山东省郯城县第三中学七年级数学下册《612 平面直角坐标系(2)》教案

合集下载

七年级数学下册《平面直角坐标系》教案、教学设计

七年级数学下册《平面直角坐标系》教案、教学设计
-设想活动:在坐标纸上,让学生画出特定坐标的点,然后进行互相检查,以加深对坐标表示法的理解。
3.坐标变换:通过动画或实物演示,让学生直观感受坐标的平移和伸缩变换,理解变换的规律。
-设想活动:设计坐标变换的互动游戏,让学生在游戏中实践坐标变换,加深理解。
4.解决实际问题:结合实际案例,指导学生运用坐标系解决几何和代数问题,如计算距离、分析物体的移动路径等。
-最后布置课后作业,让学生在实践中进一步巩固所学知识。
五、作业布置
为了巩固学生对平面直角坐标系知识的掌握,培养他们运用坐标系解决实际问题的能力,特布置以下作业:
1.基础作业:
-请学生绘制一个标准的平面直角坐标系,并在坐标系中标出至少10个点,包括各个象限内的点。
-列出5个实际生活中的问题,尝试使用坐标系来描述这些问题,并简要说明坐标系的优点。
作业要求:
-所有作业均要求学生独立完成,书写规范,图形绘制清晰。
-提交作业时,鼓励学生对自己的作品进行简要说明,分享创作思路和心得体会。
-教师将对作业进行及时批改,给予评价和建议,帮助学生找到知识盲点和提高方向。
-各小组讨论坐标变换的规律,并分享自己的发现。
-教师巡回指导,解答学生的疑问,引导他们深入理解坐标变换的原理。
(四)课堂练习
1.教学内容:设计不同难度的练习题,巩固学生对平面直角坐标系的理解。
过程设计:
-布置一些基础题,如给出坐标点让学生画出图形,或给出图形让学生写出坐标点。
-设计一些提高题,如坐标变换的应用题,让学生运用所学知识解决问题。
3.通过数学知识的学习,让学生体会数学的简洁美、逻辑美,提高审美情趣,培养良好的数学素养。
4.培养学生的创新意识,使他们敢于质疑、勇于挑战,形成独立思考和批判性思维的能力。

七年级数学下册《平面直角坐标系相关概念》教案、教学设计

七年级数学下册《平面直角坐标系相关概念》教案、教学设计
3.小组合作的作业,要求每个成员都参与讨论,充分发挥团队协作能力。
作业批改与反馈:
1.教师将及时批改学生的作业,关注学生的解题思路和方法。
2.对作业中存在的问题,教师将给予个别指导,帮助学生改正错误,提高解题能力。
3.对于优秀作业,教师将在课堂上进行展示和表扬,激发学生的学习积极性。
七年级数学下册《平面直角坐标系相关概念》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平面直角坐标系的概念,掌握坐标轴、坐标点、坐标值等基本要素。
2.学会平面直角坐标系中各象限内点的坐标特征,并能准确判断各象限内的点。
3.能够运用坐标平面内的点来描述实际问题,解决相关问题。
4.掌握坐标平面上两点之间的距离公式,并能够运用其解决实际距离测量问题。
2.将实际问题转化为坐标平面内的数学模型,对学生分析问题和解决问题的能力要求较高。
3.坐标变换规律的理解和灵活运用,尤其是平移和对称变换的综合应用。
(三)教学设想
1.利用多媒体和实物展示,帮助学生形象地理解坐标系的概念,降低学习难度。
-设计互动环节,如让学生在坐标纸上标出物体的位置,加深对坐标概念的理解。
3.结合自己的生活经验,思考平面直角坐标系在生活中的应用,写一篇不少于300字的小短文,分享你的发现和感悟。
4.小组合作,共同探讨坐标变换规律在实际问题中的应用,选取一个案例进行详细分析,并在下一节课上向同学们汇报。
作业要求:
1.学生需独立完成作业,注重解题过程的规范性和准确性。
2.对于设计实际问题的小短文,要求语言表达清晰,观点明确。
-如何根据坐标值判断一个点所在的象限?
-坐标变换规律在实际问题中如何应用?
2.各小组汇报讨论成果,分享自己的观点和发现。

七年级数学下册7.1.2平面直角坐标系教案(新版)新人教版

七年级数学下册7.1.2平面直角坐标系教案(新版)新人教版

平面直角坐标系教学目标1了解平面直角坐标系的概念,知道平面上的点与有序实数点一一对应。

2能画出平面直角坐标系,写出平面内点的坐标,并能根据点的坐标找点。

1 你知道四川大地震的地理位置吗?北京时间2008年5月12日14时28分,在四川汶川县(北纬31.0度,东经103.4度)发生7.8级地震。

重庆、山西、陕西、湖北等地有震感。

14时35分左右,北京通州发生3.9级地震。

2你了解钓鱼岛的地理位置和价值吗?钓鱼岛,全称“钓鱼台群岛”,日本称为“尖阁列岛”。

位于中国台湾省基隆市东北约92海里的东海海域,是台湾省的附属岛屿,由钓鱼岛、黄尾岛、赤尾岛、南小岛、北小岛、大南小岛、大北小岛和飞濑岛等岛屿组成,总面积约7平方公里。

位于北纬25度至北纬26度,东经121度30分至东经126度四线之间,距基隆102海里,距那霸230海里。

其海域为新三纪沉积盆地,富石油。

据1982年估计当在737亿~1574亿桶。

从上面两个问题你体会到在一个平面内表示一个点的位置要用到几个数?怎样表示平面内点的位置呢?我们这节课来学习这个问题------平面直角坐标系1 引入平面直角坐标系的概念说一说1 谁能告诉我班长在教室里的准确位置?(我新接的班,还不认得学生)2 (1)电影票上怎样应当怎样写,观众才能找到座位呢?(交流)(2)有两张电影票:A :6排3号,B ,3排6号,这两张票中的“6”含义有什么不同呢?(3)如图,怎样表示图中点A、B的位置呢?(估计学生的方法会不同,可能会说第几行第几排,也可能会想到建立直接坐标系)从上面问题引入直接坐标系的概念画两根互相垂直的数轴,一根叫横轴(也叫x轴),另一个根叫纵轴(也叫y轴),它们的交点叫坐标原点,横轴以向右的方向为正方向,纵轴以向上的方向为正方向。

