2015年深圳中考数学选择题压轴题
广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题
某某省某某市宝安区2015届中考数学模拟试题一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.162.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m23.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB 交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a=.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= cm.15.在数据1,2,3,1,2,2,4中,众数是.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.18.先化简,再求值:,其中x=2.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.2015年某某省某某市宝安区中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m2【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于256520有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:256520m2=2.57×105m2,故选:C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,判断得出即可.【解答】解:A、一个游戏的中奖概率是,则做5次这样的游戏不一定会中奖,故此选项错误;B、为了解某某中学生的心理健康情况,应该采用抽样调查的方式,故此选项错误;C、事件“小明今年中考数学考95分”是可能事件,此选项正确;D、若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则甲组数据更稳定,故此选项错误;故选:C.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵ =,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.【点评】本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0及一次函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,一次函数y=ax+b数的图象过第一、二、三象限,反比例函数图象在第一三象限,选项C符合;(2)当a<0,b<0时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,即∠OBC的余弦值为.故选:C.【点评】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了特殊角的三角函数值的求法,要熟练掌握.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π【考点】弧长的计算;旋转的性质.【分析】先根据Rt△AB C中,∠C=90°,∠A=30°,AB=4求出BC及AC的长,再根据弧长的计算公式求出、的长,那么阴影部分的周长=AC+的长+A′C′+的长,将数值代入计算即可.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AB=4,∴∠ABC=60°,BC=AB=2,AC=BC=2,∴∠CBC′=∠ABA′=180°﹣60°=120°,∴的长==π,的长==,∴阴影部分的周长=AC+的长+A′C′+的长=2++2+π=4π+4.故选A.【点评】本题考查的是旋转的性质,弧长的计算,含30度角的直角三角形性质的应用,根据题意得出阴影部分的周长=AC+的长+A′C′+的长是解答此题的关键.12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= 2 cm.【考点】垂径定理;解直角三角形.【分析】过点O作OC⊥A B,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.【点评】本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.15.在数据1,2,3,1,2,2,4中,众数是 2 .【考点】众数.【分析】根据众数的定义就可以求解.【解答】解:众数是一组数据中出现次数最多的数据,本组数据中3和4各出现1次,1出现2次,2出现3次.出现次数最多的是2,所以众数是2.故填2.【点评】本题属于基础题,考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .【考点】勾股定理的逆定理;矩形的性质.【专题】几何综合题;压轴题;动点型.【分析】根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【解答】解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴当AM最短时,AM=AP÷2=2.4.【点评】解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】把()﹣1==3,tan45°=1代入计算,任何不等于0的数的0次幂都等于1.【解答】解:原式==3﹣(2﹣)+1=2+.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=,当x=2时,原式=1.【点评】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占的百分比及可求出A级和B级的学生人数.【解答】解:(1)读图可得:A类有10人,占总体的20%,所以总人数为10÷20%=50人,则D级的学生人数为50﹣10﹣23﹣12=5人.据此可补全条形图;(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%=10%;(3)读扇形图可得:A级占20%,所在的扇形的圆心角为360°×20%=72°;(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为500×66%=330人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是∠ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°∴AC是⊙O的切线;(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6,AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF==∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点评】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【考点】相似三角形的判定与性质;等腰直角三角形;矩形的性质;正方形的性质.【专题】证明题;动点型.【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即: =,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出PG=,MG=,PH=,NH=,根据S=S梯形MGHN﹣S△PMG﹣S△PNH=,利用二次函数的性质当x=1时,S有最大值是,即可解答;(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.【解答】解:(1)令x=0得,y=4,∴C(0,4)∴OB=OC=4,∴B(4,0)代入抛物线表达式得:16a﹣8a+4=0,解得a=∴抛物线的函数表达式为(2)如图2,过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,由抛物线得:A(﹣2,0),设P(x,0),△PMN的面积为S,则PG=,MG=,PH=,NH=∴S=S梯形MGHN﹣S△PMG﹣S△PNH===∵,∴当x=1时,S有最大值是∴△PMN的最大面积是,此时点P的坐标是(1,0)(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA由抛物线得:A(﹣2,0),对称轴为直线x=1,∴OA=2,OC=4,OD=1①若△DOE∽△AOC,则∴,解得OE=2∴点E的坐标是(0,2)或(0,﹣2)若点E的坐标是(0,2),则直线DE为:y=﹣2x+2解方程组得:,(不合题意,舍去)此时满足条件的点F1的坐标为(,)若点E的坐标是(0,﹣2),同理可求得满足条件的点F2的坐标为(,)②若△DOE∽△COA,同理也可求得满足条件的点F3的坐标为(,)满足条件的点F4的坐标为(,)综上所述,存在满足条件的点F,点F的坐标为:。
中考数学压轴题60例(选择题)
. . . .中考数学选择题压轴题一、选择题1.将正方形 ABCD 绕点 A 按逆时针方向旋转 30°,得正方形 AB 1C 1D 1,B 1C 1 交 CD 于点 E ,AB= ,则四边形 AB 1ED 的内切圆半径为( )A B C D考点:三角形的内切圆与内心;正方形的性质;旋转的性 质.专题: 压轴题.分析:作∠DAF 与∠AB 1G 的角平分线交于点 O ,则 O 即为该圆的圆心,过 O 作 OF ⊥AB 1,AB= ,再根据直角三角形的性质便可求出 OF 的长,即该四边形内切圆的圆心.解答:解:作∠DAF 与∠AB 1G 的角平分线交于点 O ,过 O 作 OF ⊥AB 1,】则∠OAF=30°,∠AB 1O=45°,故 OA ,设 B 1F=x ,则 AF= ﹣x ,故( ﹣x)2+x 2=(2x)2,解得 或 (舍去),∴四边形AB1ED 的内切圆半径为.故选:B.2.如图,四边形ABCD 中,∠C=50°,∠B=∠D=90°,E、F 分别是BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( )A 50°B 60°C 70°D 80°解答:解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于E,交CD 于F,则A′A″即为△AEF的周长最小值.作DA 延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.本题考查的是轴对称﹣最短路线问题,涉及到平面3.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B′D 的最小值是( )A 2 ﹣2B 6C 2 ﹣2D 4考点:翻折变换(折叠问题).专题:压轴题.分析:当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E 即为所求.解答:解:如图,当∠BFE=∠DEF,点B′在DE 上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥FD,∴EB′=EB,∵E 是AB 边的中点,AB=4,∴AE=EB′=2,∵AB=6,∴DE= =2 ,∴DB′=2﹣2.故选:A.点评:本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D 的值最小,是解决问题的关键.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是( )相同.如果5 是方程M 的一个根,那是方程N 的一个根,,B ;利用一元二次方程的解的定义判断C 与D . 解答: 解:A 、如果方程 M 有两个相等的实数根,那么△=b 2 ﹣4ac=0,所以方程 N 也有两个相等的实数根,结论正确,不符合题意; B 、如果方程 M 的两根符号相同,那么方程 N 的两 根符号也相同,那么 >0,所以 a 与c 符号相同, >0,所以方程 N 的两根符号也相同结论正确,不符合题意;C 、如果 5 是方程 M 的一个根,那么 25a+5b+c=0, 两边同时除以 25,c+b+a=0,所 是方程 N 的一个根,结论正确,不符合题意;D 、如果方程 M 和方程 N 有一个相同的根,那么 ax 2+bx+c=cx 2+bx+a ,(a ﹣c)x 2=a ﹣c ,由 a ≠c ,得 x 2=1 x=±1 ,结论错误,符合题意; 故选:D .本题考查了一元二次方程根的情况与判别式△的关5.如图,坐标原点O 为矩形ABCD 的对称中心,顶点A 的坐标为(1,t),AB∥x 轴,矩形A′B′C′D′与矩形ABCD 是位似图形,点O 为位似中心,点A′,B′分别是点A,B 的对应点,=k.已知关于x,y 的二元一次方(m,n 是实数)无解,在以m,n 为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于( )A B 1 C ...D ., ,: 压轴题. : 首先求出点 A′的坐标为(k ,kt),再根据关于 x ,y 的二 元一次方 (m ,n 是实数)无解,可得 mn=3,且 n≠1;然后根据以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,可得反比例函数 的图象只经过点 A′或 C′;最后分两种情况 讨论:(1)若反比例函数 的图象经过点 A′时;(2)若反 比例函数 的图象经过点 C′时;求出 k•t 的值等于多少即可. : 解:∵矩形 A′B′C′D′与矩形 ABCD 是位似图形=k 顶点 A 的坐标为(1,t),∴点 A′的坐标为(k ,kt),∵关于 x ,y 的二元一次方(m ,n 是实数)无解∴mn=3,且 n≠1,即 (m≠3), ∵以 m ,n 为坐标(记为(m ,n)的所有的点中,有且只有一个点落在矩形 A′B′C′D′的边上,∴反比例函数 的图象只经过点 A′或 C′,由,可得mnx ﹣3x+4=3n+1,(1)若反比例函数的图象经过点A′,得kt=1.(2)若反比例函数的图象经过点C′,6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )A ①②④B ③④C ①③④D ①②....:压轴题.:①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2 代入函数关系式,结合图象判断函数值与0 的大小关系;④求出点(0,y1)关于直线的对称点的坐标,根据对称轴即可判断y1和y2的大小.:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y 轴的正半轴于一点,∴c>0,∵对称轴是直线,∴﹣,∴b=﹣a>0,∴abc<0.故①正确;,7.如图,在△ABC 中,AB=CB ,以 AB 为直径的⊙O 交 AC 于点 D .过点 C 作 CF ∥AB ,在 CF 上取一点 E ,使 DE=CD ,连接 AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③ = ;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )∴a+b=0, 故②正确;③把 x=2 代入 y=ax 2+bx+c 得:y=4a+2b+c , ∵抛物线经过点(2,0), ∴当 x=2 时,y=0,即 4a+2b+c=0. 故③错误;④∵(0,y 1)关于直线 的对称点的坐标是(1,y 1),∴y 1=y 2. 故④正确;综上所述,正确的结论是①②④. 故选:A 点评:本题考查了二次函数的图象和系数的关系的应用,注意:当 a >0 时,二次函数的图象开口向上,当 a <0 时 二次函数的图象开口向下.A ①②B ①②③C ①④D ①②④....∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC 不能确定为直角三角形,∴∠1 不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E 在以AC 为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE 为⊙O 的切线,所以④正确.故选:D.8.如图,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是( )A 25°B 30° .., 、、C 35° .D 40° .考点: 轴对称-最短路线问题. 专题: 压轴题.分析:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD 分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,由对称的性质得出 PM=CM ,OP=OC ,∠COA=∠POA ;PN=DN ,OP=OD ,∠DOB=∠POB ,得出∠ AOB=∠COD ,证出△OCD 是等边三角形,得出∠ COD=60°,即可得出结果.解答:解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ∴PM=DM ,OP=OD ,∠DOA=∠POA ; ∵点 P 关于 OB 的对称点为 C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=∠COD , ∵△PMN 周长的最小值是 5cm , ∴PM+PN+MN=5, ∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.如图,在边长为2 的正方形ABCD 中剪去一个边长为1 的小正方形CEFG,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A B C D....动时间t 之间的函数关系图象大致是( ).. . .C D;,A B考点: 动点问题的函数图象. 专题: 压轴题. 分析: 首先根据 Rt △ABC 中∠C=90°,∠BAC=30°,AB=8, 分别求出 AC 、BC ,以及 AB 边上的高各是多少;然后根据图示,分三种情况:(1)当 0≤t ≤2 时;(2)当 2 时 (3)当 6<t≤8 时;分别求出正方形 DEFG 与△ABC 的重合部分的面积 S 的表达式,进而判断出正方形 DEFG 与 △ABC 的重合部分的面积 S 与运动时间 t 之间的函数关 系图象大致是哪个即可. 解答: 解:如图 1,CH 是 AB 边上的高,与 AB 相交于点 H∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8× =4 ,BC=AB×sin30°=8× =4, ∴CH=AC×,AH= ,(1)当 0≤t≤2 时, S= =t 2;(2)当 2 时,S=﹣=t2[t2﹣4 t+12]=2t﹣2(3)当6<t≤8 时,S=[(t﹣2 )•tan30°]×[6 ﹣(t﹣2 ×[ (8﹣t)•tan60°]×(t﹣6)=[]×[ ﹣t+2 ×[ ﹣t ]×(t﹣6)=﹣t2+2t+4 t2 ﹣30=﹣t2 ﹣26综上,可得S=∴正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是A 图象.故选:A., 11.如图所示,MN 是⊙O 的直径,作 AB ⊥MN ,垂足为点 D ,连接 AM ,AN ,点 C 为 上一点,且 = ,连接 CM ,交 AB 于点 E ,交 AN 于点 F ,现给出以下结论:①AD=BD ;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠ MOB ;⑤AE=MF . 其中正确结论的个数是()C 4D 5 . .考点: 圆周角定理;垂径定理. 专题: 压轴题. 分析: 根据 AB ⊥MN ,垂径定理得出①③正确,利用 MN 是直径得出②正确 = = ,得出④正确,结合②④得出 ⑤正确即可. 解答: 解:∵MN 是⊙O 的直径,AB ⊥MN ,∴AD=BD , = ,∠MAN=90°(①②③正确) ∵ = , ∴ = = ,∴∠ACM+∠ANM=∠MOB(④正确) ∵∠MAE=∠AME ,∴AE=ME ,∠EAF=∠AFM , ∴AE=EF ,A 2 .B 3 .,∴AE=MF(⑤正确). 正确的结论共 5 个. 故选:D .12.