碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用
碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用

随着全球经济和技术的蓬勃发展,能源消耗逐年增加。目前,全球的二氧化碳(CO2)排放中有25%来源于汽车。有报告指出,截至2030年,全球CO2排放量将曾至423亿t。在我国,汽车排放带来的污染已经成为城市大气污染中的主要因素,我国的CO2排放目前已居全球第2,节能减排已成为汽车业发展的重大课题。因此,发展新能源汽车是实现节能减排及我国汽车产业跨越式和可持续发展的必然战略措施。电力驱动系统是影响新能源汽车动力性能、可靠性和成本的关键因素。目前,EV和HEV的电力驱动部分主要由硅(Si)基功率器件组成。随着电动汽车的发展,对电力驱动的小型化和轻量化提出了更高的要求。然而,由于材料限制,传统Si基功率器件在许多方面已逼近甚至达到了其材料的本征极限,如电压阻断能力、正向导通压降、器件开关速度等,尤其在高频和高功率领域更显示出其局限性。因此,各汽车厂商都对新一代碳化硅(SiC)功率器件寄予了厚望,希望通过应用SiC功率器件大幅实现电动汽车逆变器和DC-DC 转换器(为转变输入电压后有效输出固定电压的电压转换器)等驱动系统的小型轻量化。由于SiC器件与Si器件相比,有更高的电流密度。在相同功率等级下,SiC功率模块的体积显著小于Si基绝缘栅双极型晶体管(IGBT)模块。丰田的技

术人员在一场演讲会上公开表达了对SiC器件的期待,他所强调的SiC功率器件的优点之一就是能实现功率模块的小型化。以智能功率模块(Intelligent Power Module,IPM)为例,利用SiC功率器件,其模块体积可缩小至Si基功率模块的1/3~2/3。由于SiC器件的能量损耗只有Si器件的50%,发热量也只有Si基器件的50%;另外,SiC器件还有非常优异的高温稳定性。因此,散热处理也更加容易进行,不但可以显著减小散热器的体积,还可以实现逆变器与马达的一体化。基于上述原因,SiC器件也被美誉为“重环保时代的关键元件”。SiC功率半导体已成为节能、高效、环保的代名词。为此,汽车业界对SiC的期待十分迫切,丰田汽车表示“SiC 具有与汽油发动机同等的重要性”。在输出功率为30kW 的工况下,试制的逆变器体积为0.5L,输出密度为60kW/L,此时功率元件的温度约为180℃。构成逆变器的器件除了SiC功率模块外,还包括驱动SiC功率器件的控制电路、散热片、冷却风扇及电容器等。因此,国内要想在电力电子器件方面摆脱国外束缚,改变我国电力电子技术长期落后的局面,就需要Si基IGBT和新一代SiC电力电子器件双管齐下,共同追赶国外先进技术的脚步。保证在Si基器件不断成熟的情况下,新一代器件技术也与国外的齐头并进。当新一代器件技术普及时,中国就可以站在电子功率器件的高端领域,改写整个电子功率器件全球产业化竞争的格局。

SiC功率器件以其优异的高耐压、低损耗、高导热率等优异性能,可以有效实现电力电子系统的高效率、小型化和轻量化,被普遍认为是替代Si基功率器件最理想的新型半导体器件。随着SiC材料及其功率器件制备技术的不断成熟,成本和可靠性的不断优化,我们相信SiC功率器件将在新能源等领域有着广泛的应用前景。

碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用 随着全球经济和技术的蓬勃发展,能源消耗逐年增加。目前,全球的二氧化碳(CO2)排放中有25%来源于汽车。有报告指出,截至2030年,全球CO2排放量将曾至423亿t。在我国,汽车排放带来的污染已经成为城市大气污染中的主要因素,我国的CO2排放目前已居全球第2,节能减排已成为汽车业发展的重大课题。因此,发展新能源汽车是实现节能减排及我国汽车产业跨越式和可持续发展的必然战略措施。电力驱动系统是影响新能源汽车动力性能、可靠性和成本的关键因素。目前,EV和HEV的电力驱动部分主要由硅(Si)基功率器件组成。随着电动汽车的发展,对电力驱动的小型化和轻量化提出了更高的要求。然而,由于材料限制,传统Si基功率器件在许多方面已逼近甚至达到了其材料的本征极限,如电压阻断能力、正向导通压降、器件开关速度等,尤其在高频和高功率领域更显示出其局限性。因此,各汽车厂商都对新一代碳化硅(SiC)功率器件寄予了厚望,希望通过应用SiC功率器件大幅实现电动汽车逆变器和DC-DC 转换器(为转变输入电压后有效输出固定电压的电压转换器)等驱动系统的小型轻量化。由于SiC器件与Si器件相比,有更高的电流密度。在相同功率等级下,SiC功率模块的体积显著小于Si基绝缘栅双极型晶体管(IGBT)模块。丰田的技

