2017年春季学期八年级数学第一次月考试卷

合集下载

山东省聊城市八年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

山东省聊城市八年级数学上学期第一次月考试卷(含解析) 新人教版-新人教版初中八年级全册数学试题

2016-2017学年某某省聊城市八年级(上)第一次月考数学试卷一.精心选一选(每题3分,共36分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cm C.7cm D.无法确定3.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠44.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去5.有理式:①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④6.到三角形三个顶点距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条内角平分线的交点D.三角形三条边垂直平分线的交点7.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40° 40°B.80° 20°C.50° 50°D.50° 50°或80° 20°8.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣4,﹣5)D.(﹣5,﹣4)9.如图△ABC中,∠C=90°,AD平分∠BAC,若AB=9,CD=2,则△ABD的面积是()A.B.9 C.18 D.10.如图所示,在△ABC中,直线MN是AC的垂直平分线,若CM=4cm,△ABC的周长是27cm,那么△ABN的周长是()A.19cm B.17cm C.9cm D.9cm或17cm11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个12.已知点A和点B(如图),以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A.2个B.4个C.6个D.8个二、耐心填一填(每小题4分,共20分)13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).14.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=.15.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是;生活中的活动铁门是利用四边形的.16.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、画图题(共10分,每题5分):用心画一画18.(1)如图1,已知:∠α,∠β,线段a,用尺规作△ABC,使∠A=∠α,∠B=∠β,AB=a.(保留作图痕迹,不写作法)(2)已知∠AOB及C、D两点,如图2所示,C在∠AOB外,D在∠AOB内,求作一点P,使PC=PD且P到OA、OB的距离相等(保留作图痕迹).四、解答题(共54分):用心做一做19.如图,△ABC中,DE为AB的垂直平分线,交AC于点D,交AB于点E,若△ABC的周长为20,AE为4,求△BCD的周长.20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.21.如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM与QN相等吗?请证明.22.如图,在等腰△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:∠DEF=∠DFE.23.如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.(1)求证:BD=DE+CE(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE 的关系如何?请予以证明.(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE 的关系如何?直接写出结果,不需证明.2016-2017学年某某省聊城市文轩中学八年级(上)第一次月考数学试卷参考答案与试题解析一.精心选一选(每题3分,共36分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.2.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A.6cm B.5cm C.7cm D.无法确定【考点】全等图形.【分析】根据全等三角形的书写,DE与BC是对应边,再根据全等三角形对应边相等即可求出DE的长度也就是BC的长度.【解答】解:∵△ABC≌△ADE,∴DE=BC,∵BC=7cm,∴DE=7cm.故选C.3.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠4【考点】全等三角形的判定.【分析】根据题目中给出的条件AB=AD,AC=AE,要用“SAS”还缺少条件是夹角:∠BAC=∠DAE,筛选答案可选出C.【解答】解:还需条件∠1=∠2,∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即:∠BAC=∠DAE,在△ABC和△ADE中:,∴△ABC≌△ADE(SAS).故选:C.4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.5.有理式:①,②,③,④中,是分式的有()A.①② B.③④ C.①③ D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.6.到三角形三个顶点距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条内角平分线的交点D.三角形三条边垂直平分线的交点【考点】线段垂直平分线的性质.【分析】到两个顶点距离相等的点在这两个顶点为端点的线段的垂直平分线上.∴到三角形三个顶点距离相等的点是三角形三条边垂直平分线的交点.【解答】解:到两个顶点距离相等的点在这两个顶点为端点的线段的垂直平分线上.∴到三角形三个顶点距离相等的点是三角形三条边垂直平分线的交点.故选D.7.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40° 40°B.80° 20°C.50° 50°D.50° 50°或80° 20°【考点】等腰三角形的性质.【分析】先求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等分情况讨论求解.【解答】解:∵一个外角等于100°,∴与这个外角相邻的内角是180°﹣100°=80°,①80°角是顶角时,底角是=50°,与它不相邻的两个内角的度数分别为50°,50°;②80°角是底角时,顶角是180°﹣80°×2=20°,与它不相邻的两个内角的度数分别为80°,20°,综上所述,与它不相邻的两个内角的度数分别为50°,50°或80°,20°.故选D.8.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣4,﹣5)D.(﹣5,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).【解答】解:∵点P关于x轴对称点M的坐标为(4,﹣5),∴P(4,5),∴点P关于y轴对称点N的坐标为:(﹣4,5).故选:A.9.如图△ABC中,∠C=90°,AD平分∠BAC,若AB=9,CD=2,则△ABD的面积是()A.B.9 C.18 D.【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×9×2=9,故选:B.10.如图所示,在△ABC中,直线MN是AC的垂直平分线,若CM=4cm,△ABC的周长是27cm,那么△ABN的周长是()A.19cm B.17cm C.9cm D.9cm或17cm【考点】线段垂直平分线的性质.【分析】由“MN是AC的垂直平分线”知AN=NC,再根据已知边长及△ABC周长,即可求得三角形ABN的周长.【解答】解:∵MN是AC的垂直平分线,CM=4cm,∴AN=NC,AM=MC,∴BC=AN+BN,AC=8cm,又∵△ABC的周长是27cm,∴AB+BC=19cm,∴△ABN的周长=AB+BN+AN=AB+BC=19cm.故选:A.11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BF=CF,∴△ABC,△ABD,△ACE,△BFC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,∴BE=BF,CF=CD,BC=BD=CF,∴△BEF,△CDF,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选C.12.已知点A和点B(如图),以点A和点B为其中两个顶点作位置不同的等腰直角三角形,一共可作出()A.2个B.4个C.6个D.8个【考点】等腰直角三角形.【分析】利用等腰直角三角形的性质来作图,要注意分不同的直角顶点来讨论.【解答】解:此题应分三种情况:①以AB为腰,点A为直角顶点;可作△ABC1、△ABC2,两个等腰直角三角形;②以AB为腰,点B为直角顶点;可作△BAC3、△BAC4,两个等腰直角三角形;③以AB为底,点C为直角顶点;可作△ABC5、△ABC6,两个等腰直角三角形;综上可知,可作6个等腰直角三角形,故选C.二、耐心填一填(每小题4分,共20分)13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.14.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC= 15°.【考点】等边三角形的性质.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.15.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是三角形的稳定性;生活中的活动铁门是利用四边形的不稳定性.【考点】三角形的稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性与四边形的不稳定性作答.【解答】解:大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这样做的根据是三角形的稳定性;生活中的活动铁门是利用四边形的不稳定性.故答案为:三角形的稳定性、不稳定性.16.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.17.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【考点】等边三角形的性质;全等三角形的判定与性质.【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【解答】解:①∵正△ABC和正△CDE,∴AC=BC,CD=CE,∠ACB=∠D CE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、画图题(共10分,每题5分):用心画一画18.(1)如图1,已知:∠α,∠β,线段a,用尺规作△ABC,使∠A=∠α,∠B=∠β,AB=a.(保留作图痕迹,不写作法)(2)已知∠AOB及C、D两点,如图2所示,C在∠AOB外,D在∠AOB内,求作一点P,使PC=PD且P到OA、OB的距离相等(保留作图痕迹).【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠A=∠α,∠B=∠β,AB=a即可;(2)利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:(1)如图1,△ABC即为所求.;(2)如图2,点P即为所求..四、解答题(共54分):用心做一做19.如图,△ABC中,DE为AB的垂直平分线,交AC于点D,交AB于点E,若△ABC的周长为20,AE为4,求△BCD的周长.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质即可得到结论.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,AB=2AE=8,∵若△ABC的周长为20,∴BC+AC=20﹣8=12,∴△BCD的周长=BC+CD+BD=BA+BD+AD=BC+AC=12.20.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.【考点】线段垂直平分线的性质.【分析】先利用ASA证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O 在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【解答】证明:在△AOB与△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.21.如图,P是∠AOB内部的一点,PE⊥OA,PF⊥OB垂足分别为E,F.PE=PF.Q是OP上的任意一点,QM⊥OA,QN⊥OB,垂足分别为点M和N,QM与QN相等吗?请证明.【考点】角平分线的性质.【分析】根据到角的两边的距离相等的点再叫的平分线上可得OP是∠AOB的角平分线,再根据角的平分线上的点到角的两边的距离相等可得QM=QN.【解答】解:QM=QN,理由如下:∵PE⊥OA,PF⊥OB垂足分别为E,F,PE=PF,∴OP是∠AOB的角平分线,∵QM⊥OA,QN⊥OB,∴QM=QN.22.如图,在等腰△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:∠DEF=∠DFE.【考点】等腰三角形的性质;角平分线的性质.【分析】根据等腰三角形的性质得到AD是∠BAC的平分线,再根据角平分线的性质得到DE=DF,再根据等腰三角形的性质可证此题.【解答】证明:连接AD,∵D是BC的中点,∴BD=CD,又∵AB=AC,∴AD是∠BAC的平分线,又∵DE⊥AB,DF⊥AC,∴DE=DF,∴∠DEF=∠DFE.23.如图1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B点和C点在AE的异侧,BD⊥AE于D点,CE⊥AE与E点.(1)求证:BD=DE+CE(2)若直线AE绕点A旋转到图2所示的位置时(BD<CE)其余条件不变,问BD 与DE,CE 的关系如何?请予以证明.(3)若直线AE绕点A旋转到图3所示的位置时(BD>CE)其余条件不变,问BD 与DE,CE 的关系如何?直接写出结果,不需证明.【考点】几何变换综合题.【分析】(1)根据已知条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(2)BD=DE+CE.根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论.(3)同上理,BD=DE+CE仍成立.【解答】证明:(1)∵BD⊥AE于D,CE⊥AE于E,∴∠ADB=∠AEC=90°.∵∠BAC=90°,∠ADB=90°,∵∠ABD+∠BAD=∠CAE+∠BAD=90°,∴∠ABD=∠CAE在△ABD 和△CAE中,∠ABD=∠CAE,∠ADB=∠CEA,AB=AC∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE∵AE=AD+DE,∴BD=DE+CE(2)解:BD=DE﹣CE证明如下:∵BD⊥AE于D,CE⊥AE于E,∴∠DAB+∠DBA=90°∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE.在△DBA和△EAC中,∠D=∠E=90°,∠DBA=∠CAE,AB=AC△DBA≌△EAC(AAS)∴BD=AE,AD=CEBD=AE=DE﹣AD=DE﹣CE(3)∵BD⊥AE于D,CE⊥AE于E,∴∠DAB+∠DBA=90°∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE.在△DBA和△EAC中,∠D=∠E=90°,∠DBA=∠CAE,AB=AC △DBA≌△EAC(AAS)∴BD=AE,AD=CE又∵ED=AD+AE,∴DE=BD+CE.。