在平面直角坐标系中,点 A ,B 的坐标分别为(﹣3,0), (3,0),点 P 在反比例函数 的图象上,若△PAB 为直角三角形,则满足条件的点 P 的个数为( ) A 2 个 B 4 个 C 5 个 D 6 个 . . .., ;:压轴题. : 分类讨论:①当∠PAB=90°时,则 P 点的横坐标为﹣3 根据反比例函数图象上点的坐标特征易得P 点有1 个 ②当∠APB=90°,设 ),根据两点间的距离公式和勾股定理可得(x+3)2+()2+(x ﹣3)2+()2=36,此时 P 点 有 4 个,③当∠PBA=90°时,P 点的横坐标为 3,此时 P 点有 1 个.: 解:①当∠PAB=90°时,P 点的横坐标为﹣3,把 x=﹣3 代入 得 ,所以此时 P 点有 1 个;②当∠APB=90°,设 P(x ),PA 2=(x+3)2+()2,PB 2=(x﹣3)2+()2,AB2=(3+3)2=36,因为PA2+PB2=AB2,所以)2+(x﹣3)2+()2=36,整理得x4﹣9x2+4=0,所以,或,所以此时P 点有4 个,③当∠PBA=90°时,P 点的横坐标为3,把x=3 代入y=得,所以此时P 点有1 个;综上所述,满足条件的P 点有6个.故选:D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数(k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是( )A 4B 3C 2D 1....:压轴题;数形结合.:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y 轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x 轴的交点个数得到b2﹣4ac >0,加上a<0,则可对②进行判断;利用OA=OC 可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,两边除以c 则可对③进行判断;设A(x1,0) B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x 轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到,于是,则可对④进行判断.:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴b>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x 轴有2 个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c 得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x 轴交于A,B 两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.14.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y 和x,则y 与x 的函数图象大致是( )A BC D....考点:函数的图象.专题:压轴题.分析:立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=4x,再得出图象即可.解答:解:正方形的边长x,y﹣x=2x,∴y 与x 的函数关系式为x,故选:B.点评:本题考查了一次函数的图象和综合运用,解题的关键是从x 等于该立方体的上底面周长,从而得到关系式.15.如图,△ABC,△EFG 均是边长为2 的等边三角形,点D 是边BC、EF 的中点,直线AG、FC 相交于点M.当△EFG 绕点D 旋转时,线段BM 长的最小值是( )A 2﹣B +1CD ﹣1. . . .., 考点:旋转的性质;四点共圆;线段的性质:两点之间线段最短;等边三角形的性质;勾股定理;相似三角形的 判定与性质. 专题: 压轴题. 分析: 取 AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图,易证△DAG ∽△DCF ,则有∠DAG=∠DCF ,从而可得 A 、D 、C 、M 四点共圆,根据两点之间线段最短可得BO≤BM+OM ,即 BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小,只需求出 BO 、OM 的值,就可解决问题.解答:解:AC 的中点 O ,连接 AD 、DG 、BO 、OM ,如图 ∵△ABC ,△EFG 均是边长为 2 的等边三角形,点 D 是边 BC 、EF 的中点, ∴AD ⊥BC ,GD ⊥EF ,DA=DG ,DC=DF , ∴∠ADG=90°﹣∠CDG=∠FDC ,=, ∴△DAG ∽△DCF ,∴∠DAG=∠DCF .∴A 、D 、C 、M 四点共圆.根据两点之间线段最短可得:BO≤BM+OM ,即BM≥BO ﹣OM ,当 M 在线段 BO 与该圆的交点处时,线段 BM 最小 此时,BO= = = AC=1,则 BM=BO ﹣OM= ﹣1. 故选:D .点评:本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点 M 的运动轨迹是解决本题的关键.16.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边 AC 沿 CE 翻折,使点 A 落在 AB 上的点 D 处;再将边 BC 沿 CF 翻折,使点 B 落在 CD 的延长线上的点 B′处,两条折痕与斜边 AB 分别交于点 E 、F ,则线段 B′F 的长为( )C D . ., A .B .考点: 翻折变换(折叠问题). 专题: 压轴题.分析:首先根据折叠可得 CD=AC=3,B′C=BC=4,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB然后求得△ECF 是等腰直角三角形,进而求得,ED=AE,从而求得,在Rt△B′DF 中,由勾股定理即可求得B′F的长.解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE= ,∴DF=EF﹣ED=,∴B′F=.故选:B.定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关 键.17.已知二次函数 y=ax 2+bx+c+2 的图象如图所示,顶点为(﹣ 1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣ 2b+c >0.其中正确结论的个数是( )A 1B 2C 3D 4 .. . .,考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析: ①首先根据抛物线开口向上,可得 a >0;然后根据对称轴在 y 轴左边,可得 b >0;最后根据抛物线与 y 轴的交点在 x 轴的上方,可得 c >0,据此判断出 abc >0 即可.②根据二次函数y=ax 2+bx+c+2 的图象与x 轴只有一个交点,可得△=0,即 b 2﹣4a(c+2)=0,b 2﹣4ac=8a >0据此解答即可.③首先根据对称轴 =﹣1,可得 b=2a ,然后根据 b 2﹣4ac=8a ,确定出 a 的取值范围即可.④根据对称轴是 x=﹣1,而且 x=0 时,y >2,可得 x= ﹣2 时,y >2,据此判断即可.:解:∵抛物线开口向上,∴a>0,∵对称轴在y 轴左边,∴b>0,∵抛物线与y 轴的交点在x 轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2 的图象与x 轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;18.如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF⊥CD 交AB 于点F,DE ⊥CD 交AB 于点E,G 为半圆弧上的中点.当点C 在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y 与x 的函数关系的图象大致是( )A B C D....考点:动点问题的函数图象.专题:压轴题.分析:根据弦CD 为定长可以知道无论点C 怎么运动弦CD 的弦心距为定值,据此可以得到函数的图象.解答:解:作OH⊥CD 于点H,∴H 为CD 的中点,∵CF⊥CD 交AB 于F,DE⊥CD 交AB 于E,∴OH 为直角梯形的中位线,∵弦CD 为定长,∴CF+DE=y 为定值,故选:B.点评:本题考查了动点问题的函数图象,解题的关键是化动为静.19.如图,△ABC 中,AB=AC,D 是BC 的中点,AC 的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A 1 对B 2 对C 3 对D 4 对在△ABD 和△ACD 中,,在△AOE 和△COE 中,,在△BOD 和△COD 中,,在△AOC 和△AOB 中,,∴△AOC ≌△AOB ;故选:D .点评:本题考查的是全等三角形的判定方法;这是一道考试常 见题,易错点是漏掉△ABO ≌△ACO ,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.20.二次函数 y=ax 2+bx+c(a≠0)的图象如图所示,下列结论: ①2a+b >0;②abc <0;③b 2﹣4ac >0;④a+b+c <0;⑤4a ﹣ 2b+c <0,其中正确的个数是( )B 3C 4D 5 . . .考点: 二次函数图象与系数的关系.专题: 压轴题.分析: 由抛物线开口向下得到 a <0,由对称轴在 x=1 的右侧得到 >1,于是利用不等式的性质得到 2a+b >0; 由 a <0,对称轴在 y 轴的右侧,a 与 b 异号,得到 b >0,抛物线与 y 轴的交点在 x 轴的下方得到 c <0,于 是 abc >0;抛物线与 x 轴有两个交点,所以△=b 2﹣4ac >0;由 x=1 时,y >0,可得 a+b+c >0;由 x=﹣2 时 y <0,可得 4a ﹣2b+c <0.解答: 解:①∵抛物线开口向下,A 2.∴a<0,∵对称轴>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y 轴的交点在x 轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x 轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1 时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2 时,y<0,∴4a﹣2b+c<0,故⑤正确.故选:B.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,a<0开口向下;对称轴为直线,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c<0,抛物线与y 轴的交点在x 轴的下方;当△=b2﹣4ac>0,抛物线与x 轴有两个交点.21.如图,▱ABCD 的对角线AC、BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB= BC,连接OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB•AC ;③OB=AB ;④ OE=BC ,成立的个数有( )A 1 个B 2 个C 3 个D 4 个. . . .,考点: 平行四边形的性质;等腰三角形的判定与性质;等边三 角形的判定与性质;含 30 度角的直角三角形. 专题:压轴题. 分析: 由四边形 ABCD 是平行四边形,得到∠ABC=∠ ADC=60°,∠BAD=120°,根据 AE 平分∠BAD ,得到 ∠BAE=∠EAD=60°推出△ABE 是等边三角形,由于 AB=BC ,得到 BC ,得到△ABC 是直角三角形, 于是得到∠CAD=30°,故①正确;由于 AC ⊥AB ,得到S ▱ABCD =AB•AC ,故②正确,根据 BC ,OB=BD且 BD >BC ,得到 AB≠OB ,故③错误;根据三角形的中位线定理得到 AB ,于是得到 BC ,故④正确.解答: 解:∵四边形 ABCD 是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE 平分∠BAD ,∴∠BAE=∠EAD=60°∴△ABE 是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.22.如图,正方形ABCD 的边长为6,点E、F 分别在AB,AD 上,若CE=3 ,且∠ECF=45°,则CF 的长为( )A 2B 3C D解:如图,延长FD 到G,使DG=BE;连接CG、EF;∵四边形ABCD 为正方形,在△BCE 与△DCG 中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF 与△ECF 中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3 ,CB=6,∴BE= =3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF= = ,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF= = =2 ,故选:A.点评本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.23.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B 两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3 有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x<4 时,有y2<y1,其中正确的是( )A ①②③B ①③④C ①③⑤D ②④⑤....:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1 时,二次函数有最大值,∴方程ax2+bx+c=3 有两个相等的实数根,所以③正确;∵抛物线与x 轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以④错. . . . 误;∵抛物线 y 1=ax 2+bx+c 与直线 y 2=mx+n(m≠0)交于A(1,3),B 点(4,0)∴当 1<x <4 时,y 2<y 1,所以⑤正确.故选:C .点评: 本题考查了二次项系数与系数的关系:对于二次函数y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的开口方向和大小:当 a >0 时,抛物线向上开口;当 a <0 时抛物线向下开口;一次项系数 b 和二次项系数 a 共同决定对称轴的位置:当 a 与 b 同号时(即 ab >0),对称轴在 y 轴左; 当 a 与 b 异号时(即 ab <0),对称轴在 y 轴右.(简称:左同右异);常数项 c 决定抛物线与 y 轴交点:抛物线与 y 轴交于(0,c);抛物线与 x 轴交点个数由△决定:△=b 2﹣4ac >0 时,抛物线与 x 轴有 2 个交点;△=b 2﹣4ac=0 时,抛物线与 x 轴有 1 个交点;△=b 2﹣4ac <0 时,抛物线与 x 轴没有交点.24.在同一平面直角坐标系中,函数 y=ax 2+bx 与 y=bx+a 的图象可能是( )A B C D,考点: 二次函数的图象;一次函数的图象. 专题: 压轴题.分析: 首先根据图形中给出的一次函数图象确定 a 、b 的符号,221111: 解:A 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,对称轴 x= ﹣<0,应在 y 轴的左侧,故不合题意,图形错误.B 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线 y=ax 2+bx 来说,图象应开口向下故不合题意,图形错误.C 、对于直线 y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,对 称轴 位于 y 轴的右侧,故符合题意,D 、对于直线 y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线 y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误. 故选:C . 此主要考查了一次函数、二次函数图象的性质及其应用. . . . , 再作△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,如此作下去, 则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点 A 2n+1 的坐标是( )A (4n ﹣1,B (2n ﹣1,C (4n+1,D (2n+1,) ) ) )考点: 坐标与图形变化-旋转.专题: 压轴题;规律型.分析: 首先根据△OA 1B 1 是边长为 2 的等边三角形,可得 A 1 的坐标为(1 ),B 1 的坐标为(2,0);然后根据中心对称的性质,分别求出点 A 2、A 3、A 4 的坐标各是多少;最后总结出 A n 的坐标的规律,求出 A 2n+1 的坐标是多少 即可.解答: 解:∵△OA 1B 1 是边长为 2 的等边三角形,∴A 1 的坐标为(1, ),B 1 的坐标为(2,0),∵△B 2A 2B 1 与△OA 1B 1 关于点 B 1 成中心对称,∴点 A 2 与点 A 1 关于点 B 1 成中心对称,∵2×2 ﹣1=3,2×0 ﹣ =﹣ ,∴点 A 2 的坐标是(3,﹣ ),∵△B 2A 3B 3 与△B 2A 2B 1 关于点 B 2 成中心对称,∴点 A 3 与点 A 2 关于点 B 2 成中心对称,∵2×4 ﹣3=5,2×0 ﹣(﹣ )= ,∴点 A 3 的坐标是(5, ),∵△B 3A 4B 4 与△B 3A 3B 2 关于点 B 3 成中心对称,∴点 A 4 与点 A 3 关于点 B 3 成中心对称,∵2×6 ﹣5=7,2×0 ﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1 ﹣1,3=2×2 ﹣1,5=2×3 ﹣1,7=2×3 ﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n 为奇数时,A n的纵坐标是,当n 为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.点评:此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.26.如图,AD 是△ABC 的角平分线,则AB:AC 等于( )A BD:CDB AD:CDC BC:AD D BC:AC....考点:角平分线的性质.专题:压轴题.分析:先过点B 作BE∥AC 交AD 延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可=,而利用AD 时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.:解:如图过点B 作BE∥AC 交AD 延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD 是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.此题考查了角平分线的定义、相似三角形的判定和性27.如图,在钝角△ABC 中,分别以 AB 和 AC 为斜边向△ABC 的外侧作等腰直角三角形 ABE 和等腰直角三角形 ACF ,EM 平分∠AEB 交 AB 于点 M ,取 BC 中点 D ,AC 中点 N ,连接 DN 、DE 、DF .下列结论 S 四边形 ABDN ;③DE=DF ;④DE ⊥DF .其中正确的结论的个数是( )C 3 个D 4 个 . .,, A 1 个.B 2 个 . 考点: 全等三角形的判定与性质;等腰直角三角形;三角形 中位线定理. 专题: 压轴题. 分析: ①首先根据 D 是 BC 中点,N 是 AC 中点 N ,可得 DN 是△ABC 的中位线,判断出 ;然后判断出 EM=,即可判断出 EM=DN ; ②首先根据 DN ∥AB ,可得△CDN ∽ABC ;然后根据DN=, 可 得 S △ABC , 所 以 S 四 边 形 ABDN 据此判断即可.③首先连接MD 、FN ,判断出DM=FN ,∠EMD=∠DNF 然后根据全等三角形判定的方法,判断出△EMD ≌△ DNF ,即可判断出 DE=DF ., . ④首先判断 ,DM=FA ,∠EMD=∠EAF 根据相似计三角形判定的方法,判断出△EMD ∽△∠ EAF ,即可判断出∠MED=∠AEF ,然后根据∠MED+ ∠AED=45°,判断出∠DEF=45°,再根据 DE=DF ,判 断出∠DFE=45°,∠EDF=90°,即可判断出 DE ⊥DF:解:∵D 是 BC 中点,N 是 AC 中点, ∴DN 是△ABC 的中位线,∴DN ∥AB ,且 ;∵三角形 ABE 是等腰直角三角形,EM 平分∠AEB 交 AB 于点 M ,∴M 是 AB 的中点,∴EM=,又 ,∴EM=DN ,∴结论①正确;∵DN ∥AB ,∴△CDN ∽ABC ,∵DN=,∴S △CDN =S △ABC ,∴S △CDN =S 四边形 ABDN ,∴结论②正确;如图1,连接MD、FN,,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,又,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN 是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD 和△DNF 中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE 是等腰直角三角形,EM 平分∠AEB,∴M 是AB 的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且;∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+ ∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+ ∠AMD∴∠EMD=∠EAF,在△EMD 和△∠EAF 中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,。
