2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.1集合与常用逻辑用语课件文

合集下载

2018年高考数学(理)二轮复习 精品课件:专题一 集合与常用逻辑用语、不等式 第1讲 集合与常用逻辑用语

2018年高考数学(理)二轮复习 精品课件:专题一 集合与常用逻辑用语、不等式  第1讲 集合与常用逻辑用语
的否定为“∀x∈M,綈p(x)”.
例3
x 2 ,x<0, (1)已知函数f(x)= 给出下列两个命题: 2 m-x ,x≥0,
1 命题p:若m= ,则f(f(-1))=0; 4
命题q:∃m∈(-∞,0),方程f(x)=0有解. 那么,下列命题为真命题的是 A.p∧q C.p∧(綈q) √ B.(綈p)∧q D.(綈p)∧(綈q)
f(x)≥2
2 · x+m=2 2-m,若 f(x)的值不小于 4, 2
x
1
则 2 2-m≥4,解得 m≤-2,故选 A.思维升华 Nhomakorabea析 答案
跟踪演练2 (1)有关命题的说法正确的是
A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
2 B.命题“∃x0∈R,使得2x2 0-1<0”的否定是:“∀x∈R,2x -1<0”
x≥0},则A∩B等于 A.∅ C.{x|1≤x<2} √
解析 由已知可得A={x|0<x<2},B={y|y≥1}⇒A∩B={x|1≤x<2},故选C.
解析
答案
(2)(2017届潍坊临朐县月考 )已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“理想
解析
答案
2 x (2)(2017 届四川雅安中学月考 )“m ≤ʃ 2 (4 - 3 x )d x ” 是 “ 函数 f ( x ) = 2 + 1 x+m的值不小于
1
2
4”的

A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
2 3 2 解析 m≤ʃ 2 (4 - 3 x )d x = (4 x - x )|1=-3, 1

2018年高考数学二轮复习 专题一 集合与常用逻辑用语、不等式 第2讲 不等式课件 理

2018年高考数学二轮复习 专题一 集合与常用逻辑用语、不等式 第2讲 不等式课件 理

∴a4+a4bb4+1≥4a2abb2+1=4ab+a1b≥2 4ab·a1b=4,
a2=2b2, 当且仅当4ab=a1b,
a2= 22,

b2=
2 4
a4+4b4+1 故 ab 的最小值为 4.
时取得等号.
1234
解析 答案
押题预测
1.已知 x,y 为正实数,且 x+y+1x+1y=5,则 x+y 的最大值是
例 1 (1)(2017 届湖南衡阳八中月考)设 f(x)=2loegx-31x,2-x<12,,x≥2, 则不
等式 f(x)>2 的解集为
A.(1,2)∪(3,+∞)
B.( 10,+∞)
√C.(1,2)∪( 10,+∞)
D.(1,2)
解析 令2ex-1>2(x<2),解得1<x<2.
A.3
7 B.2
√C.4
9 D.2
押题依据 基本不等式在历年高考中的地位都很重要,已成为高考的重点
和热点,用基本不等式求函数(和式或积式)的最值问题,有ቤተ መጻሕፍቲ ባይዱ与解析几何、
数列等知识相结合.
1234
押题依据 解析 答案
2.在 R 上定义运算:ac db=ad-bc,若不等式ax-+11 a-x 2≥1 对任意实 数 x 恒成立,则实数 a 的最大值为
_{_x_|1__<_x_≤__5_}_.
解析 原不等式化为-x-x+15≥0,即xx- -51≤0,
等价于xx--15≠0x-,1≤0, 解得 1<x≤5, 即不等式5x--1x≥0 的解集是{x|1<x≤5}.
解析 答案
(2)已知函数f(x)=ln|x|,则f(x)>1的解集为__(-__∞__,__-__e_)_∪__(_e,__+__∞__)__. 解析 函数 f(x)的解析式为 f(x)=llnnx-,xx,>0x. <0, 当x>0时,解f(x)=ln x>1,得x>e,即x的取值范围是(e,+∞); 当x<0时,解f(x)=ln(-x)>1, 得x<-e,即x的取值范围是(-∞,-e). 综上可得f(x)>1的解集为(-∞,-e)∪(e,+∞).

2018年高考数学二轮复习 回扣1 集合与常用逻辑用语课件

2018年高考数学二轮复习 回扣1 集合与常用逻辑用语课件

5. 区分命题的否定与否命题,已知命题为 “ 若 p ,则 q” ,则该命题的否 定为“若p,则綈q”,其否命题为“若綈p,则綈q”. 6.在对全称命题和特称(存在性)命题进行否定时,不要忽视对量词的改变. 7.对于充分、必要条件问题,首先要弄清谁是条件,谁是结论. 8.判断命题的真假要先明确命题的构成 .由命题的真假求某个参数的取值 范围,还可以从集合的角度来思考,将问题转化为集合间的运算.
那么
A.“p且q”为真命题 B.“p或q”为真命题
C.“綈p”为真命题 √
题p为假命题.
D.“綈q”为假命题
解析 不等式(x-3)· x2-4x+3 ≥0 的解集为 {x|x≥3 或 x= 1} ,所以命 若函数y=kx2-kx-8的值恒小于0,则-32<k≤0,
所以命题q也是假命题,所以“綈p”为真命题.
∴M∩N={-1,0,1},故选D.
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
解析
答案
2. 已知集合 A = {x|x2 - 4x + 3 < 0} , B = {y|y = 2x - 1 , x≥0} ,则 A∩B 等 于 A.∅ √ C. A 解析 ={x|1<x<3}=A. B.[0,1)∩(3,+∞) B x<3} ,集合B={y|y≥0} ,那么A∩B 由题意,得集合 A={xD. |1 <
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∴M∩N={1,3,5,7},故选D.
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
解析

