212a b +>,所以C 错误, 对于D ,因为ln 2ln 3,ln 6ln 6a b ==, 所以11ln 6ln 3ln 63ln 2ln 63ln 3b a b ⎛⎫⎛⎫+=⨯+ ⎪ ⎪⎝⎭⎝⎭,由于ln 6ln 42ln 2ln 2>=,且ln 3ln 6ln 63ln 3+≥ln 3ln 6ln 63ln 3≠,所以等号不成立,所以ln 3ln 6ln 63ln 3+>所以11ln 6ln3ln 6223ln 2ln 63ln3b a b ⎛⎫⎛⎫+=⨯+>⨯> ⎪ ⎪⎝⎭⎝⎭, 所以1123b a b ⎛⎫+> ⎪⎝⎭,所以D 正确,故选:ABD35.(2022·广东·开平市忠源纪念中学高三阶段练习)油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子(春分时,该市的阳光照射方向与地面的夹角为60),若伞柄底端正好位于该椭圆的左焦点位置,则( )A B .该椭圆的离心率为2C D .该椭圆的焦距为1【答案】BC【解析】()sin 6045sin 60cos 45cos 60sin 45︒+︒=︒︒+︒︒=如图,,A B 分别是椭圆的左、右顶点,1F 是椭圆的左焦点,BC 是圆的直径,D 为该圆的圆心.因为111,BD DF DF BC ==⊥,所以1BF设椭圆的长轴长为2a ,焦距为2c ,则a c += 因为60,45,2,2A B BC AB a ∠∠====,由正弦定理得()22sin60sin 6045a=+,解得a =c a ==所以2c c a ===故选:BC36.(2022·广东·开平市忠源纪念中学高三阶段练习)已知函数()e e cos2x xf x x -=+-,若()()12f x f x >,则( ) A .()f x 为偶函数B .()f x 在(),0∞-上为增函数C .2212x x >D .12e 1x x ->【答案】AC【解析】对A ,因为()()()e e cos 2e e cos2x x x xf x x x f x ---=+--=+-=,所以()f x 为偶函数,故A 正确;对B ,()e e 2sin2x xf x x -+'=-,当π02x <时,e e 0,2sin20x x x --,所以()0f x ',当π2x 时,ππ122e ee ee e 2,2sin22x xx ----->->-,所以()0f x '>,所以()f x 在[)0,∞+上单调递增,因为()f x 为偶函数,所以()f x 在(),0∞-上为减函数,故B 错误;因为()()12f x f x >,所以()()12f x f x >,又因为()f x 在[)0,∞+上递增,所以12x x >,即2212x x >,故C正确;显然120x x ->不一定成立,则12e 1x x ->不成立,故D 错误. 故选:AC37.(2022·湖南省岳阳县第一中学高三阶段练习)已知(cos ,sin ),(cos )a x x b x x ==,函数()f x a b =⋅,则下列选项正确的是( ) A .函数()f x 的值域为13,22⎡⎤-⎢⎥⎣⎦B .将函数1sin 2y x =+图像上各点横坐标变为原来的12(纵坐标不变),再将所得图像向左平移12π个单位长度,可得函数()f x 图像 C .函数()f x 是奇函数D .函数()f x 在区间[0,2]π内所有零点之和为143π【答案】ABD【解析】2()cos cos f x a b x x x =⋅=+1cos 212sin 2262x x x π+⎛⎫==++ ⎪⎝⎭, 对于A ,因为sin 21,16x,所以()13,22f x ⎡⎤∈-⎢⎥⎣⎦,故A 正确;对于B ,将函数1sin 2y x =+图像上各点横坐标变为原来的12(纵坐标不变),得1sin 22y x =+,再将所得图像向左平移12π个单位长度, 得()11sin 2sin 212262y x x f x ππ⎛⎫⎛⎫=++=++= ⎪ ⎪⎝⎭⎝⎭,故B 正确;对于C ,因为30,662f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 不是奇函数,故C 错误; 对于D ,令()0f x =,则1sin 262x π⎛⎫+=- ⎪⎝⎭,则2266x k πππ+=-+或722,Z 66x k k πππ+=+∈, 所以6x k ππ=-+或,Z 2x k k ππ=+∈,因为[0,2]x π,所以56x π=或116π或2π或32π,所以函数()f x 在区间[0,2]π内所有零点之和为51131466223πππππ+++=,故D 正确. 故选:ABD.38.(2022·湖南省岳阳县第一中学高三阶段练习)已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC【解析】因为()f x m =的两根为()1212,x x x x <,所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xe x x x +=-+∈-,则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-. 