单位一般一致,但也可以不一致。

这样建立的两根数轴叫平面直角坐标系。

记作:Oxy,坐标平面被分成了四个部分,分别叫:第一象限,第二象限,第三象限,第四象限。

山东省郯城三中七年级数学下册《第六章 平面直角坐标系》课件 新人教版

山东省郯城三中七年级数学下册《第六章 平面直角坐标系》课件 新人教版
(2).移动后的四边形的面积
C
D
A
B
8.求四边形ABCD的面积 C B
A E
D F
9.求三角形ABC的面积 A B
O
四.建立适当的直角坐标系解题
1.矩形ABCD的长为4,宽为3,建立适当的直
角坐标系,并写出各点的坐标.
y
y
5
5
4
4
3A
3D
2
2
1B
1 C
-4 -3 -2 -1 -40 -3 1 -2 2 -1 3 0 4 15 2x 3 4 5 x
5.将A(x,y)通过平移得点的坐标为A/(x+3,y-2),则 先A向 平移 个单位,再向 平移 个单位。
6.A(1,2),B(2,3),将线段AB平移得到CD,点A的对应点
C坐标为 (0,4),则点D的坐标为
.
7.四边形A(-2,1),B(3,-1),C(2,4),D(-1,2)将四边形 ABCD向右平移2个单位,再向上平移1个单位, (1)求得到的另一个四边形各顶点的坐标
-1
-1
-2
-2
-3
-3
3.第一次将⊿OAB变成⊿OA1B1,第二次将 ⊿OA1B1变换成⊿OA2B2,再将⊿OA2B2变换成 ⊿OA3B3,已知 A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0), B2(8,0),B3(16,0).
3 A A1 A2
A3
写出A的坐标是
.
ห้องสมุดไป่ตู้
反思:解题关键是通过图象分析点坐标的特点
三.点的平移.与点坐标的变化.
1.将A(-3,2)向左平移2个单位,得点的坐标为
.

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计

人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。

这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。

学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。

三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。

2.难点:坐标系在实际问题中的应用。

五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。

2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。

3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。

六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。

2.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。

通过讨论,引入平面直角坐标系的概念。

2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。

教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。

3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。

人教版七年级数学下册 7.1.2 平面直角坐标系 2 优秀教案

人教版七年级数学下册 7.1.2 平面直角坐标系 2 优秀教案

7.1.2 平面直角坐标系[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义,在给定的直角坐标系中,会根据坐标描出点的位置;3、会用坐标表示点,能建立适当的直角坐标系,描述物体的位置.[教学重点与难点]1、 重点:平面直角坐标系和点的坐标;描出点的位置和建立坐标系.2、 难点:根据点的位置写出点的坐标;适当地建立坐标系.[教学过程]一、复习导入1、数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标.[投影1]如图,点A 的坐标是2,点B 的坐标是-3.坐标为-4的点在数轴上的什么位置?在点C 处.这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了.类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?2、写出图中点A 、B 、C 、D 、E 的坐标..由点的位置可以写出它的坐标,反之,已知点的坐标怎样确定点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示.-3-1BA 032C如图,水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.探究:如图,正方形ABCD 的边长为6.A(O)x D CB(1)如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系,那么y 轴是哪条线? y 轴是AD 所在直线.(2)写出正方形的顶点A 、B 、C 、D 的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A 、B 、C 、D 的坐标又分别是多少?与同学交流一下.二、点的坐标如图,由点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A 的坐标,记作A(3,4).类似地,请你根据课本41面图6.1-4,写出点B 、C 、D 的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后.三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限.[投影2]做一做:课本43面练习1题.思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点?原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0.2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离.2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,则a=______,b=______.3、点M(-2,3)在第 象限,则点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2,3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、已知一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点.六、布置作业(。

七年级下册数学平面直角坐标系第二课时教案

七年级下册数学平面直角坐标系第二课时教案

学习环节 探索新知
评价要点
教学流程
能找出坐标系 中的点到坐标 轴的距离, 同时 能根据点到坐 标轴的距离, 找 出点的坐标。 明 确坐标与距离 的关系。
一、知识回顾:
1 写出图中 A 、B 、 C、 D、 E、 F、 O 各点的坐标 .
2 在平面直角坐标系中画出点 G(1, 4), H(5 , 2) 。 注意:在 x 轴上点的坐标是( x, 0),在 y 轴上点的坐标 是( 0, y),原点的坐标是( 0,0)。
关知识和借助平面直角坐标系学习一次函数、二次函数的一个基础
,
它在整个初中数学教材体系中有着举足轻重的作用。
3、学情分析:
七年级的学生具有活泼好动, 好奇的天性, 他们正处于独立思维发展
的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学
习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和
建立较为容易面直角坐标系 , 理解并掌握横轴、纵轴、原点及点的坐 标, 了解点与坐标的对应关系 ; 能准确地在平面直角坐标系中描出点 的位置和根据点的位置写出点的坐标 , 培养学生思维的准确性和深刻 性。 过程与方法目标: 通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直 角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生 自主获取知识的能力。 情感、态度、价值观、目标: 利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养, 鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价 值,培养热爱数学,勇于探索的精神。 教学重点:认识平面直角坐标系,能正确地画出平面直角坐标系 教学难点:会用 “坐标”表示平面内点的位置和坐标轴上的点的特征 评价任务: 1、能找出坐标系中的点到坐标轴的距离,同时能根据点到坐标轴的 距离,找出点的坐标。明确坐标与距离的关系。 2、能通过观察,分析总结出平行于坐标轴的点的坐标特点。 3、能通过观察,分析、探究,归纳出坐标轴夹角平分线上的点的坐 标特点。 4、能够利用割补法求三角形、四边形的面积。

人教版数学七年级下册平面直角坐标系(第二课时)教学设计

人教版数学七年级下册平面直角坐标系(第二课时)教学设计
作业布置要求:
1.作业量适中,难度分层,确保每个学生都能完成基础作业,同时满足学有余力的学生。
2.作业布置要有针对性,关注学生的薄弱环节,提高作业的实效性。
3.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
4.教师应及时批改作业,给予学生反馈,指导学生改正错误,巩固所学知识。
7.课后巩固:布置适量的课后作业,巩固所学知识,提高学生的实际应用能力。
教学活动:设计具有层次性的课后作业,让学生在完成作业的过程中,进一步巩固平面直角坐标系的知识。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活实例引入新课,激发学生兴趣。
教师通过展示地图上的定位、电影院座位分布等生活场景,让学生感受到坐标系在生活中的应用,从而引出本节课的主题——平面直角坐标系。
2.提问方式:教师提出引导性问题,引导学生思考。
问题如:“我们在生活中是如何确定一个点的位置的?”“你能用自己的方法表示出教室内某个同学的位置吗?”
3.过渡语:通过学生的回答,自然过渡到本节课的学习内容。
教师总结:“今天我们要学习一种新的表示位置的方法——平面直角坐标系。通过这个工具,我们可以更准确地描述和解决实际问题。”
学生需要将探究过程和结果以书面形式提交,以提高学生的合作能力和探究精神。
5.创新题:鼓励学生发挥想象力,设计一道与坐标系相关的题目,并给出解题过程和答案。此题旨在培养学生的创新意识和数学思维能力。
6.家长评价:请家长协助学生完成作业,关注学生的学习过程,对孩子的进步给予肯定和鼓励,共同培养学生的数学兴趣。
本章节教学设计旨在帮助学生掌握平面直角坐标系的知识,提高学生的数学素养,培养学生解决问题的能力和团队协作精神,使学生能够更好地应对生活中的数学问题。在教学过程中,教师应注重启发式教学,关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学。