中考数学“三类压轴题”专题——选择题压轴题
第1讲 中考数学“三类压轴题"专题——选择题压轴题题型一 方程、等式、不等式类代数变形或计算1.(2012襄阳)如果关于x 的一元二次方程2kx2k 1x 10-++=有两个不相等的实数根,那么k 的取值范围是( ) A .k <12 B .k <12且k≠0 C.﹣12≤k<12 D .﹣12≤k<12且k≠0 2. (2008武汉)下列命题:其中正确的是( ) ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.题型二 函数类代数计算3.(2012宜昌)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限4. (2012天门、仙桃、潜江、江汉油田)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( )A .3个B .2个C .1个D .0个 题型三 坐标几何类图像信息题5.(2012柳州)小兰画了一个函数的图象如图,那么关于x 的分式方程的解是( )A .x=1B .x=2C .x=3D .x=46.(2012宁波)勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内得到的,∠BAC=90O ,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A 、 90B 、 100C 、 110D 、 121(第7题) C D E F A B O x y 4 4 A . O x y 4 4 B . O x y 4 4 C . O x y 4 4 D . O A F CE B7。
2015年广东省深圳市中考数学试卷(含解析)
2015年广东省深圳市中考数学试卷一、选择题:D4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()D5.(3分)(2015•深圳)下列主视图正确的是()DD8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.>9.(3分)(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()11.(3分)(2015•深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()D12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF =.在以上4个结论中,正确的有( )GBE=וGBE==二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.两种.因此概率为=.故答案为:.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.∴,∴三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.﹣×18.(2015•深圳)解方程:.=都为分式方程的解.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调差的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.×=5AB=1.5+51.5+5)米.(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.t==2AO=cm3∴=,23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.∴,解得ADE=∴(﹣﹣ADE=∴(,﹣,﹣OB=,或的坐标是(,。
中考数学---几何选择填空压轴题精选1
中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。
2015深圳中考数学压轴题
G2015深圳中考数学压轴题申明:此题为本人凭记忆所写,也许与原题有些出入,所以在下载时敬请看清。
12、如图,正方形ABCD 中,AB=12,E 为BC 中点,将△ECD 沿DE 对折得到△EFD 。
延长EF 交AB 于点G ,连接BF ,下列结论:○1△AG D ≌△FGD ;○212=AG BG ;○3△BE F ∽△EDG ;○4572=∆BEF S 中正确的个数有( D ) A 、1个 B 、2个C 、3个D 、4个23、如图,抛物线c bx x y ++-=2过A (-3,0)和C 点(0,3),DE 是其对称轴,D 是抛物线的顶点,E 为对称轴与x 轴的交点。
(1)求抛物线的方程;(2)对称轴上是否存在点P ,使P 到AD 的距离和到x 轴的距离相等,若存在,求出P 点坐标,若不存在,说明理由。
(3)在DE 的右边抛物线上是否存在一点F ,使FBC EBC S S ∆∆=32,若存在,求出F 点坐标,若不存在,说明理由。
x解:(1)将A 、C 两点坐标代入抛入线方程得:2-=b ,3=c所以抛物线方程为322+--=x x y(2)由抛物线方程可知,E 点坐标为(-1,0)AD 的直线方程为62+=x y设P 点坐标为(-1,a )点P 到AD 的距离为:5|4|a -P 到x 轴的距离为||a 联立方程得:151-=a ,512--=a所以,DE 上存在两个点到AD 与x 轴的距离相等,分别是(-1,15-)和(-1,51--)(3)可知直线BC 的方程为33+-=x y点E 到BC 的距离是:5103 所以,当且仅当F 到BC 的距离为5102时,FBC EBC S S ∆∆=32成立。
设F 点坐标为(k ,)322+--k k 根据点到直线的距离可得:510210||2=+-k k 解之得:21711+=k ,21712-=k (因为不在DE 的左侧,所以舍去) 所以F 点的坐标为(2171+,217325--)。
2015年中考数学压轴题及答案汇总
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路【摘要】本文将介绍中考数学压轴题的常见类型与解题思路。
选择题是中考数学中常见的题型,需要注意题目中的陷阱和解题技巧,如排除法和代入法。
填空题需要根据题目的要求进行计算和推算,不能掉以轻心。
解答题则需要理清思路,注重计算和推导过程,避免粗心错误。
应用题则需要将数学知识与现实生活情境相结合,灵活运用所学知识解决问题。
解题技巧包括拓展思维、灵活运用公式和多角度思考等。
通过学习不同类型的题目和解题思路,加上合理的复习建议和备考策略,可以在中考数学中取得更好的成绩。
【关键词】中考数学压轴题、常见类型、解题思路、选择题、填空题、解答题、应用题、解题技巧、总结、复习建议、备考策略。
1. 引言1.1 中考数学压轴题的常见类型与解题思路中考数学是学生们备战中考的关键科目之一,而数学压轴题往往是考试中最具挑战性的部分。
在备考过程中,掌握数学压轴题的常见类型和解题思路是非常重要的。
本文将介绍中考数学压轴题的常见类型和解题思路,帮助学生们更好地备战中考数学考试。
在中考数学压轴题中,选择题往往是占据较大比重的一个部分。
选择题包括单选题和多选题,学生需要在有限的时间内准确把握题意,运用所学知识和解题技巧进行答题。
填空题则要求学生灵活运用所学知识,准确填写答案。
解答题通常会考察学生对知识的深层理解和应用能力,需要学生具备一定的逻辑思维能力。
应用题则是将知识与实际问题相结合,考察学生解决实际问题的能力。
除了不同类型的题目,解题技巧也是备战数学压轴题的关键。
学生可以通过画图、列方程、逆向推理等方法帮助解题。
掌握常见的数学定理和方法也是解题的关键。
通过本文的介绍,希望学生们能够更好地理解中考数学压轴题的类型和解题思路,为备战中考数学考试提供帮助。
在备考过程中,学生们应该多做练习,巩固知识,掌握解题技巧,提高解题能力,从而取得优异的成绩。
祝所有参加中考数学考试的学生考试顺利,取得好成绩!2. 正文2.1 选择题选择题是中考数学试卷中常见的题型之一,通常占据试卷总分的一大部分。
中考数学_三年经典中考压轴题专题4:代数之不等式组(组)问题
三年经典中考压轴题专题4:代数之不等式组(组)问题一、选择题1. (2014年内蒙古包头、乌兰察布3分)关于x 的一元二次方程()22x 2m 1x m 0+-+=的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是【 】 A. 1m 2≤ B. 1m 2≤且m≠0 C. m <1 D. m <1且m≠0 【答案】B .【考点】1.一元二次方程根的判别式;2.一元二次方程根与系数的关系;3.解一元一次不等式组.2. (2014年四川德阳3分)已知方程3a 1a a 44a --=--,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有4个整数解,那么b 的取值范围是【 】A .﹣1<b≤3B .2<b≤3C .8≤b <9D .3≤b <4【答案】D.【考点】1.解分式方程;2.一元一次不等式组的整数解.故选D.3.(2013年山东潍坊3分)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是【 】. A.40 B.45 C.51 D.564. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。
其中不等式正确的是【 】A. ①③B. ①④C. ②④D. ②③二、填空题1. (2014年江苏镇江2分)读取表格中的信息,解决问题. n=1 1a 223=+ 1b 32=+ 1c 122=+ n=2a 2=b 1+2c 1 b 2=c 1+2a 1 c 2=a 1+2b 1 n=3a 3=b 2+2c 2 b 3=c 2+2a 2 c=a 2+2b 2 …… … … 满足()n n na b c 201432132++≥⨯-++的n 可以取得的最小整数是 . 【答案】7.【考点】1.探索规律题(数字的变化类);2. 二次根式化简;3.不等式的应用.2.(2013年浙江台州5分)任何实数a ,可用[]a 表示不超过a 的最大整数,如[][]13,44==,现对72进行如下操作:1727288221⎡−−−→=−−−→=−−−→=⎣第次第2次第3次,这样对72只需进行3次操作后变为1,类似地,①对81只需进行 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 .3. (2013年宁夏区3分)若不等式组x a 012x x 2+≥⎧⎨--⎩>有解,则a 的取值范围是 .4.(2013年四川乐山3分)对非负实数x “四舍五入”到个位的值记为<x>,即当n 为非负整数..时,若11n x n 22<-≤+,则<x>=n ,如<0.46>=0,<3.67>=4。
中考数学压轴题60例(选择题)
中考数学压轴题60例(选择题)一、选择题(共60小题)1.(2015•遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()B2.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()3.(2015•自贡)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()﹣4.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下的一个根,那么5.(2015•镇江)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于()B6.(2015•枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()7.(2015•岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C 作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()8.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA 和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()9.(2015•盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()B10.(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()..11.(2015•雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()12.(2015•宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()13.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()14.(2015•西宁)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()15.(2015•武汉)如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( )﹣+1 ﹣1 16.(2015•无锡)如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为( )B17.(2015•潍坊)已知二次函数y=ax 2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣2b+c >0.其中正确结论的个数是()18.(2015•天水)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )B19.(2015•泰州)如图,△ABC 中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是( )20.(2015•遂宁)二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①2a+b >0;②abc <0;③b 2﹣4ac >0;④a+b+c <0;⑤4a ﹣2b+c <0,其中正确的个数是()21.(2015•绥化)如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=60°,AB=BC ,连接OE .下列结论:①∠CAD=30°;②S ▱ABCD =AB •AC ;③OB=AB ;④OE=BC ,成立的个数有( )22.(2015•十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE=3,且∠ECF=45°,则CF 的长为( )23.(2015•日照)如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1, 其中正确的是( )2B25.(2015•庆阳)在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点A 2n+1的坐标是( ))),,26.(2015•钦州)如图,AD 是△ABC 的角平分线,则AB :AC 等于( )27.(2015•齐齐哈尔)如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论:①EM=DN ;②S △CDN =S 四边形ABDN ;③DE=DF ;④DE ⊥DF .其中正确的结论的个数是()28.(2015•盘锦)如图,边长为1的正方形ABCD ,点M 从点A 出发以每秒1个单位长度的速度向点B 运动,点N 从点A 出发以每秒3个单位长度的速度沿A →D →C →B 的路径向点B 运动,当一个点到达点B 时,另一个点也随之停止运动,设△AMN 的面积为s ,运动时间为t 秒,则能大致反映s 与t 的函数关系的图象是( )B29.(2015•宁德)如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y=x 上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角三角形,且OA 1=1,则点B 2015的坐标是( )30.(2015•内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD 有公共点,则k的取值范围为()31.(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC 于点E,AB=6,AD=5,则AE的长为()32.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()33.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是34.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物35.(2015•牡丹江)如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:(1)∠DBM=∠CDE;(2)S△BDE<S四边形BMFE;(3)CD•EN=BN•BD;(4)AC=2DF.其中正确结论的个数是()36.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个37.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()38.(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()39.(2015•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()40.(2015•莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D 的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()B41.(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF 的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()B42.(2015•荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s 的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()..43.(2015•荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()44.(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()<﹣<﹣45.(2015•黄石)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()B46.(2015•黑龙江)如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()47.