2017——2018学年第一学期第一次月考八年级数学试卷及答案

2017——2018学年第一学期第一次月考八年级数学试卷及答案

八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7.D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°, ∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°. 在Rt △ABC 和Rt △DEF 中,AC =DFAB =DE ,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分(证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余),∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余),∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3, 解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分八年级数学参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共30分)1.C 2.A 3.C 4.D 5.B 6.D 7. D 8.B 9.B 10.B二、填空题(每小题3分,共15分)11.180 12.略13.60 14.二、四15.48三、解答题(共75分)16.证明:在△ABC和△ADC中,有AB=ADBC=DCAC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.…………………………………………………………………………9分17.解:设这个多边形的边数是n,依题意得………………………………………1分(n-2)×180°=4×360°+180°,…5分(n-2)=8+1,n=11.即这个多边形的边数是11.……8分18.解:如图所示,AG就是所求的△ABC中BC边上的高.(没有指明高的结果扣1分,每小题3分共9分)19.解:∵∠B=50°,AD 是BC 边上的高,∴∠BAD=90°-50°=40°,∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B -∠C=180°-50°-70°=60°,∵AE 是∠BAC 的平分线,∴∠BAE=21∠BAC=21×60°=30°,∴∠AED=∠B +∠BAE=50°+30°=80°.20.证明:∵AB ⊥CD ,DE ⊥CF ,∴∠ABC=∠DEF=90°.在Rt △ABC 和Rt △DEF 中,AC =DFAB =,∴Rt △ABC ≌Rt △DEF (HL ).∴BC=EF .∴BC -BE=EF -BE .即:CE=BF .………9分21.解:AD 是△ABC 的中线.理由如下:∵BE ⊥AD ,CF ⊥AD ,(已知)∴∠BED=∠CFD=90°,(垂直的定义)在△BDE 和△CDF 中,∠BED =∠CFD (已证)∠BDE =∠CDF (对顶角相等)BE =CF ,(已知)∴△BDE ≌△CDF (AAS ),∴BD=CD .(全等三角形对应边相等)∴AD 是△ABC 的中线.(三角形中线的定义)……………………………………11分 (证明8分,理由3分)22.证明:(1)∵BD ⊥AC ,CE ⊥AB (已知),∴∠BEC=∠BDC=90°,∴∠ABD +∠BAC=90°,∠ACE +∠BAC=90°(直角三角形两个锐角互余), ∴∠ABD=∠ACE (等角的余角相等),在△ABP 和△QCA 中,BP =AC ∠ABD =∠ACECQ =AB∴△ABP ≌△QCA (SAS ),∴AP=AQ (全等三角形对应边相等).………………………………………………5分(2)由(1)可得∠CAQ=∠P (全等三角形对应角相等),∵BD ⊥AC (已知),即∠P +∠CAP=90°(直角三角形两锐角互余), ∴∠CAQ +∠CAP=90°(等量代换),即∠QAP=90°,∴AP ⊥AQ (垂直定义).……………………………………………………………10分23.解:(1)∵|m−n−3|=0且062=-n∴m -n -3=0且2n -6=0,解得:n=3,m=6,∴OA=6,OB=3;……………………4分(2)∵AP=t ,PO=6-t ,∴△BOP 的面积S=21×(6-t )×3=9-23t=3,解得t=4,所以当P 在线段OA 上且△POB 的面积等于3时,t 的值是4……………………8分(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3, 第二个图中AP=6+3=9,即t=9;即存在这样的点P ,使△EOP ≌△AOB ,t 的值是3或9.…………………………11分。

