表面

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面工程技术在模具制造领域中的应用和发展

摘要

模具材料是工业的基础,但即使是新型模具材料仍然难以满足模具的较高综合性能的要求,采用表面工程技术可在一定程度上弥补模具材料的不足。可用于模具制造的表面工程技术十分广泛,既包括传统的表面淬火技术、热扩渗技术、堆焊技术和电镀硬铬技术,又包括近20年来迅速发展起来的激光表面强化技术、物理气相沉积技术(PVD)、化学气相沉积技术(CVC)、离子注入技术、热喷涂技术、热喷焊技术、复合电镀技术、复合电刷镀技术和化学镀技术等。而稀土表面工程技术的进展和纳米表面工程技术的兴起必将进一步推动模具制造的表面工程技术的发展。

在此,扼要综述了在模具制造领域中应用较为广泛的几类表面工程技术,并对其性能指标和经济性作了比较。主要介绍了稀土表面工程技术和米表面工程技术在模具制造中的应用和发展。

关键词:模具材料;模具制造;表面工程技术;稀土表面工程;纳米表面工程;应用和发展

引言

据统计,目前我国家用电器约80%的零件依靠模具加工,机电行业中约70%的零件采用模具成型,塑料制品、橡胶制品、建材产品等大部分也采用模具成型。因此,国际模具协会专家认为:模具是金属加工业的帝王。而模具材料又是模具工业的基础。但即使是新型模具材料仍难以满足模具的较高综合性能的要求。表面工程是当前材料科学与工程领域中表现较为活跃、发展较为迅速的分支。表面工程具有学科的综合性,手段的多样性,广泛的功能性,潜在的创新性,环境的保护性,很强的实用性和巨大的增效性,因而受到各行各业的重视。表面工程技术在模具制造领域中的应用,在很大程度上弥补了模具材料的不足。

表面工程技术应用于模具型腔表面处理,可达到如下目的:

⑴提高模具型腔表面硬度、耐磨性、耐蚀性和抗高温氧化性能,大幅度提高模具的使用寿命。提高模具型腔表面抗擦伤能力和脱模能力,从而提高生产率。

⑵经表面涂层或合金化处理过的碳素工具钢或低合金钢,其综合性能可达到甚至超过高合金化模具材料及硬质合金的性能指标,从而可大幅度降低材料成本。

⑶可以简化模具制造加工工艺和热处理工艺,降低生产成本。

⑷可用于模具型腔表面的纹饰,以提高制品的档次和附加值。

⑸可用于模具的修复等再制造工程。

1、热扩渗技术

热扩渗技术是用加热扩散的方式使欲渗金属或非金属元素渗入金属材料或工件的表面,从而形成表面合金层的工艺。其突出特点是扩渗层与基材之间是靠形成合金来结合的,具有很高的结合强度,这是其它涂层方法如电镀、喷镀、化学镀、甚至物理气相沉积技术所无法比拟的。常用于热扩渗的合金元素包括碳、氮、硅、硼、铝、钒、钛、钨、铌、硫等。上述元素都已在不同程度上应用于各类模具型腔表面的强化。随着热扩渗技术的不断发展,二元乃至多元共渗工艺在模具表面强化中发挥越来越大的作用。对不同渗入元素或不同模具种类而言,最佳渗入工艺也不尽相同,这里介绍在模具表面强化中应用最多的几种热扩渗工艺。

1.1渗碳

渗碳具有渗速快、渗层深、渗层硬度梯度与成分梯度可方便控制、成本低等特点,能有效地提高材料的室温表面硬度、耐磨性和疲劳强度等。渗碳工艺应用于模具表面强化的第一个方面是低、中碳钢的渗碳。渗碳应用于冷作、热作和塑料模具上,都能提高模具寿命。对于注塑模,特别是在成形对型腔起磨粒磨损的塑料制品时,可采用20#钢粗加工成模,进行型腔表面渗碳,再经过精加工抛光后投入使用,除了可以降低表面粗糙度外,模具的耐磨性也会相应提高。又如3Gr2W8V钢制压铸模具,先渗碳再经1140℃-1150℃淬火,550℃回火两次,表面硬度可达58-61HRC,使压铸有色金属及其合金的模具寿命提高1.8-3.0倍。

