解一元二次方程—配方法教学设计及教学反思
配方法求解一元二次方程教学反思
《配方法求解一元二次方程(1)》的教学反思
在一元二次方程相关知识的学习过程中,学生已经经历了用计算器估算(夹逼法)一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;
在复习了开方的基础上,简单的52=x 一元二次方程的求解很容易解决.学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm ,根据题意列出了一元二次方程48)3(;64)3(22=+=+x x 然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。
在第52=x 问的基础上,学生很快解决了5322=+x 的问题。
但学生在解决015122=-+x x 问题时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成n m x =+2)( )0(≥n 的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。
经过前一环节对配方法的特点有了初步的认识,通过例题的处理,进一步完善对配方法基本思路,是对配方法的学习由探求迈向实际应用的第一步。
最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,体现学生学习的主动性。
最后引导学生学习归纳配方法的一般步骤:移项—配方—开方—解(注意解的合理性)。
初中数学_用配方法解一元二次方程教学设计学情分析教材分析课后反思
《用配方法解一元二次方程》教学设计一、教学目标:1.知识与技能:(1)理解配方法的意义,会用配方法解数字系数的一元二次方程;(2)在学习的过程,体会配方法的运用,进一步发展符号感,提高代数运算能力。
2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法。
3.情感态度与价值观:学生在独立思考中感受探究的兴趣,并体验数学的价值,促进形成学好数学的自信心。
二、教学重、难点:教学重点:配方并运用配方法解二次项系数不为1的一元二次方程。
教学难点:发现并理解配方的方法。
三、教学准备:多媒体、PPT课件四、教学过程:(一):复习导入x2 + 6x + 8 = 0(二):新课讲授:任务一:1自主学习:观察下面两个一元二次方程,总结它们之间的联系和区别:①x2 + 6x + 8 = 0 ; ②3x2 +8x -3 = 0.联系: 区别:2 .想一想怎么来解方程? 3x 2 + 8x -3 = 0. (只写出第一步)跟练: 将下列一元二次方程转换成x 2+px+q=0的形式.(1) -5x 2-2x+4=0 (2) 0.5x 2+6x -3=0 (3)31x 2 +9x -3=0(4)6x 2-7x+1=04 解方程: 3x 2 + 8x -3 = 0.跟踪练习(独立完成)(1) 2x 2+3x -2=0 (2) 2x 2-4x+2=0 (3) x 2+2x+3=0(4) (2x -1)(x+3)=45 小组合作: (1)讨论解决解一元二次方程中遇到的问题.(2)总结出利用配方法解一般的一元二次方程的步骤.任务二: 一元二次方程的应用(数学来源于生活,又服务于生活)1.自主练习: 一个小球从地面上以15m/s 的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系:h=15t - 5t 2. 小球何时能达到10m 高?2.小组合作:小组成员互对答案,解决疑难.(三):归纳总结:1.强调易错点:(1)二次项系数要化为1;(2)在二次项系数化为1时,常数项也要除以二次项系数;(3)配方时,两边同时加上一次项系数一半的平方.2.微视频总结.3.转化、降次的思想.(四): 当堂检测:A 组:解方程 (1)3x 2-4x+1=0 (2) 2x 2+3=7xB组:课本p61 问题解决2题.(五):作业布置:必做数学同步p63-p64 1-5题,10题. 选做p65 11题作业分为必做题和选做题,这样既保证“面向全体学生”, 又兼顾“提优”和“辅差”, 有利于全面提高作业质量, 有利于全体学生达到练习的目的。
初中数学_用配方法求解一元二次方程教学设计学情分析教材分析课后反思
《用配方法解一元二次方程》教学设计一、教材内容分析配方法是以直接开方法为基础的对一元二次方程解法的探究,是一个由特殊到一般的思考和发现过程。
首先,对继续学习后面的公式法有着指导和铺垫的作用,同时也是学习二次函数等知识的基础,所以它既是第三学段数与代数的重点内容,更是今后继续学习的重要基础。