人教版数学七年级下册 7.1.2《平面直角坐标系(第2课时)》教案设计

人教版数学七年级下册 7.1.2《平面直角坐标系(第2课时)》教案设计

7.1 平面直角坐标系(第2课时)一、内容和内容解析1.内容平面直角坐标系及相关概念.2.内容解析“平面直角坐标系”是“数轴”的发展,使点与坐标的对应关系顺利实现了从一维到二维的过渡.“平面直角坐标系”的建立使有序数对与平面内的点产生了一一对应,提供了用代数方法来研究几何问题的重要数学工具.上一节课学生在具体情境中学习了有序数对表示物体的位置.本节课先介绍数轴上点与坐标的一一对应,在此基础上说明建立平面直角坐标系的必要性以及合理性,同时引入相关的概念以及平面内点与坐标一一对应的结论,对于平面直角坐标系中象限的概念,本节课只简单介绍,下节课再探讨象限中点的符号特征.一般地,在平面内互相垂直且原点重合,分别位于水平位置与铅直位置的两条数轴组成平面直角坐标系,习惯取向右、向上为正方向.建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的一个点,从而建立坐标平面内点与有序数对的一一对应,体现数形结合的思想.由以上分析,可以确定本节课的教学重点:平面直角坐标系及相关概念.二、教材解析平面直角坐标系是以数轴为基础的,两者之间存在着密切联系.平面直角坐标系是由两条互相垂直,原点重合的数轴构成的,教科书结合着它的画法介绍有关概念,方便学生在平面直角坐标系中理解相关的概念.教科书注意加强平面直角坐标系与数轴的联系.首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,类比着数轴,探讨在平面内确定点的位置的方法,这样可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡.三、教学目标和目标解析1.教学目标(1)理解平面直角坐标系的相关概念.(2)在平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置.2.目标解析达成目标(1)的标志:理解平面直角坐标系中两条数轴一般具备的特征:互相垂直;原点重合;取向右、向上为正方向;能在平面直角坐标系中理解x轴(横轴)、y轴(纵轴)、原点、坐标、象限等相关概念.达成目标(2)的标志:理解建立平面直角坐标系的必要性,体会平面内点与有序数对的“一一对应”:给一个坐标,就有唯一确定的点与之对应;反之,给一个点,就有唯一确定的坐标与之对应.四、教学问题诊断分析平面内点的坐标是根据数轴上点的坐标来定义的,平面内点与坐标的对应关系虽然与数轴上点与坐标的对应关系类似,但学生毕竟在认识上第一次从一维空间过渡到二维空间,因此理解建立平面直角坐标系的必要性、体会其中蕴含的点与坐标的一一对应关系都比较困难.“7.1.1有序数对”从具体情境中认识物体位置与有序数对的对应,学生易于理解,但由具体情境抽象出平面直角坐标系中点与坐标的一一对应,要求学生有较强的抽象思维能力.因此,确定本课的教学难点:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系.五、教学过程设计1.复习引入问题1 回顾已学内容,回答下列问题:(1)什么是数轴?请画出一条数轴.(2)如图1,A,B两点所表示的数分别是什么?在数轴上描出“-3”表示的点.图1师生活动:学生回答问题后,教师引导学生得出数轴上点的坐标的定义——数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A的坐标为-4,点B的坐标为2.反之,已知数轴上点的坐标,这个点的位置就确定了.问题2 在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?师生活动:数轴上的点与坐标是“一一对应”的.也就是说,在数轴上每一个点都可以用一个坐标来表示,任何一个坐标都可以在数轴上找到唯一确定的点.【设计意图】从学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立点与坐标的一一对应关系.2. 形成概念问题3 类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图2,你能找到一种办法来确定平面内点P的位置吗?师生活动:学生小组讨论解决问题的方法,教师给予适当的引导,然后梳理解决这个问题的过程:点P所在的平面内有一些方格线,利用上节课所学的有序数对,约定“列数在前,排数在后”.如图2,点P在“第1列第2排”,记为(1,2).图2 图3受上述方法的启发,为了确定平面内点M,N的位置,我们可以画一些纵横交错的直线.为了便于标记每一条直线的顺序,以其中的两条为基准(图3),结合前面学习的数轴,一条看作横向的数轴,另一条看作纵向的数轴,这两条数轴有公共原点且互相垂直.追问1:在图3中,点P记为(1,2),类比点P你能分别写出点M,N分别记为什么吗?师生活动:学生回答,教师可适当的引导.(M记为(-2,-2)、N记为(-1,3).)追问2:根据课前查阅的资料,哪位同学能给大家简单介绍平面直角坐标系的产生以及数学家笛卡儿对数学产生的影响吗?师生活动:学生回答.教师指出:法国数学家笛卡儿设想将几何问题数量化,从而使其变成一个代数问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的,由此诞生了一门新的数学分支——解析几何.这好像在被一条大河隔开的代数和几何的两岸,架起了一座桥梁,把“数”与“形”联系起来,引起了数学的深刻革命.恩格斯称解析几何的诞生是数学发展的一个转折点.笛卡儿的这种思想,尤其在高速计算机出现的今天,具有深远意义.【设计意图】适当介绍一些数学史,激发学生的学习兴趣.问题4 如图4,学生阅读教科书第66,67页后回答下列问题:①说一说组成平面直角坐标系的两条数轴具备什么特征?②什么是横轴?什么纵轴?什么是坐标原点?③坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?(1)(2)图4教师引导:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上的方向为正方向.两坐标轴的交点为平面直角坐标系的原点(图4(1)).建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限(图4(2)).【设计意图】问题3与有序数对、数轴相结合,为引出平面直角坐标系作铺垫.让学生在解决具体问题的过程中,自然而然地建立平面直角坐标系并理解其相关概念.问题5 在平面直角坐标系中,能用有序数对来表示图4(1)中点A的位置吗?师生活动:如图4(1),由点A分别向x轴,y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.追问1:如图5,在平面直角坐标系中,点B,C,D的坐标分别是什么?师生活动:学生独立写出B(-2,3),C(4,-3),D(-1,-4).图5【设计意图】点的坐标的表示是本节课教学的关键,给出定义后及时进行相关的练习,同时强调点的坐标的规范写法.追问2:在图6的平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原点的坐标是什么?图6师生活动:学生写出A(4,0),B(-2,0),C(0,5),D(0,-3),教师可适当引导.从上面的练习中发现:①x轴上的点的纵坐标为0,一般记为(x,0);②y轴上的点的横坐标为0,一般记为(0,y);③原点O的坐标是(0,0).【设计意图】先学一般点的坐标,再探究特殊点的坐标,这样安排符合学生的认知规律,使学生更容易理解和掌握所学的知识.例在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).师生活动:教师可详细介绍描出点A的方法:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.其余点要求学生自己描出.【设计意图】已知点的坐标,让学生在平面直角坐标系内找到对应点的位置.问题6数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?师生活动:学生容易回答数轴上的点与其坐标(实数)一一对应.用类比的方法得到平面上的点与其坐标(有序实数对)也是一一对应的.【设计意图】已知一个点能找到对应的坐标,已知一个坐标能找到唯一确定的点,这是教学中的重点.另一方面让学生进一步体验平面上的点与坐标之间一一对应的关系,这是教学中的难点.3.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)什么是平面直角坐标系?(2)平面直角坐标系中一个有序数对可以确定一个点的位置,它与数轴上一个实数确定一个点的位置有什么区别?(3)平面直角坐标系内点与坐标之间有什么关系?【设计意图】通过小结,梳理本节课所学内容,使学生理解本节课的核心——平面直角坐标系中点与坐标的一一对应关系,感受数形结合的思想.4.布置作业教科书习题7.1第2,3,4,5题.六、目标检测设计1.如图,下列说法中正确的是( ).A.点A的横坐标是4B.点A的横坐标是-4C.点A的坐标是(4,-2)D.点A的坐标是(-2,4)(第1题)【设计意图】考查学生能否根据平面直角坐标系中已知点的位置确定点的坐标.2.过点B(-3,-1)作x轴的垂线,垂足对应的点的坐标是_______;过点B(-3,-1)作y轴的垂线,垂足对应的点的坐标是_______.【设计意图】考查学生对平面直角坐标系中点的坐标的确定方法的掌握情况.3.点A(3,a)在x轴上,点B(b,4)在y轴上,则a=______,b=______.【设计意图】考查学生对坐标轴上点的坐标特征的掌握.4.如图,写出图中多边形ABCDEF各个顶点的坐标,并说明点C,点E分别在什么象限.(第4题)【设计意图】考查学生对平面直角坐标系中点的坐标表示的掌握和对象限的概念的理解.。

