高一数学:同角的三角函数基本关系式与诱导公式经典练习
高考数学专题《同角三角函数的基本关系与诱导公式》习题含答案解析
专题5.2 同角三角函数的基本关系与诱导公式1.(2021·北京二中高三其他模拟)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34,55⎛⎫⎪⎝⎭,则tan()πθ-的值为( )A .43B .34C .43-D .34-【答案】C 【解析】由题意可得角的正弦和余弦值,由同角三角函数的基本关系可求出角的正切值,结合诱导公式即可选出正确答案.【详解】解:由题意知,43sin ,cos 55θθ==,则sin 4tan cos 3θθθ==,所以4tan()tan 3πθθ-=-=-,故选:C.2.(2021·全国高三其他模拟(理))已知1tan ,2α=则()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=( )A .﹣12B .12C .2D .﹣2【答案】C 【解析】先用“奇变偶不变,符号看象限”将()cos cos 2παπα-⎛⎫+ ⎪⎝⎭化简为cos sin αα--,结合同角三角函数的基本关系来求解.【详解】因为1tan 2α=,所以()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=cos sin αα--=1tan α=2.故选:C练基础3.(2021·全国高一专题练习)已知3cos cos()2παπα⎛⎫-++= ⎪⎝⎭则1tan tan αα+=( )A .2B .-2C .13D .3【答案】A 【解析】用诱导公式化简,平方后求得sin cos αα,求值式切化弦后易得结论.【详解】3cos cos()sin cos 2παπααα⎛⎫-++=∴--= ⎪⎝⎭即21sin cos (sin cos )2,sin cos ,2αααααα+=∴+=∴=1sin cos 1tan 2tan cos sin sin cos αααααααα∴+=+==,故选:A .4.(2021·河南高三其他模拟(理))若1tan 2α=,则22sin sin cos ααα+=_______________________.【答案】45【解析】利用同角三角函数的基本关系式进行化简求值.【详解】因为12tan α=,所以222222224215sin sin cos tan tan sin sin cos sin cos tan ααααααααααα+++===++.故答案为:455.(2021·宁夏银川市·银川一中高三其他模拟(文))若3sin 2πθ⎛⎫+= ⎪⎝⎭[0,2)θπ∈,则θ=___________.【答案】116π【解析】根据三角函数的诱导公式,求得cos θ=[0,2)θπ∈,进而求得θ的值.【详解】由三角函数的诱导公式,可得3sin cos 2πθθ⎛⎫+=-= ⎪⎝⎭,即cos θ=,又因为[0,2)θπ∈,所以116πθ=.故答案为:116π.6.(2021·上海格致中学高三三模)已知α是第二象限角,且3sin 5α=,tan α=_________.【答案】34-【解析】根据角所在的象限,判断正切函数的正负,从而求得结果.【详解】由α是第二象限角,知4cos 5α===-,则sin 3tan cos 4ααα==-故答案为:34-7.(2021·上海高三二模)若sin cos k θθ=,则sin cos θθ⋅的值等于___________(用k 表示).【答案】21kk +【解析】由同角三角函数的关系得tan θk =,进而根据22sin cos sin cos sin cos θθθθθθ⋅⋅=+,结合齐次式求解即可.【详解】因为sin cos k θθ=,所以tan θk =,所以2222sin cos tan sin cos sin cos tan 11kk θθθθθθθθ⋅⋅===+++,故答案为:21k k +8.(2021·河北衡水市·高三其他模拟)函数log (3)2(0a y x a =-+>且a ≠1)的图象过定点Q ,且角a 的终边也过点Q ,则23sin α+2sin cos αα=___________.【答案】75【解析】首先可得点Q 的坐标,然后可得tan α,然后可求出答案.【详解】由题可知点Q (4,2),所以1tan ,2α=所以22223sin 2sin cos 3sin 2sin cos sin cos αααααααα++==+2211323tan 2tan 74211tan 514ααα⨯+⨯+==++故答案为:759.(2021·上海高三其他模拟)已知3sin 5x =,(,)2x ππ∈,则cos(π﹣x )=___________.【答案】45【解析】根据22sin cos 1x x += ,(,)2x ππ∈,求出cos x ,再用“奇变偶不变,符号看象限”求出cos(π﹣x ).【详解】解:因为3sin 5x =,(,)2x ππ∈,可得cos x =﹣=﹣45,所以cos(π﹣x )=﹣cos x =45.故答案为:45.10.(2020·全国高一课时练习)若2cos()3απ-=-,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.【答案】.【解析】利用诱导公式化简已知和结论,转化为给值求值的三角函数问题解决.【详解】原式=sin(2)sin(3)cos(3)cos (cos )cos παπαπαααα---+----=2sin sin cos cos cos ααααα--+=sin (1cos )cos (1cos )αααα---=-tan α,因为2cos()cos 3απα-=-=-,所以2cos 3α=,所以α为第一象限角或第四象限角.(1)当α为第一象限角时,sin α=所以sin tan cos ααα=,所以原式.(2)当α为第四象限角时,sin α=所以sin tan cos ααα=,所以原式.综上,原式=.1.(2021·全国高三其他模拟(理)(0)a a =>,则1tan 2=________(用含a 的式子表示).【解析】根据同角三角函数的相关公式,把根号下的式子变形为完全平方式,2111112sin cos sin cos 2222⎛⎫-=- ⎪⎝⎭,2111112sin cos sin cos 2222⎛⎫+=+ ⎪⎝⎭,再由11cos sin 022>>,开方即得1cos 22a =,再由22111tan 12cos 2+=即可得解.【详解】练提升=+=1111cos sin sin cos2222=-++12cos 2a ==,则1cos 22a =而22111tan 12cos 2+=,2214tan 12a∴=-又1tan 02>,1tan 2∴==.2.(2021·河北邯郸市·高三二模)当04x π<<时,函数22cos ()sin cos sin xf x x x x=-的最大值为______.【答案】-4【解析】化简函数得21()tan tan f x x x=-,再换元tan ,(0,1)t x t =∈,利用二次函数和复合函数求函数的最值.【详解】由题意得22222cos cos ()sin cos sin cos cos x x f x x x xx x =-所以21()tan tan f x x x =-,当04x π<<时,0tan 1x <<,设tan ,(0,1)t x t =∈所以2211()=11()24g t t t t =---,所以当12t =时,函数()g t 取最大值4-.所以()f x 的最大值为-4.故答案为:4-3.(2021·浙江高三其他模拟)已知πtan 34α⎛⎫+=- ⎪⎝⎭,则3πtan 4α⎛⎫-= ⎪⎝⎭______,sin cos αα=______.【答案】3 25【解析】由3ππtan tan 44αα⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭可求,由和的正切公式求出tan α,再建立齐次式即可求出.【详解】3πππtan tan πtan 3444ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,得tan 2α=,故222sin cos tan 2sin cos sin cos tan 15αααααααα===++.故答案为:3;254.(2021·全国高一专题练习)如图,单位圆与x 轴正半轴的交点为A ,M ,N 在单位圆上且分别在第一、第二象限内,OM ON ⊥.若四边形OAMN 的面积为34,则AOM ∠=___________;若三角形AMN 的面积为25,则sin AOM ∠=___________.【答案】6π 35【解析】根据四边形OAMN 的面积,列出关于M 点纵坐标M y 的方程,求出M y ;即可根据三角函数的定义求出sin AOM ∠,进而可得AOM ∠;根据三角形AMN 的面积为25,得到M y 与N y 之间关系,再结合三角函数的定义,得到1cos sin 5AOM AOM ∠-∠=,利用同角三角函数基本关系,即可求出结果.【详解】若四边形OAMN 的面积为34,则3111142222MON MOA M M S S OM ON OA y y =+=⨯⨯+⨯⨯=+V V ,解得12M y =,由三角函数的定义可得1sin 2M AOM y ∠==,因为M 为第一象限内的点,所以AOM ∠为锐角,因此6AOM π∠=;若三角形AMN 的面积为25,则21115222MON MOA AMN OAMN AON AON M N S S S S S S y y ==-=-=+-+V V V V V ,即51N M y y -=,由三角函数的定义可得,sin M AOM y ∠=,sin N AON y ∠=,又sin sin cos 2N y AON AOM AOM π⎛⎫=∠=∠+=∠ ⎪⎝⎭,所以1cos sin 5AOM AOM ∠-∠=,由221cos sin 5sin cos 1AOM AOM AOM AOM ⎧∠-∠=⎪⎨⎪∠+∠=⎩解得3in 5s AOM ∠=或4in 5s AOM ∠=-,又AOM ∠为锐角,所以3in 5s AOM ∠=.故答案为:6π;35.5.(2021·河南高一期中(文))(1)已知角α的终边经过点()43P ,-,化简并求值:221cos sin cos sin cos tan 1a ααααα-+---;(2的值.【答案】(1)15-(2)1.【解析】(1)利用三角函数定义得到3sin 5α=,4cos 5α=-,化简三角函数表达式代入即可得到结果;(2)利用同角基本关系式化简即可.【详解】(1)由题意知,3sin 5α=,4cos 5α=-.原式222sin sin cos sin sin cos 1cos ααααααα+=---2222sin sin cos sin cos sin cos cos αααααααα+=---()2222cos sin cos sin sin cos sin cos αααααααα+=---22sin cos sin cos sin cos αααααα=---22sin cos sin cos αααα-=-341sin cos 555αα=+=-=-;(2)原式=sin 40cos 40cos 40cos50︒-︒=︒-︒cos 40sin 401cos 40sin 40-==-︒︒︒︒.6.(2021·河南高一期中(文))已知sin 2cos 0αα+=.(1)求sin 2cos cos 5sin αααα--的值;(2)求33sin cos cos sin aααα+的值.【答案】(1)411-;(2)858-.【解析】(1)本题可根据sin 2cos 0αα+=得出tan 2α=-,然后根据同角三角函数关系即可得出结果;(2)本题可通过22sin cos 1αα+=求出2sin α、2cos α的值,然后通过同角三角函数关系即可得出结果.【详解】(1)因为sin 2cos 0αα+=,所以tan 2α=-,则sin 2cos tan 24cos 5sin 15tan 11αααααα--==---.(2)联立22sin 2cos 0sin cos 1αααα+=⎧⎨+=⎩,解得224sin 51cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,则3322sin cos tan 185cos sin cos sin tan 8a ααααααα+=+=-.7.(2020·武汉市新洲区第一中学高一期末)在平面直角坐标系xOy 中,以x 轴非负半轴为始边作角0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,它们的终边分别与单位圆相交于A ,B 两点,已知点A ,B,.(1)求23sin sin cos 1ααα-+的值;(2)化简并求cos 的值.【答案】(1)195;(2)1-+【解析】(1)由已知条件可知求得sin α,tan α,已知式变形为2222223sin sin cos 3tan tan 3sin sin cos 111sin cos tan 1ααααααααααα---+=+=+++,代入可得答案;(2)由已知得cos β,sin β=.【详解】解:(1)由已知条件可知:cos α=0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 0α>,sin α==,tan 7α=,2222223sin sin cos 3tan tan 3497193sin sin cos 1111sin cos tan 1505ααααααααααα--⨯--+=+=+=+=++,(2)cos β=,2πβπ⎛⎫∈ ⎪⎝⎭,所以sin 0β>,从而sin β==;1sin cos cos cos (1sin )1|cos |ββββ-===--=-+.8.(2021·全国高三专题练习(理))求函数sin cos sin cos y x x x x =+-(x ∈R )的值域.【答案】112⎡⎤-⎢⎥⎣⎦,【解析】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,根据二次函数的性质可求得值域.【详解】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,所以当t =24=-+x k ππ (k Z ∈)时,min y =12-;当1t =,即()114k x k ππ⎡⎤=++-⎣⎦(k Z ∈)时,max 1y =,因此函数y =sin cos sin cos y x x x x =+-的值域应为112⎡⎤-⎢⎥⎣⎦,.9.(2021·江苏高一月考)如图,锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点()11,A x y ,将射线OA 按逆时针方向旋转3π后与单位圆交于点()()2212,,B x y f x x α=+.(1)求()fα的取值范围;(2)若()fα=,求tan α的值.【答案】(1)32⎛⎫ ⎪ ⎪⎝⎭;(2【解析】(1)由三角函数的定义可得1cos x α=,2cos(3x πα=+,化简()f α6)πα+.根据2663πππα<+<,利用余弦函数的定义域和值域求得()f α的范围.(2)根据()f α=,求得3cos(654sin(65παπα⎧+=⎪⎪⎨⎪+=⎪⎩,再利用两角差的正弦余弦公式求出sin ,cos αα的值,从而得出结论.【详解】(1)由图知,3AOB π∠=,由三角函数的定义可得1cos x α=,2cos(3x πα=+,123()cos cos()cos cos cossin sincos 3332f x x πππαααααααα==+++-+=-=6)πα=+.角α为锐角,∴2663πππα<+<,∴1co 26s()πα-<+<∴623πα<+<,即()f α的范围是32⎛⎫⎪ ⎪⎝⎭.(2)因为()fα=,2663πππα<+<,6πα+=,3cos()65)46sin()65παπαπα⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩,431sin sin66552ππαα⎡⎤⎛⎫=+-=⨯=⎪⎢⎥⎝⎭⎣⎦341cos cos66552ππαα⎡⎤⎛⎫=+-=+⨯=⎪⎢⎥⎝⎭⎣⎦sintancosααα∴===10.(2021·河南省实验中学高一期中)(1)已知sin()cos()tan(3)()3cos2fπθπθπθθπθ-+-=⎛⎫-⎪⎝⎭,求73fπ⎛⎫- ⎪⎝⎭的值(2)已知1sin cos5αα+=-,2παπ<<,求sin(3)cos(2)sin()sin2παπαπαα--++⎛⎫-++⎪⎝⎭的值.【答案】(1(2)17.【解析】(1)利用诱导公式、同角三角函数基本关系化简()fθ,然后再代值计算即可.