幂 的运算经典题和易错题
(完整版)幂的运算经典习题
一、同底数幂的乘法1、下列各式中,正确的是( ) A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-•-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =•6、在等式a 3·a 2·( )=a 11中,括号里面人代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =••,则m=7、-t 3·(-t)4·(-t)58、已知n 是大于1的自然数,则()c -1-n ()1+-•n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. 二、幂的乘方 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-z xy =6、计算()734x x •的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-•342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘方1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、()()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。
幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点
第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)1. 计算32m m ÷的结果是( )A. mB. m 2C. m 3D. m 5(2023春·江苏·七年级专题练习)2. 已知32816x x ⨯=,则x 的值为( )A. 2B. 3C. 4D. 5(2023春·江苏·七年级专题练习)3. 计算23m m ⋅的结果是( )A. 6mB. 5mC. 6mD. 5m(2023春·江苏·七年级专题练习)4. 计算()32a a - 的结果是( )A. 6aB. 6a -C. 5aD. 5a -(2022春·江苏常州·七年级常州市清潭中学校考期中)5. 下列计算正确的是( )A. 236a a a+= B. 236a a a ⨯=C. 826a a a ÷=D. ()437a a =(2023春·江苏·七年级专题练习)6. 计算:()323·a a -结果为( )A. 9a -B. 9aC. 8aD. 8a (2023春·江苏·七年级专题练习)7. 如果()21633n =,则n 的值为( )A. 3B. 4C. 8D. 14(2022春·江苏连云港·七年级统考期中)8. 目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是( )A. 41.210⨯ B. 41.210⨯﹣ C. 50.1210⨯ D. 50.1210⨯﹣(2023春·江苏·七年级专题练习)9. 下列运算正确的是( )A. 842x x x ÷= B. ()239xx =C. 437x x x ⋅= D. ()22222xy x y =(2022秋·江苏·七年级专题练习)10. 式子5555555555++++化简的结果是( )A. 25 B. 55 C. 65 D. 555+二、填空题(2022春·江苏泰州·七年级校考阶段练习)11. 把数字0.0000009用科学记数法表示为 _____.(2023春·江苏·七年级专题练习)12. 计算:()22y -= ___.(2021春·江苏泰州·七年级校考期中)13. 4月9日,以“打造城市硬核 塑造都市功能”为主题的2021泰州城市推介会在中国医药城会展交易中心举行,某出席企业研制的溶液型药物分子直径为0.00000008厘米,该数据用科学记数法表示为______厘米.(2021春·江苏南京·七年级南京钟英中学校考期中)14. 在()()22323xy x y =的运算过程中,依据是______.(2022秋·江苏·七年级校考阶段练习)15. 计算:9999188⎛⎫⨯-= ⎪⎝⎭_____________.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)16. 计算:(1)()102132363π-⎛⎫--⨯+- ⎪⎝⎭(2)()()333nnn a a a a +-⋅(2023春·江苏·七年级专题练习)17. 计算:()()()3443x x x x ⋅+-⋅---.(2021春·江苏苏州·七年级苏州草桥中学校考期中)18. 计算:3272(2)a a a a -⋅+÷.(2022春·江苏连云港·七年级校考期中)19. 计算: ()100100133⎛⎫⨯- ⎪⎝⎭.(2022春·江苏宿迁·七年级统考期中)20. 我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气中的传播速度约为8310m/s ⨯,而声音在空气中的传播速度约为300m /s .问:在空气中光的传播速度是声音的多少倍?(结果用科学记数法表示)【常考】一.选择题(共4小题)(2022春•江阴市校级月考)21. 计算(﹣0.25)2022×42021的结果是( )A. ﹣1B. 1C. 0.25D. 44020(2022春•吴江区期中)22. 计算()234a 的正确结果是( )A. 616a B. 516a C. 68a D. 916a (2022春•沛县月考)23. 下列运算正确的是( )A. 2242x x x += B. 236x x x ⋅=C. 236()x x = D. 22(2)4x x -=-(2021春•秦淮区期末)24. 下列计算正确的是( )A. 235a a a += B. 236a a a ⋅= C. ()326a a = D. 624a a a ÷=二.填空题(共8小题)(2022春•亭湖区校级期末)25. H9N2型禽流感病毒的病毒粒子的直径在0.00008毫米~0.00012毫米之间,数据0.00012用科学记数法可以表示为_____.(2022春•邗江区期末)26. 若x +y =3,则2x •2y 的值为_____.(2021春•惠山区校级期中)27. 已知2,4x y m m ==,则x y m +=_____.(2022春•浦口区校级月考)28. 计算:22(2)xy - =____________________.(2022春•泰兴市校级月考)29. 16=a 4=2b ,则代数式a+2b=__.(2022春•广陵区期末)30. 已知a m =3,a n =2,则a 2m ﹣n 的值为_____.(2021春•梁溪区期中)31. 已知2x =3,2y =5,则22x+y-1=_____.(2020春•丹阳市校级月考)32. 若0(1)1x -=,则x 满足条件__________.三.解答题(共8小题)(2021春•高新区校级月考)33. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春•建邺区校级期中)34. 如果c a b =,那么我们规定(),a b c =,例如:因为328=,所以()2,83=(1)根据上述规定,填空:()3,27= ,()4,1= ,()2,0.25= ;(2)记()()()3,5,3,6,3,30a b c ===.求证:a b c +=.(2021春•东台市月考)35. 若105x =,103y =,求2310x y +的值.(2022春•宝应县校级月考)36. (1)若10x =3,10y =2,求代数式103x +4y 的值.(2)已知:3m +2n ﹣6=0,求8m •4n 的值.(2022春•亭湖区校级月考)37. 阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A.同底数幂的乘法 B.同底数幕的除法C.幂的乘方D.积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.(2020秋•淇滨区校级月考)38. 已知2,3m n x x ==,求32m n x -的值.