数学七年级下册第六章《平面直角坐标系》教学设计

数学七年级下册第六章《平面直角坐标系》教学设计

数学七年级下册第六章《平面直角坐标系》教学设计一. 教材分析《数学七年级下册》第六章《平面直角坐标系》是学生在学习了初中数学基础知识后,进一步学习几何知识的起点。

本章内容主要包括坐标系的定义、坐标轴上的点的坐标特征、坐标的互换、坐标系的变换等。

这些知识是学生学习函数、几何等高级数学知识的基础,对于学生形成数学思维、提高解决问题的能力具有重要意义。

二. 学情分析学生在学习本章内容前,已经具备了一定的代数基础知识,如实数、方程等。

但学生对于坐标系这一概念可能较为陌生,需要通过具体的实例和操作来理解和掌握。

同时,学生对于几何知识的学习还处于初级阶段,需要通过本章内容的学习,逐步形成对几何图形直观、清晰的认识。

三. 教学目标1.知识与技能目标:使学生理解坐标系的概念,掌握坐标轴上的点的坐标特征,会进行坐标的互换,了解坐标系的变换。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生空间想象能力、逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受数学与生活的紧密联系。

四. 教学重难点1.教学重点:坐标系的概念,坐标轴上的点的坐标特征,坐标的互换,坐标系的变换。

2.教学难点:坐标系的变换,坐标与几何图形的结合。

五. 教学方法1.情境教学法:通过生活实例引入坐标系的概念,使学生感受到数学与生活的紧密联系。

2.操作教学法:引导学生动手操作,观察坐标系中点的坐标变化,加深对坐标系的理解。

3.问题驱动法:设计一系列问题,引导学生思考、交流,形成对坐标系知识的体系。

4.数形结合法:利用几何图形,引导学生直观地理解坐标系的知识。

六. 教学准备1.教学素材:准备相关的图片、实例、问题等教学素材。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

3.学生活动:提前让学生预习本章内容,了解坐标系的基本概念。

七. 教学过程1.导入(5分钟)通过展示生活中的实例,如地图、停车场等,引导学生思考坐标系的概念。

山东省郯城县第三中学七年级数学下册《621 用坐标表示地理位置》教案

山东省郯城县第三中学七年级数学下册《621 用坐标表示地理位置》教案
菊花园:从中心广场向北走150米,再向东走150米;
湖心亭:从中心广场向西走150米,再向北走100米;
松风亭:从中心广场向西走100米,再向南走50米;
育德泉:从中心广场向北走200米.
2.教材第65页第4题.
类似地,你能把6棵古槐树也用坐标表示出来吗?
请以小组的形式完成下面的活动:
(1)收集一些当地古树名木的资料,特别是有关它们具体位置的记载,并为它们编号;
(2)建立适当的平面直角坐标系,为上述树木绘制一幅平面分布图;
(3)你也可以收集一些校园或自己家附近有代表性的建筑,绘制出相关的平面分布图.
学习练习,教师巡视、辅导,教师要注意学生原点的选定及坐标的标定.
小刚家:出校门向东走150米,再向北走200米.
小强家:出校门向西走200米,再向北走350米,最后再向东走50米.
小敏家:出校门向南走100米,再向东走300米,最后向南走75米.
问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?
问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?
1.理解有序数对的意义.
2.能用有序数对表示实际生活中物体的位置.
过程与方法:
通过学习如何用坐标表示地理位置,发展学生的空间观念.通过学习,学生能够用坐标系来描述地理位置.
情感态度与价值观:
通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度.
重点
利用坐标表示地理位置.
难点Байду номын сангаас
建立适当的直角坐标系,利用平面直角坐标系解决实际问题.
活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.