术人员在一场演讲会上公开表达了对SiC器件的期待,他所强调的SiC功率器件的优点之一就是能实现功率模块的小型化。以智能功率模块(Intelligent Power Module,IPM)为例,利用SiC功率器件,其模块体积可缩小至Si基功率模块的1/3~2/3。由于SiC器件的能量损耗只有Si器件的50%,发热量也只有Si基器件的50%;另外,SiC器件还有非常优异的高温稳定性。因此,散热处理也更加容易进行,不但可以显著减小散热器的体积,还可以实现逆变器与马达的一体化。基于上述原因,SiC器件也被美誉为“重环保时代的关键元件”。SiC功率半导体已成为节能、高效、环保的代名词。为此,汽车业界对SiC的期待十分迫切,丰田汽车表示“SiC 具有与汽油发动机同等的重要性”。在输出功率为30kW 的工况下,试制的逆变器体积为0.5L,输出密度为60kW/L,此时功率元件的温度约为180℃。构成逆变器的器件除了SiC功率模块外,还包括驱动SiC功率器件的控制电路、散热片、冷却风扇及电容器等。因此,国内要想在电力电子器件方面摆脱国外束缚,改变我国电力电子技术长期落后的局面,就需要Si基IGBT和新一代SiC电力电子器件双管齐下,共同追赶国外先进技术的脚步。保证在Si基器件不断成熟的情况下,新一代器件技术也与国外的齐头并进。当新一代器件技术普及时,中国就可以站在电子功率器件的高端领域,改写整个电子功率器件全球产业化竞争的格局。

新能源汽车技术发展文献综述

【摘要】新能源汽车由于其具有环境友好、可持续发展等特点受到了各国政府及研究者的广泛关注。本文总结了美国、日本等学者都对新能源汽车产业的发展及相应政策做的研究分析,同时总结了我国学者对中国新能源汽车产业发展及问题、相关产业政策和消费者市场等方面的相关文献进行了综述,旨在为进一步的研究有所启示和帮助。 【关键词】新能源汽车文献综述消费者市场 新能源汽车产业的发展对我国汽车产业的升级、减少环境污染和节约能源起到了决定性的作用。近几年,我国政府开始大力支持和推广新能源汽车产业,制定了一系列产业政策、消费政策、税收政策等,引起了学者们的广泛专注,引发了巨大的投资浪潮,极大地促进了新能源汽车产业的发展。目前我国关于新能源汽车方面的研究还相对较少,研究领域也相对有限,本文通过对比总结国内外新能源汽车的相关研究,对我国目前新能源汽车产业及消费者市场等方面问题的研究情况进行综述。 一、国外新能源汽车的相关研究 新能源汽车是低碳的必然选择,也是汽车产业的发展趋势。新能源汽车产业化发展的直接推动力就是国家制定的战略及相关扶持政策。美国、日本等发达国家对新能源汽车的发展高度重视,通过财政支持、税收优惠等手段来支持新能源汽车的开发和发展,并取得了成就。国外在新能源汽车产业的研究通常在政府引领下联合大学、研究机构及企业共同展开,主要关注新能源开发技术、产业化、市场化等相关理论的研究,对于新能源汽车的研究成功也主要集中在美国、日本和欧洲等国的研究。 美国对新能源汽车产业的研究主要集中在产业理论与政策,并主要针对电池汽车和氢能源汽车。John R.Wilson和Griffin Burgh(2003)在氢能源研究报告中分析了氢能源在美国能源独立和安全方面的作用,但是他们指出大规模利用将会面临技术、热动力损失、规模和安全等多方面的问题,同时氢能源配套技术和基础设施的发展严重滞后于氢燃料汽车技术,所以美国想要进一步发展氢能源还需要克服很多技术上和经济上的困难。Amble(2011)较全面地研究了近年来美国新能源汽车的发展趋势及政府为保障新能源汽车发展所形成的政策法律体系。在此基础上,提出在世界范围内发展新能源汽车须建立统一的生产、安全国际标准体系。2013年美国能源部氢燃料电池技术负责人Sunita Satyapal所说,氢燃料电池技术发展仍有诸多挑战,基础设施是关键,但政府目前还不打算拨款修建加氢站。 日本主要致力于混合动力汽车和研发和产业化推广。其中有日本学者Max Ahman(2004)重点研究在新能源汽车的研发与发展中日本政府所产生影响,以及在政府支持计划中技术灵活性的重要性,还介绍了日本政府为促进新能源汽车产业的发展所出台的一些综合政策。Yoichi Kaya(2006)实例验证了氢能及其燃料电池的能源利用率和无污染性,指出氢能源引用推广的关键是提高能源转化技术水平、提高燃料效率和加强相关基础设施建设。HasishiIshitani(2007)在概括了日本新能源已有产业政策深入探讨了未来纯电动和燃料汽车的技术研发格局和发展方向。Masonori Mond(2007)证实了氢能源环保性能的高效性,阐述了日本氢能加气站的建设运营状况,并提出了日本下个阶段大力发展氢能和燃气电池等基础设施的建议。井志忠(2007)对日本新能源产业的发展模式进行研究,总结了日本新能源产业发展的动因、政策扶持体系和官产学一体化的研发与应用格局。 二、中国新能源汽车产业发展及问题相关研究 我国新能源汽车产业始于21世纪初,2001年我国启动了“863”计划后形成了“三纵三横”的开发布局。2010年,我国新能源汽车的发展基本上紧随世界发展潮流,新能源汽车产业被定为七大战略性新兴产业之一。针对于新能源汽车的产业发展,程振彪(2010)认为我国新能源汽车和国际相比有着自己的优势部分,如新能源公交车。杨萍、易克传(2011)指出总体来说我国新能源汽车产业的发展基础较好,市场前景广阔,但也需要在各个方面加以努力促进新能源汽车产业的发展。目前我国的新能源汽车产业发展中整车企业和关键零部件企