(2)利用同角三角函数间的关系,将1sin cos5αα+=-平方求出sin cosαα的值,从而求出cos sinαα-的值,再由诱导公式将所求式子化简,即可得出答案.【详解】(1)()()sin cos tansin()cos()tan(3)()sin3sincos2fθθθπθπθπθθθπθθ⋅-⋅--+-===--⎛⎫-⎪⎝⎭所以77sin sin2sin3333fπππππ⎛⎫⎛⎫⎛⎫-=--=+==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)由1sin cos 5αα+=-,则112sin cos 25αα+=,所以242sin cos 25αα=-由2παπ<<,则sin 0,cos 0αα><设cos sin 0t αα=-<,则2244912cos sin 12525t αα=-=+=由cos sin 0t αα=-<,所以7cos sin 5αα-=-1sin(3)cos(2)sin cos 157sin cos 7sin()sin 52παπαααπαααα---+++===-+⎛⎫--++ ⎪⎝⎭1.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .2.(2020·全国高考真题(理))已知π()0,α∈,且3cos28cos 5αα-=,则sin α=( )AB .23C .13D练真题【答案】A 【解析】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴== 故选:A.3.(2019·北京高考真题(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B 【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为+S △POB + S △POA =4β+.故选:B .APB ∠2222βππ⨯⨯1||sin()2OPOB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅4.(2017·北京高考真题(文))在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则_____.【答案】【解析】因为角与角的终边关于轴对称,所以,所以.5.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.6.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x +3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.xOy αβOx y 1sin 3α=sin β=13αβy 2,k k Z αβππ+=+∈()1sin sin 2sin 3k βππαα=+-==。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,,则角的终边在第()象限A.一B.二C.三D.四【答案】B【解析】由题意,确定的象限,然后取得结果 .由,得在第二、四象限,由,得在第二、三象限,所以在第二象限.,故选B【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,且为第三象限角,(1)求的值;(2)求的值。
【答案】(1)(2)【解析】(1)由,再结合第三象限,余弦值为负,算出结果(2)先化简上式,根据,再结合(1)算出结果。
试题解析:(1)且(2分)为第三象限角(4分)(2)==(7分)=(8分)【考点】同角三角函数基本关系的运用以及三角函数的化简.4.已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】要,即,因此角是第二或第三象限角,故选择B.【考点】同角三角函数基本关系及三角函数值的符号确定.5.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.6.已知是第三象限角,且.(1)求的值;(2)求的值【答案】(1);(2).【解析】解题思路:(1)先求,再求,进而求;(2)联立方程组,解得,进而求所求值.规律总结:涉及“”的“知一求二”问题,要利用以下关系式:;.注意点:由的值,求的值,要注意结合角的范围确定符号.试题解析:,是第三象限角,由得.【考点】同角三角函数基本关系式.7.设函数(1)求;(2)若,且,求的值.(3)画出函数在区间上的图像(完成列表并作图)。
(1)列表(2)描点,连线【答案】(1)2;(2);(3)见解析【解析】(1)由正弦函数周期公式得,=,即可求得;(2)将代入的解析式,得到关于的方程,结合诱导公式即可求出,再利用平方关系结合的范围,求出,再利用商关系求出;(3)先由为0和算出分别等于,,在(,)分别令取,0,,求出相应的值和值,在给定的坐标系中描出点,再用平滑的曲线连起来,就得到所要作的图像.试题解析:(1),2分(2)由(1)知由得:, 4分∵∴ 6分∴. 8分(其他写法参照给分)(3)由(1)知,于是有(1)列表11分(2)描点,连线函数 14分【考点】正弦函数周期公式;诱导公式;同角三角函数基本关系式;五点法作图8.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号9.已知,.(1)求;(2)求的值.【答案】(1);(2).【解析】(1)由同角三角函数的基本关系:,,结合条件,可得,再由可知,从而;(2)由(1)可知,可将欲求值的表达式化为与只有关的,根据齐次的数学思想,可分子分母同时除以,从而可得:.试题解析:(1)∵,,∴, 2分又∵,∴, 4分∴; 6分(2) 9分12分.【考点】同角三角函数基本关系.10.已知为锐角,则 .【答案】.【解析】∵为锐角,,∴,,∴.【考点】1.同角三角函数基本关系;2.两角和的正切公式.11.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数12.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.13.已知,则的值为 .【答案】【解析】,即,又,故.【考点】诱导公式,同角三角函数的基本关系式.14.已知:,其中,则=【答案】【解析】因为,所以,又因,所以,.【考点】诱导公式.15.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数16.已知是第四象限的角,则= .【答案】【解析】是第四象限的角,则,而.【考点】二倍角公式、同角三角函数的基本关系.17.已知()A.B.C.D.【答案】A【解析】由即①由即②所以①+②可得即即,选A.【考点】1.同角三角函数的基本关系式;2.两角差的余弦公式.18.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1) ;(2) .【解析】(1)根据诱导公式进行化简;(2)首先化简,根据第三象限角,同角基本关系式求,确定的值.试题解析:解:(1);. (6)(2),又是第三象限角,,.. (6)【考点】1.诱导公式;2同角基本关系式.19.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.20.函数在区间上的最大值为,则实数的值为( )A.或B.C.D.或【答案】A【解析】因为,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或,故选A.【考点】1.同角三角函数的基本关系式;2.二次函数的最值问题;3.分类讨论的思想.21.已知函数(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.【答案】(1)(2)【解析】(1)先利用诱导公式,二倍角公式,化一公式将此函数化简为的形式,利用周期公式,求周期,用x的范围求出整体角的范围,结合三角函数图像求其最值。
高考数学专题复习题:同角三角函数基本关系式及诱导公式
高考数学专题复习题:同角三角函数基本关系式及诱导公式一、单项选择题(共8小题)1.已知α是第三象限角,sin α=-35,则tan α=( )A.-34B.34C.-43D.43 2.已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭( ) A .35 B .12 C .12− D .25− 3.若cos α=35,α是第一象限角,角α,β的终边关于y 轴对称,则tan β=( )A.34B.-34C.43D.-434.“sin cos 1αα+=”是“sin20α=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若α为锐角,tan α=1cos 2α+1,则tan α=( )A.12B.1C.2-3D.36.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 4π5,cos 4π5,则α的最小正值为( ) A.π5 B.3π10 C.4π5 D.17π107.如果函数321()(1)23f x x x f =++',且该函数的图象在点3x =处的切线的倾斜角为α,那么π3πsin cos 22αα⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭的值为( ) A .310 B .310− C .910 D .34−二、多项选择题(共3小题)9.已知α∈(0,π),且sin α+cos α=15,则( )A. π2<α<πB. sin αcos α=-1225C. cos θ=-45D. cos α-sin α=-75 10.已知sin α+cos αsin α-cos α=3,-π2<α<π2,则( ) A.tan α=2B.sin α-cos α=-55C.sin 4α-cos 4α=35D.1-2sin αcos αsin 2α-cos 2α=1311.若sin θ+cos θ=t ,θ∈⎝ ⎛⎭⎪⎫-π2,π2,t ∈(-1,2],函数f (θ)=sin θ+cos θ-sin θcos θ,则下列选项正确的是( )A .当t =12时,sin θcos θ的值为38B .当t =12时,sin 3θ-cos 3θ的值为-5716C .函数f (θ)的值域为(-1,2]D .函数f (θ)的值域为(-1,1]三、填空题(共3小题)12.若θ∈⎝ ⎛⎭⎪⎫0,π2,tan θ=12,则sin θ-cos θ=________. 13.已知sin(3π+θ)=13,则cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=________.14.已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x =________.。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,且,则 .【答案】【解析】由已知得,.【考点】三角函数基本运算.2.已知函数f(x)= ,则f[f(2014)]= ( )A.1B.-1C.0D.【答案】A【解析】∵f(2014)=2014-14=2000∴f[f(2014)]=f(2000)=cos(×2000)=cos500=13.若,则 .【答案】【解析】.【考点】诱导公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知tanθ=2,则=__________.【答案】-2【解析】==-2.6.已知2tanα·sinα=3,-<α<0,则cos(α-)=____________.【解析】依题意得=3,即2cos2α+3cosα-2=0,解得cosα=或cosα=-2(舍去).又-<α<0,因此α=-,故cos=cos=cos=0.7.已知tan=3,则 .【答案】45【解析】已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得.【考点】弦化切8.已知函数f(x)=sin+-2cos2,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.【答案】(1)[-3,1](2)(k∈Z)【解析】(1)f(x)=sin ωx+cos ωx+sin ωx-cos ωx-(cos ωx+1)=2-1=2-1.由-1≤≤1,得-3≤2s-1≤1,所以函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y=f(x)的周期为π,所以=π,即ω=2.所以f(x)=2sin-1,再由2kπ-≤2x-≤2kπ+ (k∈Z),解得kπ-≤x≤kπ+(k∈Z).所以函数y=f(x)的单调增区间为 (k∈Z).9.=()A.-B.-C.D.【答案】C【解析】====sin 30°=.10.已知,则()A.B.C.D.【答案】D【解析】解法(一)切化弦的思想:因为,所以,.又因为.所以解得.所以.故选D. 解法(二)弦化切的思想:因为.故选D.【考点】1.切与弦互化的思想.2.二倍角公式.3.方程的思想.11.已知,则=______________.【答案】【解析】本题三角函数式的求值,一般要先化简,而化简方法有透导公式化为同角,然后用切割化弦法,.【考点】诱导公式与同角关系.12.已知,且,则等于()A.B.C.D.【答案】B【解析】,且,所以,因此,故选B.【考点】1.诱导公式;2.同角三角函数的基本关系13.已知函数,.(1)求的最大值和最小正周期;(2)若,是第二象限的角,求.【答案】(1)函数的最大值为,最小正周期为;(2).【解析】(1)先利用辅助角公式将函数的解析式化简为的形式,进而求出函数的最大值与最小正周期;(2)先利用已知条件求出的值,再结合角的取值范围,求出的值,最后利用二倍角公式求出的值.试题解析:(1),,,即函数的最大值为,最小正周期为;(2),,为第二象限角,,因此,.【考点】1.辅助角公式;2.三角函数的最值;3.三角函数的周期性;4.同角三角函数的基本关系;5.二倍角14.已知,,,则的值=________________.【答案】【解析】因为,所以,,则,,则.【考点】1、同角三角函数值的互化;2,、三角函数的和差化积公式.15.化简的结果是 .【答案】【解析】.【考点】三角函数的诱导公式.16.已知,则 .【答案】【解析】由,.【考点】三角恒等变性及求值.17.函数的最小正周期是()A.B.C.2πD.4π【答案】B【解析】函数,所以周期为.【考点】诱导公式,二倍角公式,三角函数的周期.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①;②;③;④;⑤.(1)从上述五个式子中选择一个,求出常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.【答案】(1);(2).【解析】(1)∵②中的15°的2倍是30°,便于计算,可选用②算出a值;(2)观察发现两角之和为30°,可猜想,再运用降次公式,两角和与差公式,同角三角函数的关系式进行证明.试题解析:(1)选择②式计算.(2)猜想的三角恒等式为.证明:.【考点】降次公式,两角和与差公式,同角三角函数的关系式.19.若,且,则.【答案】【解析】∵,,∴是第三象限角,.【考点】同角三角函数的关系.20.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值21.已知角终边上一点,则()A.B.C.D.【答案】D【解析】根据题意,由于角终边上一点,则可知,故答案为D.【考点】三角函数的定义点评:解决的关键是根据三角函数的定义来得到其正弦值和余弦值,得到结论,属于基础题。
高一数学同角三角函数的基本关系式和诱导公式试题