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。

精品解析:2017年春季学期八年级数学下册第一次月考试题及参考答案(解析版)

精品解析:2017年春季学期八年级数学下册第一次月考试题及参考答案(解析版)

广西马山县民族中学2017年春季学期八年级数学下册第一次月考试题一、选择题:(共12小题,每小题3分,共36分).选项中只有一个正确,请将正确答案选出来,并将其字母填入下面表格中相应的栏内.)1. 以下式子中,一定是二次根式的是( )A. B. C. D.【答案】A【解析】试题分析:二次根式的被开方数为非负数.B选项中如果x0,则就不符合二次根式的定义;C选项为立方根;D选项中当x,则就不符合二次根式的定义.2. 有意义,那么x的取值范围是( )A. X>B. x>--C. xD. x【答案】C【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,即2x+10,解得:x.3. 平面直角坐标系上点A、B的坐标分别为(4,0)、(0,3),则线段AB长为( )A. 6B. 5C. 4D. 3【答案】B【解析】试题分析:根据两点之间的距离公式可得:AB=.4. 化简的结果为( )A. ―2B. ―4C. 2D. 4【答案】D【解析】试题分析:根据二次根式的化简法则可得:,则原式=.5. 以下运算正确的是( )A. 是最简二次根式B. 三边长分别为4、5、6的三角形是直角三角C. 直角三角形两直角边的和等于斜边的长D. 等腰直角三角形腰长为1,则斜边长为【答案】D【解析】试题分析:A、,则不是最简二次根式;B、,则4、5、6的三角形不是直角三角形;C、直角三角形两直角边的平方和等于斜边的平方;D、等腰直角三角形的腰长为1,则斜边长=,则正确.点睛:本题主要考查的就是最简二次根式和直角三角形的勾股定理.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.直角三角形的勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方.6. a、b、c是三角形的三边长,且,则这个三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形【答案】B【解析】试题分析:根据题意可得:,则,则这个三角形就是直角三角形.7. 以下句子正确的是()A. B C D【答案】A【解析】试题分析:A、计算正确;B、不是同类二次根式,无法进行加法计算;C、原式=;D、原式=.8. 化简的结果是( )A. 4a B 16 C 2a D 2a【答案】D【解析】根据二次根式的性质,可知==2a.故选:B点睛:此题主要考查了二次根式的化简,利用二次根式的性质和最简二次根式的概念,化简即可.9. 能与合并的二次根式是( )A. B. C. D.【答案】B学,科,网...学,科,网...学,科,网...学,科,网...10. 若,则x的值为( )A. B. C. D. 1【答案】C【解析】根据题意,先移项为,两边同除以系数,可得x=.故选:C11. 估算的值在 ( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】C【解析】试题分析:原式=3,根据6.2579,则,即,那么,所以这个数处在5和6之间.12. 等腰三角形腰长为13cm,底边长为10cm,则其面积为( )A. 30B. 40C. 50D. 60【答案】D【解析】试题分析:根据题意可得:AB=13cm,BD=BC=5cm,根据等腰三角形的性质可知:AD⊥BC,则根据勾股定理可得:AD=12cm,则△ABC的面积=10×12÷2=60.点睛:本题主要考查的就是等腰三角形的性质以及直角三角形的勾股定理的应用.在解答等腰三角形的问题时,我们经常会通过作底边上的高线,利用等腰三角形底边上的三线合一定理转化成直角三角形的问题来进行求解.同学们在解答三角形问题时,如果出现角平分线或者中垂线的时候,一定要特别注意中垂线的性质和角平分线的性质的应用.二填空题(本大题有6小题,毎小题3分,共18分)13. 计算5的结果是___________.【答案】【解析】试题分析:根据化简法则可得:原式=5-2=3.14. 如果,则x的范围是_____________.【答案】【解析】试题分析:根据二次根式的化简法则可得:,根据题意可得:2x-30,解得:x.点睛:本题注意考查的就是二次根式的化简法则.在解答这种问题的时候我们一定要注意区分和,对于而言,a的取值范围为全体实数,运算结果为;对于而言,a的取值范围为:a0,运算结果为a.同学们在解答这种问题的时候,我们一定要区分是哪一种形式,然后根据运算法则进行计算,进行求取值范围.15. 计算=____________________.【答案】【解析】试题分析:根据完全平方公式可得:原式=.16. 如图所示,己知OA=OB,则数轴上点A表示的数是____________.【答案】-【解析】根据图示,由勾股定理可求OB的长为,然后根据OA=OB可知OA=,因此A 点表示的数为-.17. 直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC= _____________.【答案】8【解析】试题分析:根据题意可知AB为斜边,BC为直角边,根据勾股定理求另一直角边AC=8.故答案为:8点睛:此题主要考查了勾股定理的应用,解题的关键是明确直角三角形的各边,然后套用勾股定理的关系式求解即可,比较简单,是常考题.18. 直角三角形中,两直角边的比是2:3,且斜边长为,则其面积为_________.【答案】9【解析】试题分析:首先设直角三角形的两直角边长分别为2x和3x,则根据勾股定理可得:,解得:x=,则两直角边长分别为2和3,则S=2×3÷2=9.点睛:本题主要考查的就是直角三角形的勾股定理、解一元二次方程以及二次根式的计算,属于中等题.在直角三角形中,两条直角边的平方和等于斜边的平方.在解决这个问题,我们首先设成两直角边长,然后根据勾股定理来进行计算.在解答直角三角形问题时,我们需要特别注意一些特殊三角形,比如:等腰直角三角形和含有30°角的直角三角形.三、解答题19. 计算:(1)(2)(3) (4)【答案】(1);(2) ;(3);(4)【解析】试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后再进行加减法计算得出答案;(2)、根据二次根式的乘除法计算法则进行计算得出答案;(3)、根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(4)、将括号里面的二次根式进行化简计算,然后根据二次根式的除法计算法则进行计算得出答案.试题解析:(1) == =(2)===(3) ==(4) = ===20. 在直角三角形ABC中,∠C=90,∠C所对的边为c.(1) 已知c=25,b=15,求a;(2) 已知∠A=,求b、c.【答案】(1)20;(2)【解析】试题分析:(1)、根据直角三角形的勾股定理求出a的值;(2)、根据题意得出c=2b,然后根据勾股定理求出b的值,从而得出c的值.试题解析:(1) 由勾股定理得:==20(2) ∠a=c=2b故由勾股定理得:21. 某小区有一块长为m,宽为m的空地,现要对该空地植上草萍进行绿化,解答下面的问题:(其中, , 结果保留整数)(1) 求该空地的周长;(2) 若种植草坪的造价为12元/ ㎡,求绿化该空地所需的总费用.【答案】(1) 54();(2)2112(元)【解析】试题分析:(1)、首先根据二次根式的化简法则进行化简,然后根据矩形的周长计算公式进行计算,得出答案;(2)、根据矩形的面积计算法则求出面积,然后乘以每平方米的造价得出答案.试题解析:(1)该空地周长为c=54()(2)该空地面积为s==176种草坪造价为M=17612=2112(元)22. 如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为90米,且点A、D、B在同一直线上,求建筑物A、B间的距离(结果保留根号).【答案】(m)【解析】试题分析:首先根据题意得出∠A和∠B的度数,然后根据Rt△ACD和Rt△BCD的勾股定理分别求出AD和BD的长度,从而根据AB=AD+BD得出答案.试题解析:∠ACE=∠∠A=∠B=在RtΔACD中AC=2CD=180在RtΔBCD中即由此得BD=AB=AD+BD=(m)23. 先化简,再求值:,其中a=.【答案】【解析】试题解析:首先将分式的分子和分母分别进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子进行计算得出答案.试题分析:==当时,原式=。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是.三、解答题(共46分)19.(5分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.20.(6分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED 的度数.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】三角形内角和定理.【专题】压轴题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,再判断三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,5k°.根据三角形内角和定理可知2k°+3k°+5k°=180°,得k°=18°,所以2k°=36°,3k°=54°,5k°=90°.即这个三角形是直角三角形.故选:A.【点评】此类题利用三角形内角和定理列方程求解可简化计算.有一个角是90°的三角形是直角三角形.3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【专题】几何图形问题.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形的性质进行判断即可.【解答】解:①全等三角形的面积相等,说法正确;②全等三角形的周长相等,说法错误;③全等三角形的对应角相等,说法正确;④全等三角形的对应边相等,说法正确;正确的有4个,故选D.【点评】本题考查了对全等三角形的定义和性质的应用,主要考查学生的理解能力和辨析能力,注意:全等三角形的对应边相等,对应角相等.5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.【考点】全等三角形的判定.【分析】三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等,据此判断即可.【解答】解:A、∵a,c边夹角为50°,∴根据SAS可判定两三角形全等,故A正确;B、∵a,c边夹角不一定为50°,∴不能判定两三角形全等,故B错误;C、∵72°角所对的边不相等,∴不能判定两三角形全等,故C错误;D、∵50°和58°的角的夹边不相等,∴不能判定两三角形全等,故D错误;故选:A.