其次,在探索配方法以及用配方法解一元二次方程的过程中所体现转化的数学思想方法,以及归纳的数学思维方法,不仅有助于学生掌握知识、技能和方法,而且体会学习数学和研究数学的一般规律,提升数学的思维能力。
二、学情分析在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题。
但生活中有关方程的模型并不都是线性的,另一种方程——一元二次方程在现实生活中具有同意广泛的应用。
本章研究一元二次方程的有关概念、解法和应用等。
本节课是在学生已经学习了本章的第一课——认识一元二次方程的基础上进行的。
并且七年级已经学过的一元一次方程的解法、完全平方公式,八年级学习的平方根的定义都为本节课的学习打下基础。
三、教学目标确定知识与技能目标:1. 能够根据平方根的意义解形如2()(0)x m n n +=≥ 的方程。
2. 理解配方法,会用配方法解简单的数字系数的一元二次方程。
过程与方法目标:经历配方法解一元二次方程的过程,进一步体会转化的数学思想方法以及归纳的思维方法。
情感、态度与价值观目标:培养学生主动探究的精神与积极参与的意识,增强学生学好数学的自信,体会用数学解决问题的乐趣。
四、教学重点、难点确定1. 教学重点:理解配方法,会用配方法解简单的数字系数的一元二次方程。
2. 教学难点:准确地对一元二次方程进行配方,关键是掌握完全平方式的结构特征。
五、教学方法分析本节课堂教学的过程着重关注了两个方面的情况:一是关注学生对配方法的自主探究与合作交流的过程,发展学生思维能力。
配方法解一元二次方程教学反思
配方法解一元二次方程教学反思嘿,咱来聊聊配方法解一元二次方程这事儿哈!教学生用配方法解一元二次方程,那可真是一场有趣又充满挑战的旅程呢!一开始啊,我发现学生们对配方法的概念理解起来有点费劲。
就好像要让他们一下子掌握一门新的武功秘籍似的,有点摸不着头脑。
我就在想,这可咋整呢?我得想个招儿让他们明白呀!然后我就各种举例,把方程比作一个个小怪兽,而配方法呢,就是打败小怪兽的绝招。
比如说,x²+6x+5=0 这个方程,就像是一只张牙舞爪的小怪兽,那我们怎么打败它呢?就得通过配方法把它变得乖乖的。
在讲解过程中,我特别注重步骤的拆解。
这就好比是搭积木,一块一块地来,不能着急。
先把常数项移到等号右边,嘿,这就像把小怪兽的一条腿给卸下来了。
然后在等号两边加上一次项系数一半的平方,哇塞,这就像是给小怪兽穿上了一件神奇的铠甲,让它变得好对付多了。
我还发现啊,学生们在配方的时候容易出错。
这就像走路会摔跤一样,很正常嘛。
但是咱不能让他们老摔跤呀,得扶着他们走一段。
我就反复强调关键的地方,让他们多练习,就像运动员训练一样,熟能生巧嘛。
有时候看着学生们迷茫的眼神,我就在心里问自己:我讲清楚了吗?他们真的懂了吗?这可不行,我得更有耐心,更细致才行呀!经过一段时间的教学,我发现学生们慢慢掌握了配方法,就像学会了一门新技能一样,那脸上的笑容可灿烂了。
这时候我就特别有成就感,就像自己种的花儿终于开了一样。
反思整个教学过程,我觉得我应该在一开始就更多地用生活中的例子来引入配方法,让学生们更容易理解。
而且对于容易出错的地方,要提前给他们打好预防针,多提醒几次。
总之呢,教学生配方法解一元二次方程,就像是带着他们在数学的花园里漫步,有时候会遇到荆棘,但只要我们一起努力,就能看到美丽的花朵。
希望我的学生们能在数学的世界里越走越远,越飞越高!这就是我对配方法解一元二次方程教学的反思啦,你们觉得怎么样呢?。
2.2.1用配方法解一元二次方程(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.培养学生的数学运算素养,让学生熟练掌握配方法的运算步骤,提高运算速度和准确性。
4.培养学生的数据分析素养,通过分析一元二次方程的解的特点,使学生能够对数据进行整理、分析和判断,为解决更复杂的数学问题奠定基础。
三、教学难点与重点
1.教学重点
-配方法解一元二次方程的基本步骤:将一元二次方程x²+bx+c=0转化为(x+m)²=n的形式,进而求解出x的值。其中,关键是确定m和n的值。
3.重点难点解析:在讲授过程中,我会特别强调配方法的步骤和适用条件这两个重点。对于难点部分,我会通过具体的方程实例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示配方法的基本原理。
b.结合具体方程,详细讲解核心公式的推导过程,并让学生跟随推导过程进行练习。
c.通过多个实例,让学生练习将实际问题抽象为一元二次方程,并运用配方法求解。
2.教学难点
-配方法中m和n的确定:如何将一元二次方程x²+bx+c=0转化为(x+m)²=n的形式,使学生能够准确地确定m和n的值。
-运算过程中的符号处理:在配方法过程中,符号的正确处理对最终求解结果至关重要,学生容易在此类细节上出错。
配方法解一元二次方程的教学反思
配方法解一元二次方程的教学反思