高一数学同角三角函数的基本关系式和诱导公式试题1.已知,是第三象限角,则 .【答案】.【解析】根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.【考点】同角三角函数的基本关系.2.已知.(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】解题思路:(1)利用诱导公式进行化简即可;(2)先用诱导公式得出,再利用同角三角函数基本关系式及角所在象限求出,进而求出.规律总结:涉及三角函数的化简与求值问题,往往要利用三角函数基本关系式、诱导公式、两角和差的三角公式以及二倍角公式,进行恒等变形;一定要注意灵活选用公式.试题解析:(I)原式=;(II)由得,即,因为是第三象限角,所以,所以 .【考点】1.诱导公式;2.三角函数基本关系式.3. cos660o的值为( ).A.B.C.D.【答案】C.【解析】【考点】诱导公式,特殊角的三角函数值.4.()A.B.C.D.【答案】C【解析】,诱导公式和特殊值的三角函数值记忆不正确,会导致选择A或B,选择D的错误很少见.【考点】诱导公式和特殊角的三角函数值.5.已知,且∥.求值:(1);(2).【答案】(1);(2) .【解析】解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.试题解析:(1),,.(2).【考点】平面向量平行的判定、同角三角函数基本关系式.6.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.7.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.8.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】(1)根据诱导公式,将中的三角函数都转化为的三角函数,即可得到;(2)由,可得,又由条件是第三象限角及(1)中得到的的表达式,即可得到.(1);(2)由得,,因为是第三象限角,所以,∴.【考点】1.诱导公式;2.同角三角函数基本关系.9.已知sinα=,且α为第二象限角,那么tanα的值等于()A.B.C.D.【答案】B【解析】∵sinα=,且α为第二象限角,∴,∴.【考点】同角三角函数的基本关系.10.的值等于()A.B.C.D.【答案】C【解析】,故选C.【考点】诱导公式11.已知,则的值是()A.B.C.D.【答案】A【解析】【考点】诱导公式的化简12. sin的值是()A.B.-C.D.-【答案】B【解析】.【考点】诱导公式,特殊角的三角函数值.13.已知,则等于 ( )A.B.C.D.【答案】D【解析】法一:由可得即,所以,又因为,从而可得到,所以,所以;法二:因为将代入即可得到,故选D.【考点】同角三角函数的基本关系式.14.已知函数,.(1)求的值;(2)若,,求.【答案】(1)1;(2)【解析】(1)直接将代入函数即可求其值。
高考数学一轮复习专题训练—同角三角函数的基本关系式与诱导公式
同角三角函数的基本关系式与诱导公式考纲要求 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式 公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α-tan__α口诀函数名不变,符号看象限 函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( )(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( )答案 (1)× (2)× (3)× (4)×解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13,当k 为偶数时,sin α=-13.2.已知tan α=2,则3sin α-cos αsin α+2cos α=( )A.54B.-54C.53D.-53答案 A解析 原式=3tan α-1tan α+2=3×2-12+2=54.3.已知α为锐角,且cos α=45,则sin(π+α)=( )A.-35B.35C.-45D.45答案 A解析 由题意得sin α=1-cos 2α=35,故sin(π+α)=-sin α=-35.4.(2021·天津南开质检)cos 480°=( ) A.-12B.12C.-32D.32答案 A解析 由诱导公式可得cos 480°=cos(540°-60°)=cos(180°-60°)=-cos 60°=-12.故选A.5.(2021·成都诊断)已知θ∈(0,π),sin θ+cos θ=15,则下列结论错误的是( )A.θ∈⎝⎛⎭⎫π2,πB.cos θ=-35C.tan θ=-34D.sin θ-cos θ=75答案 C解析 ∵sin θ+cos θ=15,①∴(sin θ+cos θ)2=⎝⎛⎭⎫152, 即sin 2θ+2sin θcos θ+cos 2θ=125,∴2sin θcos θ=-2425,∴(sin θ-cos θ)2=1-2sin θcos θ=4925,∵θ∈(0,π),∴sin θ>0,cos θ<0, ∴θ∈⎝⎛⎭⎫π2,π,sin θ-cos θ=75.② ①+②得sin θ=45,①-②得cos θ=-35,∴tan θ=sin θcos θ=45-35=-43.6.(2021·海南期末)若cos ⎝⎛⎭⎫π3-α=15,则sin ⎝⎛⎭⎫π6+α=________.答案 15解析 sin ⎝⎛⎭⎫π6+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π3-α=15.考点一 诱导公式的应用1.化简cos (π+α)cos ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫11π2-αcos (π-α)sin (-π-α)sin ⎝⎛⎭⎫9π2+α的结果是( )A.-1B.1C.tan αD.-tan α答案 C解析 由诱导公式,得原式=-cos α·(-sin α)·cos ⎝⎛⎭⎫3π2-α-cos α·sin α·sin ⎝⎛⎭⎫π2+α=-sin 2α·cos α-sin α·cos 2α=tan α,故选C.2.(2021·长春模拟)已知α为锐角,且sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=tan ⎝⎛⎭⎫α+π3,则角α=( ) A.π12 B.π6C.π4D.π3答案 C解析 由条件得sin ⎝⎛⎭⎫α+π3sin ⎝⎛⎭⎫α-π3=sin ⎝⎛⎭⎫α+π3cos ⎝⎛⎭⎫α+π3,又因为α为锐角,所以sin ⎝⎛⎭⎫α-π3=cos ⎝⎛⎭⎫α+π3,即sin ⎝⎛⎭⎫α-π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3,所以有α-π3=π2-⎝⎛⎭⎫α+π3,解得α=π4,故选C. 3.(2021·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________. 答案 -33解析 sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33. 感悟升华 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了. (2)化简:统一角,统一名,同角名少为终了. 2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.如cos(5π-α)=cos(π-α)=-cos α. 考点二 同角三角函数基本关系及其应用角度1 切弦互化【例1】 (1)已知α是第四象限角,tan α=-815,则sin α等于( )A.1517B.-1517C.817D.-817(2)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12B.2C.35D.-38答案 (1)D (2)C解析 (1)因为tan α=-815,所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289,又α是第四象限角,所以sin α=-817.(2)由f ′(x )=2x 2,得tan α=f ′(1)=2, 故sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.角度2 sin α±cos α与sin αcos α的转化【例2】(2020·东北三省三校联考)若sin θ-cos θ=43,且θ∈⎝⎛⎭⎫34π,π,则sin(π-θ)-cos(π-θ)=( ) A.-23B.23C.-43D.43答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79,∴(sin θ+cos θ)2=1+2sin θcos θ=29,又θ∈⎝⎛⎭⎫34π,π,∴sin θ+cos θ<0, ∴sin θ+cos θ=-23, 则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A. 感悟升华 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.【训练1】 (1)已知α是第四象限角,sin α=-1213,则tan(π+α)等于( )A.-513B.513C.-125D.125(2)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________.答案 (1)C (2)43或34解析 (1)因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan(π+α)=tan α=sin αcos α=-125.(2)将sin α+cos α=75两边平方得1+2sin αcos α=4925,∴sin αcos α=1225,∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34.考点三 同角三角函数基本关系式和诱导公式的综合应用【例3】 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53B.23C.13D.59(2)已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. (3)已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 (1)A (2)-33(3)0 解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53.故选A. (2)∵⎝⎛⎭⎫π6-α+⎝⎛⎭⎫5π6+α=π, ∴tan ⎝⎛⎭⎫5π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33.(3)∵cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ=-cos ⎝⎛⎭⎫π6-θ=-a ,sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 感悟升华 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.【训练2】 (1)已知α是第四象限角,且3sin 2α=8cos α,则cos ⎝⎛⎭⎫α+2 021π2=( ) A.-223B.-13C.223D.13(2)(2020·上海徐汇区期中)若sin ⎝⎛⎭⎫α+π4=35,则cos ⎝⎛⎭⎫α-π4=________. 答案 (1)C (2)35解析(1)∵3sin 2α=8cos α,∴sin 2α+⎝⎛⎭⎫3sin 2α82=1, 整理可得9sin 4α+64sin 2α-64=0, 解得sin 2α=89或sin 2α=-8(舍去),又∵α是第四象限角,∴sin α=-223,∴cos ⎝⎛⎭⎫α+2 021π2=cos ⎝⎛⎭⎫α+1 010π+π2 =cos ⎝⎛⎭⎫α+π2=-sin α=223,故选C. (2)∵sin ⎝⎛⎭⎫α+π4=35, ∴cos ⎝⎛⎭⎫α-π4=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π2 =cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=35.A 级 基础巩固一、选择题 1.tan 420°=( ) A.- 3 B. 3 C.33D.-33答案 B解析 tan 420°=tan(360°+60°)=tan 60°= 3. 2.若角α的终边在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( )A.3B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知3s in(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( )A.-π6B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ), ∴-3sin θ=cos θ,∴tan θ=-33, ∵|θ|<π2,∴θ=-π6.4.已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝⎛⎭⎫432=-79. 5.1-2sin (π+2)cos (π-2)=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 2答案 A 解析1-2sin (π+2)cos (π-2)=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|=sin 2-cos 2. 6.已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B.-35C.-3D.3答案 A 解析sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.7.(2021·四川名校联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( )A.-32B.-52C.52D.±32答案 B解析 ∵在△ABC 中,sin A ·cos A =-18,∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2 =-cos 2A +sin 2A -2sin A cos A =-1-2×⎝⎛⎭⎫-18=-52. 8.已知α为锐角,且2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( ) A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0. 消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 二、填空题9.(2021·西安调研)sin(-570°)+cos(-2 640°)+tan 1 665°=________.答案 1解析 原式=sin(-570°+720°)+cos(-2 640°+2 880°)+tan(1 665°-1 620°)=sin 150°+cos 240°+tan 45°=sin 30°-cos 60°+1=12-12+1=1. 10.若sin ⎝⎛⎭⎫θ+π4=35,则sin ⎝⎛⎭⎫3π4-θ=________. 答案 35解析 sin ⎝⎛⎭⎫3π4-θ=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+θ =sin ⎝⎛⎭⎫θ+π4=35. 11.已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________.答案 -43解析 由(sin θ+3cos θ)2=1=sin 2θ+cos 2θ,得6sin θcos θ=-8cos 2θ,又因为θ为第四象限角,所以cos θ≠0,所以6sin θ=-8cos θ,所以tan θ=-43. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4, 又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5, 又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.B 级 能力提升13.已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( ) A.15B.55C.33D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=2cos 2α,因为α∈⎝⎛⎭⎫0,π2,cos α≠0,所以 2sin α=cos α.又因为sin 2α+cos 2α=1,所以5sin 2α=1,sin 2α=15,sin α=55.故选B. 14.已知α∈[0,2π),cos α+3sin α=10,则tan α=( )A.-3B.3或13C.3D.13 答案 C解析 因为(cos α+3sin α)2=10,所以cos 2α+6sin αcos α+9sin 2α=10,所以cos 2α+6sin αcos α+9sin 2αcos 2α+sin 2α=10,所以1+6tan α+9tan 2α1+tan 2α=10,所以tan α=3. 15.(2021·嘉兴联考)已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=________,cos ⎝⎛⎭⎫α-π4=________.