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的判定方法.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm【考点】三角形的角平分线、中线和高.【分析】利用中线的定义可知AD=CD,可知△ABD和△BCD的周长之差即为AB和BC的差,可求得答案.【解答】解:∵BD是△ABC的中线,∴AD=CD,∵△ABD周长=AB+AD+BD,△BCD周长=BC+CD+BD,∴△ABD周长﹣△BCD周长=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC=5﹣3=2(cm),即△ABD和△BCD的周长之差是2cm,故选B.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S+S△ACD列出方程求解即可.△ABD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•A D,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值X围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值X围,从而确定绝对值内的代数式的符号,难度不大.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=﹣1,b=3 .【考点】命题与定理.【分析】根据有理数的加法和绝对值的性质,只要a、b异号即可.【解答】解:a=﹣1,b=3时|a+b|=|a|+|b|”是假命题.(答案不唯一,只要a、b是异号两数即可).故答案为:a=﹣1,b=3.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了有理数的加法和绝对值的性质.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是 3 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可知:DE=CD.【解答】解:过点D作DE⊥AB于点E,∵BD平分∠ABC,∠C=∠BED=90°∴DE=CD=3,∴点D到AB的距离为3,故答案为:3【点评】本题考查角平分线的性质,属于基础题型.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为 4 .【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到EA=8,做差后得到BE的长度.【解答】解:∵△ABC中,AB=AC=12,EF为AC的中垂线∴EC=EA=8,BE=12﹣8=4.BE的长为4.故填4.【点评】此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本题的关键.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是19 .【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值X围,再根据第三边是奇数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4而小10.又∵第三根木棒的长是奇数,则应为5,7,9.这样的三角形的周长最大值是3+7+9=19,故答案为19【点评】此题考查了三角形的三边关系,关键是根据第三边大于两边之差而小于两边之和解答.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.【考点】三角形内角和定理.【分析】先根据垂直的定义得出∠BEH=∠HDC=90°,由三角形外角的性质得出∠EBH与∠DCH的度数,再根据三角形内角和定理求出∠HBC+∠HCB的度数,进而可得出∠ABC+∠ACB的度数,由此可得出结论.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEH=∠HDC=90°.∵∠BHC=110°,∴∠EBH=∠DCH=110°﹣90°=20°,∠HBC+∠HCB=180°﹣110°=70°,∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,∴∠A=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是∠1+∠2=2∠A .【考点】三角形内角和定理.【分析】设∠AED的度数为x,∠ADE的度数为y,根据全等三角形的对应角相等,以及平角的定义表示出∠1和∠2,求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:设∠AED的度数为x,∠ADE的度数为y,则∠1=180°﹣2x,∠2=180°﹣2y,∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A,∴关系为:∠1+∠2=2∠A.故答案为:∠1+∠2=2∠A.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.本题解法多样,也可以运用三角形外角性质进行求解.三、解答题(共46分)19.已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.【考点】作图—复杂作图.【分析】先作∠MBN=∠α,再在∠MBN的两边上分别截取AB=a,BC=b,最后连接AC即可.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查了尺规作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,进而得到∠EAD=∠CAB,结合∠CAD=35°,即可求出∠EAD和∠CAB的度数,再结合外角的性质即可求出所求角的度数.【解答】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,又∵且∠CAD=35°,∠EAB=105°,∴∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°,∴∠DFB=∠DAC+∠B=70°+20°=90°,∠BED=∠BFD﹣∠D=90°﹣20°=70°.【点评】本题主要考查了全等三角形的性质,解题的关键是掌握三角形外角的性质,此题难度不大.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,∠C=∠D ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.【考点】全等三角形的判定.【分析】直接利用全等三角形的判定方法,添加:∠C=∠D,进而得出答案.【解答】解:添加条件是∠C=∠D.理由如下:在△ABC与△BAD中,∵∴△ABC≌△BAD(AAS),故答案为∠C=∠D.【点评】本题考查了三角形全等的判定方法,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】设∠ABC=x°,再根据三角形外角的性质得出∠BAD=∠B+∠C=90°+x°,根据AF平分外角∠BAD可知∠DAF=∠BAD=(90°+x°),根据对顶角的性质得出∠EAG=∠DAF=(90°+x°),根据BE平分∠ABC可知∠CBE=∠ABC=x°,故可得出∠AGE的度数,由三角形内角和定理即可得出结论.【解答】解:设∠ABC=x°,∵∠BAD是△ABC的外角,∠C=90°,∴∠BAD=∠ABC+∠C=90°+x°,∵AF平分外角∠BAD,∴∠DAF=∠BAD=(90°+x°),∴∠EAG=∠DAF=(90°+x°).∵BE平分∠ABC,∴∠CBE=∠ABC=x°,∴∠AGE=∠BGC=90°﹣∠CBE=90°﹣x°,∵∠E+∠EAG+∠AGE=180°,即∠E+(90°+x°)+90°﹣x°=180°,解得∠E=45°.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.【考点】角平分线的性质.【分析】(1)分析题意易证得△ADE≌△ADC,则有CD=DE,而BC=BD+DC可求BC的长;(2)根据题意画出图形,利用三角形的面积公式即可得出结论.【解答】解:(1)∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵,∴△ADE≌△ADC(SAS)∴DE=DC,∴BC=BD+DC=BD+DE=2+3=5(cm);(2)如图,∵∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,∴S△ABC=S△AOC+S△AOF+S△BCF=×6a+×9a+×5a=3a+a+a=10a(cm)2.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.【解答】证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.【点评】此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC和CE=CF.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)先根据三角形内角和定理,求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,最后由三角形内角和定理,即可求出∠BPC的度数;(2)先连接AP并延长至D,根据∠ABC与∠ACB的角平分线相交于P,求得∠1=ABC,∠3=∠ACB,最后根据三角形的外角性质,求得∠BPC的度数.【解答】解:(1)∵△ABC中,∠A=112°,∴∠ABC+∠AC B=180°﹣∠A=180°﹣112°=68°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×68°=34°,∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°.(2)如图,连接AP并延长至D,∵∠ABC与∠ACB的角平分线相交于P,∴∠1=ABC,∠3=∠ACB,∵∠BPD是△ABD的外角,∴∠BPD=∠1+∠BAP,同理可得∠CPD=∠3+∠CAP,∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP=ABC+∠ACB+∠BAC=(∠ABC+∠ACB)+α=(180°﹣α)+α=90°+α.【点评】本题考查的是三角形内角和定理,三角形外角性质及角平分线的定义的综合应用,本题解法多样,熟知三角形的内角和定理是解答此题的关键.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。