因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增.又5(0)0,(1)2g g =-=-,所以5(),02g x ⎛⎤∈- ⎥⎝⎦,即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦,故选:BC .39.(2022·湖南·邵阳市第二中学高三阶段练习)已知()()e 211x x f x x -=-,则下列结论正确的是( )A .不等式()0f x <的解集为1,12⎛⎫⎪⎝⎭B .函数()f x 在()0,1单调递减,在3,2⎛⎫+∞ ⎪⎝⎭单调递增C .函数()f x 在定义域上有且仅有两个零点D .若关于x 的方程()f x m =有解,则实数m 的取值范围是(]3,1,2-∞+⎪∞⎡⎫⎢⎣⎭【答案】AB【解析】对于A ,由()()e 2101x x f x x -=<-,得e (21)(1)0xx x --<,因为e 0x >,所以(21)(1)0x x --<,解得112x <<,所以不等式()0f x <的解集为1,12⎛⎫⎪⎝⎭,所以A 正确,对于B ,()f x 的定义域为{}0x x ≠,由()()e 211x x f x x -=-,得22212(1)(21)(23)()e e e 1(1)(1)x x x x x x x x f x x x x -----'=⋅+⋅=⋅---,令()0f x '>,得0x <或32x >,令()0f x '<,得01x <<或312x <<,所以()f x 在(,0)-∞和3,2⎛⎫+∞ ⎪⎝⎭上递增,在(0,1)和31,2⎛⎫⎪⎝⎭上递减,所以B 正确,对于C ,令()()e 2101x x f x x -==-,得12x =,所以()f x 在定义域内有且只有一个零点,所以C 错误,对于D ,由选项B 可知()f x 在(,0)-∞和3,2⎛⎫+∞ ⎪⎝⎭上递增,在(0,1)和31,2⎛⎫ ⎪⎝⎭上递减,因数(0)1f =,3234e 2f ⎛⎫= ⎪⎝⎭,且当x 从1的左侧趋近于1时,()f x →-∞,当x 从1的右侧趋近于1时,()f x →+∞,所以()f x 的值域为32(,1]4e ,⎡⎫-∞+∞⎪⎢⎣⎭,所以若关于x 的方程()f x m =有解,则实数m 的取值范围是32(,1]4e ,⎡⎫-∞+∞⎪⎢⎣⎭,所以D 错误, 故选:AB40.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数()ex xf x =,过点(,)a b 作曲线()f x 的切线,下列说法正确的是( )A .当00a b ==,时,有且仅有一条切线B .当0a =时,可作三条切线,则240e b << C .当2a =,0b >时,可作两条切线D .当02a <<时,可作两条切线,则b 的取值范围为24e a -或e a a【答案】ABD【解析】对于A ,当00a b ==,时,点()0,0在函数()e x x f x =的图象上,1()e xxf x -'=,若点()0,0为切点,则切线斜率为(0)1k f '==,所以切线方程为y x =, 若点()0,0不为切点,设切点坐标为()00,x y ,所以00e =x x y , 切线斜率为01e -=xyx x ,所以00x =,00y =,即切点为原点,所以00a b ==,时,有且仅有一条切线,故A正确;对于B ,设切点坐标为()00,x y ,所以000e =x x y ,1()ex x f x -'=, 则切线的斜率为001e x x k -=,切线方程为()00001e e --=-x x x x y x x ,当0a =时, ()000001e e --=-x x x x b x ,则020ex x b =,设()2e =x x g x ,则()()222e e --'==x x x x x x g x , 当(),0∈-∞x 时,()0g x '<,()g x 单调递减,当()2,x ∈+∞时,()0g x '<,()g x 单调递减, 当()0,2x ∈时,()0g x '>,()g x 单调递增,所以0x =时()g x 有极小值,为()00g =,2x =时()g x 有极大值,为()242e =g ,0x >时 ()0e x xf x =>,画出()e xx f x =的图象,当0a =时,若做三条切线,则y b =与()e xxf x =的图象有3个交点,由图可得 240e b <<,故B 正确; 对于C , 当2a =时,由切线方程得()0000012e e --=-x x x x b x ,则020022e -+=x x x b ,设()222e -+=x x x h x ,则()()222440e e ---+-'==≤x xx x x h x ,所以()h x 单调递减,且()()2110e-+=>xx h x ,如图,所以当2a =,0b >时,y b =与()222e -+=xx x h x 的图象有且只有一个交点,所以只能作一条切线,故C 错误;当02a <<时,由切线方程为()000001e e--=-x