2018届高三理科数学(新课标)二轮复习课件:专题一+集合、逻辑用语、不等式、向量、复数、算法、推理+1.3

2018届高三理科数学(新课标)二轮复习课件:专题一+集合、逻辑用语、不等式、向量、复数、算法、推理+1.3

2 +������ ������������ -������������ ������������ +λ(������������ − ������������ )=������������ 3 点,若 ������������ =m������������ + ������������ ,则实数 m 的值是 . 9 ������ 1 =(1-λ)������������ + ������������ . 3 (2)已知 A ,B,C 为圆 O 上的三点,若������������ = (������������ + ������������ ),则������������ 与������������ 2 ������ 2 2 因为 = ,所以 λ= , . 的夹角为
题型
命题规律 .对复数考查的 重点内容有:复 数的基本概 念、复数的几 何意义、共轭 复数、复数的 四则运算,考查 的热点是复数 的乘除运算.
复习策略 平面向量 的垂直与 夹角问题; 复数的基 本概念及 复数的乘 除运算;复 数的几何 意义.
选择题 填空题
-4-
命题热点一
命题热点二
命题热点三
命题热点四
解析
1 4 3 3
4
4
关闭
答案
-7-
命题热点一
命题热点二
命题热点三
命题热点四
命题热点五
平面向量数量积的运算 【思考】 求平面向量数量积有哪些方法? 例2(1)若向量a,b满足|a+b|= 10,|a-b|= 6 ,则a· b=( A.1 B.2 C.3 D.5
)
关闭
∵|a+b|2-|a-b|2=4a· b=4,∴a· b=1.

2018年高考数学二轮复习教案: 第一部分 专题一 第一讲 集合、 常用逻辑用语 精品

2018年高考数学二轮复习教案: 第一部分 专题一 第一讲 集合、 常用逻辑用语 精品

专题一 集合、常用逻辑用语、不等式、函数与导数第一讲 集合、常用逻辑用语[考情分析]1.本部分作为高考必考内容,仍会以选择题的形式在前几题的位置考查,难度较低;2.命题的热点依然会考查集合的运算,集合的基本关系的相关命题要注意;3.常用逻辑用语考查的频率不多,且命题点分散,其中充要条件的判断及含有量词的命题的否定交汇综合命题.[真题自检]1.(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <32 B .A ∩B =∅C .A ∪B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32D .A ∪B =R解析:因为A ={x |x <2},B ={x |3-2x >0}={x |x <32},所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}.故选A. 答案:A2.(2017·高考全国卷Ⅲ)已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3D .4解析:A ,B 两集合中有两个公共元素2,4,故选B. 答案:B3.(2016·高考全国卷Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )A.{1,3} B.{3,5}C.{5,7} D.{1,7}解析:因为集合A与集合B的公共元素有3,5,由题意A∩B={3,5},故选B.答案:B4.(2016·高考全国卷Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}解析:∵集合A={0,2,4,6,8,10},B={4,8},∴∁A B={0,2,6,10}.答案:C5.(2015·高考全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:将集合A与B在数轴上画出(如图).由图可知A∪B=(-1,3).答案:A集合[方法结论]1.子集个数:含有n个元素的集合,其子集的个数为2n;真子集的个数为(2n-1)(除集合本身).2.给出集合之间的关系,求解参数,要善于运用集合的性质进行灵活转化:如A∪B=A⇔B⊆A 和A∩B=A⇔A⊆B.3.高考中通常结合简单的绝对值不等式、一元一次不等式和分式不等式等考查,常用数形结合——数轴法.其步骤是:(1)化简集合;(2)将集合在数轴上表示出来;(3)进行集合运算求范围.[题组突破]1.(2017·洛阳模拟)设集合P={x|x<1},Q={x|x2<1},则( )A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:依题意得Q={x|-1<x<1},因此Q⊆P,选B.答案:B2.(2017·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A}.若A∩B≠∅,则a的值为( )A.1 B.2C.3 D.1或2解析:当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅.故a的值为2.选B.答案:B3.设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}解析:依题意得A∪B={1,2,3,4},选A.答案:A4.(2017·武汉模拟)设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=( )A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:A={0,1,2,3,4,5},B={x|2<x<5},∴A-B={0,1,2,5}.选D.答案:D[误区警示]求解集合问题时易忽视的三个问题1.集合中元素的形式,元素是数还是有序数对,是函数的定义域还是函数的值域等;2.进行集合的基本运算时要注意对应不等式端点值的处理,尤其是求解集合补集的运算,一定要搞清端点值的取舍,不能遗漏;3.求解集合的补集运算时,要先求出条件中的集合,然后求其补集,不要直接转化条件而导致出错.命题及复合命题真假的判断[方法结论]判断含有逻辑联结词命题的真假的方法方法一(直接法):①确定这个命题的结构及组成这个命题的每个简单命题;②判断每个简单命题的真假;③根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.[题组突破]1.命题“若a,b都是偶数,则a+b是偶数”的否命题是( )A.若a,b都是偶数,则a+b不是偶数B.若a,b不都是偶数,则a+b不是偶数C.若a,b都不是偶数,则a+b不是偶数D.若a,b不都是偶数,则a+b是偶数解析:因为“都是”的否定是“不都是”,所以“若a,b都是偶数,则a+b是偶数”的否命题是“若a ,b 不都是偶数,则a +b 不是偶数”.故选B. 答案:B2.(2017·湖北百所重点学校联考)已知命题p :∀x ∈(0,+∞),log 4x <log 8x ,命题q :∃x ∈R ,使得tan x =1-3x,则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .p ∧(綈q )D .(綈p )∧q解析:对于命题p :当x =1时,log 4x =log 8x =0,所以命题p 是假命题;对于命题q :当x =0时,tan x =1-3x=0,所以命题q 是真命题.由于綈p 是真命题,所以(綈p )∧q 是真命题,故选D. 答案:D [误区警示]已知p ∨q 为真,p ∧q 为假.判断p ,q 真假时要注意分类思想应用,它有两种可能:p 真q 假,p 假q 真.全称命题与特称命题[方法结论]1.全称命题和特称命题的否定归纳∀x ∈M ,p (x )⇔互否∃x 0∈M ,綈p (x 0).简记:改量词,否结论. 2.“或”“且”联结词的否定形式“p 或q ”的否定形式是“非p 且非q ”,“p 且q ”的否定形式是“非p 或非q ”.[题组突破]1.(2017·沈阳模拟)命题p :“∀x ∈N *,(12)x ≤12”的否定为( )A .∀x ∈N *,(12)x >12B .∀x ∉N *,(12)x >12C .∃x ∉N *,(12)x >12D .∃x ∈N *,(12)x >12解析:命题p 的否定是把“∀”改成“∃”,再把“(12)x ≤12”改为“(12)x >12”即可,故选D.答案:D2.若命题“∃x ∈R ,使得sin x cos x >m ”是真命题,则m 的值可以是( ) A .-13B .1 C.32D.23解析:∵sin x cos x =12sin 2x ∈⎣⎢⎡⎦⎥⎤-12,12,∴m <12.故选A. 答案:A [误区警示]全称命题与特称命题的否定时易犯的错误是一些词语否定不当,注意以下常见的一些词语及否定形式:充要条件的判断充分必要条件的判断:考生多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角、向量、数列、解析几何等,有一定的综合性.[典例] (1)(2017·惠州模拟)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.答案:C(2)(2017·贵阳模拟)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A. 答案:A(3)(2017·洛阳模拟)已知x 1,x 2∈R ,则“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:由x 1>1且x 2>1可得x 1+x 2>2且x 1x 2>1,即“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的充分条件;反过来,由x 1+x 2>2且x 1x 2>1不能推出x 1>1且x 2>1,如取x 1=4,x 2=12,此时x 1+x 2>2且x 1x 2>1,但x 2=12<1,因此“x 1>1且x 2>1”不是“x 1+x 2>2且x 1x 2>1”的必要条件.故“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的充分不必要条件,选A. 答案:A[类题通法]1.充分必要条件的判断常用到等价转化思想,常见的有:(1)綈q 是綈p 的充分不必要条件⇔p 是q 的充分不必要条件;(2)綈q 是綈p 的必要不充分条件⇔p 是q 的必要不充分条件;(3)綈q 是綈p 的充分必要条件⇔p 是q 的充分必要条件;(4)綈q 是綈p 的既不充分条件也不必要条件⇔p 是q 的既不充分也不必要条件.2.对于与函数性质、平面向量的加减法运算等交汇考查充分必要条件的判断问题,多用到数形结合思想.3.在判断充分必要条件时,由p ⇒q 或q ⇒p 也可取特殊值(特殊点,特殊函数)等,快速作出判断.4.判断充分必要条件题常利用“以小推大”,即小范围推得大范围,便可轻松获解.[演练冲关]1.若p 是綈q 的充分不必要条件,则綈p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:∵p 是綈q 的充分不必要条件,∴綈q 是p 的必要不充分条件.而“若綈p ,则q ”是“若綈q ,则p ”的逆否命题,∴綈p 是q 的必要不充分条件,故选B. 答案:B2.(2016·高考北京卷)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案:D3.(2016·高考浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f x +b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A. 答案:A4.(2017·永州模拟)“m =0”是“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”的 ( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:若m =0,则圆(x -1)2+(y -1)2=2的圆心(1,1)到直线x +y =0的距离为2,等于半径,此时直线与圆相切,即“m =0”⇒“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”;若直线x +y -m =0与圆(x -1)2+(y -1)2=2相切,则圆心到直线的距离为|1+1-m |2=2,解得m =0或m =4,即“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”⇒/ “m =0”.所以“m =0”是“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”的充分不必要条件.故选B. 答案:B5.(2017·衡水中学调研)在△ABC 中,“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cosB ”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个).解析:由角A ,B ,C 成等差数列,得B =π3.由sin C =(3cos A +sin A )cos B ,得sin(A +B )=(3cos A +sin A )cos B ,化简得cos A sin(B -π3)=0,所以A =π2或B =π3,所以在△ABC中,“角A ,B ,C 成等差数列”⇒“sin C =(3cos A +sin A )cos B ”,但“sin C =(3cos A +sin A )cos B ”⇒/ “角A ,B ,C 成等差数列”,所以“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cos B ”的充分不必要条件. 答案:充分不必要。