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

碳化硅电子元器件简介

碳化硅材料的优点 ?高电子饱和速度 (2x Si ) ?高击穿电压 (10x Si ) ?Wide band gap (3x Si ) ?大禁带宽度 (3x Si ) ?高熔点 (2x Si ) ?导通电阻低 ?高频特性好 ?耐高压 ?高温特性好 ?可以超高速开关,大大提高产品效率,减小散热设备面积 ?可以实现设备小型化 (如电动汽车充电器) ?可在高压下稳定工作 (高速列车,电力等) ?可在高温环境下稳定使用 (电动汽车等) 材料 器件 应用

碳化硅器件的耐温特性 GPT SIC DIODES VS SILICON FRD( 600V10A ) Company A Company A GPT

SiC SBD 主要产品 政府项目: SiC BJT: 1200V10A SiC MOS: 1200V40m ?/80m? 碳化硅 BJT/MOS 650V200A/1200V450A 碳化硅混合模块 650V: 3A/4A/5A/6A/8A/10A/20A/30A/50A/80A/100A 1200V: 2A/5A/10A/20A/40A/50A 1700V: 10A/30A 3300V: 0.6A/1A/2A/3A/5A/50A 碳化硅肖特基二极管

产品认证 ISO 9001 认证可靠性试验报告Rohs 认证CE 认证

应用市场 PFC EV Car/Train Traction UPS Solar Inverter ? 耐高温 ?使用碳化硅器件使得光伏逆变器输出功率从10kW 提升至40kW ,但是碳化硅器件的高温特性不需要更大体积的散热片系统,从而避免额外增加系统体积和重量。 ? 高开关效率 更高工作频率下使用碳化硅开关器件大大减小每千瓦输出功率所要求的的电容体积。 ? 低传导损耗 ?碳化硅器件可加倍电流输送。同样芯片面积的碳化硅器件即可承担硅器件输出功率的4倍以上。

碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望 摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。 关键词:碳化硅;功率器件;电力系统 1 引言 理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。 然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。 近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了

新能源汽车技术与发展

新能源汽车技术与发展 摘要:在能源危机和全球污染日益严重的背景下, 找寻能够代替石化能源来作为动力成为了必然趋势。本文对新能源汽车及其他汽车的一些特点和分类进行了粗略的总结,通过分析新能源汽车的发展现状以及在发展中所存在的问题,来对新能源汽车的发展前景进行了畅想。 关键词:新能源汽车电力汽车发展 1、新能源汽车的研究背景 起初各个国家开始尝试发展新能源汽车的主要原因是 因为石油价格持续飙升造成能源紧缺,次要原因是石油价格与日俱增,环境污染日趋严重“人、车、自然”之间的矛盾愈加突出,人们不得不把目光重新放在节能与新能源汽车上。继而提出了新能源汽车这个概念,并且尝试电动汽车,太阳能汽车,燃料电池汽车,混合动力汽车、等等。不过经过了几年的探索之后,人们发现这些模式都没法从根本上解决问题,只有纯电动汽车才能够满足代替石油消耗的根本目标。面对全球越来越严峻的能源形势和环保压力,世界上主要的汽车生产国都开始把新能源汽车产业化发展作为保持社会 经济的可持续发展,提高产业竞争力、创造力的重大战略举措。全球碳排放标准的推出强化了主要国家推动纯电动汽车