x x x y x x 得 ()000001e e --=-x x x x b a x ,则()02001e +-=x x x a b ,设()()21e +-=x x x a t x ,则()()()()2222e e +----'==x x a x x a x a x t x , 因为02a <<,所以当(),2∈x a 时()0t x '>,()t x 单调递增, 所以当(),∈-∞x a 时()0t x '<,()t x 单调递减, 所以当()2,x ∈+∞时()0t x '<,()t x 单调递减, x a =时,()t x 有极小值为()()210e e +-==>aaa a aat a , 2x =时,()t x 有极大值为()()22412420ee +--==>aat , ()t x 的图象为若作两条切线,则b 的取值为24ea -或e a a,故D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学第七周考练题
2013.10.17
1.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)
D .(2,+∞)
2.如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )
A .函数f (x )在区间(-3,0)上是减函数
B .函数f (x )在区间(1,3)上是减函数
C .函数f (x )在区间(0,2)上是减函数
D .函数f (x )在区间(3,4)上是增函数 3.已知函数f (x )=12x 3-x 2-7
2x ,则f (-a 2)与f (-1)的大小关系为( )
A .f (-a 2)≤f (-1)
B .f (-a 2)<f (-1)
C .f (-a 2)≥f (-1)
D .f (-a 2)与f (-1)的大小关系不确定
4.右图是函数y =f (x )的导函数y =f ′(x )的图象,下列说法错误的是( )
A .-2是函数y =f (x )的极小值点
B .1是函数y =f (x )的极值点
C .y =f (x )在x =0处切线的斜率大于零
D .y =f (x )在区间(-2,2)上单调递增
5.已知函数f (x )=x 3+2ax 2+1
a
x (a >0),则f (2)的最小值为( )
A .1232
B .16
C .8+8a +2
a
D .12+8a +1
a
6.曲线y =e 2x 在点(0,1)处的切线方程为( ) A .y =1
2x +1
B .y =-2x +1
C .y =2x -1
D .y =2x +1
7.设曲线y =1+cos x sin x 在点(π
2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( )
A .-1 B.1
2
C .-2
D .2
8.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)
D .(-1,0)
9.设f (x )=1
3x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围为
10.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.
11.已知函数f (x )=2
x
+a ln x -2(a >0).
(1)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;
(2)若对于∀x ∈(0,+∞)都有f (x )>2(a -1)成立,试求a 的取值范围;
12.设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间.
答案:
1.解析:由题意知,f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,故选D.
2.解析:当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减函数.其他判断均不正确.A
3.解析:由题意可得f ′(x )=32x 2-2x -72
.
由f ′(x )=12(3x -7)(x +1)=0,得x =-1或x =7
3.当x <-1时,f (x )为增函数;当-1<
x <7
3时,f (x )为减函数.所以f (-1)是函数f (x )在(-∞,0]上的最大值,又因为-a 2≤0,故f (-a 2)≤f (-1).答案:A
4.解析:由图知导函数在-2处函数值为零,-2左边导函数值小于零,右边导函数值大于零,所以A 正确,1的两侧导函数值同号,所以1不是f (x )的极值点,故B 错误,导函数在x =0处函数值大于零,在区间(-2,2)上大于等于零,所以C ,D 正确.答案:B
5.解析:f (2)=8+8a +2a ,f ′(2)=8-2a 2,由f ′(2)>0得a >12,由f ′(2)<0得0<a <1
2

∴a =12时f (2)有最小值.f (2)的最小值为8+8×12+2
1
2=16.故选B.