2018届高考数学二轮复习送分专题(一)集合与常用逻辑用语课件(全国通用)

2018届高考数学二轮复习送分专题(一)集合与常用逻辑用语课件(全国通用)
3 A.-∞,2 3 C.1,2 3 B.1,2 3 D.2,3
(
)
解析: A={x|x2-4x+3≤0}={x|1≤x≤3}, B={x|ln(3-2x)<0}
x = {x|0<3 - 2x<1} = A∩B=x
答案:C
4. (2018 届高三· 西安八校联考)已知集合 =1-x2},则 M∩N= A.(-∞,2] C.[0,1] B.(0,1]
M=x
2 , ≥ 1 N={y|y x
(
)
D.(0,2] x- 2 2 解析:由x≥1 得 x ≤0,解得 0<x≤2,则 M={x|0<x≤2};
解析:依题意得,A={x|0<x<1},则∁RA={x|x≤0 或 x≥1}, 又 B={x|x>0},故(∁RA)∩B={x|x≥1}=[1,+∞),故选 A.
答案:A
1 6.(2017· 合肥质检)已知集合 A=[1,+∞),B= x∈R a≤ 2 x≤2a-1 ,若 A∩B≠∅,则实数 a 的取值范围是( A.[1,+∞)
2.设 a∈R,则“a=4”是“直线 l1:ax+8y-8=0 与直线 l2:2x+ay-a=0 平行”的 A.充分不必要条件 B.必要不充分条件 ( )
C.充要条件 D.既不充分也不必要条件 解析:若 a=4,则直线 l1:4x+8y-8=0,即 x+2y-2=0,
直线 l2:2x+4y-4=0,即 x+2y-2=0.此时两直线重合.反 过来, 若直线 l1 与
答案:B
3.(2017· 全国卷Ⅱ)设集合 A={1,2,4},B={x|x2-4x+m=0}. 若 A∩B={1},则 B= A.{1,-3} B.{1,0} C.{1,3} D.{1,5} ( )