产业普及的动力的欲望,由于汽车排放的尾气和工业进程所带来的污染给地球的生存环境带来了日益严重的破坏,人类务必在未来三十年内尽可能的将碳排放量的指标降到合理 水平,而减低碳排放量保护生态环境很显然比赚钱来的更为迫切更为紧急。推广和普及纯电动汽车是非常有效手段而且也是降低碳排放量,减缓人与自然矛盾的重点方向。 近年来,曾支撑20世纪人类文明高速发展的以煤炭、 石油、太阳能和天然气为主的能源出现了前所未有的危机,除了因为它们的储藏量不断减少以外,更加严重的是经过科学家仔细科研发现,这些能源在使用后所产生的二氧化碳气体是温室效应的罪魁祸首,作为温室效应气体排放到大气中后,人为的导致了全球变暖,引发了人类对未来社会发展来源的广泛关注和思考。 2、新能源汽车的发展现状 世界上最早的一辆可供人们实用的电动汽车诞生于19 世纪后半叶的1873年的英国,发明者是英国人罗伯特?戴维森。这比卡尔本茨(Karl Benz)和戴姆勒发明以汽油作为动 力的汽车还早了至少10年以上。戴维森发明的电动汽车是 一辆最为搭载货物的货车,只是用于日常生活运送货物需要,使用的技术是运用化学原理将锌、铁、汞合金与硫酸进行反应成为一次电池。然后再从一次电池发展成二次电池,这样看起来视乎稀松平常,并没有什么很高的技术含量,但在当

碳化硅让功率器件更加高效

碳化硅让功率器件更加高效 尽管坠落的陨石非常罕见,但作为外太空的一种天然矿物质(似乎不是非常罕见),碳化硅(SiC)通常被人们看作是一种复合物质,此物质是美国发明家爱德华·古德 里奇·艾奇逊于19世纪90年代发现的。爱德华·古德里奇·艾奇逊在此之前离开了托马斯·爱迪生(白炽灯先驱)的团队,并从事人造金刚石的开发工作。正是在此过 程中,当使用碳弧光灯对铁碗中的粘土和焦炭混合物进行加热时,他注意到了一些闪耀的蓝色晶体。后来他获得了许多专利,并首次将超硬晶体硅与碳的化合物作为产品(如砂纸、研磨和切割工具)中的磨料应用于我们的生活中,且在之后将该物质应用于防弹背心、汽车制动器和火箭发动机、发光二极管(早在1907年,世界 首根发光二极管,您能相信吗)以及功率半导体中。 为什么碳化硅可应用于功率半导体中?主要原因是它的能带隙较宽,这决定了需要多少能量来使电子在SiC材料上的能带之间进行跳变,使其载流。三个电子伏周围的宽带隙意味着热量、辐射和其他外部因素将不会对其性能产生破坏性影响。 因此,碳化硅是在这些特性方面(例如允许运行温度和辐射暴露)优于硅的材料,并且在高电压情况下绝缘击穿电场强度方面也拥有有利的性能;高电子速度意味着可以在较高频率下使用该材料;用于散热的高导热性为其提供了可在功率器件中使用的较大潜能。 或者更简单地说,可保证小型设计中高温下的更高效率和更少损失。因此,为什么不普及碳化硅的应用呢?我们想说,在不久以后——当在一些应用过程中阻碍商业化的晶体缺陷问题被持续解决之后、生产效率改善之后,瑞萨电子公司将在一段时间内生产肖特基势垒二极管。碳化硅功率场效应晶体管(SiCPowerMOSFET)和 绝缘栅双极晶体管(IGBT)已经面临SiC和二氧化硅接口方面的额外挑战,但是,在反复对这些问题进行广泛调查之后,情况日益得到了改善,由于持续开发SiC-MOSFET,已经可以使用瑞萨电子的混合器件,并将容易使用的传统硅MOSFET 与大规模导通电阻改进相结合,使其具有更高效率,同时也增加了约26%的效率,我们的混合IGBT将SiC二极管嵌入到IGBT包内,节省了传统需要的大约50%的PCB空间,前提是还应考虑由于减少的热损失而导致散热器更小。 除了大量SiC元件供应商的晶体生产产量以及工艺效率提高之外,市场因素在引领碳化硅电力技术(尤其是在效率方面)方面也发挥了一定作用。在一些应用中(例如空调和太阳能阵列),对于有效功率变换的需求非常强,并且功率切换效率和逆变电路由立法以及客户态度所支配。 出于这种考虑,瑞萨电子开发了在功率变换及其他此类应用中使用的碳化硅肖特基势垒二极管(SBD),以确保更快转换速度以及更低运行电压。