答案 -74 34 解析 sin ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=cos ⎝⎛⎭⎫π4+α, ∵α为钝角,∴34π<π4+α<54π. ∴cos ⎝⎛⎭⎫π4+α<0.∴cos ⎝⎛⎭⎫π4+α=-1-⎝⎛⎭⎫342=-74.cos ⎝⎛⎭⎫α-π4=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫π4+α=34. 16.已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59, 所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z . 所以k π<θ<π4+k π,k ∈Z . 所以0<tan θ<1.所以tan θ=22.。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知是第四象限角,,则()A.B.C.D.【答案】D【解析】利用切化弦以及求解即可.,又是第四象限角,,故选:D.【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,则( )A.B.C.D.【答案】C【解析】本题主要考查三角函数求值.由,故选C.【考点】诱导公式,三角函数求值.4.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.5.若,则.【答案】【解析】因为==,故.考点:角的配凑;诱导公式6.在中,若,则的形状是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】A【解析】由题知====,所以,所以,故选A.【考点】诱导公式;两角与差的正弦公式7.已知,则______________.【答案】3【解析】对分子分母同除以得===3.【考点】同角三角函数基本关系式8.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数9.化简:.【答案】【解析】此类化简题的关键在于诱导公式的使用,要能够理解诱导公式口决“奇变偶不变,符号看象限”的意义,奇偶指的是的倍数如,中是的偶数倍,4倍,中是的奇数倍,11倍;符号看象限,指的是使用诱导公式时,将看成锐角时的所在的象限,不管题中的范围,如中,为锐角时,为第四象限角,则符号为负,故可知.当然也可用诱导公式层层推进.本题由诱导公式易化简.解:原式=.【考点】诱导公式.10.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.11.已知α∈,.(1) 求值; (2)求的值.【答案】(1) ; (2).【解析】应用公式时注意方程思想的应用;对于,,这三个式子,利用,可以知一求二.解:由,知,即,可得又,可得.【考点】同角的三角函数基本关系式.12.已知,则()A.2B.1C.4D.【答案】A【解析】本题考查同角三角函数基本关系式,齐次式求值,先利用分子、分母同除以原式=,带人可得答案为A,【考点】不等式的性质13.(1)化简:(2)已知tan α=3,计算的值.【答案】(1)原式=; (2).【解析】用诱导公式和同角三角函数之间的关系化简即可.1)原式=4分2)由原式==....8分【考点】诱导公式、同角三角函数之间的关系.14.已知均为锐角,且,.(1)求的值;(2)求的值.【答案】(1)的值为;(2)的值为.【解析】(1)由同角三角函数的基本关系:即可求出结果;(2)因为,用恒等变换公式可求的值.试题解析:(1)∵,从而.又∵,∴. 4分∴. 6分(2)由(1)可得,.∵为锐角,,∴. 10分∴ 12分。
同角三角函数的基本关系式与诱导公式 练习
学思堂教育个性化教程教案数学科教学设计教学过程【训练3】(1)已知sin⎝⎛⎭⎪⎫7π12+α=23,则cos⎝⎛⎭⎪⎫α-11π12=________;(2)若tan(π+α)=-12,则tan(3π-α)=________.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x=sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=tanπ4.课堂巩固一、填空题1.已知α和β的终边关于直线y=x对称,且β=-π3,则sin α=________.2.(2014·合肥模拟)sin 585°的值为________.3.(2014·郑州模拟)1-2sin(π+2)cos(π-2)=________.4.若3sin α+cos α=0,则1cos2α+sin 2α的值为________.5.若sin α是5x2-7x-6=0的根,则sin⎝⎛⎭⎪⎫-α-3π2sin⎝⎛⎭⎪⎫3π2-αtan2(2π-α)cos⎝⎛⎭⎪⎫π2-αcos⎝⎛⎭⎪⎫π2+αsin(π+α)=________.6.(2014·杭州模拟)如果sin(π+A)=12,那么cos⎝⎛⎭⎪⎫32π-A的值是________.教学效果分析。
第2节 同角三角函数的基本关系与诱导公式--2025年高考数学复习讲义及练习解析
第二节同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:01sin 2α+cos 2α=1.(2)cos α2.三角函数的诱导公式公式一二三四五六角α+k ·2π(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α——口诀函数名不变,符号看象限函数名改变,符号看象限记忆规律奇变偶不变,符号看象限1.和积互化变形:(sin α±cos α)2=1±2sin αcos α.2.弦切互化变形:sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1,cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1,sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1.1.概念辨析(正确的打“√”,错误的打“×”)(1)若α,β为锐角,则sin 2α+cos 2β=1.()(2)sin(π+α)=-sin α成立的条件是α为锐角.()(3)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.()答案(1)×(2)×(3)×2.小题热身(1)已知α为锐角,且sin α=45,则cos(π+α)=()A .-35B .35C .-45D .45答案A解析因为α为锐角,所以cos α=1-sin 2α=35,故cos(π+α)=-cos α=-35.故选A.(2)(人教B 必修第三册7.2.3练习B T2改编)已知tan α=2,则3sin α-cos αsin α+2cos α=()A .54B .-54C .53D .-53答案A解析原式=3tan α-1tan α+2=3×2-12+2=54.故选A.(3)下列三角函数的值中(k ∈Z ),与sin π3的值相同的个数是()①πk πk πcos (2k +1)π-π6;⑤sin (2k +1)π-π3.A .1B .2C .3D .4答案C解析对于①,πsin (k +1)π+π3,当k 为奇数时,sin (k +1)π+π3=sin π3;当k为偶数时,sin (k +1)π+π3=-sin π3,不满足题意.对于②,k πcos π6=sin π3满足题意.对于③,k πsin π3,满足题意.对于④,cos (2k +1)π-π6=cosπ6=-sin π3,不满足题意.对于⑤,sin (2k +1)π-π3=sin π3,满足题意.故选C.(4)(人教A 必修第一册习题5.3T5改编)-α)的结果为________.答案sin α解析原式=sin αcos α·cos α=sin α.考点探究——提素养考点一同角三角函数基本关系式的应用(多考向探究)考向1“知一求二”问题例1已知角α的终边在第三象限,且tan α=2,则sin α-cos α=()A .-1B .1C .-55D .55答案C解析由角α的终边在第三象限,则sin α<0,cos α<0,2,cos 2α=1,解得cos α=-55,sin α=-255,所以sin α-cos α=-255+55=-55.故选C.【通性通法】利用同角基本关系式“知一求二”的方法注意:由一个角的任一三角函数值可求出这个角的另外两个三角函数值,当利用“平方关系”公式求平方根时,会出现两解,需根据角所在的象限判断三角函数值的符号,当角所在的象限不明确时,要进行分类讨论.【巩固迁移】1.(2024·广东梅州模拟)已知cos α=13,且α为第四象限角,则tan α=()A .-22B .±22C .±23D .23答案A解析∵α为第四象限角,∴sin α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.故选A.考向2“弦切互化”问题例2已知tan θ=2,则1sin 2θ-cos 2θ的值为()A .34B .23C .53D .2答案C解析由题意,得1sin 2θ-cos 2θ=sin 2θ+cos 2θsin 2θ-cos 2θ=tan 2θ+1tan 2θ-1=22+122-1=53.故选C.【通性通法】若已知正切值,求一个关于正弦和余弦的齐次式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型,形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.【巩固迁移】2.(2023·苏州模拟)已知sin α+3cos α3cos α-sin α=5,则cos 2α+sin αcos α=()A .35B .-35C .-3D .3答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.考向3sin α±cos α,sin αcos α之间关系的应用例3(2023·广东潮州模拟)已知π2<x <π,sin x +cos x =15,则sin x -cos x =________.答案75解析由(sin x +cos x )2=1+2sin x cos x =125,得2sin x cos x =-2425,所以(sin x -cos x )2=1-2sin x cos x =4925,因为π2<x <π,所以sin x >cos x ,故sin x -cos x =75.【通性通法】“sin α±cos α,sin αcos α”关系的应用sin α±cos α与sin αcos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题时已知一个用方程思想可求另外两个.【巩固迁移】3.(2023·山东聊城模拟)已知α-π2,sin α+cos α=55,则tan α的值为________.答案-12解析∵sin α+cos α=55,∴sin 2α+cos 2α+2sin αcos α=15,∴sin αcos α=-25,∴sin 2α+cos 2α-2sin αcos α=95=(sin α-cos α)2,又sin αcos α<0,α-π2,α-π2,sin α<0,cos α>0,∴cos α-sin α=355,∴sin α=-55,cos α=255,∴tan α=-12.考点二诱导公式的应用例4()A .-2B .-1C .1D .2答案B解析原式=-tan αcos α(-cos α)cos(π+α)[-sin(π+α)]=tan αcos 2α-cos αsin α=-sin αcos α·cos αsin α=-1.故选B.(2)已知=23,其中α________.答案-23解析-2π3+=-23.【通性通法】1.利用诱导公式解题的一般思路(1)化绝对值大的角为锐角;(2)角中含有加减π2的整数倍时,用公式去掉π2的整数倍.2.常见的互余和互补的角(1)互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等;(2)互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.【巩固迁移】4.(2024·湖南长郡中学高三质量检测)已知f (α)________.答案12解析因为f (α)=-sin αcos αcos α-cos αsin α=cos α,所以cos π3=12.考点三同角三角函数基本关系式与诱导公式的综合应用例5(1)已知=13,且α则cos ()A .13B .-13C .223D .-223答案C解析由sin π=13,而α,∴5π6-α-π6,=223.故选C.(2)(2023·辽宁葫芦岛模拟)若sin(π-θ)+cos(θ-2π)sin θ+cos(π+θ)=12,则tan θ=________.答案-3解析因为sin(π-θ)+cos(θ-2π)sin θ+cos(π+θ)=sin θ+cos θsin θ-cos θ=12,所以tan θ+1tan θ-1=12,解得tan θ=-3.【通性通法】利用诱导公式与同角三角函数基本关系解题的思路和要求(1)思路:①分析结构特点,选择恰当的公式;②利用公式化成同角三角函数;③整理得最简形式.(2)要求:①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【巩固迁移】5.已知cos167°=m ,则tan193°=()A .1-m2B .1-m 2m C .-1-m 2m D .-m 1-m 2答案C解析tan193°=tan(360°-167°)=-tan167°=-sin167°cos167°=-sin167°m,因为cos167°=m ,所以sin167°=1-m 2,所以tan193°=-1-m 2m.故选C.6.已知cos α=-513,且α________.答案1312解析∵cos α=-513,α∴sin α=1-cos 2α=1213,∴coscos(α+=cos α-cos α(-sin α)=1sin α=1312.课时作业一、单项选择题1.(2023·广西桂林模拟)sin9330°的值为()A .22B .-12C .12D .-22答案B解析sin9330°=sin(360°×25+330°)=sin330°=sin(360°-30°)=-sin30°=-12.故选B.2.(2023·吉林长春质检)已知=13,θ∈(0,π),则tan θ=()A .22B .24C .-22D .-24答案C解析依题意,得cos θ=13,则cos θ=-13.由于θ∈(0,π),所以sin θ=1-cos 2θ=223,所以tan θ=sin θcos θ=-2 2.故选C.3.已知=13,则cos ()A .223B .-223C .13D .-13答案D解析∵π4+α=π2,∴cos π2+=-13.故选D.4.(2023·江西南昌模拟)已知sin(θ+π)=0,θ∈(-π,0),则sin θ=()A .-31010B .-1010C .31010D .1010答案A解析∵sin(θ+π)=0,∴3cos θ-sin θ=0,∵θ∈(-π,0),sin 2θ+cos 2θ=1,∴sin θ=-31010.故选A.5.若tan θ=-2,则cos 2θ-sin 2θ=()A .-45B .35C .-35D .45答案C解析解法一:由题意知tan θ=-2,θ=sin θcos θ=-2,2θ+cos 2θ=1,解得cos 2θ=15,所以cos 2θ-sin 2θ=cos 2θ-(1-cos 2θ)=2cos 2θ-1=2×15-1=-35.故选C.解法二:已知tan θ=-2,所以cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.故选C.6.已知sin α,cos α是方程3x 2-2x +a =0的两个根,则实数a 的值为()A .56B .-56C .43D .34答案B解析由题意,得sin α+cos α=23,sin αcos α=a3,所以sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=49-2a 3=1,解得a =-56.故选B.7.已知锐角α终边上一点A 的坐标为(2sin3,-2cos3),则角α的弧度数为()A .3-π2B .π2-3C .π-3D .3π2-3答案A解析tan α=-2cos32sin3=-又0<3-π2<π2,α为锐角,所以α=3-π2.故选A.8.已知sin α+cos α=15,则tan(π+α)+12sin 2α+sin2α=()A .-17524B .17524C .