(新课标)2018届高考数学二轮复习 专题一 集合、常用逻辑用语、不等式 1.1 集合与常用逻辑用语课件 理

(新课标)2018届高考数学二轮复习 专题一 集合、常用逻辑用语、不等式 1.1 集合与常用逻辑用语课件 理
专题一 集合、常用逻辑用语、 不等式
第1讲 集合与常用逻辑用语
-3-
热点考题诠释 高考方向解读
1.(2017浙江,1)已知集合P={x|-1<x<1},Q={x|0<x<2},则 P∪Q=( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2)
取集合P,Q的所有元素,得P∪Q={x|-1<x<2}.故选A. A
.
(2)答案不唯一,如令 a=-1,b=-2,c=-3,则 a>b>c,而 a+b=-3=c,能够关闭
说(1明)C“设(2a)-,b1,c-2是,-3任(答意案实不数唯,若一a) >b>c,则 a+b>c”是假命题.
解析 答案
命题热点一 命题热点二 命题热点三
-13-
规律方法1.命题真假的判定方法: (1)一般命题p的真假由涉及的相关知识进行辨别; (2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假, 它的逆命题跟否命题同真假. 2.常见词语的否定形式有:
关闭
D
解析 答案
热点考题诠释 高考方向解读
4.(2017
天津,理
4)设
θ∈R,则“
������-
π 12
< 1π2”是“sin θ<12”的(
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
-6-
)

������-
π 12
< 1π2时,0<θ<π6,∴0<sin θ<12.
|A5|=11.∵2n<3m<2n+1,∴23������<m<2������3+1.∵对于任意 n∈N*,2n 不能被

2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.1集合与常用逻辑用语课件

2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.1集合与常用逻辑用语课件
则 c2>0,则有 a>b,所以 ac2>bc2⇒a>b,
p∧ q2>bc2”的必要不充分条件 B.p∧(������ q) 故“a>bA. ”是 “ac ,故命题 q 也是假命题,选 C.
(2)当 x=0 时,x2-x+1=1≥0,故命题 p 为真命题. 取 a=1,b=-2,则 a <b ,但 a>b,故命题 q 为假命题,所以 p∧(������ q)为真命题. (1)CC.( (2)B ������ p)∧q D.(������ p)∧(������ q)
3
(2)设集合 A={0,2,4,6,8,10},B={4,8},则∁AB= A.{4,8} B.{0,2,6} (1)A (2)C C.{0,2,6,10} D.{0,2,4,6,8,10}
(
解析
关闭 )
答案
-4热点1 热点2 热点3 热点4
题后反思解答集合间的关系与运算问题的基本思路:先正确理解 各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采 用不同的方法对集合进行化简求解.常用技巧有: (1)若给定的集合是不等式的解集,用数轴求解; (2)若给定的集合是点集,用图象法求解; (3)若给定的集合是抽象集合,常用Venn图求解.
解析
2 2
关闭
答案
-10热点1 热点2 热点3 热点4
全称命题与特称命题
【思考】 如何判断全称命题与特称命题的真假?全(特)称命
由 20=30 知,p 为假命题.令 h(x)=x3-1+x2.∵h(0)=-1<0,h(1)=1>0,
3
题的否定与命题的否定有什么区别?
关闭
x x 3 2 例 3 已知命题 p : ∀ x ∈ R ,2 < 3 ; 命题 3 q :∃ 2 2x0∈R,������0 =1-������0 ,则下列 ∴x -1+x =0 在区间(0,1)内有解.∴∃x0∈R,������ =1-������ ,即命题 q 为真命题.

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题一 集合、常用逻辑用语、向量、复数、算

2018高考数学理二轮专题复习课件-第二篇 专题满分突破 专题一 集合、常用逻辑用语、向量、复数、算
A.1 B. 2 C.2 D.2 2
解析:由已知得函数 f(x)=ax2+2x+b 的图象与 x 轴只有一
个公共点,且 a>0,所以 22-4ab=0,即 ab=1,所以aa2-+bb2=
a-ab-2+b 2ab=a
-b

2 a-b
≥2
2(当且仅当
a=
2+ 2
6,b=
6- 2
2时等号成立),故选 D.
(2)由不等式组可得可行域为由点 A(2,0)、B(2,3)、C(4,4)构成 的三角形内部及其边界,当 k≥2 时,可得当 x=4,y=4 时,z
有最大值,得 4k-4=13,解得 k=147;当 0<k<2 时,可得当 x =2,y=0 时,z 有最大值,得 2k=13,不合题意;当 k≤0 时, 可得当 x=2,y=0 时,z 有最大值,得 2k=13,不合题意.故 k =147,选 C.
答案:D
2.(热点一)若 0<b<a<1,则下列结论不成立的是( )
11 A.a<b C.ab>ba
B. a> b D.logba>logab
解析:对于 A,函数 y=1x在(0,+∞)上单调递减,所以当 0<b<a<1 时,1a<1b恒成立;对于 B,函数 y= x在(0,+∞)上单
调递增,所以当 0<b<a<1 时, a> b恒成立;对于 C,函数 y= ax(0<a<1)单调递减,函数 y=xa(0<a<1)单调递增,所以当 0<b<a<1
第三讲 不等式、线性规划
1高考巡航 1.利用不等式性质比较大小,利用基本不等式求最值及线性 规划问题是高考的热点; 2.一元二次不等式常与函数、数列结合考查一元二次不等 式的解法和参数取值范围; 3.利用不等式解决实际问题.