正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。

以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。

一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。

2017-2018华师大版八年级数学上册第一次月考试卷及答案

2017-2018华师大版八年级数学上册第一次月考试卷及答案

2017-2018华师大版八年级数学上册第一次月考试卷及答案XXX2017-2018学年度第一学期第一次学情调查八年级数学试卷(11-12章)命题人:XXX一、选择题(每题3分,共30分)1.下列说法中,正确的是【C】。

A。

(-6)2的平方根是-6B。

带根号的数都是无理数C。

27的立方根是±3D。

立方根等于-1的实数是-12.在实数-1/3,4,-0.518,π/3,0.6732,3-7,-2中,无理数的个数是【B】。

A。

1B。

2C。

3D。

43.下列运算正确的是【D】。

A。

a2·a3=a6B。

y3÷y3=yC。

3m+3n=6mnD。

(x3)2=x64.(-3x+1)(-2x)2等于【B】。

A。

-6x3-2x2B。

-12x3+4x2C。

6x3+2x2D。

6x3-2x25.计算(x-6)(x+1)的结果为【B】。

A。

x2+5x-6B。

x2-5x-6C。

x2-5x+6D。

x2+5x+66.已知(a-2)2+b-8=121,则a/b的平方根是【A】。

A。

±2B。

-2C。

±√2D。

27.(mx+8)(2-3x)展开后不含x的一次项,则m为【D】。

A。

3B。

-3C。

12D。

248.矩形ABCD中,阴影部分横向的是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为【B】。

A。

bc-ab+ac+c2B。

ab-bc-ac+c2XXX-acD。

b2-bc+a2-ab9.如果x2+M+16=0,则M的值为【-16】。

二、填空题(每题3分,共30分)10.平面直角坐标系中,点(2.-3)关于y轴的对称点为(-2,-3)。

11.平面直角坐标系中,点(2.-3)关于x轴的对称点为(2,3)。

12.一元二次方程x2+4x-45=0的两个根分别为5和-9.13.若三角形ABC中,∠A=90°,AB=5,AC=12,则BC 的长为13.14.若P(3,4)是圆x2+y2=25上的一点,则点P的对称点P'关于x轴的坐标为(3,-4)。

北师大版八年级数学下第一次月考数学试卷

北师大版八年级数学下第一次月考数学试卷

北师大版八年级数学第一次月考数学试卷(考试时间:100分钟,分值:120分)一.选择题(3×10=30分)1.下列不等式中,属于一元一次不等式的是()A.x>1B.3x2﹣2<4C.<2D.4x﹣3<2y﹣7 2.如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处第2题第 4题第7题第8题3. 将不等式组{4x>−83x−5≤1的解集在数轴上表示出来,则下列选项正确的是()A.B.C.D.4.如图,BE=CF,AE⊥BC,DF⊥BC,要直接根据“HL”证明Rt△ABE≅Rt△DCF,则还要添加一个条件是()A.∠A=∠D B.∠B=∠C C.AE=BF D.AB=DC5. 下列不一定成立的是()A.若a<b,则 c−a>c−b .B. 若ac2<bc2,则 a<bC. 若a−c<b−c,则 a<b.D. 若a< b,则 ac2<bc2.6. 郑州市出租车的收费标准是:起步价10元(即行驶距离不超过3千米都需付10元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为18元,依题意,可列出不等式()A.10+2x<18 B.10+2x≤18 C.10+2(x-3)≤18 D.10+2(x-3)<18 7.如图,直线y1=kx+b,y2=mx﹣n交于点P(1,m),则不等式mx﹣b>kx+n的解集是()A.x>0 B.x<0 C.x>1 D.x<18. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=28°,则∠CBD=()A.15°B.16°C.18°D.20°9. 关于x的不等式组{x−a>02x−5<1−x有且仅有5个整数解,则a的取值范围是()A.﹣5<a≤﹣4B.﹣5≤a<﹣4C.﹣4<a≤﹣3D.﹣4≤a<﹣310.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9 C.6 D.3二、填空题(3×5=15分)11 . 假期里全家去旅游,爸爸开小型客车走中间车道,你给爸爸建议车速为km/h.12.已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设.13. 若(m-1)x>m-1的解集为x<1,则m的取值范围是.14.如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=15. 小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.第14题第15题二、解答题16(10分)下面是小明同学解不等式x−13≥x−32+1的过程.去分母,得2(x-1)≥3(x−3)+1.①去括号,得2x-2≥3x−9+1. ②移项、合并同类项得﹣x≥﹣6.③两边都除以﹣1,得x≥6.④(1)他的解题过程中在第步和第步有错误,请你分别指出错误原因:;。