-2524D .2524答案C解析由题意知sin α+cos α=15,有2sin αcos α=-2425,所以tan(π+α)+12sin 2α+sin2α=tan α+12sin α(sin α+cos α)=sin α+cos αcos α·12sin α(sin α+cos α)=12sin αcos α=-2524.故选C.二、多项选择题9.已知3sin(π+θ)=cos(2π-θ),θ-π3,θ的值可能是()A .-π6B .-π3C .π3D .5π6答案AD解析∵3sin(π+θ)=cos(2π-θ),∴-3sin θ=cos θ,∴tan θ=-33,∵θ-π3,θ=-π6或θ=5π6.故选AD.10.在△ABC 中,下列结论正确的是()A .sin(A +B )=sinC B .sinB +C 2=cosA2C .tan(A +B )=-tanD .cos(A +B )=cos C 答案ABC解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确;sinB +C2=cos A2,B 正确;tan(A +B )=tan(π-C )=-tan C 正确;cos(A +B )=cos(π-C )=-cos C ,D 错误.故选ABC.11.给出下列四个结论,其中正确的是()A .sin(π+|α|)=-sin α成立的条件是角α是锐角B .若cos(n π-α)=13(n ∈Z ),则cos α=13C .若α≠k π2(k ∈Z ),则=-1tan αD .若sin α+cos α=1,则sin n α+cos n α=1答案CD解析由诱导公式,知sin(π+|α|)=-sin|α|sin α,α≥0,α,α<0,所以A 错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13,当n =2k +1(k ∈Z )时,cos(n π-α)=cos[(2k+1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以B 错误.若α≠k π2(k ∈Z ),则=cos α-sin α=-1tan α,所以C 正确.将等式sin α+cos α=1两边平方,得sin αcos α=0,所以sin α=0或cos α=0.若sin α=0,则cos α=1,此时sin n α+cos n α=1;若cos α=0,则sin α=1,此时sin n α+cos n α=1,故sin n α+cos n α=1,所以D 正确.故选CD.三、填空题12.已知=32,且|φ|<π2,则tan φ=________.答案-3解析∵=32,∴-sin φ=32,∴sin φ=-32,∵|φ|<π2,∴cos φ=12,∴tan φ=sin φcos φ=- 3.13.(2023·河南平顶山联考)已知tan θ=2,则1+sin θcos θ的值为________.答案75解析∵tan θ=2,∴1+sin θcos θ=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1tan 2θ+1=22+2+122+1=75.14.(2023·全国乙卷)若θtan θ=12,则sin θ-cos θ=________.答案-55解析因为θ则sin θ>0,cos θ>0,又因为tan θ=sin θcos θ=12,则cos θ=2sin θ,且cos 2θ+sin 2θ=4sin 2θ+sin 2θ=5sin 2θ=1,解得sin θ=55或sin θ=-55(舍去),所以sin θ-cos θ=sin θ-2sin θ=-sin θ=-55.15.黑洞原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再出来.数字中也有类似的“黑洞”,任意取一个数字串,长度不限,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字串,我们称它为“数字黑洞”,如果把这个数字串设为a ,则()A .12B .-12C .32D .-32答案D解析根据“数字黑洞”的定义,任取数字串2024,经过第一步之后变为404,经过第二步之后变为303,再变为123,再变为123,所以“数字黑洞”为123,即a =123,所以cos π6=-32.故选D.16.(多选)已知角α满足sin αcos α≠0,则表达式sin(α+k π)sin α+cos(α+k π)cos α(k ∈Z )的取值为()A .-2B .-1C .2D .1答案AC解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2.所以原表达式的取值为-2或2.故选AC.17.(多选)已知角θ和φ都是任意角,若满足θ+φ=π2+2k π,k ∈Z ,则称θ与φ广义互余.若sin(π+α)=-14,则下列角β中,可能与角α广义互余的是()A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案AC解析若α与β广义互余,则α+β=π2+2k π(k ∈Z ),即β=π2+2k π-α(k ∈Z ).又由sin(π+α)=-14,可得sin α=14若α与β广义互余,则sin β=2k π-cos α=±1-sin 2α=±154(k ∈Z ),故A 正确;若α与β广义互余,则cosβ=2k π-sin α=14(k ∈Z ),而由cos(π+β)=14,可得cos β=-14,故B 错误;由A ,B 可知sin β=±154,cos β=14,所以tan β=sin βcos β=±15,故C 正确,D 错误.故选AC.18.已知f (α)=1+sin α1-sin α-1-sin α1+sin α,α为第二象限角.(1)若f (α)=3,求43sin 2α+cos 2α的值;(2)若cos 2αf (α)=12,求cos(2023π+α)+cos 解(1)因为α为第二象限角,所以|cos α|=-cos α,f (α)=1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2(1-sin α)(1+sin α)-(1-sin α)2(1+sin α)(1-sin α)=(1+sin α)21-sin 2α-(1-sin α)21-sin 2α=1+sin α|cos α|-1-sin α|cos α|=2sin α|cos α|=-2tan α.若f (α)=3,则-2tan α=3,所以tan α=-32,所以43sin 2α+cos 2α=43sin 2α+cos 2αsin 2α+cos 2α=43tan 2α+1tan 2α+1=43×+1+1=1613.(2)cos 2αf (α)=cos 2α×(-2tan α)=-cos 2α×2sin αcos α=-2sin αcos α.因为cos 2αf (α)=12,则-2sin αcos α=12,所以sin αcos α=-14.又α为第二象限角,所以sinα>0,cosα<0,sinα-cosα>0.所以cos(2023π+α)+cos(π+α)+cosα+sinα=(sinα-cosα)2=1-2sinαcosα=1+2×14=6 2 .。
高考数学真题 三角函数的概念、同角三角函数的基本关系式和诱导公式
专题四 三角函数与解三角形4.1 三角函数的概念、同角三角函数的基本关系式和诱导公式考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京文,7,5分)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB⏜ B.CD ⏜ C.EF ⏜ D.GH ⏜ 答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式.若点P 在AB⏜或CD ⏜(不包含端点A,D)上,则角α在第一象限,此时tan α-sin α=tan α(1-cos α)>0,与tan α<sin α矛盾,故排除A,B.若点P 在GH ⏜(不包含端点G)上,则角α在第三象限,此时tan α>0,cos α<0,与tan α<cos α矛盾,故排除D,故选C.2.(2014课标Ⅰ文,2,5分)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0答案 C 由tan α>0得α是第一或第三象限角,若α是第三象限角,则A,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2×(12)2-1=-12<0,D 错.故选C.评析 本题考查三角函数值的符号,判定时可运用基本知识、恒等变形及特殊值等多种方法,具有一定的灵活性.3.(2014大纲全国文,2,5分)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45答案 D 由三角函数的定义知cos α=√(-4)2+32=-45.故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( )A.-45B.-35C.35D.45答案 B 解法一:由三角函数定义知,tan θ=2,则cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.解法二:由三角函数定义知,tan θ=2,即sin θ=2cos θ,则sin 2θ=4cos 2θ.从而有cos 2θ=15.故cos 2θ=2cos 2θ-1=-35.5.(2015福建文,6,5分)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-512答案 D ∵sin α=-513,α为第四象限角, ∴cos α=√1-sin 2α=1213,∴tan α=sinαcosα=-512.故选D. 6.(2014课标Ⅰ理,8,5分)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2B.3α+β=π2C.2α-β=π2D.2α+β=π2答案 C 由tan α=1+sinβcosβ得sinαcosα=1+sinβcosβ,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2-α),所以sin(α-β)=sin (π2-α),又因为α∈(0,π2),β∈(0,π2),所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.7.(2014大纲全国理,3,5分)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 答案 C ∵b=cos 55°=sin 35°>sin 33°=a,∴b>a. 又∵c=tan 35°=sin35°cos35°>sin 35°=cos 55°=b,∴c>b.∴c>b>a.故选C.8.(2013浙江理,6,5分)已知α∈R,sin α+2cos α=√102,则tan 2α=( )A.43B.34C.-34D.-43答案 C (sin α+2cos α)2=52,展开得3cos 2α+4sin αcos α=32,再由二倍角公式得32cos 2α+2sin 2α=0,故tan 2α=sin2αcos2α=-322=-34,选C.评析 本题考查同角三角函数的基本关系式和三角恒等变换,考查转化与化归思想,考查学生灵活应用公式的能力和运算求解能力.三角函数求值问题关键在于观察角与角之间的关系和三角函数名之间的关系. 9.(2013大纲全国文,2,5分)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213 B.-513 C.513 D.1213答案 A ∵α是第二象限角,∴cos α<0. ∴cos α=-√1-sin 2α=-1213.故选A. 评析 本题考查三角函数值在各象限的符号,同角三角函数关系,属容易题. 10.(2013广东文,4,5分)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15 C.15 D.25答案 C ∵sin (5π2+α)=sin (π2+α)=cos α,∴cos α=15.故选C. 11.(2016课标Ⅲ,5,5分)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1 D.1625答案 A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×34916+1=6425,故选A.思路分析 利用二倍角公式将所求式子展开,再将其看成分母为1的式子,并用sin 2α+cos 2α代替1,然后分子、分母同除以cos 2α,得到关于tan α的式子,由此即可代值求解.12.(2011江西文,14,5分)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 答案 -8解析 P(4,y)是角θ终边上一点,由三角函数的定义知sin θ=√,又sin θ=-2√55,∴√=-2√55,解得y=-8.评析 本题主要考查任意角三角函数的定义,考查运算求解能力,由题意得√=-2√55是本题求解的关键.13.(2016四川文,11,5分)sin 750°= . 答案12解析 sin 750°=sin(720°+30°)=sin 30°=12. 解后反思 利用诱导公式把大角化为小角. 评析 本题考查了三角函数的诱导公式.14.(2013课标Ⅱ理,15,5分)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 答案 -√105解析 tan θ=tan [(θ+π4)-π4]=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1得109cos 2θ=1,∴cos 2θ=910,又易知cos θ<0,∴cos θ=-310√10,∴sin θ=√1010,故sin θ+cos θ=-√105.。
高一三角函数公式及诱导公式习题(附答案)
π
sin( 2
+α )= cosα
π cos(2 - α )= sinα
π cos(2 +α )= - sinα
π tan( -α )= cotα
2
π tan( +α )= -cotα
2
3π sin( - α )= -cosα
2 3π cos( - α )= -sinα
2
3π sin( +α )= -cosα
1. 同角三角函数基本关系式 sin2α + cos2α =1 sinα
=tan α cosα
tanα cotα =1
பைடு நூலகம்
三角函数公式
2. 诱导公式 (奇变偶不变,符号看象限 )
(一) sin(π- α )= sinα sin(π +α )= -sinα
cos(π- α )= -cosα
cos(π +α )= -cosα
π
若 A、 B 是锐角, A+B= 4
,则( 1+tanA ) (1+tanB)=2
8. 在三角形中的结论
A+B+C π
若: A+ B+ C=π ,
= 则有 tanA + tanB +tanC=tanAtanBtanC
2
2
AB
BC
CA
tan2 tan2 + tan2 tan2 + tan2 tan 2 = 1
2 3π cos( +α )= sinα
2
3π
tan( 2
- α )= cotα
3π
tan( 2
+α )= -cotα
sin(- α )=- sinα
cos(- α)=cosα
同角三角函数的基本关系式与诱导公式专题及答案