2018届高考数学第2轮复习第一部分专题一集合、常用逻辑用语、平面向量、复数1.1.1集合、常用逻辑用语课件

2018届高考数学第2轮复习第一部分专题一集合、常用逻辑用语、平面向量、复数1.1.1集合、常用逻辑用语课件

优解:设 A={x|x≠1},B={x|x2-3x+2≠0}. 由 x2-3x+2≠0,解得 x≠1,且 x≠2,故 B={x|x≠1,且 x≠2}. 显然 B A,所以“x≠1”是“x2-3x+2≠0”的必要不充分条 件.故(1)错误. (2)记“a>0,b>0”为 p,“ba+ab≥2”为 q. 由基本不等式可得 q 的充要条件是“ab>0”,即“ab>0”. 显然 p 是“ab>0”的充分不必要条件, 所以 p 是 q 的充分不必要条件.故(2)正确.
U(A∩B)=( A )
A.{1,2,3}
B.{1,2,4}
C.{1,3,4}
D.{2,3,4}
解析:通解:选 A.本题主要考查集合的基本运算. 因为 U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故 选 A.
优解:∵A∩B={4}.∴4∉∁U(A∩B),排除 B、C、D 只能选 A.
p3:∀(x,y)∈D,x+2y≤3; p4:∃(x,y)∈D,x+2y≤-1;
其中的真命题是( C )
A.p2,p3 C.p1,p2
B.p1,p4 D.p1,p3
解析:通解:选 C.作出不等式组表示的可行域,如图(阴影部 分).
由xx+ -y2=y=1, 4, 得交点 A(2,-1). 目标函数的斜率 k=-12>-1,
2.全称命题与特称命题真假的判定 (1)全称命题:要判定一个全称命题是真命题,必须对限定集 合 M 中的每一个元素 x 验证 p(x)成立,要判定其为假命题时,只 需举出一个反例即可; (2)特称命题:要判定一个特称命题为真命题,只要在限定集 合 M 中至少能找到一个元素 x0,使得 p(x0)成立即可;否则,这一 特称命题就是假命题.