最新人教版七年级数学下册 6.1.2《平面直角坐标系(2)》教案(精品教学设计)

最新人教版七年级数学下册 6.1.2《平面直角坐标系(2)》教案(精品教学设计)

6.1.2 平面直角坐标系(2)(新授课)【理论支持】学习数学最好的方法是实行再创造,也就是由学生本人把要学的东西自己去发现或创造出来,教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。

因此,教师在课堂教学中,应不断创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去猜想,去实践,去动手操作,去观察分析,去合作交流、发现和创造所学的数学知识.让他们经历数学再创造的过程,体验数学规律的生成和发现的过程,使成功的喜悦让他们有机会去分享.现阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体.《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度.认知规律告诉我们认知从感知开始,感知是认知的门户,是一切知识的来源。

在课堂教学中,让学生人人参与、积极动手动脑、合作交流的探究活动,能激发学生学习数学的兴趣,对提高学生的数学素养和数学意识也是十分有意义的.“平面直角坐标系”这一章对七年级学生来说是全新的知识.这一部分知识很重要.“平面直角坐标系”是架在图形与数量之间的桥梁.有了它,我们即可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题,它是解决数学问题的一个重要工具,利用它可以使很多数学问题变得直观而简明.本节课研究的内容“平面直角坐标系”。