同角三角函数基本关系及诱导公式1.α是第四象限角,tan α=-512,则sin α= .2.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α= .3.已知sin(π-α)=-2sin(π2+α),则sin α·cos α= .4.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为 .5.函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则φ的取值是 .6.如果sin α=15,且α为第二象限角,则sin ⎝⎛⎭⎫3π2+α=7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= .8.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3(π2+α)·sin (-α-2π)= .9.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.10.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0(a ∈R)的两个根,求cos 3(π2-θ)+sin 3(π2-θ)的值. (已知:a 3+b 3=(a +b )(a 2-ab +b 2))同角三角函数基本关系及诱导公式1.α是第四象限角,tan α=-512,则sin α= . 答案 -513解析 ∵tan α=sin αcos α=-512,∴cos α=-125sin α, 又sin 2α+cos 2α=1,∴sin 2α+14425sin 2α=16925sin 2α=1. 又sin α<0,∴sin α=-513. 2.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α= . 答案 -79解析 ∵⎝⎛⎭⎫π3+α+⎝⎛⎭⎫π6-α=π2, ∴sin ⎝⎛⎭⎫π6-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+α =cos ⎝⎛⎭⎫π3+α=13. 则cos ⎝⎛⎭⎫2π3+2α=2cos 2⎝⎛⎭⎫π3+α-1=-79. 3.已知sin(π-α)=-2sin(π2+α),则sin α·cos α= . 答案 -25解析 由sin(π-α)=-2sin(π2+α)得sin α=-2cos α, 所以tan α=-2,所以sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 4.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为 . 答案 12解析 ∵f (α)=sin αcos α-cos α·(-tan α)=cos α, ∴f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫8π+π3=cos π3=12. 5.函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则φ的取值是 . 答案 k π-π4(k ∈Z) 解析 ∵y =cos x +2的对称轴为x =k π(k ∈Z),∴x +φ=k π(k ∈Z),即x =k π-φ(k ∈Z),令π4=k π-φ(k ∈Z)得φ=k π-π4(k ∈Z). 6.如果sin α=15,且α为第二象限角,则sin ⎝⎛⎭⎫3π2+α= . 答案 265解析 ∵sin α=15,且α为第二象限角, ∴cos α=-1-sin 2α=-1-125=-265, ∴sin ⎝⎛⎭⎫3π2+α=-cos α=265. 7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= . 答案 -74解析 由题意可得cos(π4+α)=±74,又因为α为钝角,所以cos(π4+α)=-74,所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74. 8.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3(π2+α)·sin (-α-2π)= . 答案 1解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1. 9.已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. 解 (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=925. 又π2<θ<π,∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)由(1)知,sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857. 10.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0(a ∈R)的两个根,求cos 3(π2-θ)+sin 3(π2-θ)的值.(已知:a 3+b 3=(a +b )(a 2-ab +b 2))解 由已知原方程的判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又∵⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a , ∴(sin θ+cos θ)2=1+2sin θcos θ,则a 2-2a -1=0,从而a =1-2或a =1+2(舍去),因此sin θ+cos θ=sin θcos θ=1- 2.∴cos 3(π2-θ)+sin 3(π2-θ)=sin 3θ+cos 3θ =(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ)=(1-2)[1-(1-2)]=2-2.。
同角三角函数的基本关系与诱导公式练习题(基础、经典、好用)
同角三角函数的基本关系与诱导公式一、选择题1.记cos(-80°)=k ,那么tan 100°=( ) A.1-k 2k B .-1-k2k C.k1-k 2 D .-k 1-k 22.1-2sin (π+2)cos (π+2)等于( )A .sin 2-cos 2B .cos 2-sin 2C .±(sin 2-cos 2)D .sin 2+cos 23.(2013·厦门模拟)已知α∈(-π2,0),sin(-α-3π2)=55则sin(-π-α)=() A.55 B.255 C .-55 D .-2554.(2013·惠州模拟)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A .-43 B.54 C .-34 D.455.若sin α是5x 2-7x -6=0的根, 则sin (-α-3π2)sin (3π2-α)tan 2(2π-α)cos (π2-α)cos (π2+α)sin (π+α)=()A.35B.53C.45D.54二、填空题6.已知sin(π4+α)=32,则sin(3π4-α)的值为________.7.已知tan α=2,则7sin 2α+3cos 2α=________.8.已知sin(x +π6)=14,则sin(7π6+x )+cos 2(5π6-x )=________.三、解答题9.已知函数f (x )=1-sin (x -3π2)+cos (x +π2)+tan 34πcos x .(1)求函数y =f (x )的定义域;(2)设tan α=-43,求f (α)的值.10.已知sin(π-α)-cos(π+α)=23(π2<α<π).求下列各式的值:(1)sin α-cos α;(2)sin 3(π2-α)+cos 3(π2+α).11.已知向量a =(sin θ,cos θ),b =(2,1)满足a ∥b ,其中θ∈(0,π2).(1)求tan θ的值; (2)求2sin (θ+π4)(sin θ+2cos θ)cos 2θ的值.解析及答案一、选择题1.【解析】 由cos(-80°)=k ,得cos 80°=k ,∴sin 80°=1-k 2,∴tan 100°=tan(180°-80°)=-tan 80°=-1-k 2k .【答案】 B2.【解析】 原式=1-2(-sin 2)(-cos 2)=1-2sin 2cos 2=|sin 2-cos 2|,∵sin 2>0,cos 2<0,∴原式=sin 2-cos 2.【答案】 A3.【解析】 ∵sin(-α-3π2)=-sin(3π2+α)=cos α=55,且α∈(-π2,0),∴sin α=-1-cos 2α=-1-525=-255,∴sin(-π-α)=-sin(π+α)=sin α=-255.【答案】 D4.【解析】 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45. 【答案】 D5.【解析】 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α(-cos α)tan 2αsin α(-sin α)(-sin α)=-1sin α=53. 【答案】 B二、填空题6.【解析】 sin(3π4-α)=sin[π-(π4+α)]=sin(π4+α)=32.【答案】 327.【解析】 7sin 2α+3cos 2α=7sin 2α+3cos 2αsin 2α+cos 2α=7tan 2α+3tan 2α+1=7×22+322+1=315. 【答案】 3158.【解析】 原式=-sin(π6+x )+cos 2(π6+x ) =-14+(1-142)=1116.【答案】 1116三、解答题9.【解】 (1)由cos x ≠0,得x ≠π2+k π,k ∈Z ,所以函数的定义域是{x |x ≠π2+k π,k ∈Z}.(2)∵tan α=-43,∴f (α)=1-sin (α-3π2)+cos (α+π2)+tan 34πcos α=1-cos α-sin α-1cos α=-cos α-sin αcos α=-1-tan α=13. 10.【解】 由sin(π-α)-cos(π+α)=23,得sin α+cos α=23,两边平方,得1+2sin α·cos α=29,故2sin α·cos α=-79.又π2<α<π,∴sin α>0,cos α<0.(1)(sin α-cos α)2=1-2sin α·cos α=1-(-79)=169, ∴sin α-cos α=43.(2)sin 3(π2-α)+cos 3(π2+α)=cos 3α-sin 3α =(cos α-sin α)(cos 2α+cos α·sin α+sin 2α) =-43×(1-718)=-2227.11.【解】 (1)∵a ∥b ,∴sin θ2=cos θ1,所以tan θ=2.(2)2sin (θ+π4)(sin θ+2cos θ)cos 2θ =2(22sin θ+22cos θ)(sin θ+2cos θ)cos 2θ-sin 2θ=(sin θ+cos θ)(sin θ+2cos θ)(cos θ+sin θ)(cos θ-sin θ)=sin θ+2cos θcos θ-sin θ=tan θ+21-tan θ =2+21-2=-4.。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.已知△ABC中,cos(-A)+cos(π+A)=-.(1)判断△ABC是锐角三角形还是钝角三角形;(2)求tanA的值.【答案】(1)△ABC是钝角三角形(2)-【解析】解:(1)由已知得,-sinA-cosA=-.∴sinA+cosA=.①①式平方得,1+2sinAcosA=,∴sinAcosA=-<0,又∵0<A<π,∴sinA>0,cosA<0.∴A为钝角,故△ABC是钝角三角形.(2)∵(sinA-cosA)2=1-2sinAcosA=1+=.又∵sinA>0,cosA<0,∴sinA-cosA>0,∴sinA-cosA=,又由已知得sinA+cosA=,故sinA=,cosA=-,∴tanA==-.3.已知,是以原点为圆心的单位圆上的两点,(为钝角).若,则的值为.【答案】【解析】因为,所以,因为,所以【考点】同角三角函数关系,向量数量积4.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( ) A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形5.已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.【答案】(1)-(2)【解析】(1) ∵α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴sin(α-β)=-.(2) 由(1)可得,cos(α-β)=.∵α为锐角,sinα=,∴cosα=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.6.已知cos=,且-π<α<-,则cos=________.【答案】-【解析】cos=cos[-]=sin.又-π<α<-,所以-π<+α<-.所以sin=-,所以cos=-.7.已知tanθ=2,则=__________.【答案】-2【解析】==-2.8.已知角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.【答案】【解析】因为r=|OP|=,所以由cosα=,得=,解得x=0或x=±.当x=0时,sinα=-1,tanα不存在;当x=时,sinα=-,tanα=-;当x=-时,sinα=-,tanα=.9.已知sin 2α=,则cos2=( )A.B.C.D.【答案】A【解析】∵sin 2α=,∴cos2==10.已知sinα=,则cos(π-2α)=()A.-B.-C.D.【答案】B【解析】∵sinα=,∴cos(π-2α)=-cos2α=-(1-2sin2α)=-.故选B.11.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.12.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.13.在中,若,则=()A.B.C.D.【答案】A【解析】由已知, 知为钝角,,,解得,故选A.【考点】同角基本关系式14.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算15.在△ABC中,a=15,b=10,A=60o,则cosB= 。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.△ABC是锐角三角形,若角θ终边上一点P的坐标为(sinA-cosB,cosA-sinC),则++的值是()A.1 B.-1 C.3 D.4【答案】B【解析】因为△ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sinA>sin(90°-B)=cosB,sinA-cosB>0,同理cosA-sinC<0,所以点P在第四象限,++=-1+1-1=-1,故选B.2.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.3.已知,则= .【答案】【解析】.【考点】三角函数同角公式,二倍角的正弦公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).(1)求的值;(2)求m的值;(3)求方程的两根及此时θ的值.【答案】(1)(2)(3)θ=或【解析】(1)由韦达定理可知而==sinθ+cosθ=.(2)由①两边平方得1+2sinθcosθ=,将②代入得m=.(3)当m=时,原方程变为2x2-(1+)x+=0,解得x1=,x2=,∴或∵θ∈(0,2π),∴θ=或6.已知α为锐角,cos α=,则tan=()A.-3B.-C.-D.-7【答案】B【解析】依题意得,sin α=,故tan α=2,tan 2α=,所以tan==-.7.在△ABC中,sin(-A)=3sin(π-A),且cosA=-cos(π-B),则C等于()(A) (B) (C) (D)【答案】C【解析】【思路点拨】将已知条件利用诱导公式化简后可得角A,角B,进而得角C.解:由已知化简得cosA=3sinA.①cosA=cosB.②由①得tanA=,又∵0<A<π,∴A=,由②得cosB=·cos=,又∵0<B<π,∴B=,∴C=π-A-B=.8.已知α是第三象限角,且cos(85°+α)=,则sin(α-95°)=.【答案】【解析】∵α是第三象限角,cos(85°+α)=>0,∴85°+α是第四象限角,∴sin(85°+α)=-,sin(α-95°)=sin[(85°+α)-180°]=-sin(85°+α)=.9.已知,,则的值等于()A.B.C.D.【答案】D【解析】,, ,【考点】正弦和差角公式诱导公式10.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.11.若sin=,则sin=______.【答案】-【解析】sin=-cos=-cos=2sin2-1=-. 12.已知sin α=,则cos (π-2α)=().A.B.-C.D.【答案】B【解析】cos (π-2α)=-cos 2α=2sin2α-1=2×2-1=-.13.化简:=________.【答案】-tana【解析】.【考点】三角函数同角关系式及诱导公式.14.在中,BC=,AC=2,的面积为4,则AB的长为 .【答案】或【解析】由已知,∴,故,在中,当,当时,4,当时.【考点】1、三角形的面积;2、同角三角函数基本关系式;3、余弦定理.15.若α∈,且,则的值等于()A.B.C.D.【解析】因为,α∈,且,所以,,=,选D.【考点】三角函数倍角公式、同角公式16.设为锐角,若,则的值为___________.【答案】【解析】,所以=,因为,且,所以=,∴=,=,所以=.【考点】1、两角差的正弦公式;2、正弦和余弦的二倍角公式.17.已知函数,函数与函数图像关于轴对称.(1)当时,求的值域及单调递减区间;(2)若,求值.【答案】(1)当时,的值域为,单调递减区间为;(2).【解析】(1)先将函数的解析式进行化简,化简为,利用计算出的取值范围,再结合正弦曲线确定函数的值域,对于函数在区间上的单调区间的求解,先求出函数在上的单调递减区间,然后和定义域取交集即得到函数在区间上的单调递减区间;(2)利用等式计算得出的值,然后利用差角公式将角凑成的形式,结合两角差的正弦公式进行计算,但是在求解的时候计算时,利用同角三角函数的基本关系时需要考虑角的取值范围.试题解析:(1)2分又与图像关于轴对称,得当时,得,得即 4分单调递减区间满足,得取,得,又,单调递减区间为 7分(2)由(1)知得,由于 8分而10分13分【考点】1.诱导公式;2.同角三角函数的基本关系;3.两角差的正弦公式18.已知且(1)求的值;(2)求的值;【答案】(1);(2)【解析】⑴根据已知条件先判断角所在的象限,然后求出角的余弦值,那么正弦值就很容易得到了;⑵先化简所给的式子,然后分子分母同时除以,然后将代入即可.试题解析:⑴∵,∴在第四象限 2分∴, 4分∴; 6分(2). ..12分【考点】同角三角函数间的关系,三角函数的诱导公式及应用.19.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.【答案】-【解析】由θ为第二象限角且tan(θ+)=,则为第三象限角,于是,所以.【考点】三角函数计算20.已知,,则.【答案】【解析】由,得,,.【考点】同角三角函数的关系、两角和的正切公式.21.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.22.已知,且,则的值等于()A.B.C.D.7【答案】C【解析】由倍角公式得又由平方关系得最后由两角和正切公式得【考点】考查三角恒等变换,知值求值类问题.23.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值24.若,且,则 ( )A.B.C.D.【答案】D【解析】因为,且,所以,故选D。