2017年八年级下期数学第一次月考试题及答案

2017年八年级下期数学第一次月考试题及答案

2017年春季期八年级3月份月考数学试题第Ⅰ卷(选择题 共36分)一、选择题(本大题共10小题,每小题3分,共30分)每小题都给 出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确 的.1.正六边形的每一个内角的度数是( )A. 1500B. 1200C. 900D. 6002.如图,点P 在∠AOB 的平分线上,PA ⊥OA 于A ,若PA=3,则点P 到OB 的距离为( ) A.3 B.4 C. 5D.63.如图,∠ACB=900,CD ⊥AB 于D,下列结论错误的是( ) A.∠1=∠B B.∠2=∠1 C. ∠2和∠A 都是∠B 的余角 D. AC BC AB CD ⋅=⋅ 4.下列结论不正确...的是( ) A.两直角边分别相等的两直角三角形全等B. 斜边和一直角边分别相等的两直角三角形全等C. 斜边和一个锐角分别相等的两直角三角形全等D. 一条直角边和一个锐角分别相等的两直角三角形全等5.在△ABC 中,则∠A=( )A. 300B. 450C. 600D. 9006.如图,在△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B,C ),若线段AD 的长为正整数,则点D 的个数共有( )A. 2个B. 3个C. 4个D. 5个 7.如图,在Rt △ABC 中,∠C =90°,∠A=400, AD =BD ,则∠ACD=( )A. 200B. 300C. 400D. 4508.如图,AB ⊥AC 于A ,BD ⊥CD 于D,AC=DB,下列结论中错误的是( )A.∠A=∠DB. ∠ABC=∠DCBC.OA=ODD. OB=OD9.如图,每个小正方形的边长为1,A,B,C 是小正方形的顶点,则∠ABC 的度数为( )A. 300B. 450C. 600D. 90010.如图,在Rt △ABC 中,∠C =900,以三边BC ,CA ,AB 为直径向外作半圆,这些半圆的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的关系是( )A. 123S S S +=B. 222123S S S +== D. 无法确定11.如图,在Rt △ABC 中,∠B =90°,∠A =30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接C D .若BD =3,则AB 的长是( )A. 9B. C. 6D. 12.如图,OP 平分∠AOB ,PA ⊥OA 于A ,PB ⊥OB 于B ,连结AB 交OP 于C.给出下列结论:①图中有3对全等三角形, ②∠CAP=∠COB, ③∠OPA=∠OPB ④AB 垂直平分OP ,其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷(非选择题 共84分)二、填空题(本大题共8小题,每小题3分,共24分)13.已知直角三角形的一个锐角为400,则它的另一个锐角的度数为 .14.已知△ABC 为直角三角形,且AB =AC,则这个三角形斜边上的高为 . 15.五边形的外角和等于 .16.甲、乙两同学在某地分手后,甲向东偏南300的方向走了60米,乙向北偏东300的方向走了80米,此时这两位同学相距 米.17.已知a ,b ,c 是△ABC 的三边长,且满足关系式3222320a ab ac a b b bc +-++-=,则△ABC 的形状为 .18.如图所示,小明从A 点出发,沿直线前进10米后向左转300,再沿直线前进10米,又向左转300,.......,照这样下去,他第一次回到出发地A 点时,一共走的路程是 米.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分8分)计算:如图,在Rt △ABC 中,∠ACB=900.(1)用尺规在 BC 上求作一点P,使P 到边AC,AB 的距离相等(不写作法,保留作图痕迹). (2)连接AP,当∠B= 时,PA=PB.20.(本题满分8分)如图,在矩形ABCD 中,E 为AD 上的一点, F 为AB 上的点,且DE=AF ,EF=EC,连结FC.求证:(1) ∠AFE=∠DEC;(2)△CEF 为直角三角形.C21.(本题满分7分)如图,在△ABC 中,∠C=900,D 为AB 的中点,CD=BC=2.求点D 到AC 的距离.22.(本题满分7分)如图,在△ABC 中,∠C=900,∠A=150,D 为AC 上的点,∠BDC=300,DC=3. 求:AD 的长.23.( 本题满分8分)如图,在长方形ABCD 中,AB=3,AD=9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求△ABE 的面积.CAB24.(本题满分8分)如图,在△ABC中,∠C=900,AC=BC,AD 是∠BAC的平分线交BC于D,DE⊥AB于E,若DE=1.求AB的长?25.(本题满分10分)在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.26.(本题满分10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?2017年春季期八年级3月份月考数学试题参考答案:1B 2A 3B 4D 5C 6B 7C 8D 9B 10A 11A 12C13.500 14. 1 15. 3600 16. 100 17. 直角 18. 120 19.解:(1)如图,∠A的平分线与BC的交点即为所求作的P点.................4分(2)300............8分P20.证明:(1)∵DE=AF,EF=EC∴Rt△AFE≌Rt△DEC............3分∴∠AFE=∠DEC.............4分(2)由(1)知∠AFE=∠DEC,而∠AFE+∠AEF=900∴∠DEC+∠AEF=900.............6分∴∠CEF=1800-(∠DEC+∠AEF)=900∴△CEF为直角三角形.............8分21.解:∵△ABC 为直角三角形,且D为AB的中点, ∴CD=DB=DA............2分而CD=BC∴△DBC为等边三角形∴∠B=600, ............4分∴∠A=300............5分过D作DE⊥AC于E............6分∴DE=12AD=1即点D到AC的距离为1. ............7分22.解:∵∠A=150,∠BDC=300∴∠ABD=150...........1分∵∠BDC=300∴AD=BD=2BC............3分由勾股定理得:BD2=BC2+DC2∴(2BC)2=BC2+9............5分∴分∴AD=分23.解:依题意有ED=EB...........1分∴AE=9-EB...........2分BCA由勾股定理得:AB 2+AE 2=EB 2 ∴9+(9-EB)2=EB 2...........4分 解得EB=5...........6分 ∴AE=4............7分∴S △ABE =1134622AB AE ⋅=⨯⨯=.........8分24.解:∵∠C=900,AC=BC∴∠B=450∴EB=DE=1...........2分∴=分 ∵AD 是∠BAC 的平分线 ∴DC=DE=1, ...........5分∴分∴分25.证明: (1)∵AD ⊥BC,BE ⊥AC∴∠EAF+∠AFE=900,∠DBF+∠DFB=900...........2分 ∵∠AFE=∠BFD∴∠DBF=∠EAF ...........3分 ∵AB=AC,AD ⊥BC 于D∴∠BAD=∠CAD ...........4分 ∴∠DAB=∠EBC...........5分 (2)由(1)知∠DBF=∠EAF ,∠AEF=∠BEC=900 又由已知有AE=BE∴△AEF ≌△BEC. ..........7分 ∴AF=BC..........8分 ∵AB=AC,AD ⊥BC 于D∴BC=2CD...........9分∴AF=2CD..........10分26.解:(1)由A点向BF作垂线,垂足为C, (1)分∵∠EBC=600∴∠ABC=30°,.....2分∵AB=320km,∴AC=160km,.....3分∵160<200,∴A城受台风影响;...........4分(2)由(1)知,BF上存在两点,使得这两点到A的距离为200千米,设这两点为D,G,即DA=GA=200千米.且台风中心在线段DG上移动时, A城受到台风影响. ...........6分∵AC⊥BF,DA=GA,∴CD=GC,...........7分在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,...........8分则DG=2DC=240千米,...........9分∴A城遭受台风影响的时间是:t=240÷40=6(小时)............10分。