该内容的学习直接关系到后面对函数图象的学习,同时这也是将几何图形向数转化的初步内容.“平面直角坐标系”的学习,让学生实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础.因此,让学生正确而深刻地理解“平面直角坐标系”是学好全章的关键所在.总之,通过本节课的研究,旨在让学生体会到数学与实际生活的密切联系,经历知识的形成过程,培养学生的应用意识.教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到数、符号和图形是有效地描述现实世界的重要手段与解决实际问题的重要工具.【教学目标】知识技能1.能根据坐标描出点的位置.2.能在方格纸中建立适当的平面直角坐标系描述物体的位置.3.能根据点的位置关系探索坐标之间的关系,以及根据坐标之间的关系探索点的位置关系数学思考1.经历在方格纸上建立平面直角坐标系描述物体位置的过程,•发展抽象思维、实践能力和创新精神;2.经历探索点的位置关系与坐标之间关系的过程.发展学生有条理地、•清晰地阐述自己的观点的能力;解决问题1.通过寻找位置关系与坐标之间关系,发展学生的探究意识.2.学会与人合作,并能与他人交流思维的过程和结果,•形成自我评价和反思的意识.【教学重难点】1.重点:根据点的坐标在平面直角坐标系中描出点的位置.2.难点:探索特殊点与坐标之间的关系.【课时安排】一课时【教学设计】课前延伸一、基础知识填空及答案(一)如图,在边长为1的正方形网格中建立平面直角坐标系,请说出图中A,B,O 的坐标.(二)在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A 在x 轴上,位于原点的左侧,距离坐标原点4个单位长度. 情感态度 1.能积极参与数学学习活动,对数学有好奇心和求知欲;2.在数学学习活动中获得成功的体验,锻炼克服困难的意志,•建立学习数学的自信心.(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度.(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.〖答案〗(一)A (-2,1), B(-1,2),C (0,0)(二)(1)A(-4,0)(2)B(0,4)(3)C (-4,4)〖设计说明〗引导学生回忆上一节课所学内容,即在平面直角坐标系中已知点写出该点的坐标.让学生进行简单的模仿,从感性上进一步认识平面内的点与坐标的一一对应关系.二、预习思考题及答案活动(一)在同一平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来:①(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);②(-9,3),(-9,0),(-3,0),(-3,3);③(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);④(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);⑤(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).〖答案〗如图〖设计说明〗让学生由所得的图象,及点的规律性变化体会“数对”可以做什么?引导学生主动地学习在同一平面直角坐标系中描出点的方法,学会归纳出:在同一平面直角坐标系中描出点与说出平面内点的坐标正好是一个互逆过程.课内探究一、导入新课:1.创设情境,提出问题:(1)上节课我们学习了平面直角坐标系中的有关概念;探究了x轴、y轴上点的坐标的特点,以及已知点写出其坐标.在图1的平面直角坐标系中,你能说出三角形ABC三个顶点A,B,C的坐标吗?(2)在上面的问题中,点A,点B的坐标之间有什么关系?每个点的横坐标与纵坐标的符号与什么有关?多取几个点验证你的猜想.〖设计说明〗一方面复习上一节课的知识,另一方面又为本节课的学习提出方向性指导做准备.2.揭示课题,整理概念,板书平面直角坐标系(2)二、检查预习情况:明确检查方法学生口答后论证.三、布置学生自学:1.学生自主探究题:(1)上节课我们学习了平面直角坐标系中的有关概念;探究了x轴、y轴上点的坐标的特点,以及已知点写出其坐标.那么,已知坐标,你能在直角坐标系中找到相应的点吗?在下图的直角坐标系中描出下列各组点,并将各组内的线段依次连接起来,观察它像什么图形.①.(2,0), (4,0), (6,2), (6,6), (5,8), (4,6),(2,6), (1,8), (0,6), (0,2), (2,0);②. (1,3), (2,2), (4,2), (5,3);③. (1,4), (2,4), (2,5), (1,5), (1,4);④. (4,4), (5,4), (5,5), (4,5), (4,4);⑤. (3,3).〖思路点拨〗对于这个要求,此活动针对一个点(5,8),•详细介绍描出这个点的方法,其余的点留给学生指出,是希望给学生提供自己探索学习的机会.〖参考答案〗解:像猫脸例如(2,6),因为横坐标是2,在x轴上找到表示2的点M,•纵坐标是6,在y轴上找到表示6的点N,过M、N分别作x轴、y轴的垂线交于一点P,则P的坐标即为(2,6),其余各点如是.一般先找横坐标,再找纵坐标.(4,2) 与(2,4)表示不同的点;(4,2)到x轴的距离是2,到y轴的距离是4,一般P(x,y)到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.坐标与平面内的点是一一对应关系.〖设计说明〗运用刚刚所学知识解决新问题,又同时在给定的直角坐标系中,能利用点的坐标描出点的位置,这是学习本节应该达到的基本要求.让学生在活动中进一步认识平面直角坐标系内的点与点的坐标的关系;熟练掌握由点找坐标,由坐标找点的过程,获得更多的学习经验,体验在学习过程中的成就感.享受学习数学的乐趣.(2)我们观察图1中的平面直角坐标系,平面直角坐标系中x轴、y轴将将平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ这样的四个部分,课本是如何定义他们呢?坐标轴上的点属于哪个象限呢?〖思路点拨〗在阅读的基础上,学生很容易就能找到答案.〖参考答案〗分别叫做第一象限、第二象限、第三象限、第四象限.注意:坐标轴上的点不属于任何象限.〖设计说明〗不仅培养学生阅读理解课本知识的能力.而且要求学会自己归纳所学知识,甚至是学以致用的能力.(3)我们知道了坐标轴上的点的特点,位于不同象限的点的坐标符号有何特点呢?请你说说图3中的各个点的坐标,并完成课本P44中练习题,交流、讨论.〖思路点拨〗将各个象限里的点写在一起以便观察,归纳.〖参考答案〗A(+3,+1) , B(+1,+2), 第一象限符号(+,+)C(-1,+2), D(-3,+1), 第二象限符号(-,+)E(-3,-1), F(-1,-2), 第三象限符号(―,―)G(+1,-2), H(+3,-1) ,第四象限符号(+,-)〖设计说明〗通过学生自己探究,即有利用对四个象限概念的理解,又有利用对点的坐标的理解,特别是横坐标,纵坐标的符号规律.〖巩固练习〗分别说出下列各个点在哪个象限内或在哪条坐标轴上?A(4,-2) ,B(0,3) ,C(3,4) ,D(-4,-3) ,E(-2,0) ,F(-4,3)2.小组合作探究题:活动探究1:如图4,正方形ABCD的边长为6,如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,那么y轴是哪条线?写出正方形的顶点A、B、C、D的坐标.是否可以建立一个新的平面直角坐标系呢?这时正方形的顶点A、B、C、D的坐标又分别是多少?与小组同学交流一下.〖思路点拨〗为了方便,我们一般以正方形的两边所在的直线为坐标轴建立平面直角坐标系.也可以以对边中点连线所在直线为坐标轴.〖设计说明〗该题要求学生尽量用多种方法建立平面直角坐标系,以体验不同的方法带来的差异.建立不同的平面直角坐标系,同一个点的坐标就会不同,但点与点之间相对位置,正方形的形状性质不会改变.活动探究2:分别写出图6中A,B ,C三点的坐标,1°观察点A与点B关于那条直线对称,他们的坐标之间有什么关系.2°观察点C与点B关于那条直线对称,他们的坐标之间有什么关系.3°观察点A与点C呢?他们的坐标之间有什么关系.〖思路点拨〗用小学学习过的对称知识和本节课坐标知识解决.〖设计说明〗主要是让学生探索关于坐标轴对称和关于原点对称的点的坐标之间的关系,渗透数形结合的思想.〖参考答案〗点A与点B关于y轴对称,纵坐标相同,横坐标互为相反数,点C与点B关于x轴对称,纵坐标互为相反数,横坐标相同,点A与点C关于原点对称,纵坐标,横坐标都互为相反数.(2)写出图5中的平行四边形各个顶点的坐标,这种表示唯一吗?在图5中,A与D,B与C的纵坐标相同吗?当纵坐标相同时,这些点的连线与x轴有什么关系呢?A与B,C与D•的横坐标相同吗?当纵坐标相同时,这些点的连线y轴有什么关系呢?〖思路点拨〗写出各点的坐标,并寻找其规律.〖参考答案〗A与D,B与C相同,A与D,B与C的连线都与x轴平行.A与B,C与D•相同,A与B,C与D•的连线都与y轴平行.四、教师精讲点拨:1.知识点辨析:(1)坐标是成对展现,坐标是有序数对,横坐标和纵坐标的位置不得随意调换(当横坐标与纵坐标不相等时),如(4,2) 与(2,4)表示不同的点.(2)一般P(a,b)到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.2.探究题评析:(1)在同一平面直角坐标系中描出点与说出平面内点的坐标正好是一个互逆过程.(2)对四个象限概念的理解,以及符号规律理解与应用也是本节课的一大收获.3.规律总结:坐标与平面内的点是一一对应关系.4.方法指导数形结合的思想方法.五、课堂反馈训练1.点(3,-2)在第_____象限;点(-1.5,-1)在第_______象限;点(0,3)在____轴上;若点(a+1,-5)在y轴上,则a =______.〖参考答案〗四;三,y轴的正半轴;-1.〖讲评策略〗由符号决定象限,第一象限符号(+,+),第二象限符号(-,+)第三象限符号(―,―),第四象限符号(+,-) .x轴正半轴(+,0);x轴负半轴(-,0);y轴正半轴(0,+) ,y轴负半轴(0,-) .2.点A在x轴上,距离原点4个单位长度,则A点的坐标是_______________.〖参考答案〗(4,0)(-4,0)3.点M(-8,12)到x轴的距离是_________,到y轴的距离是________.〖参考答案〗12;84.若点P在第三象限且到x轴的距离为2,到y轴的距离为1.5,则点P的坐标是________.〖参考答案〗(-1.5,-2)〖讲评策略〗先由象限决定符号,再由到x轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值.5.点A(1-a,5),B(3 ,b)关于y轴对称,则a =___,b =____.〖参考答案〗a =-2,b =5〖讲评策略〗由对称知识解决,P(a,b)关于y轴对称,纵坐标相同,横坐标互为相反数,(-a,b);关于x轴对称,纵坐标互为相反数,横坐标相同(a,-b),关于原点对称,纵坐标,横坐标都互为相反数(-a,-b) .6.在平面直角坐标系内,已知点P ( a,b ), 且a b < 0 ,则点P的位置在____________.〖参考答案〗第二项限或第四项限.7.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()(A)平行于x轴(B)平行于y轴(C)经过原点(D)以上都不对〖参考答案〗B8.若点(a,b-1)在第二象限,则a的取值范围是_____,b的取值范围________.〖参考答案〗a<0,b>1.〖讲评策略〗象限决定符号,符号决定象限.通过练习,让学生熟练位于不同象限和坐标轴上的点的坐标的符号问题,使学生能运用所学知识和技能解决问题,同时为学生提供充分发挥创造力的空间,更大地调动学生的积极性.9.实数x,y满足(x-1)2+|y| = 0,则点P(x,y)在【】.A. 原点 B . x轴正半轴C. 第一象限D. 任意位置〖参考答案〗B10.在一次“寻宝”游戏中,寻宝人已经找到了坐标为A(3,2)和B(3,-2)的两个标志点,并且知道藏宝地点的坐标为C(4,4),除此之外不知道其他信息,如何确定直角坐标系找到“宝藏”?请跟同伴交流.〖参考答案〗〖设计说明〗由学生爱好的“寻宝”游戏激励学生的学习热情,学生感受到学有所用.CAB课后提升一、课后练习题及答案:(1).先说说各个点所在的象限或坐标轴,而后在同一平面直角坐标系中描出这些点,看看你的判定是否正确.并用线段顺次连接各点,看看你画出的图形是什么形状?A(-3,-1),B(-3,2),C(0,2),D(3,2),E(3,-1),F(0,-1)〖参考答案〗如图8(2)设P(m,n)为平面坐标系中的点1°当m >0,n<0时,点P位于第几象限?2°当mn >0时,点P位于第几象限?3°当m为任意数,且n<0时,点P位于第几象限?〖参考答案〗1°第四象限,2°第一象限或第三象限,3°第三象限或第四象限(3)点P(2,5)关于x轴对称的点的坐标是(),关于y轴对称的点的坐标是( ),关于原点对称的点的坐标是().〖参考答案〗关于x轴对称的点的坐标是(2,-5),关于y轴对称的点的坐标是(-2,5),关于原点对称的点的坐标是(-2,-5).(4)小名,小冰,小思,小芳四位同学的家庭住址分别位于图9中的A,B,C,D四个位置,请你建立适当平面直角坐标系,用坐标表示这四个同学的位置.。

