2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——11、复数
2011年—2018年新课标全国卷(1卷、2卷、3卷)理科数学试题分类汇编——1
2011年—2018年新课标全国卷(1卷、2卷、3卷)理科数学试题分类汇编——1.集合2011年至2018年的新课标全国卷理科数学试题分类汇编中,集合与简易逻辑是一个重要的考点。
下面是一些选择题的例子:1.已知集合A={x|x^2-x-2>0},则C∪A=()A。
{x|-1<x<2}B。
{x|-1≤x≤2}C。
{x|x2}D。
{x|x≤-1}∪{x|x≥2}2.已知集合A={(x,y)|x^2+y^2≤3,x∈Z,y∈Z},B={[1,2]},则A∩B的元素个数为()A。
9B。
8C。
5D。
43.已知集合A={x|x-1≥0},B={[1,2]},则A∩B=()A。
{[ ]}B。
{[1]}C。
{[1,1,2]}D。
{[2]}4.已知集合A={x|x<1},B={x|x^3<1},则A∩B=()A。
{x|x<0}B。
{x|x≤0}C。
{x|x>1}D。
∅5.已知集合A={1,2,4},B={x|(x+1)(x-2)<0,x∈Z},则A∩B=()A。
{1}B。
{1,2}C。
{0,1,2,3}D。
{-1,0,1,2,3}6.已知集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A。
[2,3]B。
(-∞,2]∪[3,+∞)C。
[3,+∞)D。
(0,2]∪[3,+∞)7.命题p:∃n∈N,n>2,则¬p为()A。
∀n∈N,n>2B。
∃n∈N,n≤2C。
∀n∈N,n≤2D。
∃n∈N,n=2以上内容由XXXXXX收集整理,欢迎研究交流)2015·新课标Ⅱ,1)已知集合A={-2,-1,2},B={x|(x-1)(x+2)<0},求A∩B。
解:首先求出B的解析式为B={x|-2<x<1},然后将A和B的元素进行比较,得到A∩B={-1},因此选项A.{-1,0}为正确答案。
2014·新课标Ⅰ,1)已知集合A={x|x22x3≥0},B={x|x-2≤x<2},求A∩B。
全国Ⅰ,Ⅱ,Ⅲ卷2011-2018年高考分类分析理科数学
A.3
B.2
C.1
D.0
2016 年
(1)设集合 S x (x 2)(x 3) 0 , T x | x 0 ,则 S T= A.[2,3] C. [3,+ ) B.(- ,2] [3,+ ) D.(0,2] [3,+ )
Ⅱ卷 2018 年 2017 年
1
任后兵整理
一、集合与简易逻辑小题 1.集合小题:Ⅲ卷 3 年 3 考,Ⅱ卷 6 年 6 考,Ⅰ卷 8 年 6 考,每年 1 题,都是交并补子运 算为主,多与不等式交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题, 相信命题小组对集合题进行大幅变动的决心不大. 年份 Ⅲ卷 2018 年
2016 年
1.设集合 A {x | x 2 4 x 3 0} , B {x | 2 x 3 0} ,则 A B A. ( 3, )
3 2
B. ( 3, )
2
3 2
C. (1, )
3 2
D. ( ,3)
3 2
2014 年
1.已知集合 A={ x | x 2 x 3 0 },B= x 2 x 2 ,则 A B =
Ⅰ卷 2018 年
2. 已知集合 A x x x 2 0 ,则 CR A
2
A.
x 1 x 2
B.
x 1 x 2
C. x | x 1x | x 2
D. x | x 1x | x 2
2017 年
1.已知集合 A={x|x<1},B={x| 3x 1 },则 A. A B {x | x 0} B. A B R C. A B {x | x 1} D. A B
2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷).doc
5. 设函数 321
fxxaxax 若 fx为奇函数 则曲线 yfx 在点 0,0处的
切线方程为
A. 2
yx B. yx C. 2yx D. yx
解析 由 fx为奇函数得1
a 2()31,fxx
所以切线的方程
为yx
.故答案为D.
6. 在ABC
中 AD为BC边上的中线 E为AD的中点 则 EB
- 3 - A.AC
FNFM8 故答案为D.
9.已知函数
,0,
ln,0,xex
fx
xx
gxfxxa
.若 gx存在2个零点 则a的取值
范围是
A.
1,0 B. 0, C. 1, D. 1,
解析 ∵()()
gxfxxa 存在2个零点 即()yfx 与yxa 有两个交点 )(xf的图象如M
N
2
4
- 4 - 图 要使得yxa
与)(xf有两个交点 则有1a 即1a 故答案为 C.
(22)~(23)题为选考题 考生根据要求作答.