2018年高考数学二轮复习考前专题一集合与常用逻辑用语、不等式第1讲集合与常用逻辑用语讲学案理

2018年高考数学二轮复习考前专题一集合与常用逻辑用语、不等式第1讲集合与常用逻辑用语讲学案理

第1讲 集合与常用逻辑用语1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.热点一 集合的关系及运算 1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.例1 (1)(2017届湖南师大附中月考)已知集合A ={x |log 2x <1},B ={y |y =2x,x ≥0},则A ∩B 等于( ) A .∅B .{x |1<x <2}C .{x |1≤x <2}D .{x |1<x ≤2} 答案 C解析 由已知可得A ={x |0<x <2},B ={y |y ≥1}⇒A ∩B ={x |1≤x <2},故选C.(2)(2017届潍坊临朐县月考)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”.给出下列4个集合:①M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪y =1x ;②M ={(x ,y )|y =sin x };③M ={(x ,y )|y =e x -2};④M ={(x ,y )|y =lg x }.其中所有“理想集合”的序号是( ) A .①③ B .②③ C .②④ D .③④ 答案 B解析 由题意设A (x 1,y 1),B (x 2,y 2),又由x 1x 2+y 1y 2=0可知,OA →⊥OB →.①项,y =1x是以x ,y 轴为渐近线的双曲线,渐近线的夹角为90°,所以当点A ,B 在同一支上时,∠AOB <90°,当点A ,B 不在同一支上时,∠AOB >90°,不存在OA →⊥OB →,故不正确;②项,通过对其图象的分析发现,对于任意的点A 都能找到对应的点B ,使得OA →⊥OB →成立,故正确;③项,由图象可得直角始终存在,故正确;④项,由图象可知,点(1,0)在曲线上,不存在另外一个点使得OA →⊥OB →成立,故错误.综合②③正确,故选B.思维升华 (1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.跟踪演练1 (1)(2017届云南曲靖一中月考)已知集合A ={x ∈N |x 2-5x +4≤0},B ={x |x 2-4=0},下列结论成立的是( ) A .B ⊆A B .A ∪B =A C .A ∩B =A D .A ∩B ={2}(2)用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ),若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值构成的集合是S ,则C (S )等于( ) A. 4 B. 3 C. 2 D. 1 答案 (1)D (2)B解析 (1)A ={x ∈N |1≤x ≤4},B ={x |x =±2}⇒A ∩B ={2},故选D.(2)由A ={1,2},得C (A )=2, 由A *B =1,得C (B )=1或C (B )=3. 由(x 2+ax )(x 2+ax +2)=0, 得x 2+ax =0或x 2+ax +2=0.当C (B )=1时,方程(x 2+ax )(x 2+ax +2)=0只有实根x =0,这时a =0;当C (B )=3时,必有a ≠0,这时x 2+ax =0有两个不相等的实根x 1=0,x 2=-a ,方程x2+ax +2=0必有两个相等的实根,且异于x 1=0,x 2=-a .由Δ=a 2-8=0,得a =±22,可验证均满足题意,故S ={-22,0,22},故C (S )=3. 热点二 四种命题与充要条件1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.例2 (1)(2017届抚州七校联考)A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.在下列四个命题中,为p的逆否命题的是( )A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分答案 C解析根据原命题与它的逆否命题之间的关系知,命题p:若及格分低于70分,则A,B,C 都没有及格,p的逆否命题是:若A,B,C至少有1人及格,则及格分不低于70分.故选C.(2)(2017届四川雅安中学月考)“m≤ʃ21(4-3x2)d x”是“函数f(x)=2x+12x+m的值不小于4”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 A解析m≤ʃ21(4-3x2)d x=(4x-x3)|21=-3,f(x)≥22x·12x+m=22-m,若f(x)的值不小于4,则22-m≥4,解得m≤-2,故选A.思维升华充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p ⇒q且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.跟踪演练2 (1)有关命题的说法正确的是( )A.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”B.命题“∃x0∈R,使得2x20-1<0”的否定是:“∀x∈R,2x2-1<0”C.“若x+y=0,则x,y互为相反数”的逆命题为真命题D .命题“若cos x =cos y ,则x =y ”的逆否命题为真命题(2)(2017届湖南长沙一中月考)在△ABC 中,“A <B <C ”是“cos 2A >cos 2B >cos 2C ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 (1)C (2)C解析 (1) 对于A 选项,命题“若xy =0,则x =0”的否命题为“若xy ≠0,则x ≠0”,否命题是条件和结论的双重否定,故A 错误;对于B 选项,命题“∃x 0∈R ,使2x 20-1<0”的否定是“∀x ∈R,2x 2-1≥0”,故B 错误;选项C 的逆命题为真命题,故C 正确;选项D 的原命题是假命题,则逆否命题与之对应,也是假命题,故D 错误,故选C. (2)由正弦定理,可得在△ABC 中,若A <B <C , 则sin A <sin B <sin C ,则sin 2A <sin 2B <sin 2C , 由倍角公式可得1-cos 2A 2<1-cos 2B 2<1-cos 2C 2,可得cos 2A >cos 2B >cos 2C ,反之也成立.所以在△ABC 中,“A <B <C ”是“cos 2A >cos 2B >cos 2C ”的充要条件,故选C. 热点三 逻辑联结词、量词1.命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.2.命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ).3.“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.例3 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :若m =14,则f (f (-1))=0;命题q :∃m ∈(-∞,0),方程f (x )=0有解. 那么,下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )(2)(2017届安徽百校论坛联考)已知命题p :∀x ∈(1,+∞),log 3(x +2)-22x >0,则下列叙述正确的是( )A .綈p :∀x ∈(1,+∞),log 3(x +2)-22x ≤0B .綈p :∃x 0∈(1,+∞),log 3(x +2)-22x <0C .綈p :∃x 0∈(-∞,1],log 3(x +2)-22x ≤0D .綈p 是假命题 答案 (1)C (2)D解析 (1) 若m =14,则f (f (-1))=f⎝ ⎛⎭⎪⎫12=0,故命题p 为真命题.当x <0时,f (x )=2x >0;当x ≥0时,若m <0,f (x )=m -x 2<0.故∀m ∈(-∞,0),方程f (x )=0无解,从而命题q 为假命题,所以p ∧(綈q )为真命题,故选C.(2)綈p :∃x ∈(1,+∞),log 3(x +2)-22x ≤0,又函数f (x )=log 3(x +2)-22x 在(1,+∞)上是增函数,所以f (x )>f (1)=0,故p 是真命题,即綈p 是假命题.故选D.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立.(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.跟踪演练3 (1)(2017届黑吉两省八校期中)已知:命题p :若函数f (x )=x 2+|x -a |是偶函数,则a =0;命题q :∀m ∈(0,+∞),关于x 的方程mx 2-2x +1=0有解.在①p ∨q ;②p ∧q ;③(綈p )∧q ;④(綈p )∨(綈q )中,为真命题的是( ) A .②③B .②④C .③④D .①④(2)(2017届徐州丰县民族中学调研)若命题“∃x 0∈R ,使得x 20+(1-a )x 0+1<0”是假命题,则实数a 的取值范围为_________. 答案 (1)D (2)[-1,3]解析 (1) 因为f (-x )=f (x ),所以1+|a +1|=1+|a -1|,解得a =0,故命题p 为真命题;又因为当Δ=4-4m ≥0,即m ≤1时,方程有解,所以q 为假命题. 所以p ∨q 与(綈p )∨(綈q )为真命题,故选D. (2)由题设可得(1-a )2-4≤0,解得-1≤a ≤3.真题体验1.(2017·北京改编)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =_________. 答案 {x |-2<x <-1}解析 ∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.2.(2017·天津改编)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)答案 充分不必要 解析 ∵⎪⎪⎪⎪⎪⎪θ-π12<π12, ∴-π12<θ-π12<π12,即0<θ<π6.显然当0<θ<π6时,sin θ<12成立.但当sin θ<12时,由周期函数的性质知,0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分不必要条件,即“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分不必要条件. 3.(2017·山东改编)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是______.(填序号)①p ∧q ; ②p ∧(綈q ); ③(綈p )∧q ; ④(綈p )∧(綈q ). 答案 ②解析 ∵一元二次方程x 2-x +1=0的判别式Δ=(-1)2-4×1×1<0,∴x 2-x +1>0恒成立, ∴p 为真命题,綈p 为假命题.∵当a =-1,b =-2时,(-1)2<(-2)2,但-1>-2, ∴q 为假命题,綈q 为真命题.根据真值表可知,p ∧(綈q )为真命题,p ∧q ,(綈p )∧q ,(綈p )∧(綈q )为假命题. 4.(2016·浙江改编)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是____________. 答案 ∃x 0∈R ,∀n ∈N *,使得n <x 2解析 原命题是全称命题,条件为∀x ∈R ,结论为∃n ∈N *,使得n ≥x 2,其否定形式为特称命题(存在性命题),条件中改量词,并否定结论. 押题预测1.若集合A ={x |1≤2x≤8},B ={x |log 2(x 2-x )>1},则A ∩B 等于( )A .(2,3]B .[2,3]C .(-∞,0)∪(0,2]D .(-∞,-1)∪[0,3]押题依据 集合的运算在历年高考中的地位都很重要,已成为送分必考试题.集合的运算常与不等式(特别是一元一次不等式、一元二次不等式)的求解、函数的定义域、函数的值域等知识相交汇. 答案 A解析 A =[0,3].又log 2(x 2-x )>log 22,即x 2-x >2, 解得x <-1或x >2,所以B =(-∞,-1)∪(2,+∞). 所以A ∩B =(2,3].2.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞)C .