七年级数学下册7.1.2平面直角坐标系 教案-经典教学教辅文档

七年级数学下册7.1.2平面直角坐标系 教案-经典教学教辅文档

《7.1.2平面直角坐标系》教学设计一、教材地位与作用《平面直角坐标系》是新人教版教科书七年级下册第七章第二节内容。

本节课是先生刚刚学习的用有序实数对来表示地位的内容基础上学习的,“平面直角坐标系”是“数轴”的发展,使代数的基本元素(数对)与几何的基本元素(点)之间产生逐一对应,完成了从一维到二维的过渡。

平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体表现。

因而,本节课不仅是本章的重点,也是今后学习一次函数、二次函数的一个基础,为今后的解析几何做好铺垫,平面直角坐标系是用途很广泛的知识点之一,在学习时要多加留意平面直角坐标系的特点和运用时的方便性。

二、教学目标1.知识与技能:理解平面直角坐标系的有关概念,能正确的画出平面直角坐标系,并会由点确定坐标、由坐标描点,精确知道各象限的点的符号特点,初步感受数形结合的思想。

2.过程与方法:经过实例,让先生经历从实践生活中的具体成绩抽象出数学模型—平面直角坐标系的过程;体验数学来源于生活,并服务于生活。

3.情感、态度与价值观:培养先生合作认识,感受学习的快乐,让不同层次的先生得到不同的播种,感受成功,建立自信。

三、教学重点及难点重点:平面直角坐标系及相关概念,根据坐标描出点的地位,根据点的地位写出点的坐标;难点:探求坐标平面内点的符合特点四、教学媒体预备教学媒体:希沃白板、一体机、视频展台、Flash动画,几何画板、91云校教学平台学具预备:三角板五、教法与学法教法分析:课前给先生在91云校的云平台中推送微课,让先生充分预习,并发布预习练习题,课上可以针对性的讲解重点,疑惑点,结合答题的反馈数据有的放矢的发问,力求完成先学后教,以学定教。

课堂上采用互动式教学、开放式教学、情景式教学,以教师为主导,以先生为主体,以知识为载体,以培养先生的“思想能力,动手能力,探求能力”为重点的教学思想。

并借助于动画,几何画板等工具直观呈现难点,让先生从“学会”到“会学”,使先生真正成为学习的主人。

人教版数学七年级下册7.1.2《平面直角坐标系》教学设计

人教版数学七年级下册7.1.2《平面直角坐标系》教学设计

人教版数学七年级下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版数学七年级下册第七章第一节的内容,主要包括平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。

本节内容是学生学习函数、几何等知识的基础,对于学生形成数学思维、提高解决问题的能力具有重要意义。

二. 学情分析七年级的学生已具备一定的空间想象能力和逻辑思维能力,但对平面直角坐标系的理解还需借助具体事物。

学生在小学阶段已经接触过一些简单的坐标知识,如用坐标表示物体的位置,为本节课的学习奠定了基础。

但如何将实际问题与坐标系相结合,还需要教师引导学生进行探究。

三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征,了解坐标轴的性质。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征。

2.难点:坐标轴的性质,如何将实际问题与坐标系相结合。

五. 教学方法采用“问题驱动”的教学方法,引导学生观察、操作、思考、交流,以达到对平面直角坐标系的理解和应用。

六. 教学准备1.准备平面直角坐标系的模型或图片。

2.准备一些实际问题,如描述物体在平面直角坐标系中的位置。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如电影院、商场等,引导学生思考如何用数学方法表示这些事物的位置。

进而引入平面直角坐标系的定义。

2.呈现(10分钟)教师展示平面直角坐标系的模型或图片,引导学生观察并总结各象限内点的坐标特征。

同时,教师通过讲解坐标轴的性质,帮助学生理解坐标系的基本概念。

3.操练(10分钟)教师提出一些实际问题,让学生在平面直角坐标系中进行操作,找出问题的答案。

如:“某商品在商场内的位置为(3,5),请找出该商品在平面直角坐标系中的位置。

数学七年级下学期《平面直角坐标系》教学设计

数学七年级下学期《平面直角坐标系》教学设计

数学七年级下学期《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是七年级数学下学期的一章重要内容。

本章主要介绍平面直角坐标系的定义、特点、以及坐标轴上的点的坐标表示方法。

通过本章的学习,使学生能够理解并掌握平面直角坐标系的概念,能够熟练地确定平面内任意一点的坐标,并能运用坐标系解决一些实际问题。

二. 学情分析学生在七年级上学期已经学习了有理数,对数的概念和运算,对数学符号和运算规则有一定的掌握。

但平面直角坐标系是一个比较抽象的概念,对学生来说可能比较难以理解。

因此,在教学过程中,需要注重引导学生从实际例子出发,逐步抽象出平面直角坐标系的概念。

三. 教学目标1.了解平面直角坐标系的定义和特点,能够画出简单的平面直角坐标系。

2.掌握坐标轴上点的坐标表示方法,能够熟练地确定平面内任意一点的坐标。

3.能够运用平面直角坐标系解决一些实际问题。

四. 教学重难点1.平面直角坐标系的定义和特点。

2.坐标轴上点的坐标表示方法。

3.运用平面直角坐标系解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际例子出发,发现并总结平面直角坐标系的定义和特点。