(2015•菏泽)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()))﹣,48.(2015•河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()49.(2015•河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()50.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()51.(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()52.(2015•桂林)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA 方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()53.(2015•广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()B54.(2015•抚顺)如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC 的中点恰好与D 点重合,AB ′交CD 于点E .若AB=3,则△AEC 的面积为( )55.(2015•鄂州)在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( ) ())56.(2015•滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y=﹣、y=的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( )57.(2015•本溪)如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()B58.(2015•巴彦淖尔)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()EBC=y=t59.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()B60.(2015•徐州)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()2015年全国中考数学压轴题60例(选择题卷)参考答案与试题解析一、选择题(共60小题)1.(2015•遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()B,再根据直角三角形的性质便可求出OA﹣x=的内切圆半径为:2.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()3.(2015•自贡)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()﹣=2﹣4.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()的一个根,那么>>c+b+a=0是方程5.(2015•镇江)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于()B(n=的图象只的图象经过点的图象经过点是位似图形,的二元一次方程n=n=,可得的图象经过点的图象经过点6.(2015•枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()的对称点的坐标,根据对称轴即可判断,x=7.(2015•岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C 作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()与相等,与不能确定相等,所以8.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA 和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()AOB=AOB=∠9.(2015•盐城)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )B10.(2015•烟台)如图,Rt △ABC 中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG 的一边CD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿A ﹣B 的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()..时;2×=4××AH=时,=﹣t2t+12[°]2]°[]t+2+6×tt+2t+4t222611.(2015•雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()正确,====,==MF12.(2015•宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为())))y=,所以此)))()得,所以此时(13.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是(),,则可对<,所以14.(2015•西宁)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()x=4x解:正方形的边长为x x=2xy=x﹣15.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF 的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()﹣+1 ﹣1,,==OM=AC=1OM=16.(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()BCE=EF=ED=AE,在ACCE=,EF=,=,F=.17.(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()==18.(2015•天水)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C 点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()B19.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()20.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()的右侧得到﹣﹣>,21.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()AB=BCAB=OE=BCAB=BCAB=BDABBC22.(2015•十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为(),,CE=3BE==EF====2,23.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()=12B﹣﹣25.(2015•庆阳)在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 2n A 2n+1B 2n+1(n 是正整数)的顶点A 2n+1的坐标是( ) )),,,,=,﹣﹣(﹣,,=,﹣的纵坐标是,26.(2015•钦州)如图,AD是△ABC的角平分线,则AB:AC等于()角形的性质可有,而利用=,=,27.(2015•齐齐哈尔)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是();然后判断出EM=DN= S SDM=DN=EM=DN=DN=SS;,DM=,;,∠DM=,DM=FN=28.(2015•盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()Bs=AM AN=3t=t s=AM1ts=AM BN=t+29.(2015•宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是(),。
2016年中考数学选择压轴题专题练习及解析
2016年中考数学《选择压轴题》专题练习1. (2015年广东3分)如图,已知正ΔABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设ΔEFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B.C. D.2. (2015年广东深圳3分)如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆∆≌;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有【 】 A. 1 B. 2 C.3D. 43. (2015年广东汕尾4分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 44. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 5. (2015年广东佛山3分)下列给出5个命题:①对角线互相垂直且相等的四边形是正方形;②六边形的内角和等于720°; ③相等的圆心角所对的弧相等; ④顺次连结菱形各边中点所得的四边形是矩形;⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是【 】A. 2个B. 3个C. 4个D. 5个 6. (2015年广东梅州3分)对于二次函数2 2y x x =-+有下列四个结论:①它的对称轴是直线1x =;②设22111222 2 2y x x y x x =-+=-+,,则当21>x x 时,有21>y y ;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<<2x 时,>0y .其中正确结论的个数为【 】 A. 1 B.2 C. 3 D. 47. (2015年浙江衢州)如图,已知等腰,ABC AB BC ∆= ,以AB 为直径的圆交AC 于点D ,过点D 的O e 的切线交BC 于点E ,若5,4CD CE == ,则O e 的半径是【 】 A. 3 B. 4 C.256 D. 2588. (2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】 A. ②号棒 B. ⑦号棒 C. ⑧号棒 D. ⑩号棒 9. (2015年浙江台州4分)(2015年浙江义乌3分)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是【 】A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲粗,则乙对10. (2015年浙江温州4分)如图,C 是以AB 为直径的半圆O 上一点,连结AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q. 若MP+NQ=14,AC+BC=18,则AB 的长是【 】 A.29 B.790C. 13D. 16 11. (2015年浙江舟山3分)(2015年浙江嘉兴4分) 如图,抛物线221y x x m =-+++交x 轴于点A (a ,0)和B (b , 0),交y 轴于点C ,抛物线的顶点为D .下列四个命题:①当>0x 时,>0y ;②若1a =-,则4b =;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG周长的最小值为. 其中真命题的序号是【 】A. ①B. ②C. ③D. ④ 12.(2015年浙江杭州3分)设二次函数11212())0(()y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,若函数21y y y =+的图象与x 轴仅有一个交点,则【 】A. 12()a x x d -=;B. 21()a x x d -=; C. 212()a x x d -=;D. ()212a x x d +=(第11题) (第13题) (第14题) 13.(2015年浙江湖州3分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数1y x=(x <0)图象上一点,AO 的延长线交函数2k y x=(x >0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若ΔABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于【 】【来A.8B.10C.D.14.(2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】【 A.26B. 2C. 3D. 215.(2015年浙江丽水3分)如图,在方格纸中,线段a ,b ,c ,d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有【 】A. 3种B. 6种C. 8种D. 12种(第15题) (第16题)16.(2015年浙江宁波4分) 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为【 】A. ①②B. ②③C. ①③D. ①②③ 17. (2015年安徽4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是【 】A.B .C .D .18. (2015年北京3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成. 为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为【 】A 、A→O→B B 、B→A→CB 、C 、B→O→CD 、C→B→O19. (2015年上海4分)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是【 】A 、AD BD =B 、OD CD =C 、CAD CBD ∠=∠ D 、OCA OCB ∠=∠ 20. (2015年重庆A4分)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A ,B 两点,则菱形ABCD 的面积为【 】A. 2 B. 4C.D.(第19题) (第20题) (第21题)21. (2015年重庆B4分)如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是【 】A.B. -C.D. -22. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4km B.(2+km C. D.(4km(第22题) (第23题)23. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23D. 24. (2015年福建福州3分)已知一个函数图像经过()()1422-- ,,,两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是【 】A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数25. (2015年福建泉州3分)在同一平面直角坐标系中,函数2y ax bx =+与y bx a =+的图象可能是【 】A.B.C.D.26. (2015年福建厦门4分)如图,在ΔABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是【 】A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点(第26题) (第28题)27. (2015年内蒙古呼和浩特3分)函数22x xy x+=的图象为【 】A.B.C.D.28. (2015年江苏徐州3分)若函数y kx b =-的图像如图所示,则关于x 的不等式()3>0kx b --的解集为【 】A. <2xB. >2xC. <5xD. >5x 29.(2015年福建漳州4分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是【 】A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 30. (2015年湖南株洲3分)有两个一元二次方程:M :20ax bx c ++=N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是【 】A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号相同,那么方程N 的两根符号也相同;C 、如果5是方程M 的一个根,那么15是方程N 的一个根; D 、如果方程M 和方程N 有一个相同的根,那么这个根必是1x =.31. (2015年江西南昌3分)如图,在ΔABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当ΔP AB 为直角三角形时,AP 的长为 ▲ .(第31题) (第32题)32. (2015年江西3分)已知抛物线()20y ax bx c a ++>=过()()2023- ,,,两点,那么抛物线的对称轴【 】A. 只能是x =-1B. 可能是y 轴C. 在y 轴右侧且在直线x =2的左侧D. 在y 轴左侧 33. (2015年四川成都3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为【 】A.2、3πB. 32、π C. 3、23π D. 32、43π34. (2015年四川宜宾3分)在平面直角坐标系中,任意两点()()1122,,,A x y B x y 规定运算:①()1212,⊕=++A B x x y y ;②1212=⊗+A B x x y y ;③当x 1= x 2且y 1= y 2时,A =B.有下列四个命题: (1)若A (1,2),B (2,–1),则(),31⊕= A B ,0=⊗A B ;(2)若⊕=⊕A B B C ,则A =C ; (3)若=⊗⊗A B B C ,则A =C ; (4)对任意点A 、B 、C ,均有()()⊕⊕=⊕⊕A B C A B C 成立.其中正确命题的个数为【 】A. 1个B. 2个C. 3个D. 4个 35. (2015年四川资阳3分)如图,在ΔABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =②当点E 与点B 重合时,12MH =;③AF BE EF +=;④MG•MH =12,其中正确结论为【 】A. ①②③B. ①③④C. ①②④D. ①②③④ 36. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】A.2B.3C.4D.537. (2015年广东茂名3分)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时加工这种零件x 个,则下面列出的方程正确的是【 】A. 1201005x x =- B. 1201005x x =-C.1201005x x=+ D. 1201005x x =+(第35题) (第38题)38. (2015年广东珠海3分)如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C=25°,则∠BOD 的度数是( ) A. 25° B. 30° C. 40° D. 50°39. (2015年贵州铜仁4分)如图,在平面直角坐标系系中,直线12y k x =+与x 轴交于点A ,与y 轴交于点C ,与反比例函数2k y x=在第一象限内的图象交于点B ,连接BO .若113OBCS tan BOC =∠=V ,,则k 2的值是【 】A. 3-B. 1C. 2D. 340. (2015年河南3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是【 】A. (2014,0)B. (2015,-1)C. (2015,1)D. (2016,0)41. (2015年湖北黄冈3分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D. 42. (2015年湖北黄石3分)如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是【 】A.B.C.D.43. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件;B. 第10天销售一件产品的利润是15元;C. 第12天与第30天这两天的日销售利润相等;D. 第30天的日销售利润是750元44. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】 A.133 B. 92C.D.(第44题) (第45题)45. (2015年江苏泰州3分)如图,ΔABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】 A. 1对 B. 2对 C. 3对 D. 4对 46. (2015年陕西3分)下列关于二次函数()2211y ax ax a =-+>的图象与x 轴交点的判断,正确的是【 】A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧 47. (梅州市2015年3分)对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .4 48. (3分)(2015•济南)如图,抛物线y=﹣2x 2+8x ﹣6与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向右平移得C 2,C 2与x 轴交于点B ,D .若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣49.(2015•菏泽3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CB D.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)50.(2015年四川省自贡市3分)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的小值是()A、2102-B、6 C、2132-D、4参考答案1.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象.【分析】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,∴2===-BE CF AG x. ∴△AEG、△BEF、△CFG三个三角形全等.在△AEG 中,2==-,A E x A G x ,∴()1224=⋅⋅⋅=-V AEGS AE AG sinA x x .∴()2332442=-=-=-+V V ABC AEGy S S x x x x .∴其图象为开口向上的二次函数.故选D. 2. 【答案】C.【考点】折叠问题;正方形的性质;全等、相似三角形的判定和性质;勾股定理.【分析】由折叠和正方形的性质可知,0,90D F D C D A D F C C ==∠=∠=, ∴090DFG A ∠=∠=.又∵DG DG =,∴()ADG FDG HL ∆∆≌. 故结论①正确.∵正方形ABCD的边长为12,BE =EC ,∴6BE EC EF ===.设AG FG x ==,则6,12E G x B G x =+=-,在Rt BEG ∆中,由勾股定理,得222EG BE BG =+,即()()222662x x +=+-,解得,4x =.∴4,8AG GF BG === .∴2GB AG =. 故结论②正确.∵6BE EF ==,∴BEF ∆是等腰三角形.易知GDE ∆不是等腰三角形,∴GDE ∆和BEF ∆不相似. 故结论③错误. ∵11682422BEG S BE BG ∆=⋅⋅=⋅⋅=,∴67224105BEFBEG EF S S EG ∆∆=⋅=⋅=.故结论④正确. 综上所述,4个结论中,正确的有①②④三个.故选C. 3. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确.∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵2 20y x x =-+=的解为120,2x x == ,∴二次函数x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确. 综上所述,正确结论有①③④三个.故选C. 4. 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =. ∴方程为28120x x -+=,解得122,6x x == .∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2.∴三角形ABC 的周长为14.故选B.5.【答案】A.【考点】命题和定理;正方形的判定;多边形内角和定理;圆周角定理;三角形中位线定理;菱形的性质;矩形的判定;三角形的内心性质.【分析】根据相关知识对各选项进行分析,判作出断: ①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确.③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确. ⑤三角形的内心到三角形三边的距离相等,命题不正确.其中正确命题的个数是2个.故选A.6. 【答案】C.【考点】二次函数的图象和性质.【分析】∵()22211y x x x =-+=--+,∴二次函数图象的对称轴是直线1x =.故结论①正确. ∴当1x ≥时,y 随x 的增大而减小,此时,当21>x x 时,有21<y y .故结论②错误.∵220y x x =-+=的解为120,2x x == ,∴二次函数图象与x 轴的两个交点是(0,0)和(2,0) .故结论③正确.∵二次函数图象与x 轴的两个交点是(0,0)和(2,0),且有最大值1,∴当0<<2x 时,>0y .故结论④正确.综上所述,正确结论有①③④三个.故选C. 7. 【答案】D .【考点】等腰三角形的性质;切线的性质;平行的判定和性质;矩形的判定和性质;勾股定理;方程思想的应用. 【分析】如答图,连接OD ,过点B 作BF OD ⊥于点F , ∵AB BC =,∴A C ∠=∠.∵AO DO =,∴A ADO ∠=∠.∴C ADO ∠=∠.∴//OD BC .∵DE 是O e 的切线,∴DE OD ⊥.∴DE BC ⊥. ∴90CED ∠=︒,且四边形DEBF 是矩形. ∵5,4CD CE == ,∴由勾股定理,得3DE =. 设O e 的半径是x , 则(),3,244OB x BF OF x BE x x x ===-=--=- .∴由勾股定理,得222OB OF BF =+,即()22234x x =+-,解得258x =.∴O e 的半径是258.故选D . 8. 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.9. 【答案】B.【考点】逻辑判断推理题型问题;真假命题的判定. 【分析】针对逻辑判断问题逐一分析作出判断:A.若甲对,即只参加一项的人数大于14人,等价于等于15或16或17或18或19人,则两项都参加的人数为5或4或3或2或1人,故乙不对;B.若乙对,即两项都参加的人数小于5人,等价于等于4或3或2或1人,则只参加一项的人数为等于16或17或18或19人,故甲对;C.若乙错,即两项都参加的人数大于或等于5人,则只参加一项的人数小于或等于15人,故甲可能对可能错;D.若甲粗,即只参加一项的人数\小于或等于14人,则两项都参加的人数大于或等于6人,故乙错.综上所述,四个命题中,其中真命题是“若乙对,则甲对”. 故选B.10. 【答案】C.【考点】正方形的性质;垂径定理;梯形的中位线定理;方程思想、转换思想和整体思想的应用.【分析】如答图,连接OP 、OQ ,∵DE ,FG ,»»AC BC,的中点分别是M ,N ,P ,Q , ∴点O 、P 、M 三点共线,点O 、Q 、N 三点共线. ∵ACDE ,BCFG 是正方形, ∴AE=CD=AC ,BG=CF=BC.设AB=2r ,则,OM MP r ON NQ r =+=+ . ∵点O 、M 分别是AB 、ED 的中点, ∴OM是梯形ABDE的中位线.∴()()()1112222OM AE BD AE CD BC AC BC =+=++=+,即()122M P r A CB C +=+.同理,得()122NQ r BC AC +=+.两式相加,得()322MP NQ r AC BC ++=+.∵MP+NQ=14,AC+BC=18,∴3142182132r r +=⨯⇒=.故选C. 11. 【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y x x m =-+++的对称轴为212x =-=-,点A 和B 关于轴对称,∴若1a =-,则3b =,故命题“若1a =-,则4b =”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x +,∴211>1x x --,又∵抛物线221y x x m =-+++的对称轴为1x =,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x +,则12>y y ” 是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.2∵2m =, ∴223y x x =-++的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为()2,3- ,点N 的坐标为()1,4- ,点P 的坐标为(2,4).∴DE MN ==∴当2m =时,四边形EDFG 周长的最小值为DE MN +=故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m =时,四边形EDFG 周长的最小值为 不是真命题. 综上所述,真命题的序号是③.故选C.12. 【答案】B.【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,,∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数112()()(0)y ax x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-.. 令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a xx d ax x d -+=⇒--=.故选B. 13. 【答案】B.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;轴对称的性质;特殊元素法和转换思想的应用. 【分析】如答图,连接A ′C , ∵点A 是函数1y x= (x <0)图象上一点,∴不妨取点A ()1,1-- . ∴直线AB :y x =.∵点C 在直线AB 上,∴设点C (),x x .∵△ABC 的面积等于6,∴()1162x x ⋅⋅+=,解得123,4x x ==- (舍去).∴点C ()3,3 .∵点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,∴点A ′()1,1- ,点C ′()3,3- .∴由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于'''1124621022AA C CA C S S ∆∆+=⨯⨯+⨯⨯=.故选B.14. 【答案】C.【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则A C =∵AC 是⊙O 的直径,∴0AEC 90∠=. 在Rt ACE ∆中,A E c o=⋅=1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠=易知G C H ∆是等腰直角三角形,∴GF 2CM ==又∵A EF ∆是等边三角形,∴EF AE ==.∴EF GH ==故选C. 15. 【答案】B .【考点】网格问题;勾股定理;三角形构成条件;无理数的大小比较;平移的性质;分类思想的应用. 【分析】由图示,根据勾股定理可得:a b c d =∵<,<,,<<a b c a d c b d c b a d b d +++=-+ ,∴根据三角形构成条件,只有,,a b d 三条线段首尾相接能组成三角形.如答图所示,通过平移,,a b d 其中两条线段,使得和第三条线段首尾相接组成三角形,能组成三角形的不同平移方法有6种.故选B .16. 【答案】A.【考点】多元方程组的应用(几何问题).【分析】如答图,设原住房平面图长方形的周长为2l ,①的长和宽分别为,a b ,②③的边长分别为,c d .根据题意,得2a c d c b d a b c l =+⎧⎪=+⎨⎪++=⎩ ①②③,-①②,得2a c c b a b c -=-⇒+=,将2a b c +=代入③,得1422c l c l =⇒=(定值), 将122c l =代入2a b c +=,得()122a b l a b l+=⇒+=(定值),而由已列方程组得不到d .∴分割后不用测量就能知道周长的图形标号为①②.故选A. 17. 【答案】A .【考点】一次函数和二次函数综合问题;曲线上点的坐标与方程的关系;数形结合思想的应用. 【分析】∵y =ax 2+(b -1)x +c =ax 2+bx +c -x ,∴函数y =ax 2+(b -1)x +c 的图象上点的纵坐标是二次函数y 2=ax 2+bx +c 图象上点的纵坐标与一次函数y 1=x 图象上点的纵坐标之差.∵一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,而P 、Q 两点都在第一象限,∴函数y =ax 2+(b -1)x +c 的图象与x 轴相交于两点,且这两点都在x 轴的正方向.故选A . 18. 【答案】C【考点】单动点问题;函数图象的识别;垂线段最短的性质;排他法的应用.【分析】从图2可知,寻宝者与定位仪器之间的距离开始和结束时是相同的,因此,可排除A 、D 选项;从图2可知,寻宝者与定位仪器之间的距离的最近点,相对于开始和结束时位置离中点更近,因此,如答图,过点M分别作,,,OB OC AB AC 的垂线,垂足分别为点,,,E F P Q ,此时,根据垂线段最短的性质,点,,,E F P Q 是寻宝者与定位仪器之间的距离的最近点. 显然,,OE OF BE CF AP =<==,即点,E F离中点的距离小于开始和结束时的距离;点,P Q离中点的距离大于开始和结束时的距离.∴寻宝者的行进路线可能为B→O→C. 故选C.19.【答案】B.【考点】菱形的判定;垂径定理;平行四边形的判定.【分析】要判定四边形OACB为菱形,根据菱形的判定可知,一组邻边相等的平行四边形是菱形,由于OA OB=,且半径OC⊥AB,根据垂径定理有AD BD=,从而根据对角线互相平分的四边形是平行四边形的判定,只要另一条对角线也平分即可,从而只要添加条件OD CD=即可. 因此,这个条件可以是OD CD=.故选B.20.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;勾股定理.【分析】∵A,B两点的纵坐标分别为3,1,反比例函数3 yx =的图像经过A,B两点,∴A(1,3),B(3,1).∴AB=∵四边形ABCD是菱形,∴AD AB==AD 与BC的距离为2.∴菱形ABCD的面积为2=故选D.21.【答案】D.【考点】反比例函数综合题;曲线上点的坐标与方程的关系;菱形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】如答图,AC交y轴于点H,则CH⊥y轴.∵∠BOC=60°,∴∠COH=30°,∵点C的坐标为(m,),∴,CH m OH==∴6cosOHOCCOH===∠.∵四边形ABOC是菱形,∴6OB OC==,∠BOD=30°.∵BD⊥x轴,∴6BD OB tan BOD=⋅∠==∴点D的坐标为(6,-.∵点D在反比例函数kyx=的图像上,∴()6-⋅=-故选D.22.【答案】B.【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质.【分析】如答图,过点B作BE⊥AC交AC于点E,过点E作EF⊥CD交CD于点F,则根据题意,四边形BDEF是矩形,△ABE、△EFC和△ADC都是等腰直角三角形,∵AB=2,∴DF=BF= AB=2,AE=∵∠EBC=∠BCE=22.5°,∴CE=BE=2.∴CF==∴2CD DF CF=+=km).∴船C离海岸线l的距离为(2+km.故选B.23.【答案】B.【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE A=='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,.∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅.在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==. 在Rt AECV 中,根据勾股定理,得95AE ==,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得45B F '==.故选B .24. 【答案】D.【考点】正比例函数、一次函数、反比例函数、二次函数的图象和性质.【分析】∵函数图像经过()()1422-- ,,,两点,∴该函数不可能是正比例函数.∵若一次函数的图像经过()()1422-- ,,,两点,则函数值y 随x 的增大而增大, ∴该函数不可能是一次函数.∵若反比例函数的图像经过()()1422-- ,,,两点,则函<0和>0x 两个范围内,函数值y 随x的增大而增大,∴该函数不可能是反比例函数.∵若二次函数的图像经过()()1422-- ,,,两点,则当图像开口向下,对称轴在2x =右侧时,在对称轴右侧,函数值y 随x 的增大而减小;当图像开口向上,对称轴在1x =左侧时,在对称轴左侧,函数值y 随x 的增大而减小.2∴该函数可能是二次函数.故选D. 25. 【答案】C .【考点】一次函数、二次函数图象与系数的关系. 【分析】根据一次函数、二次函数图象与系数的关系对各选项逐一分析,作出判断:A 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当00a b >,>时,对于抛物线2y ax bx=+来说,对称轴02bx a=-<,应在y 轴的左侧,故不合题意,图形错误.B 、对于直线y bx a =+来说,由图象可以判断,00a b <,<;而当0a <时,对于抛物线2y ax bx =+来说,图象应开口向下,故不合题意,图形错误.C 、对于直线y bx a =+来说,由图象可以判断,00a b <,>;而当00a b <,>时,对于抛物线2y ax bx=+来说,图象开口向下,对称轴>02bx a=-位于y 轴的右侧,故符合题意.D 、对于直线y bx a =+来说,由图象可以判断,00a b >,>;而当0a >时,对于抛物线2y ax bx =+来说,图象开口向下,故不合题意,图形错误.故选C .26. 【答案】C.【考点】线段中垂线的性质;切线的性质;垂径定理. 【分析】根据线段中垂线的性质、切线的性质和垂径定理,该圆的圆心是线段AE 的中垂线与线段BC 的中垂线的交点. 故选C. 27. 【答案】D.【考点】代数式化简;一次函数的图象;分类思想的应用.【分析】∵()()22>022<0x x x x y x x x ⎧++⎪==⎨--⎪⎩,∴当>0x 时,函数的图象为直线2y x =+的一部分;当<0x 时,函数的图象为直线2y x =--的一部分.符合此条件的是图象D.故选D.。
2015年广东省深圳市中考数学试卷解析版