八年级(上)数学(第一二章)第一次月考试卷(含答案)-

八年级(上)数学(第一二章)第一次月考试卷(含答案)-

八年级上册数学第一次月考试卷一、选择题:(每题3分,共36分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A、同位角B、内错角C、对顶角D、同旁内角2、已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A、160°B、140°C、40°D、无法确定3、如图,若a∥b,∠1=40°,则∠2=()度;A、40°B、140°C、50°D、150°4、如图,已知AB∥ED,则∠B+∠C+∠D的度数是()A、180°B、270°C、360°D、450°5、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°6、等边三角形的对称轴有()A、1条B、2条C、3条D、4条7、等腰三角形的顶角的外角为70°,那么一个底角的度数为()A、35°B、55°C、65°D、110°8、以下列各数为边长,不能组成直角三角形的是()A、2,3,5B、3,4,5C、4,5,6D、7,24,259、如图,CD是Rt△ABC斜边上的高,∠A=40º,则∠1=()(A)30º(B)40º(C)45º(D)60º10、如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A、AD与BDB、BD与BCC、AD与BCD、AD、BD与BC11、如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=13,AC=5,则△ACD的周长为()A、18B、17C、20D、2512、如图,在△ABC中,AB=AC,∠BAC=108°,∠ADB=72°,DE平分∠ADB,则图中等腰三角形的个数是()A、3B、4C、5D、6DA BCE(第4题)BDC A(第10题)DB ACE(第11题)AB CDE(第12题)(第1题)(第9题)1CA D B12ab(第3题)二、填空题:(每空2分,共20分) 1、(1)如图,在长方形ABCD 中,AB=3cm ,BC=2cm ,则AB 与CD 之间的距离为 cm ; (2)如图,若∠ =∠ ,则AD//BC ;(3)如图,DE//BC ,CD 是∠ACB 的平分线,∠ACB=50°,则∠EDC= 度;2、已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为 ;3、如图,已知BD ⊥AE 于B ,C 是BD 上一点,且BC=BE ,要使Rt △ABC ≌Rt △DBE ,应补充的条件是∠A=∠D 或 或 ;4、已知等边三角形的边长为8cm ,则它的高为___ ____cm ;5、已知直角三角形的两直角边长为3cm 和4cm ,则斜边上的中线长是 cm ,斜边上的高为 cm ;6、有一块田地的形状和尺寸如图所示,则它的面积为 。

八年级数学上册第一次月考试卷(含答案)

八年级数学上册第一次月考试卷(含答案)

八年级数学上册第一次月考试卷(含答案)
数学不是规律的发现者,因为他不是归纳。

小编为大家准备了这篇八年级数学上册第一次月考试卷,接下来我们一起来练习。

 八年级数学上册第一次月考试卷(含答案)
 一、选择题(本大题共有8小题,每小题3分,共24分.)
 1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有( )
 A.1个B.2个C.3个D.4个
 2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( )
 A. B. C. D.
 3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是( )
 A.两点之间的线段最短B.长方形的四个角都是直角
 C.长方形是轴对称图形D.三角形有稳定性
 4.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( )
 A.第1块B.第2块C.第3块D.第4块
 5.到三角形三边的距离都相等的点是三角形的( )
 A.三条角平分线的交点B.三条边的中线的交点
 C.三条高的交点D.三条边的垂直平分线的交点
 6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB。

人教版2016--2017学年上第一次月考初二数学试题及答案

人教版2016--2017学年上第一次月考初二数学试题及答案

D D D D D C BA CCC C B B BB A A A A CBA第1题图21学校_____________ 班级____________ 姓名____________ 学号__________ 成绩-----------------------------------------装---------------------------------------订------------------------------------------线---------------------------------------2016--2017学年上学期阶段性测试 初二数学试题 (第一卷)一、选择题:将下列各题正确答案的代号的选项填在下表中。

(每小题3分,共36分。

)1.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( ) A. 360° B. 180° C. 255° D. 145°第3题 2.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定3.如图,AB ∥DE ,AC ∥DF ,AC =DF ,下列条件中不能判断△ABC ≌△DEF 的是() A . AB =DEB . ∠B =∠EC .EF =BCD .EF ∥BC4.能把一个三角形分成两个面积相等的三角形是三角形的( )A. 中线B. 高线C. 角平分线D. 以上都不对 5.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )6.△ABC 中,AB =AC ,三条高AD ,BE ,CF 相交于O ,那么图中全等的三角形有() A . 5对B . 6对C . 7对D . 8对题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第11题图17.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( ) A .B . 4C .D .5第6题 第7题 第8题8.如图,ABC 中,AD 是它的角平分线,AB =4,AC =3,那么△ABD 与△ADC 的面积比是( ) A . 1:1B . 3:4C .4:3D .不能确定9.下列图形中具有稳定性的是( )A. 直角三角形B. 正方形C. 长方形D. 平行四边形10.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有( ). (1)DA 平分∠EDF ; (2)△EBD ≌△FCD ; (3)△AED ≌△AFD ; (4)AD 垂直平分BC . A .1个 B. 2个 C. 3个 D. 4个11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三 角板的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°第10题图12、要测量河两岸相对的两点错误!未找到引用源。

八年级数学第一次月考试卷【含答案】

八年级数学第一次月考试卷【含答案】

八年级数学第一次月考试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知一组数据 3, 5, 7, 9, x,其平均数为 6,则 x = ( )A. 1B. 3C. 5D. 73. 在直角坐标系中,点 P(2, -3) 关于 x 轴对称的点坐标是 ( )A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)4. 若一个等差数列的首项是 2,公差是 3,则第 10 项是 ( )A. 29B. 30C. 31D. 325. 下列哪个图形不是轴对称图形?( )A. 矩形B. 正方形C. 圆D. 梯形二、判断题6. 任何两个奇数相加的和一定是偶数。