二、填空题 本题共4小题 每小题5分.
13.若x y满足约束条件220
10
0
xy
xy
y
则32
zxy 的最大值为_______________.
解析
画出可行域如图所示 可知目
标函数过点(2,0)时取得最大
值 max32206
z . 故答案为6.
14.记nS为数列
- 5 - A. 4
33 B. 332 C.423 D. 23
解析 由于截面与每条棱所成的角都相等 所以
平面 中存在平面与平面11ABD平行 如图 而
在与平面11ABD平行的所有平面中 面积最大的
2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷).doc
- 1 - 2018年普通高等学校招生全国统一考试全国卷1理科数学本试题卷共623150分。
考试用时120分钟。
1II.第Ⅰ卷1至3II 卷3至5页.2.3、.4第Ⅰ卷12题5题目要求的.1.设121iziizA. 0B. 12 C. 1 D. 22(1)22izii|z|1C.2. 已知集合220Axxx RCAA.12xx B. 12xxC.2|1|xxxx D.2|1|xxxx220xx(1)(2)0xx2x1x RCA12xxB.3.- 2 -则下列结论中丌正确的是A.B.C.D.37%274%.故答案为A.4. 设nS为等差数列na的前n3243SSS12a5aA. 12B. 10C. 10D. 123243sss3221433(32=2242222ddd3(63)127dd3d52410ad 52410ad为B.5. 321fxxaxax fx yfx0,0处的切线方程为A. 2yx B. yx C. 2yx D. yxfx为奇函数得1a2()31,fxx为yx.故答案为D.6. 在ABCAD为BC E为AD EB- 3 - A.ACAB4143B. ACAB4341C.ACAB413D.ACAB434111131()22244EBABAEABADABABACABAC答案为A. 7.某圆柱的高为216. 圆柱表面上的点M在正视图上的对应点为A N在左视图上的对应点为BM到N A. 172 B.52 C.3 D. 2MN的长度52为B.8.设抛物线xyC4:2F0,2 32的直线不C交于NM,FNFMA. 5B.6C. 7D. 8M(12),N(4,4)FNFM8 D.9.已知函数,0,ln,0,xexfxxxgxfxxa.gx存在2a的取值范围是A.1,0 B.0, C.1, D.1,()()gxfxxa2()yfx yxa)(xf的图象如MN24- 4 - yxa)(xf1a1a C.10的直径分别为直角三角形ABC的斜边BC ACAB,.ABC,Ⅱ,Ⅲ的概率分别记为321,,pppA. 21pp B.31pp C. 32pp D. 321ppp2ABAC,则22BC ∴区域Ⅰ的面积为112222S 231(2)222S区域Ⅱ的面积为22312SS12pp.故答案为A. 11.已知双曲线13:22yxC O F为C F的直线不C的两条渐近线的交点分别为NM,.若OMN MNA. 23 B. 3 C. 32 D. 42203xy 33yx∵OMN2ONM∴3NMk MN方程为3(2)yx.联立33(2)yxyx33(,)22N 3ON 3MON3MN B. 12. 已知正方体的棱长为1所得截面面积的最大值为- 5 - A. 433 B. 332 C.423 D. 2311ABD在与平面11ABD为由各棱的中点构成的截面EFGHMN EFGHMN的面积122333 622224S.故答案为A. 第II卷本卷包括必考题和选考题两部分.第(13)~(21)生都必须作答.第(22)~(23).45分.13.若x y满足约束条件22010xyxyy32zxy_______________.标函数过点(2,0)时取得最大max32206z. 故答案为6.14.记nS为数列na的前n若21nnSa6S_______________.1121,21,nnnnSaSa12nnaa{}na为公比为2- 6 - 又因为11121aSa11a12nna 661(12)6312S故答案为-63.15.从24位男生中选31__________2恰有1122412CC恰有221244CC12416. 故答案为16.16.2sinsin2fxxx fx的最小值是______________________.()2sinsin2fxxx()fx最小正周期为2T2'()2(coscos2)2(2coscos1)fxxxxx '()0fx22coscos10xx 1cos2x cos1x.∴当1cos23x 53x,当cos1,xx∴53()332f.3()332f(0)(2)0ff()0f∴()fx最小值为332. 故答案为332..1712在平面四边形ABCD90ADC45A2AB5BD.1cosADB222DC BC.- 7 - 1ABD52sin45sinADB,∴2sin5ADB,∵90ADB,∴223cos1sin5ADBADB. 2 2ADBBDC,∴coscos()sin2BDCADBADB coscos()sinBDCADBADB,∴222cos2DCBDBCBDCBDDC,∴2282552522BC.∴5BC. 18小题满分12ABCD,EF分别为,ADBC DF为折痕把DFCC到达点P PFBF.1PEF ABFD2DP不平面ABFD所成角的正弦值. 1,EF分别为,ADBC//EFAB EFBF PFBF EFPFF BF PEF BE ABFD PEF ABFD.2PFBF//BFED PFED又PFPDEDDPD PF PED PFPE设4AB4EF2PF23PE过P作PHEFEF于H由平面PEF ABFD∴PH ABFD DH则PDHDP与平面ABFD由PEPFEFPH23234PH而4PD 3sin4PHPDH∴DP与平面ABFD所成角的正弦值34.- 8 - 1912设椭圆22:12xCy F F的直线l不C交于,AB M2,0.1l不x AM2O OMAOMB. 11x2112y 22y 2(1,)2A∴22AMk AM 2(2)2yx.2l1l方程(1)ykx1122(,),(,)AxyBxy方程有22(1),12ykxxy2222(21)4220kxkxk 2122421kxxk21222221kxxk1212121212[(23()4]22(2)(2)AMBMyykxxxxkkxxxx2222124412(4)2121(2)(2)kkkkkxxAMBMkkOMAOMB. 2012某工厂的200- 9 - 20检验)10(pp各件产品是否为丌合格品相互独立。
2011年—2018年新课标全国卷(1卷、2卷、3卷)理科数学试题分类汇编——11.立体几何
2011年—2018年新课标全国卷理科数学试题分类汇编(逐题解析)11.立体几何一、选择题(2018·新课标Ⅰ,理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2(2018·新课标Ⅰ,理12) 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D (2018·新课标Ⅲ,理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )(2018·新课标Ⅲ,理10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .(2017·新课标Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2017·新课标Ⅱ,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2017·新课标Ⅰ,7) (2017·新课标Ⅱ,4) (2016·新课标Ⅰ,6)(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D (2017·新课标Ⅲ,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4(2016·新课标Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A (B (C (D )13(2016·新课标Ⅱ,6积为( ) A .20πB .24πC .28πD .32π(2016·新课标Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18+B. 54+C. 90D. 81(2016·新课标Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A. 4πB.9π2C. 6πD. 32π3(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 (2015·新课标Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8(2015·新课标Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A .81B .71 C .61 D .51(2015·新课标Ⅱ,6) (2014·新课标Ⅰ,12)(2015·新课标Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π(2014·新课标Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .C .6D .4(2014·新课标Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13(2014·新课标Ⅱ,6) (2013·新课标Ⅰ,6) (2013·新课标Ⅰ,8)(2014·新课标Ⅱ,11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD(2013·新课标Ⅰ,6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3(2013·新课标Ⅰ,8)某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π(2013·新课标Ⅱ,4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l(2013·新课标Ⅱ,7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(2012·新课标Ⅰ,7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15(2012·新课标Ⅰ,11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.6B.6C.3D.2(2011·新课标Ⅰ,6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题(2018·新课标Ⅱ,理16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成B. C. D.角为45︒.若SAB △的面积为_________.(2017·新课标Ⅲ,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角;②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45;④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.)(2011·新课标Ⅰ,15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 . 三、解答题(2018·新课标I ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(2018·新课标Ⅱ,20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.(2018·新课标Ⅲ,理19)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.(2017·新课标Ⅰ,18)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.(2017·新课标Ⅱ,19)如图,四棱锥P -ABCD 中,侧面P AD 为等比三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)证明:直线//CE 平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值(2017·新课标Ⅲ,19)如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.(2016·新课标Ⅰ,18)如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.ABCDE(2016·新课标Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.(2016·新课标Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.OBACFDHED '(2015·新课标Ⅰ,18)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.(2015·新课标Ⅱ,19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.(2014·新课标Ⅰ,19)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.(2014·新课标Ⅱ,18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,ADE -ACD 的体积.(2013·新课标Ⅰ,18)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.1AD1B1CA CEB(2012·新课标Ⅰ、Ⅱ,19)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点, DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.(2011·新课标Ⅰ、Ⅱ,18)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.A 1C2011年—2018年新课标全国卷理科数学试题分类汇编11.立体几何(解析版)一、选择题(2018·新课标全国Ⅰ卷理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2【答案】B 解析:当路径为线段MN(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D 【答案】A 解析:(直接法)平面11A C B 符合题意,如图(1)所示,例题中的平面α可得面11A C B 平移平移后的图象如图(1)所示,六边形EFGHMN 为该截面设1A N x =,则有,)EN MN x ==-根据对称性可知),EF x FG =-=,延长,EN HM 相交于点P延长,EF HG 相交于点Q ,易证60HEF EHG ∠=∠= 所以EHQ ∆为等边三角形,同理EHP ∠为等边三角形, 所以maxEHG EPG PMN FGQEFGHMNS S S S S ∆∆∆∆=+--六边形2222)))4444x =+---2(221)2x x =-+当12x =时,max 4EFGHMN S =六边形.【解法2】(特殊位置法)由题可知,截面α应与正方体体对角线垂直,当平面平移至截面为六边形时,此时六边形的周长恒定不变,所以当截面为正六边形时,面积最大max26(2EFGHMN S ==六边形.