2015年广东省深圳市中考数学试卷解析版一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−115【解答】解:﹣15的相反数是15,故选:A.2.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.下列主视图正确的是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.4【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴−b2a>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.11.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG =∠A =90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x +6)2=62+(12﹣x )2, 解得:x =4∴AG =GF =4,BG =8,BG =2AG ,②正确;BE =EF =6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,③错误; S △GBE =12×6×8=24,S △BEF =EF EG •S △GBE =610⋅24=725,④正确. 故选:C .二、填空题:13.因式分解:3a 2﹣3b 2= 3(a +b )(a ﹣b ) . 【解答】解:原式=3(a 2﹣b 2)=3(a +b )(a ﹣b ), 故答案为:3(a +b )(a ﹣b )14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 13.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为26=13.故答案为:13.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 21 个太阳.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳, 第二行小太阳的个数是1、2、4、8、…、2n ﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳. 故答案为:21.16.如图,已知点A 在反比例函数y =k x(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E .若△BCE 的面积为8,则k = 16 .【解答】解:∵△BCE 的面积为8, ∴12BC ⋅OE =8,∴BC •OE =16,∵点D 为斜边AC 的中点, ∴BD =DC ,∴∠DBC =∠DCB =∠EBO , 又∠EOB =∠ABC , ∴△EOB ∽△ABC , ∴BC OB=AB OE,∴AB •OB •=BC •OE ∴k =AB •BO =BC •OE =16. 故答案为:16. 三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.【解答】解:原式=2−√3+2×√32+2﹣1=3.18.(6分)解方程:x2x−3+53x−2=4.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=13 7,经检验x1=1与x2=137都为分式方程的解.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×√32=5√3,∴AB=1.5+5√3.答:旗杆AB的高度为(1.5+5√3)米.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【解答】(1)解:由题意可得:BO=4cm,t=42=2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=√2OH=3√2cm,∴AD=AO﹣DO=(3√2−3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴CFCG =CECF,∴CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.【解答】解:(1)∵二次函数y =﹣x 2+bx +c 经过点A (﹣3,0),点C (0,3),∴{c =3−9−3b +c =0,解得{b =−2c =3, ∴抛物线的解析式y =﹣x 2﹣2x +3,(2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P (﹣1,m ),则PM =PD •sin ∠ADE =√55(4﹣m ),PE =m ,∵PM =PE ,∴√55(4﹣m )=m ,m =√5−1, ∴P 点坐标为(﹣1,√5−1);当P 在∠DAB 的外角平分线上时,如图2,作PN ⊥AD ,设P (﹣1,n ),则PN =PD •sin ∠ADE =√55(4﹣n ),PE =﹣n ,∵PN =PE ,∴√55(4﹣n )=﹣n ,n =−√5−1, ∴P 点坐标为(﹣1,−√5−1);综上可知存在满足条件的P 点,其坐标为(﹣1,√5−1)或(﹣1,−√5−1);(3)∵抛物线的解析式y =﹣x 2﹣2x +3,∴B (1,0),∴S △EBC =12EB •OC =3,∵2S △FBC =3S △EBC ,∴S △FBC =92,过F 作FQ ⊥x 轴于点H ,交BC 的延长线于Q ,过F 作FM ⊥y 轴于点M ,如图3,∵S △FBC =S △BQH ﹣S △BFH ﹣S △CFQ =12HB •HQ −12BH •HF −12QF •FM =12BH (HQ ﹣HF )−12QF •FM =12BH •QF −12QF •FM =12QF •(BH ﹣FM )=12FQ •OB =12FQ =92,∴FQ =9,∵BC 的解析式为y =﹣3x +3,设F (x 0,﹣x 02﹣2x 0+3),∴﹣3x 0+3+x 02+2x 0﹣3=9,解得:x 0=1−√372或1+√372(舍去), ∴点F 的坐标是(1−√372,3√37−152), ∵S △ABC =6>92, ∴点F 不可能在A 点下方,综上可知F 点的坐标为(1−√372,3√37−152).2015年广东省深圳市中考数学试卷一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−1152.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106 3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4 4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.5.下列主视图正确的是()A.B.C.D.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90 7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.49.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.10011.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4二、填空题:13.因式分解:3a2﹣3b2=.14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.如图,已知点A在反比例函数y=kx(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.18.(6分)解方程:x2x−3+53x−2=4.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.。
中考数学压轴题60例(选择题)
中考数学压轴题60例(选择题)一、选择题(共60小题)1.(2015•遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A.B.C.D.2.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC 上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°3.(2015•自贡)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6C.2﹣2 D.44.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.(2015•镇江)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于()A.B.1C.D.6.(2015•枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②④B.③④C.①③④D.①②7.(2015•岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C 作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④8.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA 和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°9.(2015•盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.10.(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.11.(2015•雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C 为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2B.3C.4D.512.(2015•宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P 在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B.4个C.5个D.6个13.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4B.3C.2D.114.(2015•西宁)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.15.(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF 的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣116.(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.17.(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.418.(2015•天水)如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C 点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C 在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.19.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对20.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2B.3C.4D.5 21.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个22.(2015•十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.23.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤24.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.25.(2015•庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)26.(2015•钦州)如图,AD是△ABC的角平分线,则AB:AC等于()A.B D:CD B.A D:CD C.B C:AD D.B C:AC27.(2015•齐齐哈尔)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN =S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个28.(2015•盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A.B.C.D.29.(2015•宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(22014,22014)B.(22015,22015)C.(22014,22015)D.(22015,22014)30.(2015•内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD 有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<1631.(2015•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC 于点E,AB=6,AD=5,则AE的长为()A.2.5 B.2.8 C.3D.3.232.(2015•南宁)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4B.5C.6D.733.(2015•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个34.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧35.(2015•牡丹江)如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:(1)∠DBM=∠CDE;(2)S△BDE<S四边形BMFE;(3)CD•EN=BN•BD;(4)AC=2DF.其中正确结论的个数是()A.1B.2C.3D.436.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1B.2C.3D.437.(2015•辽阳)如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1B.2C.3D.438.(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④39.(2015•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元40.(2015•莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D 的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.41.(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF 的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.42.(2015•荆州)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s 的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.43.(2015•荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个44.(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m <B.﹣3<m <﹣C.﹣3<m<﹣2 D.﹣3<m <﹣45.(2015•黄石)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.46.(2015•黑龙江)如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1B.2C.3D.447.(2015•菏泽)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)48.(2015•河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)49.(2015•河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10 D.1250.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤51.(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以52.(2015•桂林)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA 方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8B.10 C.3πD.5π53.(2015•广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.54.(2015•抚顺)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5 C.2D.55.(2015•鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()201456.(2015•滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA 的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变57.(2015•本溪)如图,在△ABC中,∠C=90°,点P是斜边AB的中点,点M从点C向点A匀速运动,点N从点B向点C匀速运动,已知两点同时出发,同时到达终点,连接PM、PN、MN,在整个运动过程中,△PMN的面积S与运动时间t的函数关系图象大致是()A.B.C.D.58.(2015•巴彦淖尔)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A.A E=12cmB.sin∠EBC=C.当0<t≤8时,y=t2D.当t=9s时,△PBQ是等腰三角形59.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3D.460.(2015•徐州)若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>52015年全国中考数学压轴题60例(选择题卷)参考答案与试题解析一、选择题(共60小题)1.(2015•遵义)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A.B.C.D.考点:三角形的内切圆与内心;正方形的性质;旋转的性质.专题:压轴题.分析:作∠DAF与∠AB1G的角平分线交于点O,则O即为该圆的圆心,过O作OF⊥AB1,AB=,再根据直角三角形的性质便可求出OF的长,即该四边形内切圆的圆心.解答:解:作∠DAF与∠AB1G的角平分线交于点O,过O作OF⊥AB1,】则∠OAF=30°,∠AB1O=45°,故B1F=OF=OA,设B1F=x,则AF=﹣x,故(﹣x)2+x2=(2x)2,解得x=或x=(舍去),∴四边形AB1ED的内切圆半径为:.故选:B.点评:本题考查了旋转的性质三角形的内切圆,正方形的性质,要熟练掌握正方形的性质及直角三角形的性质,是解答此题的关键.2.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°考点:轴对称-最短路线问题.专题:压轴题.分析:据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A 关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.点评:本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.3.(2015•自贡)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6C.2﹣2 D.4考点:翻折变换(折叠问题).专题:压轴题.分析:当∠BFE=∠DEF,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E即为所求.解答:解:如图,当∠BFE=∠DEF,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥FD,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AB=6,∴DE==2,∴DB′=2﹣2.故选:A.点评:本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.4.