(2021春•高新区校级月考)39. 已知23,25x y ==.求:(1)2x y +的值;(2)32x 的值;(3)212x y +-的值.(2020•盐城二模)40. 计算:()0112π42-----【易错】一.选择题(共4小题)(2022春•吴江区校级期中)41. 新型冠状病毒呈圆形或者椭圆形,最大直径约0.00000014米,怕酒精,不耐高温,相信我们团结一心,必定早日战胜病毒.用科学记数法表示新冠病毒的直径是( )A. 61410⨯﹣ B. 71410⨯﹣ C. 61.410⨯﹣ D. 71.410⨯﹣(2022春•东海县期末)42. 算式35-可以表示为( )A. ()()()()()33333-⨯-⨯-⨯-⨯- B.1555⨯⨯C. ()()()()()33333-+-+-+-+- D. 555-⨯⨯(2022春•相城区期末)43. 下列运算中,正确的是( )A. 2221a a -= B. ()2222a a = C. 633a a a ÷= D. 428a a a ⋅=(2022春•工业园区校级期中)44. 下列运算正确的是( )A. 326a a a ⋅= B. 323a a a +=C. ()3339a a-=- D. ()236aa -=二.填空题(共7小题)(2022春•丹阳市期末)45. 每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.(2022春•宜兴市校级月考)46. (1)若2•4m •8m =221,则m =_____.(2)若3x ﹣5y ﹣1=0,则103x ÷105y =_______.(2022秋•通州区期中)47. 计算:()02-=__.(2021春•宝应县月考)48. 若()3n n -的值为1,则n 的值为__.当x __时,()0241x -=(2020春•高新区期中)49. 20182019133⎛⎫⨯-= ⎪⎝⎭________.(2022春•相城区校级期末)50. 若416m =,28n =,则22m n -=________.(2019春•滨湖区期中)51. 计算:()2020201940.25⨯-_______.三.解答题(共5小题)(2022春•盐都区月考)52. 若a m =a n (a >0且a ≠1,m ,n 是正整数),则m =n .你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!(1)如果2×8x ×16x =222,求x 的值;(2)已知9n +1﹣32n =72,求n 的值.(2022春•江阴市校级月考)53. 计算:()()2020********π-⎛⎫----+- ⎪⎝⎭.(2022春•泰兴市校级月考)54. 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,体长仅0.021厘米,其质量也只有0.000005克.(1)用科学记数法表示上述两个数据.(2)一个鸡蛋的质量大约是50克,多少只卵蜂的质量和与这个鸡蛋的质量相等?(2020春•沭阳县期中)55. 已知:23a =,25b =,275c =.(1)求22a 的值;(2)求2c b a -+的值.(2022春•江都区月考)56. (1)已知a +3b =4,求3a ×27b 的值;(2)解关于x 的方程4321313155x x x +++⨯=.【压轴】一、单选题(2021春·江苏无锡·七年级宜兴市实验中学校考期中)57. 计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( )A.25033333⋅⋅⋅ 个B.26033333⋅⋅⋅ 个C.27033333⋅⋅⋅ 个D.28033333⋅⋅⋅ 个(2023春·七年级单元测试)58. 设m ,n 是正整数,且m n >,若9m 与9n 的末两位数字相同,则m n -的最小值为( )A. 9B. 10C. 11D. 12(2022春·江苏无锡·七年级校考阶段练习)59. 计算20206060(0.125)(2)-⨯的结果是( )A. 1B.1- C. 8 D. 8-(2022春·江苏·七年级专题练习)60. 观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是( )A. 22S S -B. 22S S +C. 222S S -D. 2222S S --二、填空题(2022春·江苏扬州·七年级校考阶段练习)61. 已知23a =,26b =,212c =,现给出3个数a ,b ,c 之间的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④2b a =+.其中,正确的关系式是____(填序号).(2022春·江苏扬州·七年级校考期中)62. 已知5160x =,32160y =,则(1)(1)1(2022)x y ----=__________.(2022秋·江苏南通·七年级南通田家炳中学校考阶段练习)63. 计算:202320222021(0.125)24-⨯⨯=________.(2023春·七年级单元测试)64. 观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++ ,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.(2022春·江苏·七年级专题练习)65. 已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.三、解答题(2023春·江苏·七年级专题练习)66. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(5,25)=,(2,1)=,(3,19)=.(2)小明在研究这种运算时发现一个特征:(3n ,4n )=(3,4),并作出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n .所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法证明下面这个等式:(3,2)+(3,5)=(3,10).(2023春·江苏·七年级专题练习)67. 如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=____ ,d (10-2)=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn)=d (m )-d (n );根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5).(2023春·江苏·七年级专题练习)68. 阅读下列材料:按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,⋯为等比数列,其中11a =,公比为3q =.然后解决下列问题.(1)等比数列3,6,12,⋯的公比q 为 ,第4项是 .(2)如果已知一个等比数列的第一项(设为1)a 和公比(设为)q ,则根据定义我们可依次写出这个数列的每一项:1a ,1a q ,21a q ,31a q ,⋯.由此可得第n 项n a = (用1a 和q 的代数式表示).(3)若一等比数列的公比2q =,第2项是10,求它的第1项与第4项.(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.(2023春·七年级单元测试)69. 阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)(2023春·江苏·七年级专题练习)70. 阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质:()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,>根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).(2022春·江苏·七年级专题练习)71. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春·江苏宿迁·七年级统考阶段练习)72. (1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223(___(32-;(2)请你通过计算,判断35()4与34(5-之间的关系;(3)我们可以发现:()m b a -____()m a b(0)ab ≠(4)利用以上的发现计算:3477()()155-⨯.(2022秋·江苏·七年级专题练习)73. 观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)【1题答案】【答案】A【解析】【分析】根据同底数幂的除法法则进行解答即可.【详解】解: 3232m m m m -÷==.故选:A .【点睛】此题主要考查了同底数幂的除法运算,底数不变,指数相减,正确掌握相关运算法则是解题关键.(2023春·江苏·七年级专题练习)【2题答案】【答案】B【解析】【详解】根据幂的乘方,可得同底数幂的乘法,根据同底数的幂相等,可得指数相等,可得答案.【解答】解:由题意,得34122222x x x ⋅==,412x =,解得3x =,故选:B .【点睛】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.(2023春·江苏·七年级专题练习)【3题答案】【答案】D【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式235m m +==,故选D .【点睛】本题考查了同底数幂的乘法,掌握m n m n a a a +⋅=是解题的关键.(2023春·江苏·七年级专题练习)【4题答案】【答案】D【解析】【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a - =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.(2022春·江苏常州·七年级常州市清潭中学校考期中)【5题答案】【答案】C【解析】【分析】依据合并同类项,同底数幂的乘除法法则、幂的乘方法则进行判断,即可得出结论.【详解】解:A .235a a a +=,故错误,不合题意;B .235a a a ⨯=,故错误,不合题意;C .826a a a ÷=,故正确,符合题意;D .()1432a a =,故错误,不合题意;故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘除法、幂的乘方,掌握幂的运算法则是解题的关键.(2023春·江苏·七年级专题练习)【6题答案】【答案】A【解析】【分析】利用幂的乘方的法则及同底数幂的除法的法则对式子进行运算即可.【详解】解:()323639··a a a a a -=-=-.故选:A .【点睛】本题主要考查了同底数幂的除法,幂的乘方;解答的关键是对相应的运算法则的掌握.(2023春·江苏·七年级专题练习)【7题答案】【答案】C【解析】【分析】把左边的数化成底数是3的幂的形式,然后利用利用相等关系,可得出关于n 的相等关系,解即可.【详解】解:∵()2233nn =,∴21633n =,∴216n =,∴8n =.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算公式是关键.(2022春·江苏连云港·七年级统考期中)【8题答案】【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2023春·江苏·七年级专题练习)【9题答案】【答案】C【解析】【分析】分别根据同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法则对各选项进行计算即可.【详解】解:A .原式4x =,故本选项错误,不合题意;B .原式6x =,故本选项错误,不合题意;C .原式7x =,故本选项正确,符合题意;D .原式224x y =,故本选项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法,解题的关键是掌握同底数幂的乘法(除法),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方,(2022秋·江苏·七年级专题练习)【10题答案】【答案】C【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:555555655555555++++=⨯=.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(2022春·江苏泰州·七年级校考阶段练习)【11题答案】【答案】7910-⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:70.0000009910-=´,故答案为:7910-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.(2023春·江苏·七年级专题练习)【12题答案】【答案】4y 【解析】【分析】根据幂的乘方法则计算,即可求解.【详解】解:()422y y -=.故答案为:4y .【点睛】本题主要考查了幂的乘方,熟练掌握幂的乘方,底数不变,指数相乘是解题的关键.(2021春·江苏泰州·七年级校考期中)【13题答案】【答案】8810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2021春·江苏南京·七年级南京钟英中学校考期中)【14题答案】【答案】积的乘方运算法则【解析】【分析】根据积的乘方法则∶把每一个因式分别乘方,再把所得的幂相乘可得答案.【详解】解∶在()()22323xy x y =的运算过程中,依据是积的乘方运算法则,故答案为∶积的乘方运算法则.【点睛】此题主要考查了单项式乘法和积的乘方,关键是掌握积的乘方计算法则.(2022秋·江苏·七年级校考阶段练习)【15题答案】【答案】-1【解析】【分析】根据积的乘方的逆用进行计算即可得.【详解】解:原式=9918(8⎡⎤⨯-⎢⎥⎣⎦=99(1)-=-1故答案为:-1.【点睛】本题考查了积的乘方的逆用,解题的关键是掌握积的乘方的逆用并正确计算.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)【16题答案】【答案】(1)14-(2)332n n a a +-【解析】【分析】(1)根据乘方运算,负指数幂的运算,非零数的零次幂运算法则即可求解;(2)根据幂的乘方,同底数幂的乘法运算法则即可求解.【小问1详解】解:()102132363π-⎛⎫--⨯+- ⎪⎝⎭9231=--⨯+14=-.【小问2详解】解:()()333n n n a a a a +-⋅333n n n a a a +=+-332n n a a +=-.【点睛】本题主要考查整式的混合运算,掌握同底数幂的乘法法则,幂的乘方,负指数幂的运算,非零数的零次幂的运算是解题的关键.(2023春·江苏·七年级专题练习)【17题答案】【答案】0【解析】【分析】根据同底数幂的乘法以及积的乘方计算法则进行求解即可【详解】()()()3443x x x x ⋅+-⋅---()()4343x x x x ⋅+=⋅---4343x x ++-=77x x =-0=.【点睛】本题主要考查了同底数幂的乘法和积的乘方,解题的关键在于能够熟练掌握相关计算法则进行求解.(2021春·江苏苏州·七年级苏州草桥中学校考期中)【18题答案】【答案】57a -【解析】【分析】先计算积的乘方运算,再计算同底数幂的乘法,同底数幂的除法运算,再合并同类项即可.【详解】解:3272(2)a a a a -⋅+÷3258a a a =-+558a a =-+57a =-.【点睛】本题考查的是积的乘方运算,同底数幂的乘法运算,除法运算,合并同类项,掌握以上基础运算的运算法则是解本题的关键.(2022春·江苏连云港·七年级校考期中)【19题答案】【答案】1【解析】【分析】逆用积的乘方公式即可求解.【详解】解:()100100133⎛⎫⨯- ⎪⎝⎭100133⎛⎫=-⨯ ⎪⎝⎭1=.【点睛】本题考查积的乘方,灵活运用积的乘方公式是解题关键.