1、创造性地使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。
学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。
教学中将难点放在探索如何配方上,重点放在配方法的应用上。
本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。
培养了学生分析问题,解决问题的能力。
2、相信学生并为学生提供充分展示自己的机会
课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。
3、注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。
教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。
《一元二次方程解法》教学反思(通用6篇)
《一元二次方程解法》教学反思《一元二次方程解法》教学反思(通用6篇)身为一名刚到岗的人民教师,课堂教学是重要的工作之一,写教学反思可以快速提升我们的教学能力,那么你有了解过教学反思吗?下面是小编为大家整理的《一元二次方程解法》教学反思(通用6篇),欢迎阅读与收藏。
《一元二次方程解法》教学反思1(1)一元二次方程是研究现实世界数量关系和变化规律的重要模型,引课时从生活中常见的“梯子问题”出发,根据学生应用勾股定理时所列方程的不同,引导学生对所列方程的解法展开讨论,进而获得开平方法。
引课时力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式,注重数学知识的形成与应用过程。
(2)如何配方是本节课的教学重点与难点,在进行这一块内容的教学时,教师提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,从方程的配方讲到代数式的配方与证明,呈现形式丰富多彩,教学内容的编排螺旋式上升。
这既提高了学生的学习兴趣,又加深了对所学知识的理解。
《一元二次方程解法》教学反思2一、配方法解方程教学反思本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。
在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。
在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。
当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。
《解一元二次方程——配方法》教学反思
《解一元二次方程——配方法》的教学反思
《解一元二次方程——配方法》是九年制义务教育新课程标准九年级第二十一章第二节第二课时的内容。
它是进一步学习直接开平方法,由一般形式转化成直接开平方的形式,让学生在学习过程中体会数学的转化思想,为今后学习高次方程、函数奠定基础。
首先复习直接开平方法,逐步解决三道从易到难开平方法解方程,有的需要将未知项的系数化为1,有的需要将多项式作为一个整体进行开方,有的则需要对等号左边进行因式分解写成完全平方的形式。
对于普通的一元二次方程来说,学生还未见识过其具体解法,究其具体思路仍是降次,化为一元一次方程来解决。
我讲解配方法前,学生先熟悉完全平方公式的转换关系,待学生自主探究做好配方的准备后,我引导学生认识理解解一元二次方程的另一个解法——配方法。
为了达到熟练的效果,教师精讲两道例题,学生精练两道习题,最后归纳总结出配方法的一般步骤的口诀。
遗憾的是,配方法的原理依然是直接开平方法,有些学生不太明白。
另外,因式分解是拖式运算或者一种转换,而一元二次方程则是方程,可以使用等式的性质等。
配方法解一元二次方程教学反思
配方法解一元二次方程教学反思引言解一元二次方程是高中数学中的重要内容。
配方法是一种有效且简洁的方法来解一元二次方程。
然而,在教学过程中,我们常常会遇到一些挑战,学生可能会感到困惑或者难以理解配方法的本质。
本文主要对配方法解一元二次方程的教学进行反思,总结经验教训,并提出改进措施。
难点分析在进行教学反思之前,我们首先需要分析一下学生在学习配方法时可能遇到的难点。
难点一:理解配方法的本质配方法的本质是通过添加一个适当的常数,将二次项转化为一个完全平方。
这样的操作可以使得方程更易于解。
然而,对于一些学生来说,他们可能很难理解为什么这样的操作有效,以及为什么可以将二次项转化为完全平方。
难点二:灵活运用配方法一旦学生理解了配方法的本质,他们还需要具备将此方法灵活应用于不同类型的一元二次方程的能力。
有时候,一些学生可能会遇到复杂的方程,并无法正确地选择和应用适当的配方法。