2.通过图形和实际例子,帮助学生理解并掌握坐标轴上点的坐标表示方法。

3.设计一些实际问题,让学生运用平面直角坐标系进行解决,巩固所学知识。

六. 教学准备1.准备一些实际的例子,如地图上的位置表示,物体在平面上的位置表示等。

2.准备一些平面直角坐标系的图形,以便在教学中进行展示和讲解。

3.准备一些练习题,以便在巩固环节进行练习。

七. 教学过程1.导入(5分钟)通过展示一些实际的例子,如地图上的位置表示,物体在平面上的位置表示等,引导学生思考如何表示平面上的点的位置。

2.呈现(15分钟)介绍平面直角坐标系的定义和特点,通过图形和实际例子,解释坐标轴上点的坐标表示方法。

3.操练(15分钟)让学生通过观察图形,确定图形中各个点的坐标。

也可以设计一些实际问题,让学生运用所学知识进行解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
问题3:B(3,2)属于第几象限呢?C(2,3)呢?
问题4:第一象限内点的坐标的符号有什么规律吗?第二象限呢?第三象限呢?第四象限呢?
学生参与小组活动,分组讨论、交流问题并发表见解;教师在学生讨论的基础上,引导学生发现问题并解决问题.
本次活动中,教师应关注:
(1)学生对位于不同象限和坐标轴上的点的坐标的符号问题;注意让学生对这些不同位置的点的坐标进行比较;
6.1.2平面直角坐标系(2)教案
学校
主备人
时间
设计
理念
由数轴的表示引入,到两个数轴和有序数对。从学生熟悉的物品入手,引申到平面直角坐标系。培养学生的知识迁移能力和类比能力。




知识与技能:
1.能根据坐标描出点的位置(坐标都为整数).
过程与方法:
经历在方格纸上建立平面直角坐标系描述物体位置的过程,发展抽象思维、实践能力和创新精神.
(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
教师在学生回答的基础上,进一步引导学生发现由坐标找点的方法,然后学生分组讨论、交流问题并发表见解.教师在讨论的过程中,深入到学生的讨论中.
在给定的直角坐标系中,能利用点的坐标描出点的位置,这是学习本节应该达到的基本要求.对于这个要求,此活动针对一个点(-6,5),详细介绍描出这个点的方法,其余的点留给学生指出,是希望给学生提供自己探索学习的机会.
情感态度与价值观:
经历探索点的位置关系与坐标之间关系的过程.发展学生有条理地、清晰地阐述自己的观点的能力.
重点
根据点的坐标在直角坐标系中描出点的位置.
难点
探索特殊的点与坐标之间的关系.
方法
操作实验、探究法
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
一、复



活动1.在已知的直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.
学生分组交流,教师适时分组指导.
纵坐标相同的点所在的直线平行于x轴;反之,平行于x轴的直线上的所有点的纵坐标相同;横坐标相同的点所在的直线平行于y轴;反之,平行于y轴的直线上的所有点的横坐标相同.
培养学生的观察能力和合作交流能力,检验学生对坐标系的掌握情况.
五、巩



1.如图,长方形ABCD中,点A,B,C的坐标分别为A(-4,1),B(0,1),C(0,3),则点D的坐标为____________.
四、探



活动3:点到坐标轴的距离。
过点作x轴的垂线段的长度叫做点到x轴的距离.
过点作y轴的垂线段的长度叫做点到y轴的距离.
如图,正方形ABCD的边长为6,如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,那么y轴是哪条线?
(1)写出正方形的顶点A、B、C、D的坐标。
(2)请另建立一个直角坐标系,这时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下。
(3)在方格纸上分别指出下列各点,看看这些点在什么位置上,由此你有什么发现吗?
(0,2), (2,2) , (4,2), (-3,2),
(3,0) , (3,2) , (3,4) , (3,-5).
B
1.解题时如果需要建立平面直角坐标系,应明确指出如何建立;
2.建立坐标系时,应使各点坐标途述方便为宜.
C.m=2,n=-1 D.m=-3,n=4
4.已知坐标平面内点A(m,n)在第四象限,则点B(n,m)在第______象限。
5.在平面直角坐标系内,已知点P ( a , b ),且a b < 0 ,
则点P的位置在____________。
6.已知点A(-2,0),B(4,0),C(x,y)
(1)若点C在第二象限,且∣x∣=4,∣y∣=4,求点C的坐标;
(2)求△ABC的面积。
学生独立完成练习后,在小组内交流;教师对练习作出评价.
本次活动中,教师应关注:
(1)对不同象限和坐标轴上的点的坐标的符号问题的应用能力;
(2)学生能否在学习中反思.
判断点在哪一象限关键抓住象限内或坐标轴上点的坐标的符号特征。
通过练习,让学生熟练位于不同象限和坐标轴上的点的坐标的符号问题,使学生能运用所学知识和技能解决问题,同时为学生提供充分发挥创造力的空间,更大地调动学生的积极性.
2.已知点A,B两点的坐标为(x,2),(-3,y),若AB∥x轴,则x____________,y = ____________;
若AB∥y轴,则x = ____________,y ____________.
3.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()
(A)平行于x轴(B)平行于y轴
(C)经过原点(D)以上都不对
学生分组讨论、交流;教师到小组去参与活动倾听学生的交流.
六、体



通过本节课学习你有什么收获?
让学生在活动中进一步认识平面直角坐标系内的点与点的坐标的关系;熟练掌握由点找坐标,由坐标找点的过程,获得更多的学习经验,体验在学习过程中的成就感.享受学习数学的乐趣.
二、自



活动2:点的位置与它坐标的符号之间的关系
问题1:两条坐标轴把平面分成了几部分呢?
问题2:A(0,1)属于第几象限呢?
1
1
-1
(2)学生的合情推理能力;
(3)学生在小组活动中的合作交流意识.
通过给学生提供数学背景,吸引学生的注意力,激发好奇心和求知欲.
让学生通过亲自经历体会从具体情境中探索出规律性的结论,有一定的思考难度.
让学生在活动中获得更多的数学信息和经验,这也是本节的难点.
三、尝



1、分别说出下列各点在哪个象限内或在哪条ห้องสมุดไป่ตู้标轴上?
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(-9,3),(-9,0),(-3,0),(-3,3);
(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);
(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
A(6,-2), B(0,3) , C(3,7),
D(-6,-3),E(-2,0) , F(-9,5)
2.已知点A(1+m,2m+1)在x轴上,则m=_____,
此时点A的坐标为______。3.若点P(m+2,1-n)在第三象限,则m,n可能的取值是()
A. m=-2,n=4 B.m=-3,n=1
相关文档
最新文档