渗碳工艺应用于模具表面强化的第二个方面是“碳化物弥散析出渗碳”,简称CD渗碳法。它是采用含有大量强碳化物形成元素(如Cr、Ti、Mo、V)的模具钢在渗碳气氛中加热,在碳原子自表面向内部扩散的同时,渗层中会沉淀出大量弥散合金碳化物,如(Cr.Fe)7C3、(Fe.Cr)3C、V4C3、TiC,从而实现了CD渗碳。CD法渗碳层中,渗层表面含碳量(质量分数,下同)高达2%-3%,弥散碳化物含量达50%以上,且碳化物呈细小均匀分布。CD渗碳件直接淬火或重新淬火回火后可获得很高的硬度和优异的耐磨性。经CD渗碳的模具心部没有出现象Cr12型模具钢和高速钢中的粗大共晶碳化物和严重碳化物偏析,因而其心部韧性比Cr12MoV钢提高3-5倍。实践表明,CD渗碳模具的使用寿命大大超过消耗量占冷作模具钢首位的Cr12型冷作模具钢和高速钢。

在对各类模具进行渗碳处理时,主要的渗碳工艺方法有固体粉末渗碳、气体渗碳以及近20年来迅速发展起来的真空渗碳及离子渗碳。其中,固体渗碳和气体渗碳应用广泛,但真空渗碳和离子渗碳技术由于具有渗速快、渗层均匀、碳浓度梯度平缓以及工件变形等特点,将会在模具表面尤其是精密模具表面处理中发挥越来越重要的作用。

1.2气体法低温热扩渗

气体法低温表面热扩渗工艺在模具的表面强化处理中占有十分重要的地位。其处理工艺简便,扩渗温度较低,能适应冷作模具、热作模具以及塑料模具等对型腔表面的各种要求。常用的扩渗工艺有渗氮、软氮化(铁素体氮碳共渗)、氧氮共渗、硫氮共渗乃至硫碳氮、氧氮硫三元共渗等方法。

1.2.1气体渗氮与离子氮化工艺

将氮渗入钢件的过程称为钢的氮化或渗氮。氮化层的硬度高950-1200HV),耐磨性、疲劳强度、红硬性及抗咬合性均优于渗碳层。由于氮化温度低(一般为480℃-600℃),工件变形很小,尤其适应一些精密模具的表面强化。例如,3Cr2W8V钢压铸模、挤压模等经调质并在520℃-540℃氮化后,使用寿命较不氮化的模具提高2-3倍。又如,从德国引进的热冲模经解剖分析,发现其表面约有140μm的渗氮层。美国用H13钢制作的压铸模具,不少都要进行氮化处理,且以渗氮代替一次回

火,表面硬度高达65-70HRC,而模具心部硬度较低,韧性好,从而获得优良的综合力学性能。

气体氮化法是采用最为广泛的渗氮工艺。离子氮化法是为解决气体氮化工艺工效低、时间长而发展起来的工艺,其特点是渗氮速度快、渗层成分及其梯度易控制、节能、省气、渗层质量好、工作环境好等。

1.2.2气体软氮化(铁素体氮碳共渗)

软氮化是将钢件在570℃左右加热,以尿素或氨气或醇类裂化气为渗剂,向钢内同时扩渗碳、氮原子的热扩渗工艺。气体软氮化比气体氮化渗速快、所需费用低,将其应用于冷、热作模具钢,可提高模具的耐磨性、抗高温氧化性和抗粘着性。

2、热喷涂与喷焊技术

2.1热喷涂技术

热喷涂技术是将喷涂材料加热到熔融或半熔融状态,用高速气流将其雾化、加速,使其以高速喷射到工件表面,形成耐磨、耐蚀以及抗高温氧化等特殊性能涂层的表面涂层方法。按加热喷涂材料的热源种类来划分,主要有燃气法、电气法和高能束加热法三类。热喷涂层由于不致密,与基材结合强度不高,在模具表面强化中难以发挥作用,于是涂层重熔使之与基材形成冶金结合、降低气孔率工艺的热喷焊就应运而生。

2.2热喷焊技术

热喷焊工艺特别是氧乙炔火焰喷焊工艺简便,设备投资少,便于推广,广泛应用于模具表面的强化,提高耐蚀性、耐磨性和延长使用寿命,经济效益十分可观。

3、气相沉积技术

气相沉积技术按照成膜机理,可分为化学气相沉积(CVD)和物理气相沉积(PVD)两大类。

3.1物理气相沉积

在真空条件下,以各种物理方法产生的原子或分子沉积在基材上,形成薄膜或涂层的过程称为物理气相沉积。按照沉积时物理机制的差别

相关文档
最新文档