浅析新能源汽车的现状与发展

浅析新能源汽车的现状与发展 摘要:新能源汽车属于汽车产业的未来发展趋势,也是我国战略性新兴产业之一。随着我国汽车工业提出“弯道超车”的设想,新能源汽车产业也得以迅猛发展,不仅有政府政策的大力扶持,也有更多企业投身到技术研发当中。然而从我国新 能源汽车的发展现状来看,还存在一定的不足,要想更快更好发展,则要准 确把握其发展趋势。 关键词:新能源汽车;现状;发展趋势 1新能源汽车的概念 新能源汽车是指除汽油、柴油发动机之外所有其他能源汽车,包括燃料电池汽车、混合 动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低。按照中华人民共和国国 家发展与改革委员会公告定义,新能源汽车是指采用非常规的车用燃料作为动力来源(或使 用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车的使用,能够降低汽车尾气 对环境的伤害,也能提高对资源的利用程度,虽然现在的发展还存在一定的困难,但是在国 家各方面政策的支持下,新能源汽车一定能发展得更好,为我们的出行带来更大的便利。 2我国新能源汽车发展现状 从目前我国新能源汽车销售情况来看,新能源乘用车的占比最大,同时也是新能源汽车 市场增长的关键点,其中在 2019 年有比亚迪与北 汽两家车企的新能源乘用车销量突破13 万辆,遥遥领先其他汽车企业。然而,在发展 势头较好的现状中也暴露出一定的问题,具体来讲有以下几个方面: 2.1财政补贴有待完善 目前我国新能源汽车政策体系尚有许多细节需要完善,虽然补贴政策已经从最早的聚焦 于购置与使用环节转移到了充电基础设施建设与配套服务等方面,但是在财政补贴、税收、 人才等环节还有待完善。从现状来看,大多数的新能源汽车发展对政策的依赖程度较大,如 果没有利好政策的刺激,车企难有动力去发展新能源汽车,因此也就出现了利用政策漏洞去“骗补”的情况。 2.2基础设施有待健全 新能源汽车的发展离不开充电、换电、电网等基础设施建设,但是当前我国的车桩比仅 有 3.5:1,而面对保有量不断增加的新能源汽车,充电基础设施数量不足的问题将显露无遗,再加上部分地区对电网建设缺乏合理规划,对充电站与换电站盲目建设,从而会造成充电设 施利用效率偏低的情况,一定程度上阻碍了新能源汽车的发展。 2.3技术发展现状 新能源汽车在技术发展方面还存在一些问题,包括动力和电池方面。现在的新能源汽车 主要是混合动力和电力为主,还包括一些其他方面的能源,但是对这些能源的利用程度还没 有达到一个比较高的水平,从而导致新能源汽车的普及还存在一些问题。现有的新能源汽车 在电池方面还存在一些问题,一些比较好的电池技术还不成熟,没办法很好地应用在新能源

第三代半导体面-SiC(碳化硅)器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限

浅谈新能源汽车发展和展望

浅谈新能源汽车的发展和展望 摘要 作为环保节能的新能源汽车,在我国国民生产和生活中所起的作用会越来越大,它的优点十分突出,即节能又环保,这是解决我们当前所面临的人民对物质文明-汽车的需求与汽车使用过程中所带来的空气污染这一矛盾的唯一方法,汽车是现代文明进步的标志,人们生活需要汽车这种交通工具,也是人口众多的中国逐渐实现现代化过程所必备的一个重要产业,所以说我们要大量发展新能源汽车这一世界上很有生命力的朝阳产业,新能源汽车的应用前景是十分巨大而光明的。 关键词:新能源汽车环保低排放经济性 迈入2013年以来,随着我们国家社会发展与进步,中国人越来越关心和人们生活密切相关的环境问题,其中又以空气污染为重中之重。一些新概念新名词大家都耳熟能详,如“PM2.5”“雾霾”等,在我们的生活中出现的概率越来越高。 伴随着中国经济的高速发展,我们可以享受着越来越高的物质生活,家用汽车已经走进千家万户,中国已经连续多年成为世界汽车的生产和消费第一大国,据估计2013年,中国的汽车产量、销量将双双突破2000万台这一历史大关。同时我国的石油进口和消费量也是不断的连年创着新高,而其中50%以上的石油最终都被汽车消耗掉啦,这也就让大家越来越直观的感受到了空气污染,特别是城市空气污染越来越严重,这一事实。而最近被大家天天提到的“雾霾”中的“霾”只的是空气中的微料,它们中的50%左右来源于我们喜爱的汽车尾气的排放。 这也使我们遭遇到了越来越严重的环境污染,事实上,2013年以来中国的众多大城市多次出现连续多天的雾霾围城等重度污染的天气,中国多数的大城市每年的污染天数都在上升,这已经严重影响到我国人民的生活和身体健康,中央电视台的新闻标题都是“十面霾伏”啦不少城市,如北京,哈尔滨等都出现了因