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.专题:压轴题.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.解答:解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.点评:本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.5.(2015•镇江)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则k•t的值等于()A.B.1C.D.考点:位似变换;二元一次方程组的解;坐标与图形性质.专题:压轴题.分析:首先求出点A′的坐标为(k,kt),再根据关于x,y的二元一次方程(m,n是实数)无解,可得mn=3,且n≠1;然后根据以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形A′B′C′D′的边上,可得反比例函数n=的图象只经过点A′或C′;最后分两种情况讨论:(1)若反比例函数n=的图象经过点A′时;(2)若反比例函数n=的图象经过点C′时;求出k•t的值等于多少即可.解答:解:∵矩形A′B′C′D′与矩形ABCD是位似图形,=k,顶点A的坐标为(1,t),∴点A′的坐标为(k,kt),∵关于x,y的二元一次方程(m,n是实数)无解,∴mn=3,且n≠1,即n=(m≠3),∵以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形A′B′C′D′的边上,∴反比例函数n=的图象只经过点A′或C′,由,可得mnx﹣3x+4=3n+1,(1)若反比例函数n=的图象经过点A′,∵mn=3,3x﹣3x+4=3kt+1,解得kt=1.(2)若反比例函数n=的图象经过点C′,∵mn=3,3x﹣3x+4=﹣3kt+1,解得kt=﹣1,∵k>0,t>0,∴kt=﹣1不符合题意,∴kt=1.故选:B.点评:(1)此题主要考查了位似变换问题,要熟练掌握,解答此题的关键是要明确:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.(2)此题还考查了二元一次方程组的求解方法,以及坐标与图形的性质,要熟练掌握.6.(2015•枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:压轴题.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(0,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)关于直线x=的对称点的坐标是(1,y1),∴y1=y2.故④正确;综上所述,正确的结论是①②④.故选:A点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.7.(2015•岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C 作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④考点:切线的判定;相似三角形的判定与性质.专题:压轴题.分析:根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.解答:解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选:D.点评:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.8.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA 和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°考点:轴对称-最短路线问题.专题:压轴题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.9.(2015•盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.解答:解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t 的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t 的减小;故选:B.点评:本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S 与时间t的关系是解题的关键.10.(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:首先根据Rt△ABC中∠C=90°,∠BAC=30°,AB=8,分别求出AC、BC,以及AB 边上的高各是多少;然后根据图示,分三种情况:(1)当0≤t≤2时;(2)当2时;(3)当6<t≤8时;分别求出正方形DEFG与△ABC的重合部分的面积S的表达式,进而判断出正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是哪个即可.解答:解:如图1,CH是AB边上的高,与AB相交于点H,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC ×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t 2[t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S=[(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t﹣6)=[]×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2+2t+4﹣t2﹣30=﹣t2﹣26综上,可得S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象.故选:A.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及三角形、梯形的面积的求法,要熟练掌握.11.(2015•雅安)如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2B.3C.4D.5考点:圆周角定理;垂径定理.专题:压轴题.分析:根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.解答:解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.点评:此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.12.(2015•宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P 在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B.4个C.5个D.6个考点:反比例函数图象上点的坐标特征;圆周角定理.专题:压轴题.分析:分类讨论:①当∠PAB=90°时,则P点的横坐标为﹣3,根据反比例函数图象上点的坐标特征易得P点有1个;②当∠APB=90°,设P(x,),根据两点间的距离公式和勾股定理可得(x+3)2+()2+(x﹣3)2+()2=36,此时P点有4个,③当∠PBA=90°时,P点的横坐标为3,此时P点有1个.解答:解:①当∠PAB=90°时,P点的横坐标为﹣3,把x=﹣3代入y=得y=﹣,所以此时P点有1个;②当∠APB=90°,设P(x,),PA2=(x+3)2+()2,PB2=(x﹣3)2+()2,AB2=(3+3)2=36,因为PA2+PB2=AB2,所以(x+3)2+()2+(x﹣3)2+()2=36,整理得x4﹣9x2+4=0,所以x2=,或x2=,所以此时P点有4个,。
大宇数学中考数学压轴题
大宇数学中考数学压轴题今天咱们来聊聊大宇数学里的中考数学压轴题。
你们可能会想,中考的题和咱们小学生有啥关系呀?其实关系可大啦。
就像爬山一样,中考数学压轴题就像是山顶上那朵特别漂亮但很难摘到的花。
咱们现在虽然还在山脚下或者半山腰(小学阶段),可是了解一下山顶的风景(中考压轴题),能让咱们更有方向地往上爬呢。
我给你们讲个小故事。
有个叫小辉的同学,他在小学的时候数学就学得特别好。
他呀,每次做数学题就像在玩游戏闯关一样。
他听说了中考数学压轴题特别难,就像游戏里超级大的BOSS。
他没有害怕,而是去看那些题长啥样。
他发现好多压轴题都是和图形、数字的巧妙组合有关。
这就好比搭积木,要把不同形状的积木(数学知识)搭得又稳又好看。
大宇数学里的中考数学压轴题,有很多是关于几何图形的。
比如说三角形。
咱们在小学都学过三角形有三条边,三个角。
中考压轴题里呢,可能就会让三角形在一个特别复杂的图形里,像一个神秘的迷宫里的宝藏一样。
比如说有一个大的正方形,里面画了好几个三角形,然后让你求某个三角形的面积或者角度。
这就像在一群小伙伴里找到那个特别的小伙伴一样。
还有关于数字规律的题。
就像咱们玩的找规律游戏。
1,3,5,7,后面是什么呀?对啦,是9。
中考压轴题里的数字规律可能会更复杂一些。
像2,5,10,17,下一个数字是多少呢?这就需要咱们更细心地去观察数字之间的关系啦。
虽然这些题对咱们现在来说有点难,但是咱们可以把它当成一个特别酷的挑战。
就像玩超级马里奥,每一关都越来越难,可是当你通过了,就特别有成就感。
咱们现在可以先把小学的数学知识学扎实,就像给咱们的闯关之旅准备好充足的装备。
比如说把加减法、乘除法都练得特别熟练,把三角形、正方形这些图形的特点都牢牢记住。
等咱们慢慢长大,学到更多的知识,再回头看这些中考压轴题,就会觉得没有那么难啦。
而且现在了解一下,就像提前知道了远方有一个神秘的宝藏在等着咱们去挖掘。
咱们可以带着好奇和探索的心情,在数学的世界里快乐地前行呢。
2015年中考数学突破训练之压轴60题(深圳卷)附详细答案解析
2015年中考数学突破训练之压轴60题(深圳卷)一、选择题(共15小题)1.(2014•深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣22.(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.3.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.644.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定5.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=6.(2009•深圳)如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()A.cm2B.(π﹣)cm2C.cm2D.cm27.(2014•坪山新区模拟)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.20π﹣16 B.10π﹣32 C.10π﹣16 D.20π﹣1328.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()A.B. C.6 D.9.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A.B.C.D.210.(2009•鄂州)已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为()A.B.C.D.311.(2013•龙岗区模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交DE于点P.若AC=,CD=2,则线段CP的长()A.1 B.2 C.D.12.(2011•本溪)如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值()A.2 B.4 C.2D.413.(2013•宝安区一模)如图,已知抛物线l1:y=﹣x2+2x与x轴分别交于A、O两点,顶点为M.将抛物线l1关于y轴对称到抛物线l2.则抛物线l2过点O,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积()A.3 B.6 C.8 D.1014.(2012•龙岗区模拟)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.你认为其中正确的有()A.4个B.3个C.2个D.1个15.(2011•宝安区一模)如图,已知抛物线与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为()A.32 B.16 C.50 D.40二、填空题(共15小题)16.(2014•深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有_________.17.(2013•深圳)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有_________个正方形.18.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为_________.19.(2011•深圳)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是_________.20.(2009•深圳)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m=_________.21.(2008•广州)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_________.22.(2014•坪山新区模拟)如图,已知直线l:y=x,过点A(0,1)作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2014的坐标为_________.(提示:∠BOX=30°)23.(2014•龙岗区模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(6,),点C的坐标为(1,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_________.24.(2014•宝安区二模)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=6.将腰CD以D 为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是_________.25.(2014•深圳一模)如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4),记为C1,它与x轴交于点O,A1:将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于A3;…如此进行下去,直至得C10,若P(37,m)在第10段抛物线C10上,则m=_________.26.(2011•宁波)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为_________.27.(2013•福田区一模)如图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC=_________.28.(2013•宝安区一模)四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H.若AB=4,AE=时,则线段BH的长是_________.29.(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是_________.30.(2012•宝安区二模)如图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC﹣PA|的最大值是_________.三、解答题(共30小题)31.(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.32.(2014•深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.33.(2013•深圳)如图1,直线AB过点A(m,0),B(0,n),且m+n=20(其中m>0,n>0).(1)m为何值时,△OAB面积最大?最大值是多少?(2)如图2,在(1)的条件下,函数的图象与直线AB相交于C、D两点,若,求k的值.(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿x轴的正方向平移,如图3,设它与△OAB的重叠部分面积为S,请求出S与运动时间t(秒)的函数关系式(0<t<10).34.(2013•深圳)如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(_________,_________),抛物线的表达式为_________;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.35.(2012•深圳)如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=_________时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=_________时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.36.(2012•深圳)如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?37.(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.38.(2011•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:表 1甲地乙地出发地目的地A馆800元/台700元/台B馆500元/台600元/台表 2甲地乙地出发地目的地A馆x台_________(台)B馆_________(台)_________(台)(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?39.(2010•深圳)如图1所示,以点M(﹣1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=﹣x﹣与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE,⊙M的半径r,CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.40.(2010•深圳)如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.41.(2009•深圳)如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).42.(2009•深圳)如图,在平面直角坐标系中,直线l:y=﹣2x﹣8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.43.(2015•深圳一模)如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P 是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.44.(2014•坪山新区模拟)如图1,在平面直角坐标系中,直线α:y=﹣x﹣与坐标轴分别交于A,C两点,(1)求点A的坐标及∠CAO的度数;(2)点B为直线y=﹣上的一个动点,以点B为圆心,AC长为直径作⊙B,当⊙B与直线α相切时,求B点的坐标;(3)如图2,当⊙B过A,O,C三点时,点E是劣弧上一点,连接EC,EA,EO,当点E在劣弧上运动时(不与A,O两点重合),的值是否发生变化?如果不变,求其值,如果变化,说明理由.45.(2014•龙岗区模拟)如图,在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),将▱ABCD绕点C沿顺时针方向旋转90°,得到▱A′B′CD′,A′D′与BC相交于点E.