(2,+∞) D .(-∞,-1]押题依据 充分、必要条件的判定一直是高考考查的重点,该类问题必须以其他知识为载体,综合考查数学概念. 答案 A 解析 由3x +1<1,可得3x +1-1=-x +2x +1<0, 所以x <-1或x >2. 因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 3.给出下列四个命题,其中正确的命题有( )①函数y =sin 2x +cos 2x 在x ∈⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤0,π8;②a 1,a 2,b 1,b 2均为非零实数,集合A ={x |a 1x +b 1>0},B ={x |a 2x +b 2>0},则“a 1a 2=b 1b 2”是“A =B ”的必要不充分条件;③若p ∨q 为真命题,则p ∧q 也为真命题;④命题“∃x 0∈R ,x 20+x 0+1<0”的否定为“∀x ∈R ,x 2+x +1<0”. A .0个 B .1个 C .2个 D .3个押题依据 常用逻辑用语中命题真假的判断、充要条件、全称量词、存在量词及逻辑联结词是数学学习的重要工具,也是高考考查的热点问题. 答案 C解析 ①y =sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4,由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,因此函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,π8;②充分性不成立,如a 1=1,b 1=1,a 2=-1,b 2=-1,满足a 1a 2=b 1b 2,但A ={x |x +1>0}=(-1,+∞),B ={x |-x -1>0}=(-∞,-1),A ≠B ; 必要性成立:A =B ⇒a 1a 2>0⇒-b 1a 1=-b 2a 2⇒a 1a 2=b 1b 2;③当p ∨q 为真命题时,p ,q 不一定全真,因此p ∧q 不一定为真命题; ④命题“∃x 0∈R ,x 20+x 0+1<0”的否定应为“∀x ∈R ,x 2+x +1≥0”. 所以①②为真,故选C.4.若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ,则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的一个拓扑的集合τ是______.(填序号)押题依据以新定义为背景,考查元素与集合的关系,是近几年高考的热点,解题时可从集合的性质(元素的性质、运算性质)作为突破口.答案②④解析①τ={∅,{a},{c},{a,b,c}},但是{a}∪{c}={a,c}∉τ,所以①错;②④都满足集合X上的一个拓扑集合τ的三个条件.所以②④正确;③{a,b}∪{a,c}={a,b,c}∉τ,所以③错.A组专题通关1.(2017·全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B等于( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5}答案 C解析∵A∩B={1},∴1∈B,∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.2.设集合A={y|y=sin x,x∈R},B={x|y=lg(-x)},则A∩B等于( )A.(0,1] B.[-1,0)C.[-1,0] D.(-∞,1]答案 B解析因为A=[-1,1],B=(-∞,0),所以A∩B=[-1,0).故选B.3.(2017届河南息县第一高级中学检测)已知集合A={x|x2-4<0},B={x|-1<x≤5},则A ∩(∁R B)等于( )A.(-2,0) B.(-2,-1)C.(-2,-1] D.(-2,2)答案 C解析 A ={x |x 2-4<0}={x |-2<x <2}, 因为B ={x |-1<x ≤5}, 所以∁R B ={x |x ≤-1或x >5}, 所以A ∩(∁R B )=(-2,-1],故选C.4.(2017·全国Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 答案 B解析 集合A 表示以原点O 为圆心,1为半径的圆上的所有点的集合, 集合B 表示直线y =x 上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以A ∩B 中元素的个数为2. 故选B.5.(2017·山东)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( ) A .p ∧q B .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q ) 答案 B解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0. ∴命题p 为真命题,∴綈p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4, 此时a 2<b 2,∴命题q 为假命题,∴綈q 为真命题.∴p ∧q 为假命题,p ∧(綈q )为真命题,(綈p )∧q 为假命题,(綈p )∧(綈q )为假命题. 故选B.6.(2017·全国Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z -2; p 4:若复数z ∈R ,则z -∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ).对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题;对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R , 则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R , 所以p 2为假命题;对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇏a 1=a 2,b 1=-b 2,所以p 3为假命题;对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B. 7.(2017届安徽淮北一中模拟)“a 2=1”是“函数f (x )=ln(1+ax )-ln(1+x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件 答案 B解析 当a =1时,f (x )=0(x >-1)为非奇非偶函数, 当a =-1时,f (x )=ln(1-x )-ln(1+x )为奇函数, 故为必要不充分条件. 8.下列四种说法中:①命题“∃x 0∈R ,x 20-x 0>0”的否定是“∀x ∈R ,x 2-x <0”; ②命题“p 且q 为真”是“p 或q 为真”的必要不充分条件; ③已知幂函数f (x )=x a 的图象经过点⎝ ⎛⎭⎪⎫2,22,则f (4)的值等于12; ④已知向量a =(3,-4),b =(2,1),则向量a 在向量b 方向上的投影是25.其中说法错误的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 ①项,命题“∃x 0∈R ,x 20-x 0>0”的否定是“∀x ∈R ,x 2-x ≤0”,故①项错误;②项,充分性:“p 且q 为真”,则p 真,q 真,故p 或q 为真,充分性成立;必要性:“p 或q 为真”,则p 与q 其中一个命题可以为假命题,故命题“p 且q 为真”不一定成立,故必要性不成立,故“p 且q 为真”是“p 或q 为真”的充分不必要条件,故②项错误;③项,幂函数f (x )=x a 的图象经过点⎝ ⎛⎭⎪⎫2,22,则f (2)=2a =22⇒a =-12,则f (4)=12,故③项正确;④项,向量a =(3,-4),b =(2,1),则a 在b 方向上的投影为|a |cos θ=a·b |b |=25=255,故④项错误.故选C.9.(2017届汕头期末)下列判断错误的是( )A .命题“∃x 0>1,x 20-1>0”的否定是“∀x >1,x 2-1≤0”B .“x =2”是“x 2-x -2=0”的充分不必要条件C .若“p ∧q ”为假命题,则p ,q 均为假命题D .命题“若a ·b =0,则a =0或b =0”的否命题为“若a ·b ≠0,则a ≠0且b ≠0” 答案 C解析 A 中,由特称命题(存在性命题)的否定为全称命题知A 正确;B 中,由x 2-x -2=0,解得x =2或x =-1,所以“x =2”是“x 2-x -2=0”的充分不必要条件,故B 正确;C 中,“p ∧q ”为假命题,则p ,q 中可能一真一假,也可能p ,q 均为假命题,故C 错;D 中,由否命题的概念知,D 正确,故选C.10.设全集U =R ,函数f (x )=lg(|x +1|+a -1)(a <1)的定义域为A ,集合B ={x |cos πx =1},若(∁U A )∩B 恰好有两个元素,则a 的取值的集合为__________.答案 {a |-2<a ≤0}解析 由|x +1|+a -1>0,可得x >-a 或x <a -2,故∁U A =[a -2,-a ].而B ={x |x =2k ,k ∈Z },注意到[a -2,-a ]关于x =-1对称,所以由题设可得⎩⎪⎨⎪⎧ -a ≥0,-a <2,即-2<a ≤0.11.已知m ∈R ,命题p :对任意实数x ,不等式x 2-2x -1≥m 2-3m 恒成立,若綈p 为真命题,则m 的取值范围是__________.答案 {m |m <1或m >2}解析 对任意x ∈R ,不等式x 2-2x -1≥m 2-3m 恒成立,所以[(x -1)2-2]min ≥m 2-3m ,即m 2-3m ≤-2,解得1≤m ≤2.因为綈p 为真命题,所以m <1或m >2.12.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是______________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 0≤a ≤12解析 p :|4x -3|≤1,∴12≤x ≤1;q :x 2-(2a +1)x +a (a +1)≤0,∴a ≤x ≤a +1. ∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴⎩⎪⎨⎪⎧ a ≤12,a +1≥1,∴0≤a ≤12. B 组 能力提高13.(2017届重庆市巴蜀中学期中)已知集合A ={x |x >2},集合B ={x |x >3},以下命题正确的个数是( )①∃x 0∈A ,x 0∉B ;②∃x 0∈B ,x 0∉A ;③∀x ∈A 都有x ∈B ;④∀x ∈B 都有x ∈A .A .4B .3C .2D .1答案 C解析 因为A ={x |x >2},B ={x |x >3},所以B ⊆A ,即B 是A 的子集,①④正确,②③错误,故选C.14.(2017届湖南师大附中月考)如果对于任意实数x ,[x ]表示不超过x 的最大整数,例如[3.27]=3,[0.6]=0,那么“[x ]=[y ]”是“|x -y |<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由[x ]的定义,当[x ]=[y ]时,则|x -y |<1,若|x -y |<1时,比如x =3.5,y =2.9,此时[x ]=3,[y ]=2,[x ]≠[y ],所以“[x ]=[y ]”是“|x -y |<1”的充分不必要条件.15.(2017届河南百校联盟质监)命题“∃x 0∈R ,a sin x 0+cos x 0≥2”为假命题,则实数a 的取值范围是_________.答案 (-3,3)解析 由题命题“∀x ∈R ,a sin x +cos x <2为真命题, 则a 2+1<2,∴-3<a <3,即实数a 的取值范围是(-3,3).16.(2017届福建连城县二中期中)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,a b∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是________.答案 ①④解析 当a =b 时,a -b =0,a b =1∈P ,故可知①正确;当a =1,b =2,12∉Z 不满足条件,故可知②不正确;对③,当M 中多一个元素i 则会出现1+i ∉M ,所以它也不是一个数域,故可知③不正确;根据数域的性质易得数域有无限多个元素,必为无限集,故可知④正确.。