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,I GBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL H D)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极管的V f更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关联差别很大:快速硅二极管具有负的温度系数,150°C下的V f比2 5°C下的V f低。对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不

碳化硅电力电子器件的发展现状分析

碳化硅电力电子器件的发展现状分析在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1. SiC二极管实现产业化 SiC电力电子器件中,SiC二极管最先实现产业化。2001年德国Infineon公司率先推出SiC二极管产品,美国Cree和意法半导体等厂商也紧随其后推出了SiC二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了SiC二极管。很多企业在开发肖特基势垒二极管(SBD)和JBS结构二极管。目前,SiC二极管已经存在600V~1700V电压等级和50A电流等级的产品。 SiC 肖特基二极管能提供近乎理想的动态性能。做为单子器件,它的工作过程中没有电荷储存,因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及其反向恢复损耗比Si超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的开关管的开通损耗也可以得到大幅度减少,因此提高电路的开关频率。另外,它几乎没有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下,其正态导通压降和Si

碳化硅功率器件可靠性综述 (1)

碳化硅功率MOSFET可靠性综述 陈思哲 1.碳化硅功率器件的提出 过去的几十年间,电力电子器件在结构设计,工艺流程以及材料品质等方面取得了长足的进步。然而,与此同时,技术的进步也使得传统硅基器件在许多方面已逼近甚至达到了其材料的本证极限,如电压阻断能力,正向导通压降,器件开关速度等。近二十年里,这样的事实和随之而来的紧迫感使得电力电子技术人员不断寻求一种新的方法,以获得更为优异的器件特性,更高的功率密度以及更低的系统能耗。其中,人们最为期待是使用宽禁带半导体材料代替硅制备功率器件[1]。 相比于其他宽禁带半导体材料(如GaN等),碳化硅(SiC)所具有的一个先天优势是可以形成自然的氧化层(SiO2),这使得碳化硅器件可轻易的继承在硅器件中已广泛使用的金属-氧化物-半导体(MOS)结构以及相关技术。目前,以碳化硅为基底电力电子功率器件研究方兴未艾。相比于传统的硅材料,碳化硅材料具有的优势包括:10倍以上的电场承受能力,3倍左右的禁带宽度,以及大于3倍的导热系数等。极高的电场承受能力使得碳化硅功率器件具有很薄的衬底和较高的掺杂浓度,更大的禁带宽度使得它能够工作在更高的温度下并有强的抗辐射能力。而碳化硅材料的高导热系数(4.9℃/W)则意味着更为迅速的热量耗散,即器件可以承受更高的功率密度和工作温度。不过,虽然使用碳化硅材料制备电力电子功率器件前景广阔,相关器件的可靠性,尤其是长期工作的可靠性一直是人们关注的重点。 本篇文章主要讨论碳化硅器件,特别是碳化硅功率MOSFET的可靠性以及相关问题。功率MOSFET是一种使用金属-氧化物-半导体结构控制器件表面电流通断的一种电力电子器件,具有开关速度快,驱动简单等特点,目前已广泛应用于中低压电力变换装置中。而若改用碳化硅材料,则可使制得的MOSFET器件阻断电压大幅提升,并保持较低的导通阻抗,从而有望取代目前占领中高压市场的IGBT器件。然而,值得注意的是,虽然碳化硅展现了出众的电学和物理学特性,但相关器件在设计和制备中出现的一系列问题是我们无法回避的。尽管大部分可归咎于材料和器件工艺的不成熟,并能够通过长期的研究加以解决,另一些可能是使用这种材料所带来的根本性缺陷。在下文中,作者将针对这些问题展开讨论。