高考数学总复习考点知识讲解与提升练习27 同角三角函数基本关系式及诱导公式
高考数学总复习考点知识讲解与提升练习 专题27 同角三角函数基本关系式及诱导公式考点知识1.理解同角三角函数的基本关系式sin 2α+cos 2α=1,sin αcos α=tanα⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.掌握诱导公式,并会简单应用.知识梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式常用结论同角三角函数的基本关系式的常见变形sin2α=1-cos2α=(1+cosα)(1-cosα);cos2α=1-sin2α=(1+sinα)(1-sinα);(sinα±cosα)2=1±2sinαcosα.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)使sin(π+α)=-sinα成立的条件是α为锐角.(×)(2)若sin(kπ-α)=13(k∈Z),则sinα=13.(×)(3)若α,β为锐角,则sin2α+cos2β=1.(×)(4)若α∈R,则tanα=sinαcosα恒成立.(×)教材改编题1.若cosα=13,α∈⎝⎛⎭⎪⎫-π2,0,则tanα等于()A.-24B.24C.-22D.2 2答案C解析由已知得,sinα=-1-cos2α=-1-19=-223,所以tanα=sinαcosα=-2 2.2.若sin α+cos α=22,则sin αcos α等于() A .-12B .-14C.22D .2答案B解析因为sin α+cos α=22,所以(sin α+cos α)2=12, 即sin 2α+cos 2α+2sin αcos α=12,即1+2sin αcos α=12,所以sin αcos α=-14.3.化简cos ⎝⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫5π2+α·cos(2π-α)的结果为.答案sin α解析原式=sin αcos α·cos α=sin α.题型一同角三角函数基本关系例1(1)(多选)已知θ∈(0,π),sin θ+cos θ=15,则下列结论正确的是()A .θ∈⎝ ⎛⎭⎪⎫π2,πB .cos θ=-45C .tan θ=-34D .sin θ-cos θ=75答案AD解析因为sin θ+cos θ=15,①所以(sin θ+cos θ)2=1+2sin θcos θ=125,则2sin θcos θ=-2425, 因为θ∈(0,π),所以sin θ>0,cos θ<0, 所以θ∈⎝ ⎛⎭⎪⎫π2,π,故A 正确;所以(sin θ-cos θ)2=1-2sin θcos θ=4925,所以sin θ-cos θ=75,②故D 正确;由①②联立可得,sin θ=45,cos θ=-35,故B 错误;所以tan θ=sin θcos θ=-43,故C 错误.(2)已知cos α=-513,则13sin α+5tan α=. 答案0解析∵cos α=-513<0且cos α≠-1,∴α是第二或第三象限角. ①若α是第二象限角,则sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-5132=1213,∴tan α=sin αcos α=1213-513=-125.此时13sin α+5tan α=13×1213+5×⎝ ⎛⎭⎪⎫-125=0. ②若α是第三象限角,则sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-5132 =-1213,∴tan α=sin αcos α=-1213-513=125,此时,13sin α+5tan α=13×⎝ ⎛⎭⎪⎫-1213+5×125=0.综上,13sin α+5tan α=0. (3)已知tan α=2,则3sin α-2cos αsin α+cos α=;23sin 2α+14cos 2α=.答案43712解析因为tan α=2, 所以3sin α-2cos αsin α+cos α=3tan α-2tan α+1=3×2-22+1=43.23sin 2α+14cos 2α=23·sin 2αsin 2α+cos 2α+14·cos 2αsin 2α+cos 2α=23·tan 2αtan 2α+1+14·1tan 2α+1=23×2222+1+14×122+1=712. 思维升华(1)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(2)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.跟踪训练1(1)(2023·苏州模拟)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin2α等于()A.35B .-35C .-3D .3 答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35. (2)若α∈(0,π),sin(π-α)+cos α=23,则sin α-cos α的值为()A.23B .-23C.43D .-43答案C解析由诱导公式得,sin(π-α)+cos α=sin α+cos α=23,所以(sin α+cos α)2=1+2sin αcos α=29,则2sin αcos α=-79<0,因为α∈(0,π),所以sin α>0, 所以cos α<0,所以sin α-cos α>0, 因为(sin α-cos α)2=1-2sin αcos α=169, 所以sin α-cos α=43.题型二诱导公式例2(1)已知x ∈R ,则下列等式恒成立的是() A .sin(3π-x )=-sin x B .sin π-x 2=-cos x2C .cos ⎝ ⎛⎭⎪⎫5π2+3x =sin3x D .cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin2x 答案D解析sin(3π-x )=sin(π-x )=sin x , sin π-x 2=sin ⎝ ⎛⎭⎪⎫π2-x 2=cos x 2,cos ⎝ ⎛⎭⎪⎫5π2+3x =cos ⎝ ⎛⎭⎪⎫π2+3x =-sin3x , cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin2x .(2)已知sin ⎝ ⎛⎭⎪⎫π3-x =13,且0<x <π6,则sin ⎝ ⎛⎭⎪⎫π6+x -cos ⎝⎛⎭⎪⎫2π3+x 的值为. 答案423解析∵0<x <π6,∴π6<π3-x <π3,∴cos ⎝ ⎛⎭⎪⎫π3-x =1-sin 2⎝ ⎛⎭⎪⎫π3-x =223.∴sin ⎝ ⎛⎭⎪⎫π6+x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-x =cos ⎝ ⎛⎭⎪⎫π3-x =223,cos ⎝ ⎛⎭⎪⎫2π3+x =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-x =-cos ⎝ ⎛⎭⎪⎫π3-x =-223.∴sin ⎝ ⎛⎭⎪⎫π6+x -cos ⎝ ⎛⎭⎪⎫2π3+x =423.思维升华诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了; (2)化简:统一角,统一名,同角名少为终了.跟踪训练2(1)若sin (3π-α)-sin ⎝ ⎛⎭⎪⎫-3π2-αcos ⎝ ⎛⎭⎪⎫π2+α+cos (-π+α)=13,则tan α等于()A.34B .-12C .-43D.12 答案D解析因为sin (3π-α)-sin ⎝ ⎛⎭⎪⎫-3π2-αcos ⎝ ⎛⎭⎪⎫π2+α+cos (-π+α)=13,所以sin α-cos α-sin α-cos α=13,所以tan α-1-tan α-1=13,解得tan α=12. (2)已知cos ⎝ ⎛⎭⎪⎫π4+α=45,则sin ⎝ ⎛⎭⎪⎫π4-α的值为()A.35B .-35C.45D .-45 答案C解析由cos ⎝ ⎛⎭⎪⎫π4+α=45,得sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α=45. 题型三同角三角函数基本关系式和诱导公式的综合应用例3(1)(2022·聊城模拟)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是() A.325 B.357 C.31010 D.13答案C解析由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0,消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1, 化简得sin 2α=910, 又α为锐角,∴sin α>0,则sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.则sin2x +2sin 2x1-tan x =.答案-24175解析由已知得,sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425. 因为(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又2sin x cos x =-2425<0, 所以cos x >0,所以sin x -cos x <0, 故sin x -cos x =-75.所以sin2x +2sin 2x 1-tan x =2sin x (cos x +sin x )1-sin xcos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.思维升华(1)利用同角三角函数基本关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.(2)注意角的范围对三角函数值符号的影响.跟踪训练3(1)(2023·衡水模拟)已知sin ⎝ ⎛⎭⎪⎫3π2-α+cos(π-α)=sin α,则2sin 2α-sin αcos α等于() A.2110B.32C.32D .2 答案D解析由诱导公式可得,sin α=sin ⎝ ⎛⎭⎪⎫3π2-α+cos(π-α)=-2cos α,所以tan α=-2.因此,2sin 2α-sin αcos α=2sin 2α-sin αcos αsin 2α+cos 2α=2tan 2α-tan αtan 2α+1=105=2.(2)已知sin ⎝ ⎛⎭⎪⎫α-2π3=23,其中α∈⎝ ⎛⎭⎪⎫π2,π,则cos ⎝ ⎛⎭⎪⎫α-π6=,sin ⎝ ⎛⎭⎪⎫2α-π3=.答案-23 -459解析方法一令t =α-2π3, 所以sin t =23,α=t +2π3, 所以cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫t +2π3-π6 =cos ⎝⎛⎭⎪⎫t +π2=-sin t =-23.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以α-π6∈⎝ ⎛⎭⎪⎫π3,5π6,所以sin ⎝ ⎛⎭⎪⎫α-π6=53,所以sin ⎝ ⎛⎭⎪⎫2α-π3=sin2⎝ ⎛⎭⎪⎫α-π6 =2sin ⎝ ⎛⎭⎪⎫α-π6cos ⎝ ⎛⎭⎪⎫α-π6=2×53×⎝ ⎛⎭⎪⎫-23=-459.方法二因为sin ⎝⎛⎭⎪⎫α-2π3=23,所以cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎝ ⎛⎭⎪⎫π6-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=sin ⎝ ⎛⎭⎪⎫π3+α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+α=sin ⎝⎛⎭⎪⎫2π3-α=-sin ⎝ ⎛⎭⎪⎫α-2π3=-23. 以下同方法一.课时精练1.sin1620°等于() A .0B.12C .1D .-1 答案A解析由诱导公式,sin1620°=sin(180°+4×360°)=sin180°=0.2.(2023·济南模拟)已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos ⎝ ⎛⎭⎪⎫π2+α=32,则tan α等于()A .-3B.3C .-33D.33答案A解析由已知条件得cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=32,即sin α=-32,∵α∈⎝ ⎛⎭⎪⎫-π2,0,∴cos α=1-sin 2α=1-34=12, ∴tan α=sin αcos α=-3212=- 3. 3.已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与直线2x +y +3=0平行,则sin α-cos αsin α+cos α的值为()A .-2B .-14C .2D .3答案D解析因为角α的终边与直线2x +y +3=0平行,即角α的终边在直线y =-2x 上, 所以tan α=-2,sin α-cos αsin α+cos α=tan α-1tan α+1=3.4.若sin(π+α)-cos(π-α)=35,则sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-α等于()A.825B .-825C.1625D .-1625答案A解析由sin(π+α)-cos(π-α)=35,可得-sin α+cos α=35,平方可得1-2sin αcos α=925, 所以sin αcos α=825, 所以sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=825.5.(多选)在△ABC 中,下列结论正确的是() A .sin(A +B )=sin C B .sinB +C 2=cosA 2C .tan(A +B )=-tan C ⎝⎛⎭⎪⎫C ≠π2 D .cos(A +B )=cos C 答案ABC解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确; sinB +C2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2,B 正确; tan(A +B )=tan(π-C )=-tan C ⎝⎛⎭⎪⎫C ≠π2,C 正确;cos(A +B )=cos(π-C )=-cos C ,D 错误.6.