(2022春·江苏宿迁·七年级统考期中)【20题答案】【答案】6110⨯【解析】【分析】先根据同底数幂相除法则计算,再改写成科学记数法表示即可.【详解】解:根据题意得:8310300⨯=82310310⨯⨯ =610=6110⨯答:在空气中光的传播速度是声音的6110⨯倍【点睛】本题考查同底数幂相除,用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.【常考】一.选择题(共4小题)(2022春•江阴市校级月考)【21题答案】【答案】C【解析】【分析】根据积的乘方的逆运算法则计算即可.【详解】原式()2021202120212021111111144114444444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-=-⨯⨯-=-⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选:C .【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.(2022春•吴江区期中)【22题答案】【答案】A【解析】【分析】根据积的乘方运算法则来进行计算,再与选项进行比较求解.【详解】解:()2323264416a a a ⨯==.故选:A .【点睛】本题主要考查了积的乘方.积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.理解相关知识是解答关键.(2022春•沛县月考)【23题答案】【答案】C【解析】【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则进行计算即可.【详解】解:A 222.2x x x +=,故A 不符合题意;B.235x x x ⋅=,故B 不符合题意;C.236()x x =,故C 符合题意;D.22(2)4x x -=,故D 不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.(2021春•秦淮区期末)【24题答案】【答案】C【解析】【分析】根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则对每个选项进行分析,即可得出答案.【详解】解:∵235a a a +≠,∴选项A 不符合题意;∵232356a a a a a +⋅==≠,∴选项B 不符合题意;∵()326a a =,∴选项C 符合题意;∵624a a a ÷=,∴选项D 不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方,熟练掌握同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则是解决问题的关键.二.填空题(共8小题)(2022春•亭湖区校级期末)【25题答案】【答案】1.2×10﹣4.【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:数据0.00012用科学记数法可以表示为1.2×10﹣4.故答案为:1.2×10﹣4.【点睛】本题考查了科学记数法,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2022春•邗江区期末)【26题答案】【答案】8【解析】【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:∵x +y =3,∴2x •2y=2x +y=23=8故答案为8.【点睛】本题考查同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.(2021春•惠山区校级期中)【27题答案】【答案】8【解析】【分析】根据幂的运算法则即可求解.【详解】∵2,4x y m m ==∴x y m +=248x y m m =⨯⨯=故答案为:8.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.(2022春•浦口区校级月考)【28题答案】【答案】244x y 【解析】【分析】根据积的乘方运算以及幂的乘方运算法则求解即可.【详解】解:22(2)xy -()()22222x y =-⋅244x y =,故答案为:244x y .【点睛】本题考查整式运算,涉及到积的乘方运算以及幂的乘方运算,熟练掌握整式运算的法则是解决问题的关键.(2022春•泰兴市校级月考)【29题答案】【答案】10或6【解析】【分析】根据16=24,求出a,b的值,即可解答.【详解】解:∵16=24,16=a4=2b,∴a=±2,b=4,∴a+2b=2+8=10,或a+2b=﹣2+8=6,故答案为:10或6.【点睛】本题考查的知识点是幂的乘方与积的乘方,利用已知条件得出a、b的值是解此题的关键.(2022春•广陵区期末)【30题答案】【答案】4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可.【详解】详解:∵a m=3,∴a2m=32=9,∴a2m-n=292mnaa=4.5.故答案为4.5.【点睛】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2021春•梁溪区期中)【31题答案】【答案】45 2【解析】【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2=452故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.(2020春•丹阳市校级月考)【32题答案】【答案】x ≠1.【解析】【分析】根据0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1求解即可.【详解】解:∵0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1,∴x-1≠0,∴x ≠1,故答案是:x ≠1.【点睛】本题考查了零次幂的性质,掌握零次幂的性质是关键.三.解答题(共8小题)(2021春•高新区校级月考)【33题答案】【答案】(1)1012 2.-(2)()41231.⨯-【解析】【分析】(1)根据已知材料的方法解答即可(2)先把式子化简成与题干中的式子一致的形式再解答.【详解】解:(1)令231002222S =+++⋯+①,将等式两边同时乘以2得到:23410122222S ②,=+++⋯+②-①得:10122S =-∴即2310010122222 2.+++⋯+=-(2)()4023404123643413333+++⋯+⨯=++++⋯+令()2340413333S =++++⋯+①,将等式两边同时乘以3得到:()2341343333S ②,=+++⋯+②-①得:()412431S =-()41S 231.=⨯-【点睛】此题重点考查学生对同底数幂的乘法的应用,能根据材料正确找到做题方法是解题关键.(2022春•建邺区校级期中)【34题答案】【答案】(1)3,0,2-(2)见解析【解析】【分析】(1)根据规定求解即可;(2)根据规定,得到35,36,330a b c ===,进而得到33356303a b a b c +⋅==⨯==,即可得证.【小问1详解】解∵3021327,41,20.254-====∴()3,273=,()4,10=,()2,0.252=-,故答案为:3,0,2-;【小问2详解】解:由题意,得:35,36,330a b c ===,∵33356303a b a b c +⋅==⨯==,∴a b c +=.【点睛】本题考查零指数幂,负整数指数幂,同底数幂的乘法.理解并掌握题干中的规定,熟练掌握相关运算法则,是解题的关键.(2021春•东台市月考)【35题答案】【答案】675【解析】【分析】根据同底数幂的乘法,可得要求的形式,根据幂的乘方,可得答案.【详解】解:因为10x=5,10y=3,所以102x+3y=102x⋅103y=(10x)2⋅(10y)3=52×33=25×27=675.故答案为675.【点睛】本题考查了幂的乘方以及同底数幂的乘法.