浅谈我国新能源汽车的发展前景

浅谈我国新能源汽车的 发展前景 薛 建 强 二〇一六年五月十一日

浅谈我国新能源汽车的发展前景 经济快速发展助力中国汽车保有量迅速增长 据国家统计局数据,过去10年我国汽车保有量迅速增长,2005年-2014年年均增长高达15.61%,全国民用机动车保有量达2.69亿辆,其中汽车1.46亿辆。汽车数量仅次于美国,居第二位。2014年,我国千人汽车保有量首次突破百,达到106.73辆/千人,但是和发达国家相比差距依然明显,即使和世界平均水平相比也有不小的差距。 汽车保有量过大迫使部分城市启用限购政策 全国有31个城市的汽车数量超过100万辆,前10个城市汽车数量均超过200万辆,北京市汽车超过500万辆,前10个车辆保有量最大的城市中,前8名城市(北京、重庆、成都、深圳、上海、广州、天津、杭州)中,除了重庆和成都以外全部开始汽车限购。 汽车对石油的消耗越来越高 汽车用油占石油消费量的1/3到1/2,占汽油生产量的近9成。汽车保有量迅速攀升,对石油消耗造成严重负担,我国石油供给增长量主要依靠进口,对外依存度早已突破了50%,预计2020年将达到65%-70%,将会严重影响我国的石油战略安全。目前全球石油能源严重紧缺、节能呼声日益高涨,节能环保已经成为全球共识。 汽车尾气污染引发严重的社会问题 汽车是污染物总量的主要贡献者,环保部门报告显示,2013年,全国机动车排放污染物4570.9万吨。此外,对北京、上海PM2.5的来源分析,机动车造成污染都占据25%。去年我国新能源汽车产量飞速增长,新能源发展前景明朗 据工信部统计,2015年,新能源乘用车销量达到207382辆,增势迅猛。国家规划到2020年累积产销量将达到500万辆规模,我国新能源汽车发展前景明朗。我国新能源发展得益于政策红利(2001年新能源汽车研究项目被列入国家“十五”期间的863重大科技课

宽禁带功率MOSFET半导体器件的研究进展

宽禁带功率MOSFET半导体器件的研究进展半个世纪以来,功率半导体器件得到长足发展,极大地促进了电力电子技术的进步,而功率半导体器件的发展主要基于整个微电子领域的基石——硅材料。19世纪80年代以来,硅材料本身的物理特性对硅基功率器件性能的限制被认识得越来越清晰。 实现低导通电阻的方法是提高材料的临界击穿电场,也就是选择宽禁带的半导体材料。根据更符合实际应用,以及综合考虑功率器件的导通损耗、开关损耗和芯片面积等因素的估算,碳化硅、氮化镓和金刚石功率器件大大降低了损耗和器件面积,新型宽禁带半导体材料将引发功率器件的巨大进步。 同时,以碳化硅、氮化镓和金刚石为代表的宽禁带半导体材料具有较大的电子饱和速度,可以应用于射频器件领域。碳化硅和金刚石具有较高的热导率,适用于对需要耗散较大功率并且半导体芯片热阻是系统热阻一个重要组成部分的大功率应用领域。 基于材料的优越性能,宽禁带半导体功率器件受到广泛关注和深入研究。由于其器件性能的优势基本来源于材料本身,所以宽禁带半导体材料的研究是新型功率器件研究首先要面临的挑战。 2.碳化硅功率器件 碳化硅SiC、氮化镓GaN和金刚石是典型的宽禁带半导体材料。基于碳化硅材料的功率器件经过了长时间研究,已经具有较高的成熟度和可靠性。2004年,Cree公司成功研发微管密度低于10cm-2的高质量3英寸4H-SiC材料,并投放市场。2007年,该公司又推出了4英寸零微管密度的4H-SiC材料,可用于制作大尺寸的高功率器件。 目前Cree公司、II-VI公司、Dow Corning公司和Nippon Steel已经批量生产4英寸碳化硅晶圆。2010年业界发布了6英寸的碳化硅晶圆。150mm的晶圆毫无疑问会降低碳化硅器件制造成本,并且为4H-SiC功率器件的发展提供坚实基础。 2.1 碳化硅功率二极管