(2022·郑州模拟)已知角α∈⎝ ⎛⎭⎪⎫-π2,0,且tan 2α-3tan αsin α-4sin 2α=0,则sin(α+2023π)等于() A.154 B.14C .-34D .-154答案A解析因为tan 2α-3tan αsin α-4sin 2α=0,所以(tan α-4sin α)(tan α+sin α)=0,因为α∈⎝ ⎛⎭⎪⎫-π2,0,所以tan α<0且sin α<0,所以tan α-4sin α=0,即sin αcos α=4sin α,所以cos α=14,所以sin α=-1-cos 2α=-154,所以sin(α+2023π)=-sin α=154. 7.已知sin θ=13,则tan (2π-θ)cos ⎝ ⎛⎭⎪⎫π2-θsin ⎝⎛⎭⎪⎫3π2+θ=.答案98解析原式=-tan θsin θ(-cos θ)=1cos 2θ=11-sin 2θ=11-⎝ ⎛⎭⎪⎫132=98. 8.已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝ ⎛⎭⎪⎫α+4π3的值为. 答案0解析因为cos ⎝ ⎛⎭⎪⎫π6-α=33,所以cos ⎝ ⎛⎭⎪⎫5π6+α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-33,sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝ ⎛⎭⎪⎫α+π3=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=-cos ⎝ ⎛⎭⎪⎫π6-α=-33,所以cos ⎝⎛⎭⎪⎫5π6+α-sin ⎝⎛⎭⎪⎫α+4π3=-33-⎝ ⎛⎭⎪⎫-33=0. 9.(2023·长沙模拟)(1)若α是第二象限角,且cos ⎝ ⎛⎭⎪⎫π2+α=-13,求tan α的值;(2)已知f (α)=sin (3π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos (π-α)sin (-π-α),化简f (α),在(1)的条件下,求f (α)的值.解(1)∵cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-13,∴sin α=13,又α是第二象限角,∴cos α=-1-sin 2α=-223,则tan α=sin αcos α=-24. (2)f (α)=sin (3π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫3π2-αcos (π-α)sin (-π-α)=sin αcos α(-cos α)(-cos α)sin α=cos α,由(1)知,cos α=-223, 则f (α)=cos α=-223.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3,所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3.11.(多选)已知角α满足sin α·cos α≠0,则表达式sin (α+k π)sin α+cos (α+k π)cos α(k ∈Z )的取值为()A .-2B .-1C .2D .1 答案AC解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2. 所以原表达式的取值为-2或2.12.黑洞原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再出来,数字中也有类似的“黑洞”,任意取一个数字串,长度不限,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字,我们称它为“数字黑洞”,如果把这个数字设为a ,则sin ⎝⎛⎭⎪⎫a π2+π6等于() A.12B .-12C.32D .-32 答案D解析根据“数字黑洞”的定义,任取数字2021,经过第一步之后变为314,经过第二步之后变为123,再变为123,再变为123, 所以数字黑洞为123,即a =123,所以sin ⎝ ⎛⎭⎪⎫a π2+π6=sin ⎝ ⎛⎭⎪⎫123π2+π6=sin ⎝ ⎛⎭⎪⎫3π2+π6=-cos π6=-32. 13.sin4π3·cos 5π6·tan ⎝⎛⎭⎪⎫-4π3的值是.答案-334解析原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3=⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334.14.已知sin(3π+θ)=13,则cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=.答案18解析由sin(3π+θ)=13,可得sin θ=-13,∴cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=-cos θcos θ(-cos θ-1)+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=2(1+cos θ)(1-cos θ)=21-cos 2θ=2sin 2θ=18.15.(多选)已知角θ和φ都是任意角,若满足θ+φ=π2+2k π,k ∈Z ,则称θ与φ广义互余.若sin(π+α)=-14,则下列角β中,可能与角α广义互余的有()A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案AC解析若α与β广义互余,则α+β=π2+2k π(k ∈Z ),即β=π2+2k π-α(k ∈Z ). 又由sin(π+α)=-14,可得sin α=14.若α与β广义互余,则sin β=sin ⎝ ⎛⎭⎪⎫π2+2k π-α=cos α=±1-sin 2α=±154,故A 正确;若α与β广义互余,则cos β=cos ⎝ ⎛⎭⎪⎫π2+2k π-α=sin α=14,而由cos(π+β)=14,可得cos β=-14,故B 错误;由A ,B 可知sin β=±154,cos β=14,所以tan β=sin βcos β=±15,故C 正确,D 错误.16.(2022·上海模拟)在角θ1,θ2,θ3,…,θ29的终边上分别有一点P 1,P 2,P 3,…,P 29,如果点P k 的坐标为(sin(15°-k °),sin(75°+k °)),1≤k ≤29,k ∈N ,则cos θ1+cos θ2+cos θ3+…+cos θ29=________. 答案0解析∵sin(75°+k °)=sin(90°-(15°-k °)) =cos(15°-k °),∴P k (sin(15°-k °),cos(15°-k °)), ∴cos θk =sin (15°-k °)sin 2(15°-k °)+cos 2(15°-k °)=sin(15°-k °),∴cosθ1+cosθ2+cosθ3+…+cosθ29=sin14°+sin13°+sin12°+…+sin(-14°),又sin(15°-k°)+sin(k°-15°)=sin(15°-k°)-sin(15°-k°)=0,∴cosθ1+cosθ2+cosθ3+…+cosθ29=sin0°=0.21 / 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(理)记 cos(-80° )=k,那么 tan100° =( 1-k2 A. k k C. 1-k2
[答案] B
)
1-k2 B.- k k D.- 1-k2
[解析]
sin80° = 1-cos280° = 1-cos2-80°
= 1-k2, 1-k2 sin80° 所以 tan100° =-tan80° =-cos80° =- k .
π cos2x 2.当 0<x< 时,函数 f(x)= 2 的最小值 4 cos xsin x-sin x 是 1 A. 4 ( D ) 1 B. 2 C.2 D.4
π 解析 当 0<x< 时,0<tan x<1, 4 cos2x 1 f(x)= 2 = 2 , cos xsin x-sin x tan x-tan x 1 1 1 设 t=tan x,则 0<t<1,y= = ≥ =4. t-t2 t1-t t+1-t 2 [ ] 2 1 当且仅当 t=1-t,即 t= 时等号成立. 2
思维启迪
解析
答案
思维升华
(3) 注 意 公 式 逆 用 及 变 形 应用: 1 = sin2α + cos2α , sin2α=1-cos2α, cos2α=1 -sin2α.
1+sin x 1 cos x 跟踪训练 1 (1)已知 =- ,那么 的值是( A ) cos x 2 sin x-1 1 1 A. B.- C.2 D.-2 2 2 2 (2)已知 tan θ=2,则 sin θcos θ=________. 5
2π π π π - θ - θ - θ sin = sin + = cos =a, 3 6 6 2
5π 2π + θ - θ ∴cos + sin =0. 6 3
1± 2sin αcos α, 可以知一求二.
3 【例 1】 (1)已知 cos(π+x)= , 5 x∈(π , 2π) , 则 tan x = ________. (2)已知 tan θ=2,则 sin2θ+ sin θcos θ-2cos2θ 等于( 4 5 A.- B. 3 4 3 4 C.- D. 4 5 )
跟踪训练 3 个三角形是 A.正三角形
2 (1)若 α 为三角形的一个内角,且 sin α+s α= ,则这 3 ( D ) B.直角三角形 D.钝角三角形
C.锐角三角形
(2)已知 tan α=2,sin α+cos α<0, sin2π-α· sinπ+α· cosπ+α 则 =________. sin3π-α· cosπ-α
的两根,
7 典例:(5 分)已知 sin θ+cos θ= ,θ∈(0,π),则 tan θ= 13 ________.
利用同角三角函数基本关系,寻求 sin θ+cos θ,sin θ-cos θ 和 sin θcos θ 的关系.
7 典例:(5 分)已知 sin θ+cos θ= ,θ∈(0,π),则 tan θ= 13 ________.
思 维 启 迪 规 范 解 答 温 馨 提 醒
7 解析 方法一 因为 sin θ+cos θ= ,θ∈(0,π), 13 49 2 所以(sin θ+cos θ) =1+2sin θcos θ=169, 60 所以 sin θcos θ=-169. 7 60 2 由根与系数的关系,知 sin θ,cos θ 是方程 x - x- =0 13 169
1 1-22=-
3 2,
1 1 2 ∴1+tan α+tan2α=1+(- 3) + - 32
2
1 13 =1+3+3= 3 .
1 π π 3 1.已知 sin θ=- ,θ∈(- , ),则 sin(θ-5π)sin( π 3 2 2 2 -θ)的值是 2 2 A. 9 2 2 1 B.- C.- 9 9 1 π π 解析 ∵sin θ=-3,θ∈(-2,2), 2 2 2 ∴cos θ= 1-sin θ= 3 . ∴原式=-sin(π-θ)· (-cos θ)=sin θcos θ 1 2 2 2 2 =-3× 3 =- 9 . ( B ) 1 D. 9
4 π 9.已知 sin θ= , <θ<π. 5 2 (1)求 tan θ 的值; sin2θ+2sin θcos θ (2)求 的值. 2 2 3sin θ+cos θ
9 解析 (1)∵sin θ+cos θ=1,∴cos θ=25. π 3 又2<θ<π,∴cos θ=-5. sin θ 4 ∴tan θ=cos θ=-3.
2 2 2
4 π 9.已知 sin θ= , <θ<π. 5 2 (1)求 tan θ 的值; sin2θ+2sin θcos θ (2)求 的值. 2 2 3sin θ+cos θ
sin2θ+2sin θcos θ tan2θ+2tan θ (2)由(1)知, = 3sin2θ+cos2θ 3tan2θ+1 8 =- . 57
4 解析 (1)∵(sin α+cos α) =1+2sin αcos α=9,
2
5 ∴sin αcos α=-18<0,∴α 为钝角.故选 D.
跟踪训练 3 个三角形是 A.正三角形
2 (1)若 α 为三角形的一个内角,且 sin α+cos α= ,则这 3 ( D ) B.直角三角形 D.钝角三角形
解析 1+sin x sin x-1 sin2x-1 (1)由于 cos x · cos x = cos2x =-1,
cos x 1 故 = . sin x-1 2
sin θ· cos θ (2)sin θcos θ= 2 sin θ+cos2θ tan θ 2 2 = 2 = 2 =5. tan θ+1 2 +1
(2)已知 tan θ=2,则 sin2θ+ 又 x∈(π,2π), sin θcos θ-2cos2θ 等于( 4 5 A.- B. 3 4 3 4 C.- D. 4 5 ) ∴sin x=- 1-cos2x= 32 4 - 1--5 =-5, sin x 4 ∴tan x=cos x=3.
思维启迪 解析 答案 思维升华 3 【例 1】 (1)已知 cos(π+x)= , 5 (2)sin2θ+sin θcos θ-2cos2θ 2 2 sin θ + sin θ cos θ - 2cos θ x∈(π , 2π) , 则 tan x = = sin2θ+cos2θ ________. sin2θ sin θcos θ + -2 (2)已知 tan θ=2,则 sin2θ+ cos2θ cos2θ = 2 2 sin θ sin θcos θ-2cos θ 等于( ) 2 +1 cos θ 4 5 2 A.- B. tan θ+tan θ-2 3 4 = 2 tan θ+1 3 4 2 C.- D. 2 +2-2 4 4 5 = 2 = . 5 2 +1
跟踪训练 3 个三角形是 A.正三角形
2 (1)若 α 为三角形的一个内角,且 sin α+cos α= ,则这 3 ( D ) B.直角三角形 D.钝角三角形
C.锐角三角形
(2)已知 tan α=2,sin α+cos α<0, 2 5 sin2π-α· sinπ+α· cosπ+α - 5 则 =________. sin3π-α· cosπ-α
(1)应用平方关系求出 sin x,可得 tan x;
(2)把所求的代数式中的弦转 化为正切,代入可求.
3 【例 1】 (1)已知 cos(π+x)= , 5
思维启迪
解析
答案
思维升华
(1)∵cos(π+x)=-cos x x∈(π , 2π) , 则 tan x = 3 3 = ,∴cos x=- . 5 5 ________.
3. 已知
π - θ cos6 =a
(|a|≤1), 则
5π 2π + θ - θ cos 6 +sin 3
0 的值是________ .
5 π π 解析 cos 6 +θ=cosπ-6-θ π =-cos6-θ =-a.
C.锐角三角形
(2)已知 tan α=2,sin α+cos α<0, sin2π-α· sinπ+α· cosπ+α 则 =________. sin3π-α· cosπ-α
-sin α· -sin α· -cos α (2)原式= =sin α, sin α· -cos α ∵tan α=2>0,∴α 为第一象限角或第三象限角. 又 sin α+cos α<0,∴α 为第三象限角, sin α 由 tan α=cos α=2,
思维启迪 解析 答案 思维升华 3 【例 1】 (1)已知 cos(π+x)= , 5 (2)sin2θ+sin θcos θ-2cos2θ 2 2 sin θ + sin θ cos θ - 2cos θ x∈(π , 2π) , 则 tan x = = 4 sin2θ+cos2θ ________. 3 sin2θ sin θcos θ + -2 (2)已知 tan θ=2,则 sin2θ+ cos2θ cos2θ = 2 2 sin θ sin θcos θ-2cos θ 等于( D ) 2 +1 cos θ 4 5 2 A.- B. tan θ+tan θ-2 3 4 = 2 tan θ+1 3 4 2 C.- D. 2 +2-2 4 4 5 = 2 = . 5 2 +1
3 【例 1】 (1)已知 cos(π+x)= , 5 x∈(π , 2π) , 则 tan x = ________. (2)已知 tan θ=2,则 sin2θ+ sin θcos θ-2cos2θ 等于( 4 5 A.- B. 3 4 3 4 C.- D. 4 5 )
思维启迪