(2022春•宝应县校级月考)【36题答案】【答案】(1)432;(2)64【解析】【分析】(1)利用同底数幂的乘法、幂的乘方运算法则将原式变形进行求解;(2)利用同底数幂的乘法运算法则将原式变形进行求解.【详解】(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.【点晴】考查了同底数幂的乘法运算以及幂的乘方运算,解题关键是熟记运算法则.(2022春•亭湖区校级月考)【37题答案】【答案】1、C,2、x<y【解析】【分析】(1)、根据幂的乘方法则将其化成同指数,然后进行比较大小得出答案;(2)、将x 和y 的指数化成相同,然后进行比较幂的大小从而得出底数的大小.【详解】(1)、C(2)、解∵x 63=(x 7)9=29=512,y 63=(y 9)7=37=2187,2187>512,∴x 63<y 63,∴x <y .(2020秋•淇滨区校级月考)【38题答案】【答案】89【解析】【分析】根据幂的乘方及同底数幂的除法的逆运算,进行运算即可.【详解】解: 32m n x -32m nx x =÷()()32m n x x =÷89=÷89=.【点睛】本题主要考查了幂的乘方及同底数幂的除法的逆运算,熟练掌握幂的乘方及同底数幂的除法的逆运算是解题的关键.(2021春•高新区校级月考)【39题答案】【答案】(1)15(2)27(3)22.5【解析】【分析】(1)根据同底数幂乘法的逆运算计算,即可求解;(2)根据幂的乘方的逆运算,即可求解;(3)根据同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算计算,即可求解.【小问1详解】解:2223515x y x y +=⋅=⨯=【小问2详解】解:()33322327x x ===【小问3详解】解:()2212222235222.5x y x y +-=÷⨯=⋅=÷【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算,熟练掌握相关运算法则是解题的关键.(2020•盐城二模)【40题答案】【答案】1-.【解析】【分析】先计算负整数指数幂、零指数幂运算,再计算有理数的减法即可.【详解】原式11122=--1=-.【点睛】本题考查了负整数指数幂、零指数幂运算、有理数的减法,熟记各运算法则是解题关键.【易错】一.选择题(共4小题)(2022春•吴江区校级期中)【41题答案】【答案】D【解析】【分析】根据科学记数法的表示方法求解即可.【详解】解:70.00000014 1.410-=⨯.故选:D .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.(2022春•东海县期末)【42题答案】。
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)100
七年级数学试卷幂的运算易错压轴解答题训练经典题目(及答案)100一、幂的运算易错压轴解答题1.已知3a=4,3b=5,3c=8.(1)填空:32a=________;3b+c的值为________;(2)求32a﹣3b的值.2.规定两数a,b之间的一种新运算※,如果a c=b,那么a※b=c.例如:因为52=25,所以5※25=2,因为50=1,所以5※1=0.(1)根据上述规定,填空:2※8=________2※=________.(2)在运算时,按以上规定:设4※5=x,4※6=y,请你说明下面这个等式成立:4※5+4※6=4※30.3.化简下列多项式:(1)(2)(3)若,求的值.(4)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),其中x=﹣2.4.综合题(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.5.算一算,填一填.(1)你发现了吗?()2= × ,()﹣2 = ,由上述计算,我们发现()2________()﹣2(2)仿照(1),请你通过计算,判断与之间的关系.(3)我们可以发现:()﹣m________ (ab≠0).(4)计算:()﹣2.6.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.7.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.8.综合题。
(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.9.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.10.阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.11.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25, 23×24=27, 22×26=28…⇒2m×2n=2m+n…⇒a m×a n=a m+n(m、n都是正整数).我们亦知:,,,…(1)请你根据上面的材料,用字母a、b、c归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.12.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为log(即=3)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题:(1)计算以下各对数的值:=________ ;=________ ;=________ .(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=________ (a>0,且a≠1,M>0,N>0)(4)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)16;40(2)解:32a−3b=32a÷33b=(3a)2÷(3b)3=42÷53= 16125 .【解析】【解答】解:(1)32a=(3a)2=42=16;3b+c=3b•解析:(1)16;40(2)解:32a−3b=32a÷33b=(3a)2÷(3b)3=42÷53=.【解析】【解答】解:(1)32a=(3a)2=42=16;3b+c=3b•3c=5×8=40;【分析】(1)直接利用幂的乘方运算法则计算得出答案,直接利用同底数幂的乘法运算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则进而计算得出答案.2.(1)3;-4(2)解:设4※5=x,4※6=y,4※30=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即4※5+4※6=4※30.【解析:(1)3;-4(2)解:设4※5=x,4※6=y,4※30=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即4※5+4※6=4※30.【解析】【解答】(1)23=8,2※8=3,2﹣4=,2※=﹣4,故答案为:3;﹣4【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.3.(1)解: =(2)解:原式=(3)解:∵2x+5y=3, ∴原式=(4)解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣解析:(1)解: =(2)解:原式=(3)解:∵2x+5y=3, ∴原式=(4)解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2,当x=﹣2时,原式=﹣9×(﹣2)+2=20.【解析】【分析】(1)利用多项式乘以多项式,完全平方公式将多项式展开、然后去括号、合并即可.(2)利用平方差公式,完全平方公式去括号,然后合并即可.(3)根据幂的乘方的性质,将原式变形,然后整体代入计算即可.(4)利用完全平方公式、平方差公式、单项式乘以多项式将原式展开并去括号,合并即化为最简,然后将x值代入计算即可.4.(1)解:∵ax+y=ax•ay=25,ax=5,∴ay=5,∴ax+ay=5+5=10(2)解:102α+2β=(10α)2•(10β)2=52×62=900.