教学反思在教学过程中,我们尝试了一些方法来克服以上所述的难点,并提高学生的学习效果。
下面是一些我们所采用的教学策略,并提出了相应的改进措施。
策略一:图形展示配方法是一种代数方法,因此很多学生可能觉得它很抽象而难以理解。
为了帮助学生更好地理解配方法的本质,我们将图形展示引入到教学中。
通过绘制一元二次方程的图像,学生可以直观地观察到方程中的各项所代表的意义。
例如,他们可以观察到完全平方如何转化为一个较大的正方形。
改进措施:在教学过程中,我们可以使用更多的图形展示来加深学生对配方法的理解。
例如,我们可以绘制一元二次方程的图像并演示如何将二次项转化为完全平方。
这样可以帮助学生更清晰地把握配方法的本质。
策略二:实例演示为了帮助学生掌握配方法的应用技巧,我们在课堂上进行了大量的实例演示。
我们选择了一些常见的一元二次方程,引导学生一步一步地运用配方法解题。
通过反复练习,学生可以逐渐提高他们灵活运用配方法的能力。
改进措施:我们可以在课后布置更多的练习题,让学生独立运用配方法解题。
用配方法解一元二次方程
《用配方法解一元二次方程》教学设计与反思一、教材分析1.对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。
初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。
我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。
解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。
2.本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。
二、学情分析1.知识掌握上,九年级学生学习了平方根的意义。
即如果如果x2=a,那么x=± 。
;他们还学习了完全平方式x2+2xy+y2=(x+y)2.这对配方法解一元二次方程奠定了基础。
2.学生学习本节的障碍。
学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析。
3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。
当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。
而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法解一元二次方程奠定了基础。
三、教学目标:知识与能力:1. 会用开平法解形如 (x+m) 2=n(n ≥ 0)的方程;理解配方法,会用配方法解简单的数字系数的一元二次方程。
2.经历到方程解实际问题的过程,体会一元二次是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力。
九年级数学用配方法解一元二次方程教案
九年级数学用配方法解一元二次方程教案教学目标:(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程。
讲练结合法。
课型:新授课教学过程:回顾与复习1:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
用配方法解一元二次方程的方法的助手:平方根的意义:如果x2=a,那么x=±a。
完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2基本思想是:如果能转化成前2个方程的形式,则方程即可解决。
你想到了什么办法?例2 解方程:3 x2+8 x-3=0解:3 x2+8 x-3=0x 2+38x -1=0 1、化1:把二次项系数化为1;x 2+38x=1 2.移项:把常数项移到方程的右边; x 2+38x +(34)2=1+(34)2 3 . 配方:方程两边都加上一次项系数 绝对值一半的平方; (x +34)2=(35)2 4. 变形:方程左边分解因式,t(s)小球何时能达到10m 高?解:根据题意,得:15t -5t 2=10即t 2-3t=-2t 2-3t +(23)2=-2+(23)2(t -23)2=41即t -23=21 或t -23=-21所以t 1=2, t 2=1答:在1s 时,小球达到10m ;至最高点后下落,在2s 时其高度又为10m 。
b )27、 定解:写出原方程的解。
用一元二次方程这个模型来解答或解决生活中的一些问题(即列一元二次方程解应用题)。
独立作业:P53习题2·4 1,2板书设计:课题:配方法1.回顾与复习平方根的意义:如果x2=a,那么x=±a。
完全平方式:式子a2±2ab+b2叫完全平方式,且a2±2ab+b2=(a±b)2。