【高考数学】2018届高三数学(文):专题一 集合、常用逻辑用语、平面向量、附属、算法、推理与证明1.1

【高考数学】2018届高三数学(文):专题一 集合、常用逻辑用语、平面向量、附属、算法、推理与证明1.1

(2)已知集合 A={x|x2-2 017x+2 016<0},B={x|log2x<m},若 A⊆B,则整数 m 的最小值是( A.12 C.10 ) B.11 D.1
解析:
(1)∵A∩B={1},∴1∈B.
∴1-4+m=0,即 m=3. ∴B={x|x2-4x+3=0}={1,3}.故选 C. (2)由 x2-2 017x+2 016<0,解得 1<x<2 016, 故 A={x|1<x<2 016}. 由 log2x<m,解得 0<x<2m,故 B={x|0<x<2m}. 由 A⊆B,可得 2m≥2 016,解得 m≥log22 016. 因为 210=1 024,211=2 048, 所以整数 m 的最小值为 11. 答案: (1)C (2)B
a>-b, 解得 a<b
a<-b, 或 a>b,
故命题 q 为假,从而綈 q 为真. ∴p∧綈 q 为真.故选 B. 答案: (1)C (2)B
1.含逻辑联结词的命题真假的等价关系 (1)p∨q 真⇔p,q 至少一个真⇔(綈 p)∧(綈 q)假. (2)p∨q 假⇔p,q 均假⇔(綈 p)∧(綈 q)真. (3)p∧q 真⇔p,q 均真⇔(綈 p)∨(綈 q)假. (4)p∧q 假⇔p,q 至少一个假⇔(綈 p)∨(綈 q)真. (5)綈 p 真⇔p 假;綈 p 假⇔p 真. 2. [警示] “否命题”是对原命题“若 p, 则 q”既否定其条件, 又否定其结论; 而“命 题 p 的否定”即:非 p,只是否定命题 p 的结论.
解析:
1 幂函数 f(x)=x2的值域为[0,+∞),且在定义域上单调递增,故 A
高考·题型突破

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1集合与常用

高考数学大二轮复习专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明1.1集合与常用

1.1 集合与常用逻辑用语【课时作业】1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={}x |-1≤x ≤2. 故选B. 答案: B2.(2018·天津卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2018·安徽皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B. 答案: B6.(2018·洛阳市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},则A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).故选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},则图中阴影部分所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影部分所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .命题“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.答案: C9.(2018·陕西省质量检测(一))已知命题p :对任意的x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·辽宁省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.答案: D11.(2018·山东泰安3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :____________________. 解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 017+b2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。

天津市2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.2不等式线性规划课件文

天津市2018年高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.2不等式线性规划课件文


������ + 3������ ������ = 0,
=
3,可得
A(3,0),此时
zmax=3,故选
பைடு நூலகம்
D.
-28-
������ ≤ 2������, 3.(2017 天津河西高三质量调查)若变量 x,y 满足约束条件 ������ + ������ ≤ 1,
-8-
热点1 热点2 热点3 热点4
求线性目标函数的最值
【思考】 求线性目标函数最值的一般方法是什么?
3������ + 2������-6 ≤ 0,
例 2(2017 全国Ⅲ,文 5)设 x,y 满足约束条件 ������ ≥ 0,
������ ≥ 0,
则 z=x-y 的取值范围是( )
A.[-3,0]
(1)求最值,常见形如截距式 z=ax+by,斜率式 z=������������--������������,距离式 z=(x-a)2+(y-b)2. (2)求区域面积. (3)由最优解或可行域确定参数的值或取值范围.
-24-
1.若 0<t<1,则关于 x 的不等式 x2-
������
+
1 ������
(2)C
(3)[-3,1]
(4)
������
������ > 1 或������
<
1 2
解析 (1)由 x2+2x-3≥0,得(x+3)(x-1)≥0,解得 x≤-3 或 x≥1,故选 C.
1-������ > 0, (2)由已知可得 ������ > 0, 解得 0<x<12,故选 C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档