浅谈新能源汽车发展现状与前景

0引言 当前中国汽车工业发展面临三大挑战,一是汽车产业 的转型挑战;二是汽车排气污染治理的挑战;三是汽车保 有量快速上升带来的能源安全和低碳发展的挑战[1]。随着地球环境恶化、自然资源不断减少,节能减排成为大势所 趋。目前,世界各国都在大力发展新能源汽车,许多国家已 经出台了停止生产销售传统能源汽车的政策。我国亦于2018年下半年着手制订传统能源汽车退出市场的时间表,新能源汽车发展已被列入国家战略性新兴产业,中央和地 方各级政府对新能源汽车的发展保持高度关注,陆续出台 了一系列扶持培育政策。低碳、环保的新能源汽车逐渐取 代以传统汽车将是大势所趋。 1新能源汽车动力系统的现状 当下我国新能源电动汽车的主要储能器件为锂电池与超级电容,但是它们能量密度较小,每次使用之前需要提前充电。锂电池纯电动汽车续航里程短,无法满足汽车一天的行驶需求,而以超级电容储能的纯电动汽车不仅续航里程短,而且仅适用于在线快充的固定公交线路。当下以纯氢燃料电池为能量源的新能源汽车,虽然在续航里程、燃料加注时间等性能上与传统燃油车相差不多,但是纯氢燃料电池的制造和运营成本仍较高,而且氢气的制取、运输与存储等技术问题也没有完全解决,这使得纯氢燃料电池汽车的发展备受制约。 分析当下纯氢燃料电池的现状,可以利用甲醇重整制氢技术将氢气的制取环节与燃料电池的运行相结合,如果可以解决氢燃料的制取和运输方面的问题,也将对纯氢燃料电池的推广产生良好影响。甲醇和氢气一样具有燃烧产物无公害的特点,而且甲醇来源比汽油和氢气 气动噪音指的是由于叶轮和流体影响而产生的噪音,即气流引起的振幅与频率的杂乱无章,再加上一定的脉动声压。所以气动噪音主要出现在扫路车抽吸风机的进风口以及出风口两处,通过气流的反复运动,与风道内壁产生碰撞,发出类似碰壁的声音,这种问题属于扫路车风道走向的设计问题,必须要引起足够的重视。 3扫路车抽吸风机降噪措施分析 分析扫路车风机的主要结构,可以明确扫路车抽吸风机可以使用两种方法进行降噪处理。一种是利用气动学原理来优化风机结构,一种是对噪音进行反向处理设计。而对噪音的反向处理设计又可以细分为两种:一种是有源去噪方式,一种是无源去噪方式。无源去噪方式的应用主要是对风机结构的优化,例如优化蜗石的曲率半径等,而有源去噪方式的应用主要是通过存储、吸收以及抑制等方式来实现对噪音的处理。 3.1结构降噪 在结构方面的降噪处理,指的是针对机械噪音以及振动噪音的处理,即在电动机和风机的连接处,对轴承连接部分的机械零件进行紧固处理、对储存箱的机械零件进行紧固处理,并对风机结构进行优化。但是在新能源扫路车的具体运行过程中,不同机械零件的摩擦会出现一定的磨损,磨损也会导致风机气流流动的噪音。而且固体砂砾也会在进入风机内壁后,与风机内壁发生碰撞,使噪音加重。所以必须要对风机结构进行优化设计。对此没建议采取以下四种措施。第一,将耐磨材料喷涂到出现磨损的部位,然 后再进行淬火处理以及渗碳处理。第二,使用圆形风机机壳,并在蜗舌处进行共振器的安装,也可以实现共振降噪。第三,减少空心叶片的使用,避免导通叶的使用数量过多。第四,调整叶片的进出口角度。 3.2设计降噪 在设计方面的降噪处理,指的是针对气动噪音的处理,即利用气动学原理来实现低频噪音的规避。因为风机噪音的产生包含旋转噪音和涡流噪音两方面。所以可以通过以下三种设计来进行降噪处理。第一,对叶轮进行改进;第二对空气场内的涡旋进行抑制;第三对脉动冲击进行削弱处理。 4结语 综上所述,环卫机抽吸风机降噪措施的实施可以充分发挥环卫车的作用,在避免噪音污染伤害环卫工人身体健康的基础上加强对城市环境的治理。根据大量的实践经验可知,在设计风机结构的时候,可以重点优化风机电机结构的部件,采取相应的减振措施;同时重点优化抽吸风道设计,实现多方面的降噪处理,最大限度的减低噪音污染。同时我们还要在实际工作中加强环卫机抽吸风机噪音的研究,促进节能环保的新能源环卫车的发展。 参考文献: [1]张振海.探究环卫车抽吸风机降噪措施[J].时代汽车,2017(11):104-106. [2]胡世健,敬文博,范金永.汽车空调鼓风机降噪优化[J].汽车实用技术,2015(10):17-18,21. 浅谈新能源汽车发展现状与前景 张子康 (中国石油大学(北京),北京100000) 摘要:当下我国新能源汽车基本是油电复合型汽车和纯电动汽车。油电混合车不能实现“零排放”,而纯电动车也存在充电设施不完善和续航里程短的问题。本文在新能源汽车现有问题的解决以及产业链完善方面提出建议,通过分析新能源汽车当下发展并状况对前景作出展望和分析。 关键词:新能源汽车;现状;建议;发展前景

相关文档
最新文档