()7. 如果 a > b,那么a ÷ c > b ÷ c。

()8. 平方根的定义是:一个数的平方根是它的二次方根。

()9. 在三角形中,若两边之和等于第三边,则该三角形是直角三角形。

()10. 互质的两个数的最大公约数是 1。

()三、填空题11. 若 a = 3,b = -2,则 a + b = _______。

12. 一个等边三角形的内角和为 _______ 度。

13. 若一个数是它自己的倒数,那么这个数是 _______。

14. 在直角坐标系中,点 (4, 0) 在 _______ 轴上。

15. 一个等差数列的前 5 项和为 35,首项为 3,则公差为 _______。

四、简答题16. 解释什么是质数,并给出一个例子。

17. 简述等差数列和等比数列的区别。

18. 什么是算术平方根?如何计算一个数的算术平方根?19. 解释直角坐标系中,一个点关于 y 轴对称的概念。

20. 简述三角形面积计算公式。

人教版八年级数学上 第一学期第一次月考试卷.docx

人教版八年级数学上  第一学期第一次月考试卷.docx

初中数学试卷桑水出品2016-2017学年度第一学期第一次月考试卷初二数学题 号 一 二 三 四 五 六 总 分得 分第I 卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)。

1.16的平方根是( ). A.4 B.±4 C.-4 D.8.2.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 3.下列数中是无理数的是( )A .••3212.0B .2πC .0D .722 4.满足下列条件的∆A B C,不是直角三角形的是( ) A . ∠A : ∠B : ∠C =3:4:5 B . ∠A +∠B = ∠C C . a 2+b 2=c 2 D . a :b :c =7:24:255.估计的值在( )之间. A . 1与2之间 B . 2与3之间 C . 3与4之间 D . 4与5之间 6.下列说法中正确的是( )A .不循环小数是无理数B .分数不是有理数C .有理数都是有限小数D .3.1415926是有理数 7.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1C .361的立方根是61D .-5的立方根是35-8.下列说法中,正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .一个有理数的立方根,不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 9.在实数中,有( )座次号A .最大的数B .最小的数C .绝对值最大的数D .绝对值最小的数10.如图,一只蚂蚁沿边长为1的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A. 3 B.5 C.3 D.5第II 卷 (非选择题 共120分)二、填空题(本大题共10小题,每小题4分,共40分)11.36的算术平方根是_________;12. 直角三角形两直角边分别为a 、b ,斜边为c ,已知:a =6,b =8,则c =____ ___;13. 在Rt △ABC 中,已知两边长为3、4,则第三边的长为 ; 14.一个正数的平方根是2a -1与-a+2,则a =_________;15.的相反数是 ;--2的绝对值是 ;-0.5的倒数是 ; 16. 三角形的三个内角之比为:1:2:3,则此三角形是___ 17.若14+a 有意义,则a 的取值范围是 ; 18.若|x -2|+3-y =0,则x ·y =_____19. 等腰△ABC ,其中AB =AC=17cm ,BC =16cm ,则三角形的面积为___ ____. 20. 已知643+a +|b 3-27|=0,则(a -b )b 的立方根是___ ____. 三、解答题1(本大题共3小题,共30分) 21.求下列个数的平方根及算术平方根:(1)900 ; (2)1;(3)4964; (4)10-422. 求下列各数的立方根:(1)-27 ; (2)8125;(3)0.216; (4)-5 23. 求下列各式的值: (1)(2)四、解答题2(本大题共5小题,共25分)24. 求下列各式中的x .(1)125x 3=8 (2)(-2+x )2=9 25.通过估计,比较大小.BAQNMPDA (1)24与5.1 (2)513-与5126. 在四边形ABCD 中,∠BAD =∠DBC =90°,若AD =4cm ,AB =3cm ,BC =12cm , 求CD 的长度.五、解答题3(本大题共2小题,共12分) 27. 已知:如图,等边△ABC 的边长是6cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年春季学期八年级数学第一次月考试卷
(时间:90分钟 满分:100分 )
一、精心选一选,并把正确答案填在下面表格中(本题共10小题,3分/题,
1.下列各式一定不是二次根式的是( ) A .
2a B .5 C .1442+-x x D .62--a
2.计算8×2的结果是( )
A .10
B .4
C . 6
D .2 3.在根式2、75、
501、27
1、15中与3是同类二次根式的有( ) A. 1个 B. 2个 C. 3个 D. 4个
4.2
介于( ) A .0.4与0.5之间 B .0.5与0.6之间 C . 0.6与0.7之间 D .0.7与0.8之间
5.函数1
1
y x =
-中自变量x 的取值范围是( ) A .2x ≤ B .21x x ≤≠且 C.21x x <≠且 D.1x ≠ 6、下列二次根式中属于最简二次根式的是( )
A B C D 7.关于x 的一元二次方程x(x-2)=2-x 的根是( )
A .-1
B .0
C .1和2
D .-1和2 8.下列方程中,是一元二次方程的是( )
A .x 3+2=0
B .x 2+2x=0
C .x 4+2x 3+1=0
D .
+5=0
9、已知a <02a 可化简为( )
A 、a -
B 、a
C 、3a -
D 、3a
10.等腰三角形中,两边长为此等腰三角形的周长为( )
A .
B .
C .或
D .以上都不对
二、细心填一填(本大题共8小题, 3分/题,共24分)
11.一元二次方程032
=--x x 的二次项系数是___________,一次项系数是___________,常数项是____________.
12.若整数x 满足3x ≤x 的值是_________.
13.在实数范围内有一种运算“*”,其规则为a*b=a+b 2,则5*2=_____________.
14.当关于x 的方程()()2
1
1120m m x
m x +--+-=是一元二次方程时,m 的值为
_______________________;
15.已知最简二次根式
与是同类二次根式,则a b +的值为
________________ .
16.若1a =,则a 的取值范围是__________________________. 17.若将方程x 2+6x=7化为(x+m )2
=16,则m=_______________.
18.已知m 是方程032
=--x x 的一个实数根,则代数式)13
)((2
+-
-m
m m m 的值为_____________
三、专心解一解(共46分) 19.(本小题共2题,共10分)
(1)(4分)计算:÷(
(2)(6分)先化简,再求值:22
2442111
a a a a a a -+-+÷--+,其中1a =
20.按要求解下列方程(本小题共4题,4分/题,共16分)
(1)2(x+2)2-8=0 (用直接开平方法) (2)()()2
2
211x x +=-(用因式分解法)
(3) x 2+3x-4=0 (用配方法)
(4)2x 2-5x=-1 (用公式法)
21.用适当的方法解方程(本小题共5题,共15分)
(1)x2+5x-6=0 (2)(x+3)(x-3)=3
(3) 3x(x-2)=4-2x
22.(5分)如果x,y分别是3-3的整数部分和小数部分,求4xy-y2的值。

相关文档
最新文档