(1)求经过点D、A、A′的抛物线的函数关系式;(2)求▱ABCD与▱A′B′CD′的重叠部分(即△CED’)的面积;(3)点P是抛物线上点A、A′之间的一动点,是否存在点P使得△APA′的面积最大?若存在,求出△APA′的最大面积,及此时点P的坐标;若不存在,请说明理由.46.(2014•宝安区二模)已知:如图1,在平面直角坐标系中,⊙P的圆心P(3,0),半径为5,⊙P与抛物线y=ax2+bx+c(a≠0)的交点A、B、C刚好落在坐标轴上.(1)求抛物线的解析式;(2)点D为抛物线的顶点,经过C、D的直线是否与⊙P相切?若相切,请证明;若不相切,请说明理由;(3)如图2,点F是点C关于对称轴PD的对称点,若直线AF交y轴于点K,点G为直线PD上的一动点,则x轴上是否存在一点H,使C、G、H、K四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.47.(2014•福田区模拟)如图所示,对称轴是x=﹣1的抛物线与x轴交于A、B(1,0)两点,与y轴交于点C(3,0),作直线AC,点P是线段AB上不与点A、B重合的一个动点,过点P作y轴的平行线,交直线AC于点D,交抛物线于点E,连结CE、OD.(1)求抛物线的函数表达式;(2)当P在A、O之间时,求线段DE长度s的最大值;(3)连接AE、BC,作BC的垂直平分线MN分别交抛物线的对称轴x轴于F、N,连接BF、OF,若∠EAC=∠OFB,求点P的坐标.48.(2013•龙岗区模拟)如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.49.(2013•龙岗区模拟)如图,已知点A(2,0)、B(﹣1,0),C是y轴的负半轴上一点,且OA=OC,抛物线经过A、B、C三点.(1)此抛物线的关系式.(2)在对称轴右侧的抛物线上是否存在点P,使△PBC为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)Q是抛物线上一点,过点Q作指点BC的垂线,垂足为D,若△QDB与△BOC相似,请求点Q的坐标.50.(2013•宝安区一模)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心P位置,并求圆心P坐标;(3)若D是抛物线上一动点,是否存在点D,使以P、B、C、D为顶点的四边形是梯形?如果存在,请直接写出满足条件的点D的坐标;如果不存在,请说明理由.51.(2012•龙岗区二模)如图1,等腰梯形ABCD中,AD∥BC,AB=CD=,AD=5,BC=3.以AD 所在的直线为x轴,过点B且垂直于AD的直线为y轴建立平面直角坐标系.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的函数表达式;(2)设(1)中的抛物线与BC交于点E,P是该抛物线对称轴上的一个动点(如图2):①若直线PC把四边形AOEB的面积分成相等的两部分,求直线PC的函数表达式;②连接PB、PA,是否存在△PAB是直角三角形?若存在,求出所有符合条件的点P的坐标,并直接写出相应的△PAB的外接圆的面积;若不存在,请说明理由.52.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP 是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.53.(2012•盐田区二模)已知:如图,在平面直角坐标系xOy中,以点P(2,)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).(1)求经过A、B、C三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.54.(2009•云南)已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为A(3,0)、C (0,4),点D的坐标为D(﹣5,0),点P是直线AC上的一动点,直线DP与y轴交于点M.问:(1)当点P运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式;(2)当点P沿直线AC移动时,是否存在使△DOM与△ABC相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF 的最小面积S,若存在,请求出S的值;若不存在,请说明理由.注:第(3)问请用备用图解答.55.(2013•南沙区一模)如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=2OA=4.(1)求该抛物线的函数表达式;(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴l及x轴均相切时点P的坐标.(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG∥y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的?56.(2013•济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.57.(2007•梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A 出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.58.(2008•济南)已知:如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)请判断△OPA的形状并说明理由;(3)动点E从原点O出发,以每秒1个单位的速度沿着O、P、A的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求:①S与t之间的函数关系式.②当t为何值时,S最大,并求出S的最大值.59.(2011•泉州)如图,在直角坐标系中,点A的坐标为(0,8),点B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.(1)判断四边形DEFB的形状.并证明你的结论;(2)试求四边形DEFB的面积S与b的关系式;(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.60.(2009•河北)某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A 型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m N设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=_________,n=_________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?2015年中考数学突破训练之压轴60题(深圳卷)参考答案与试题解析一、选择题(共15小题)1.(2014•深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1B.3﹣C.﹣1 D.4﹣2考点:等腰梯形的性质.专题:压轴题.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选:D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.2.(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.考点:全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;锐角三角函数的定义.专题:压轴题.分析:过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,再根据等腰直角三角形斜边等于直角边的倍求出AB,然后利用锐角的正弦等于对边比斜边列式计算即可得解.解答:解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.3.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12 C.32 D.64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.4.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定考点:相似三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:连接OA、OD,由已知可以推出OB:OA=OE:OD,推出△ODA∽△OEB,根据锐角三角函数即可推出AD:BE的值.解答:解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1.故选:A.点评:本题主要考查了相似三角形的判定及性质、等边三角形的性质,本题的关键在于找到需要证相似的三角形,找到对应边的比即可.5.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=分析:根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.解答:解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选:D.点评:此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.6.(2009•深圳)如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD 的周长为10cm.图中阴影部分的面积为()A.cm2B.(π﹣)cm2C.cm2D.cm2考点:扇形面积的计算.专题:压轴题.分析:要求阴影部分的面积,就要从图中看出阴影部分是由哪几部分得来的,然后依面积公式计算.解答:解:∵AC平分∠BCD,∴=,∵AD∥BC,AC平分∠BCD,∠ADC=120°所以∠ACD=∠DAC=30°,∴=,∴∠BAC=90°∠B=60°,∴BC=2AB,∴圆的半径=×4=2cm,∴阴影部分的面积=[π×22﹣(2+4)×÷2]÷3=π﹣cm2.故选:B.点评:本题的关键是要证明BC就是圆的直径,然后根据给出的周长求半径,再求阴影部分的面积.7.(2014•坪山新区模拟)如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.20π﹣16 B.10π﹣32 C.10π﹣16 D.20π﹣132考点:扇形面积的计算.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=π×16+π×4﹣×8×4=10π﹣16.故选:C.点评:本题考查了扇形面积的计算,的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.8.(2014•宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()A.B.C.6D.考点:垂径定理;勾股定理;翻折变换(折叠问题).分析:延长CO交AB于E点,连接OB,构造直角三角形,然后再根据勾股定理求出AB的长解答:解:延长CO交AB于E点,连接OB,∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6,∴DE=(2OC﹣CD)=(6×2﹣4)=×8=4,∴OE=DE﹣OD=4﹣2=2,在Rt△OEB中,∵OE2+BE2=OB2,∴BE===4∴AB=2BE=8.故选:B.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.9.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A.B.C.D.2考点:三角形的内切圆与内心;锐角三角函数的定义.专题:压轴题.分析:设⊙O与AB,AC,BC分别相切于点E,F,G,连接OE,OF,OG,则OE⊥AB.根据勾股定理得AB=10,再根据切线长定理得到AF=AE,CF=CG,从而得到四边形OFCG是正方形,根据正方形的性质得到设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,建立方程求出x值,进而求出AE与DE的值,最后根据三角形函数的定义即可求出最后结果.解答:解:过O点作OE⊥AB OF⊥AC OG⊥BC,∴∠OGC=∠OFC=∠OED=90°,∵∠C=90°,AC=6 BC=8,∴AB=10∵⊙O为△ABC的内切圆,∴AF=AE,CF=CG (切线长相等)∵∠C=90°,∴四边形OFCG是矩形,∵OG=OF,∴四边形OFCG是正方形,设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年深圳中考数学专题1(能力提高)------深圳中考数学选择压轴题精讲一、真题回顾: 1、(05深圳中考)如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则图中阴影部分的面积是( )A 、334-π B 、π32 C 、332-π D 、π312、(06深圳中考)如图,在□ABCD 中,AB: AD = 3:2,∠ADB=60°,那么cos A的值等于( )3、(11深圳中考)如图4,△AB C 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为( )ABC .5:3D .不确定4、(12深圳中考)小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. (6米 B . 12米 C(+4米 D . 10米 5、(13深圳中考)如图3,已知123////l l ,相邻两条平行直线间的距离相等,若等腰直角⊿ABC 的三个顶点分别在这三条平行直线上,则αsin 的值是( ) A.31 B.176 C.55 D.1010ABC D F E O6、(14深圳中考)如图,已知四边形ABCD 为等腰梯形,AD//BC ,AB=CD ,E 为CD 中点,连接AE ,且AE=AD =∠DAE=30°,作AE ⊥AF 交BC 于F ,则BF=( )A .1 B.31D. 4-二、强化训练:1、如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF等于( ) A.75 B.125 C.135 D.1452、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174 C 、 17178D 、3 3、如图,已知AD 是△ABC 的中线,BC =6,且∠ADB=45°,∠C=30°,则AB =( ). A .6 B .32 C .23 D .44、如图,在菱形ABCD 中,∠DAB=120°,点E 平分DC ,点P 在BD 上,且PE +PC =1,那么,边AB 长的最大值是( ). A .1 B .332 C .23D .35、如图,“L ”形纸片由五个边长为1的小正方形组成,过A 点剪一刀,刀痕是线段BC ,若阴影部分面积是纸片面积的一半,则BC 的长为( ).).1题 ADC E FPB ABPAOCD7、如图,在Rt△ABC 中,∠C=90°,AC =3,以AB 为一边向三角形外作正方形ABDE ,正方形的中心为O ,且OC =24,那么,则BC 的长等于( ).A .23B .5C .52D .298、如图,在等腰三角形ABC 中,∠ABC =120°,点P 是底边AC 上的一个动点,M ,N 分别是AB ,BC 的中点,若PM +PN 的最小值为2,则△ABC 的周长是( ).A .12B .2+3C .4D .4+329、如图,以半圆的一条弦BC 为对称轴将弧BC 折叠后与直径AB 交于点D ,若DBAD =32,且AB =10,则CB 的长为( ).A .54B .34C .24D .410、如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F .若⊙O 的半径为2,则BF 的长为 ( )(A )23 (B )22 (C )556 (D )554 11、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .212、如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则BC 等于( ).A .14B .13C .612D .56EBCAO DB CMP ANABCD13、如图,已知直线4y x =-+与两坐标轴分别相交于点,A B 两点,点C 是线段AB上任意一点,过C 分别作CD x ⊥轴于点D,CE y ⊥轴于点E 。
双曲线ky x=与,CD CE 分别交于点,P Q 两点,若四边形ODCE 为正方形,且32OPQ S ∆=,则k 的值是( .A 4 .B 2.C 32 .D 5314、如图,在△ABC 中,∠ABC =90°,AB =BC =5,P 是△ABC PC =5,则PB =( )A .10B .3C .253 D .415、如图,直角梯形ABCD 中,∠A =90°,AD ∥BC ,AB =AD ,DE ⊥BC 于E ,点F 为AB 上一点,且AF =EC ,点M 为FC 的中点,连结FD 、DC 、ME ,设FC 与DE 相交于点N ,下列结论:①∠FDB =∠FCB ;②△DFN ∽△DBC ;③FB =2ME ;④ME 垂直平分BD ,其中正确结论的个数是( ).A .1个B .2个C .3个D .4个16、如图,等腰梯形ABCD 中,AD ∥BC ,AB =CD ,AC =BC ,AE ⊥BC 于E ,AD : AE =1 : 4,若AB =54,则梯形ABCD 的面积等于( ). A .44 B .46 C .48 D .5017、如图,已知正方形ABCD 的面积为1,以AB 为边在正方形内作等边三角形阴影部分的面积为( ) A .413- B .61C .432-D .51ACBPABCD18、一副三角板按图1所示的位置摆放.将△DEF 绕点A (F )逆时针旋转60°后(图2),测得CG=10cm ,则两个三角形重叠(阴影)部分的面积为( ) A . 75cm2B . )32525(+cm2C .)332525(+cm 2 D . )335025(+cm 2 19、如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( ) A .6 B .8 C .9.6 D .1020、如图,已知A 、B 两点的坐标分别为 (2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( )A .2 B .1 C.2.2-21、如图,△ABC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( ) A 、1个 B 、2个 C 、3个D 、4个22、如图,已知正方形ABCD 的面积为1, M 是BC 的中点,则图中阴影部分的面积为( ). A .41 B .31C .52 D .4223、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE + 的和最小,则这个最小值为( ) A..C .3 D第19题D24、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCDE ,设正方形的中心为O ,连结AO ,如果AB =4,AO =22,那么AC 的长等于( ).A .12B .8C .35D .2625、在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ACE △≌△;②CDE △为等边三角形;③2EH BE =; ④EDC EHC S AHS CH=△△.其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④26、如图,在正方形铁皮上剪下一个圆形和扇形,恰好围成一个圆锥模型,该圆的半径为r ,扇形的半径为R ,则圆的半径r 与扇形的半径R 之间的关系为( )A .R =3rB .R =23rC .R =415r D .R =4r27AB=AC ,∠A=40O,延长AC 到D ,使CD=BC ,点P 是ΔABD 的内心,则∠BPC=( )A 、105O B 、110O C 、130O D 、145O28、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .38737-πB .38734+π C .334+πD .π 29、如图,已知为的直径,为上一点,于.、,以为圆心,为半径的圆与相交于、两点,弦交于.则的值是( )A .24 B .9 C .36 D .27OB AC ED C BEA HC 1H 1 1(第29题)。