【解析】【分析解析:(1)解:∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10(2)解: 102α+2β=(10α)2•(10β)2=52×62=900.【解析】【分析】(1)逆用同底数幂的乘法法则得到a x+y=a x•a y,从而可求得a x的值,然后代入求解即可;(2)先求得102α和102β的值,然后依据同底数幂的乘法法则得到102α+2β=(10α)2•(10β)2,最后,将102α和102β的值代入求解即可.5.(1)=(2)解:(3)=(4)解:( 715 )﹣2=( 157 )2= 22549【解析】【解答】解:(1)我们发现(23 )2=(32 )﹣2;故答案为:=;(3解析:(1)=(2)解:(3)=(4)解:()﹣2=()2=【解析】【解答】解:(1)我们发现()2=()﹣2;故答案为:=;(3)我们可以发现:()﹣m= (ab≠0).故答案为:=;【分析】本题为观察总结规律题型,细心运算即可.6.(1)解:12*3=1012×103=1015 , 2*5=102×105=107(2)解:不相等.∵(a*b)*c=(10a×10b)*c=10a+b*c= 1010a+b ×10c= 1解析:(1)解:12*3=1012×103=1015, 2*5=102×105=107(2)解:不相等.∵(a*b)*c=(10a×10b)*c=10a+b*c= ×10c= ,a*(b*c)=a*(10b×10c)=a*10b+c=10a× = ,∴(a*b)*c≠a*(b*c)【解析】【分析】(1)依据定义列出算式,然后再依据同底数幂的乘法法则进行计算即可,最后,再进行比较即可;(2)首先依据定义进行进行计算,然后,依据计算结果进行判断即可.7.(1)解:∵4m=a,8n=b,∴22m=a,23n=b,22m+3n=22m•23n=ab;②24m﹣6n=24m÷26n=(22m)2÷(23n)2= a2b2(2)解∵2×8解析:(1)解:∵4m=a,8n=b,∴22m=a,23n=b,22m+3n=22m•23n=ab;②24m﹣6n=24m÷26n=(22m)2÷(23n)2=(2)解∵2×8x×16=223,∴2×(23)x×24=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6:【解析】【分析】(1)分别将4m,8n化为底数为2的形式,然后代入①②求解;(2)将8x化为23x,将16化为24,列出方程求出x的值.8.(1)解:∵ax+y=ax•ay=25,ax=5,∴ay=5,∴ax+ay=5+5=10(2)解:102α+2β=(10α)2•(10β)2=52×62=900【解析】【分析】解析:(1)解:∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10(2)解:102α+2β=(10α)2•(10β)2=52×62=900【解析】【分析】(1)先根据同底数幂乘法运算的逆运算得出a x+y=a x•a y=25,根据a x=5可得a y=5,代入即可求解;(2)将原式利用同底数幂乘法运算的逆运算进行变形为(10α)2•(10β)2,即可求解.9.(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣( 13 )﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(解析:(1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(x+1)=3x﹣2x+2﹣3x﹣3=﹣2x﹣1(4)解:(m4)2+m5•m3+(﹣m)4•m4=m8+m8+m8=3m8【解析】【分析】(1)直接利用绝对值的性质以及结合零指数幂的性质和负整数指数幂的性质化简求出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则分别化简求出答案;(3)直接利用单项式乘以多项式运算法则化简求出答案;(4)直接利用幂的乘方运算法则化简求出答案.10.(1)2;4;6(2)解:4×16=64,log24+log216=log264(3)loga(MN)(4)证明:设logaM=b1 , logaN=b2 ,则 ab1 =M,解析:(1)2;4;6(2)解:4×16=64,log24+log216=log264(3)log a(MN)(4)证明:设log a M=b1, log a N=b2,则 =M, =N,∴MN= ,∴b1+b2=log a(MN)即log a M+log a N=log a(MN)【解析】【解答】解:(1)log24=2,log216=4,log264=6;(3)log a M+log a N=log a (MN);【分析】首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1,log a N=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.11.(1)解:根据上面的材料可得:ba<b+ca+c .说明:∵ba﹣b+ca+c=b(a+c)a(a+c)﹣a(b+c)a(a+c)=== ,又∵a>b>0,c>0,∴a+c>0,b﹣解析:(1)解:根据上面的材料可得:.说明:∵﹣=﹣===,又∵a>b>0,c>0,∴a+c>0,b﹣a<0,∴<0,∴﹣<0,即:<成立;(2)解:∵原来糖水中糖的质量分数=,加入k克糖后糖水中糖的质量分数+,由(1)<可得<,所以糖水更甜了.【解析】【解答】(1)你根据上面的材料可得:.说明:∵﹣= ﹣= = = ,又∵a>b>0,c>0,∴a+c>0,b﹣a<0,∴<0,∴﹣<0,即:<成立;(2)∵原来糖水中糖的质量分数= ,加入k克糖后糖水中糖的质量分数+ ,由(1)<可得<,所以糖水更甜了.【分析】(1)根据已知不等式可找出规律,因为3>2>0,1>0,2>0,3>0,,,,…故a>b>0,c>0,则;(2)因为,说明原来糖水中糖的质量分数小于加入k克糖后糖水中糖的质量分数,所以糖水更甜了.12.(1)2;4;6(2)解:4×16=64,log24+log216=log264;(3)logaMN(4)证明:设logaM=m,logaN=n,则M=am , N=an ,解析:(1)2;4;6(2)解:4×16=64,+=;(3)log a MN(4)证明:设log a M=m,log a N=n,则M=a m, N=a n,∴MN=a m•a n=a m+n,∴log a MN=log a a m+n=m+n,故log a N+log a M=log a MN.【解析】解:(1)∵4=22, 16=24, 64=26,∴=2;=4;=6.(2)4×16=64,+ = ;(3)log a N+log a M=log a MN.(4)证明:log a M=m,log a N=n,则M=a m, N=a n,∴MN=a m•a n=a m+n,∴log a MN=log a a m+n=m+n,故log a N+log a M=log a MN.【分析】(1)根据对数的定义,把求对数写成底数的幂即可求解;(2)根据(1)的计算结果即可写出结论;(3)利用对数的定义以及幂的运算法则a m•a n=a m+n即可证明.。
完整版)幂的运算经典习题
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
幂的运算易错题
幂的运算易错题
幂的运算是数学中较为基础的运算之一,但在实际应用中常常容易出错。
以下是幂的运算易错题:
1. 指数为0的幂为1,比如2^0=1,但0的0次方是未定义的。
2. 幂的乘法法则,即a^m * a^n = a^(m+n)。
许多人容易忘记在指数相加时,底数不变。
3. 幂的除法法则,即a^m / a^n = a^(m-n)。
同样地,底数不变。
4. 奇数次幂的正负性,即a^n为正数当n为奇数。
这一性质对于解决一些不等式问题非常有用。
5. 对于负数的幂,必须加括号,例如(-2)^3=-8,否则可能会出现错误结果。
以上是幂的运算易错题,希望对大家能够有所帮助。
- 1 -。