《配方法解一元二次方程》教学设计
《配方法解一元二次方程》教学设计《配方法解一元二次方程》教学设计教学目标:知识与技能1.会用开平方法解形如(x+m)2=n(n≧0)一元二次方程。
2.了解用配方法解一元二次方程的基本步骤,会用配方法解简单的数字系数的一元二次方程过程与方法1.理解配方法;知道”配方”是一种常用的数学方法。
2.经历观察、实践、交流等活动,体会转化的数学思想,进一步发展计算能力和有条理表达的能力。
情感态度与价值观通过用配方法解一元二次方程的过程,培养学生学习数学的积极性和自信心,增强他们的数学应用意识和能力.教学重点:运用配方法解简单的数字系数的一元二次方程。
教学难点:理解配方法的基本步骤。
教学方法:启发,探究式等方法。
教学过程:一、复习回顾,引入课题1.什么是完全平方式?完全平方公式有哪几个?2.什么是一元二次方程?一元二次方程的一般形式是什么?学生回答:略3.咱们会不会解一元二次方程呢?从最简单的方法入手例如解方程:(1)x2=5; (2) (x+6)2=5; (3) x2+12x+36=5引导学生利用初二所学的平方根的知识解第一个方程,再观察第二个方程的特征对照第一个方程解出第二个方程,对于第三个方程要引导学生观察与第二个方程的关系,引导学生探索之间的内在联系。
二、讲授新课、推导新知对于上节课梯子的问题:x2+12x-15=0如何解,怎样求出它的精确值呢?我们可以利用完全平方将x2+12x-15=0转化为(x+6)2=51两边开平方,得x+6=±√51,∴x1=-6+√51,x2=-6+√51(不合实际)因此,该解法的基本思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≧0时,两边开平方便可求出它的根。
1,配方:填上适当的数,使下列等式成立。
(1)x2+12x+ =(x+6)2(2)x2-4x+ =(x )2(3)x2+8x+ =(x )2在上面等式的左边,常数项和一次项系数有什么关系?答案:左边填写的是“一次项系数一半的平方”,右边填写的是“一次项系数的一半”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程------配方法
一、教学目标
1、使学生学会用比较、转化的数学思想去探究配方法解二次项系数为1
的一元二次方程的方法;
2、使学生通过自主探究,总结出用配方法解二次项系数为1的一元二次
方程的方法,并能应用它解方程,从中理解配方法的意义;
3、使学生经过探究过程培养学生的思维能力和探究精神。
二、教学重、难点
1.教学重点:运用配方法解二次项系数为1的一元二次方程。
2.教学难点:发现与理解配方的方法。
三、教学方法:
启发—探究式的教学方法。
四、教学准备:
多媒体、投影仪
五、教学过程
六.教学反思
1.配方法是数学教学的重要内容和数学学习的主要思想方法。
在传统的教学课型中,基本上是以教师讲解为主,学生练习为辅的教学方式进行,学生的思维发展受到了一定的限制。
在我的教学设计中,打破了这一传统教学方式,在教材的处理上,既要注意到新教材、新理念的实施,又要考虑到传统教学优势的传
承,使自主探究、合作交流的学习方式与数学知识的牢固掌握、灵活应用有机结合。
2.新教材从“我们一起走进数学,让数学走进生活”的新视角来领略数学的风采和魅力,突出数学的实际运用。
所以,在教学设计中,力求将解方程的技能训练与实际问题的解决融为一体,在解决实际问题的过程中提高学生的解题能力。
为此,在知识引入阶段,创设了一个实际问题的情境,通过解决这一实际问题,既让学生感受到生活处处有数学,又能使学生利用已有的平方根的知识解决问题,体会到成功的喜悦。
通过引导学生观察方程的特点,归纳出形如:
(x+m)2= n (n≥0)的形式的方程,可以利用直接开平方来解。
3.为了突破本节的教学难点:发现和理解配方的方法,在教学中主要以启发学生进行探究的形式展开,目的是想通过学生对方程解法的探索,能够体会和联想到完全平方公式,从而对配方法的完全理解。
所以在知识的探索阶段,设计了几个既有联系又逐步递进的方程:x2+4x+4=25, x2+12x-15=0 ,x2+px+q=0,本课的重点放在探究这几个方程的解法上,让学生从特殊方程的配方法进而转化到一般化的一元二次方程的配方,归纳出配方法的基本方法,这也体现了数学教学中从特殊到一般,从具体到抽象的思维过程。
在教学中,开展自主探究,合作交流的学习方式,通过学生的主动探究,掌握和理解配方法。
4. 在学习小结阶段,由学生自己小结后,教师还要作补充和强调的总结。
在知识层面上,回顾和理解用配方法解方程的步骤和依据;在方法层面上,回顾配方中的“等价转化”的数学思想方法和解一元二次方程中的“降次”的思想。
在课后作业的设计中,既注重学生的基础知识的训练,又为下一节课的学习作了铺垫和准备。