6.解析:y ′=(e 2x )′=2e 2x ,k =y ′|x =0=2·e 2×
0=2,
∴切线方程为y -1=2(x -0),即y =2x +1,故选D. 7.解析:∵y ′=-sin 2 x -(1+cos x )cos x sin 2 x =-1-cos x sin 2 x ,
∴y ′|x =π2=-1,由条件知1
a =-1,∴a =-1,故选A.
8.解析:f (x )的定义域为(0,+∞)
∵f ′(x )=2x -2-4x =2x 2-2x -4x =2(x 2
-x -2)x =2(x -2)(x +1)
x
令f ′(x )>0,等价于2(x -2)(x +1)>0∴x <-1或x >2 又函数f (x )的定义域为{x |x >0}.∴不等式的解集为{x |x >2}.
9.解析:f ′(x )=x 2
+2ax +5,当f (x )在[1,3]上单调递减时,由⎩
⎪⎨⎪⎧
f ′(1)≤0
f ′(3)≤0,得a ≤-3;当f (x )
在[1,3]上单调递增时,f ′(x )=0中,Δ=4a 2
-4×5≤0,或⎩
⎪⎨⎪⎧
Δ≥0,
f ′(3)≥0,得a ∈[-5,5]
∪(5,+∞).综上:a 的取值范围为(-∞,-3]∪[-5,+∞).
10.解析:∵y ′=3x 2+6ax +3b ,
⎩⎪⎨⎪⎧ 3×22
+6a ×2+3b =03×12
+6a +3b =-3⇒⎩⎪⎨⎪⎧
a =-1
b =0
.
∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.答案:4
11.解析:(1)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+a
x .
所以f ′(1)=-212+a 1=-1,所以a =1.所以f (x )=2
x +ln x -2,f ′(x )=x -2x
2.
由f ′(x )>0,解得x >2;由f ′(x )<0解得0<x <2.所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).
(2)f ′(x )=-2x 2+a x =ax -2x 2. 由f ′(x )>0解得x >2a ;由f ′(x )<0,解得0<x <2
a .
所以f (x )在区间(2a ,+∞)上单调递增,在区间(0,2
a
)上单调递减.
所以当x =2a 时,函数f (x )取得最小值,y min =f (2
a ).因为对于∀x ∈(0,+∞)都有f (x )>2(a
-1)成立,所以满足f (2a )>2(a -1)即可.则22a +a ln 2a -2>2(a -1),即a ln 2a >a .由a ln 2
a
>a ,解得
0<a <2e . 所以a 的取值范围是(0,2e
).
12.解析:由已知得函数f (x )的定义域为(-1,+∞),且f ′(x )=ax -1x +1
(a ≥-1),
(1)当-1≤a ≤0时,f ′(x )<0,函数f (x )在(-1,+∞)上单调递减. (2)当a >0时,由f ′(x )=0,解得x =1
a .
f ′(x )、f (x )随x 的变化情况如下表:
当x ∈(-1,1a )时,f ′(x )<0,函数f (x )在(-1,1
a )上单调递减,
当x ∈(1a ,+∞)时,f ′(x )>0,函数f (x )在(1
a ,+∞)上单调递增.
综上所述:当-1≤a ≤0时,函数f (x )在(-1,+∞)上单调递减.
当a >0时,函数f (x )在(-1,1a )上单调递减,函数f (x )在(1
a ,+∞)上单调递增.
答案:当-1≤a ≤0时,函数f (x )在(-1,+∞)上单调递减.
当a >0时,函数f (x )在(-1,1a )上单调递减,函数f (x )在(1
a
,+∞)上单调递增.。

相关文档
最新文档