七年级数学试卷幂的运算易错压轴解答题试题(及答案)
七年级数学试卷幂的运算易错压轴解答题试题(及答案)一、幂的运算易错压轴解答题1.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:;(2)由上面的计算可总结出一个规律:(用字母表示)a n·b n=________;(3)用(2)的规律计算:-0.42018× × .2.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.3.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如,等.类比有理数的乘方,记作④,读作“ 的圈4次方”,一般地,我们把()记作ⓝ,读作“a的圈n次方”.(1)直接写出计算结果:2③= ________,④=________.(2)有理数的除方可以转化为乘方幂的形式.如④= == = ,直接将下列的除方形式写成乘方幂的形式:④=________;5ⓝ=________.(3)计算:.4.已知, .(1)填空: =________; =________.(2)求m与n的数量关系.5.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)6.综合题(1)填空:21﹣20=2(________), 22﹣21=2(________), 23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。
中考数学 幂的运算易错压轴解答题专题练习(含答案)
中考数学幂的运算易错压轴解答题专题练习(含答案)一、幂的运算易错压轴解答题1.已知3a=4,3b=5,3c=8.(1)填空:32a=________;3b+c的值为________;(2)求32a﹣3b的值.2.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个的等式,这个等式可以为________;(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.3.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.4.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如,等.类比有理数的乘方,记作④,读作“ 的圈4次方”,一般地,我们把()记作ⓝ,读作“a的圈n次方”.(1)直接写出计算结果:2③= ________,④=________.(2)有理数的除方可以转化为乘方幂的形式.如④= == = ,直接将下列的除方形式写成乘方幂的形式:④=________;5ⓝ=________.(3)计算:.5.计算:(1) =________.(2) =________.6.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.7.阅读理解:乘方的定义可知:a n=a×a×a×…×a(n个a相乘).观察下列算式回答问题:32×35=(3×3)×(3×3×3×3×3)=3×3×…×3=37(7个3相乘)42×45=(4×4)×(4×4×4×4×4)=4×4×…×4=47(7个4相乘)52×55=(5×5)×(5×5×5×5×5)=5×5×…×5=57(7个5相乘)(1)20172×20175=________;(2)m2×m5=________;(3)计算:(﹣2)2016×(﹣2)2017.8.综合题。
【中考数学】幂的运算易错压轴解答题训练经典题目
【中考数学】幂的运算易错压轴解答题训练经典题目一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.(1)观察:,,我们发现________;(2)仿照(1),请你通过计算,判断与之间的关系;(3)我们可以发现: ________ ()m(ab≠0);(4)计算: .3.阅读理解:我们知道一般地,加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算;如我们规定式子23=8可以变形为log28=3,log525=2也可以变形为52=25.在式子23=8中,3叫做以2为底8的对数,记为log28.一般地,若a n=b(a>0且a≠1,b>0),则叫做以a为底b的对数,记为log a b ,即log a b=n.根据上面的规定,请解决下列问题:(1)计算:log3 1=________, log2 32=________, log216+ log24 = ________,(2)小明在计算log1025+log104 的时候,采用了以下方法:设log1025=x, log104=y∴ 10x=25 10y=4∴ 10x+y=10x×10y=25×4=100=102∴ x+y=2∴ log1025+log104=2通过以上计算,我们猜想log a M+ log a N等于多少,请证明你的猜想. 4.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值5.规定两数a,b之间的一种新运算※,如果a c=b,那么a※b=c.例如:因为52=25,所以5※25=2,因为50=1,所以5※1=0.(1)根据上述规定,填空:2※8=________2※=________.(2)在运算时,按以上规定:设4※5=x,4※6=y,请你说明下面这个等式成立:4※5+4※6=4※30.6.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.7.整式乘法和乘法公式(1)计算:(﹣x)2(2y)3(2)化简:(a+1)2+2(a﹣1)(a+1)+(a﹣1)2(3)如果(x+1)(x2+ax+b)的乘积中不含x2项和x项,求下面式子的值:(a+2b)(a+b)﹣2(a+b)2(4)课本上,公式(a﹣b)2=a2﹣2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,已知(a+b)3=a3+3a2b+3ab2+b3,则(a﹣b)3=________.8.(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现: ________(4)利用以上的发现计算: .9.已知, .(1)填空: =________; =________.(2)求m与n的数量关系.10.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.11.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.12.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n 叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴ ===16÷8×3=6(3)解:=解析:(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴ ===16÷8×3=6(3)解:===∵,∴,∴原式=2×2+29=33.【解析】【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法、除法法则计算即可;(3)先利用完全平方公式和多项式乘多项式法则化简,再由可得,代入计算即可.2.(1)=(2)∵,,∴ 543= ;(3)=(4)解:【解析】【分析】(1)(2)根据有理数乘方运算的方法及负指数的意义计算出结果后,就会发现,它们的值相等;(解析:(1)=(2)∵,,∴=;(3)=(4)解:【解析】【分析】(1)(2)根据有理数乘方运算的方法及负指数的意义计算出结果后,就会发现,它们的值相等;(3)通过观察即可发现:若果底数互为倒数,指数互为相反数的两个式子计算的结果是相等的,从而即可得出答案;(4)首先根据(3)的结论将转化为,然后根据同底数幂的乘法法则的逆用将变形为,进而再利用积的乘方法则的逆用即可简化运算算出结果.3.(1)0;5;6(2)解:loga(M·N)| logaM+ logaN= loga(M·N),证明:设logaM=x, logaN=y∴ ax=M, ay=N∴ ax+y=ax×a解析:(1)0;5;6(2)解:log a(M·N)| log a M+ log a N= log a(M·N),证明:设log a M=x, log a N=y∴ a x=M, a y=N∴ a x+y=a x×a y=M·N∴log a(M·N)= x+y∴log a M+ log a N =x+y= log a(M·N)【解析】【解答】解:(1)∵,,,∴log3 1=0,log2 32=5,log216+ log24 =4+2=6故答案为:0;5;6.【分析】(1)根据题意,利用对数的逆运算计算即可;(2)设log a M=x,log a N=y,根据对数的定义可得a x=M, a y=N,然后根据同底数幂乘法的逆用可得a x+y=M·N,再将其写成对数的形式即可证出结论.4.(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a解析:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=112-2×38=45②∵2x×4y÷8z=2x×22y÷23z=2-2∴2x+2y-3z=2-2∴x+2y-3z=-2∵(x+2y-3z)2=x2+4y2+9z2+2(2xy-3xz-6yz)∴(-2) 2=44+2(2xy-3xz-6yz)∴2xy-3xz-6yz=-20【解析】【分析】(1)根据边长为(a+b+c)的正方形面积=边长为a的正方形的面积+边长为b的正方形的面积+边长为c的正方形的面积之和,再加上边长分别为a、b的长方形的面积+边长分别为a、c的长方形的面积+边长分别为c、b的长方形的面积,列式计算即可。
【中考数学】幂的运算易错压轴解答题练习题(及答案)
【中考数学】幂的运算易错压轴解答题练习题(及答案)一、幂的运算易错压轴解答题1.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值2.已知, .(1)填空: =________; =________.(2)求m与n的数量关系.3.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.4.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.5.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.6.阅读理解:乘方的定义可知:a n=a×a×a×…×a(n个a相乘).观察下列算式回答问题:32×35=(3×3)×(3×3×3×3×3)=3×3×…×3=37(7个3相乘)42×45=(4×4)×(4×4×4×4×4)=4×4×…×4=47(7个4相乘)52×55=(5×5)×(5×5×5×5×5)=5×5×…×5=57(7个5相乘)(1)20172×20175=________;(2)m2×m5=________;(3)计算:(﹣2)2016×(﹣2)2017.7.综合题(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.8.算一算,填一填.(1)你发现了吗?()2= × ,()﹣2 = ,由上述计算,我们发现()2________()﹣2(2)仿照(1),请你通过计算,判断与之间的关系.(3)我们可以发现:()﹣m________ (ab≠0).(4)计算:()﹣2.9.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.10.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)11.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.12.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a解析:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=112-2×38=45②∵2x×4y÷8z=2x×22y÷23z=2-2∴2x+2y-3z=2-2∴x+2y-3z=-2∵(x+2y-3z)2=x2+4y2+9z2+2(2xy-3xz-6yz)∴(-2) 2=44+2(2xy-3xz-6yz)∴2xy-3xz-6yz=-20【解析】【分析】(1)根据边长为(a+b+c)的正方形面积=边长为a的正方形的面积+边长为b的正方形的面积+边长为c的正方形的面积之和,再加上边长分别为a、b的长方形的面积+边长分别为a、c的长方形的面积+边长分别为c、b的长方形的面积,列式计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂 的运算经典题
一,知识点整理:
幂指乘方运算的结果。
ɑn 指将ɑ自乘n 次(n 个ɑ相乘)。
把ɑn 看作乘方的结果,叫做ɑ的n 次幂。
对于任意底数ɑ,b ,当m,n为正整数时,有
ɑm•ɑn =ɑm+n (同底数幂相乘,底数不变,指数相加)
ɑm÷ɑn =ɑm-n (同底数幂相除,底数不变,指数相减)
(ɑm)n =ɑmn (幂的乘方,底数不变,指数相乘)
(ɑb)n =ɑn ɑn (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)
ɑ0=1(ɑ≠0) (任何不等于0的数的0次幂等于1)
ɑ-n =1/ɑn (ɑ≠0) (任何不等于0 的数的-n 次幂等于这个数的n 次幂的倒数)
二.典型例题:
【例1】:在等式⋅⋅23a a ( )11a =中,括号里面的代数式是( )
若2=m a ,3=n a 则n m a +等于( )
【例2】:n n a 2)(-的结果是( ),()()84
a a =
【例3】:=-⨯-20082007)125.0(8 .
已知3=m a ,9=n a ,则=-n m a 3 .
【例4】:已知453)5(31+=++n n x x x ,求x 的值.
【例5】已知2x +5y -3=0,求y
x 324•的值.
三,随堂练习:
1,计算:(1)()()5242
32)(a a a -÷⋅ (2)()()()3
4843222b a b a ⋅-+-
(3)()1
23041323--⎪⎭⎫ ⎝⎛--+- (4)()a b - ()3a b -()5b a - 2,若9
22)2(162=⋅n ,解关于x 的方程24=+nx .
3.已知b a 92762==,求ab a 222+的值.
4,已知q x -=3,p y --=112,q p z -⋅=274,用y x ,表示z 的代数式.
5.计算9910022)
()(-+-所得的结果是( ) A .-2 B .2 C .-992 D .992
6.当n 是正整数时,下列等式成立的有( )
(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A .4个
B .3个
C .2个
D .1个
7.计算:2332)()(a a -+-= .
8.若52=m ,62=n ,则n m 22+= .
9.下列运算正确的是( )
A .xy y x 532=+
B .36329)3(y x y x -=-
C .442232)2
1(4y x xy y x -=-⋅ D .333)(y x y x -=-
10.若的值求n m m n b a b b a +=2,)(1593.
四,随堂测试:
1,已知472510225•=••n m ,求m 、n .
2,已知y x y x x a a a
a +==+求,25,5的值.
3,若n m n n m x x x
++==求,2,162的值.
4,已知,710,510,310===c b a 试把,105写成底数是10的幂的形式.
5,比较下列一组数的大小. 61413192781,,
6,如果的值求12),0(020*******++≠=+a a a a a .
7.已知723921=-+n n ,求n 的值.
8,若
3521221))(b a b a b a n n n m =-++(,则求m +n 的值.。