(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D .2【答案】C 解析:法一:由几何关系可知:112EF B D ==,AE ,1AF =,由余弦定理可知:cos θ解法二:坐标法:由几何关系可知:(1B D =,点A 的坐标为(,点1D 的坐标为()1,1,0(10,1,AD = ,cos θ==解法三:补型法(以右补为例):由几何关系可知:BD ,2DG =,1B G =cos θ=.(2018·新课标Ⅲ,理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A 解析:根据题意,A 选项符号题意.(2018·新课标Ⅲ,理10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 解析:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=,得6AB =,取BC 的中点H ,∴sin 60AH AB =⋅︒=,∴23AG AH ==O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=(2017·新课标Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16【答案】 B 解析:由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;(2017·新课标Ⅱ,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π【答案】 B 解析:从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,剩下的体积分上下两部分阴影的体积,下面阴影的体积为V Sh =,3r =,4h =,∴ 136V π=;上面阴影的体积2V 是上面部分体积3V 的一半,即2312V V =,3V 与1V 的比为高的比(同底),即3132V V =,213274V V π==,故总体积02163V V V π=+=.方法2:354V Sh π==,其余同上,故总体积02163V V V π=+=.(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】 B 解析:解法一:在边1BB ﹑11B C ﹑11A B ﹑AB 上分别取中点E ﹑F ﹑G ﹑H ,并相互连接. 由三角形中位线定理和平行线平移功能,异面直线1AB 和1BC 所成的夹角为FEG ∠或其补角,通过几何关系求得EF =FG =FH =,利用余弦定理可求得异面直线 1AB 和1BC.解法二:补形通过补形之后可知:1BC D ∠或其补角为异面直线1AB 和1BC 所成的角,通过几何关系可知:1BC =1C D =,BD 1AB 和1BC. 解法三:建系建立如左图的空间直角坐标系,()0,2,1A ,()10,0,0B ,()0,0,1B,11,02C ⎫-⎪⎪⎝⎭,∴ 131,12BC ⎛⎫=-- ⎪⎪⎝⎭,()10,2,1B A =,∴1111cos 5B A BC B A BC θ⋅===⋅ (2017·新课标Ⅲ,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】 B 解析:由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =则圆柱体体积23ππ4V r h ==.故选B.(2016·新课标Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28【答案】 A 解析:原立体图如图所示:是一个球被切掉左上角的18表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A .(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33(D )31【答案】 A 解析:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .(2016·新课标Ⅱ,6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】 C 解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =, 2π4πc r ==,由勾股定理得:4l ==,21π4π16π8π28π2S r ch cl =++=++=表,故选C .(2016·新课标Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18+B. 54+C. 90D. 81【答案】 B 解析:由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯=+(2016·新课标Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB.9π2C. 6πD. 32π3【答案】 B 解析:由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=2016,62015,62014,686(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】 B 解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V≈,选(B ).(2015·新课标Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )8【答案】 B 解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选(B ).(2015·新课标Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51(2015·6)D 解析:由三视图得,在正方体ABCD-A 1B 1C 1D 1中,截去四面体A-A 1B 1D 1,如图所示,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为,故选D.1(2015·新课标Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π【答案】 C 解析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故R=6,则球O 的表面积为24144S R ππ==,故选C .(2014·新课标Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A. B. C .6 D .4D ABC -,【答案】 C 解析:(解析):如图所示,原几何体为三棱锥其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,选C(2014·新课标Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13【答案】 C 解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=.(2014·新课标Ⅱ,11)直三棱柱ABC-A1B1C1中,∠BCA=90º,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.110B.25CD【答案】C 解析:取BC的中点P,连结NP、AP,∵M,N分别是A1B1,A1C1的中点,∴四边形NMBP为平行四边形,∴BM//PN,∴所求角的余弦值等于∠ANP的余弦值,不妨令BC=CA=CC1=2,则AN=APNP=,∴222||||||cos2||||AN NP APANPAN NP+-∠=⨯⋅=.【另解】如图建立坐标系,令AC=BC=C1C=2,则A(0, 2, 2),B(2, 0, 2),M(1, 1, 0),N(0, 1, 0),(1,1,2)(0,1,2),BM AN∴=--=--,cos||||BM ANθBM AN⋅===⋅(2013·新课标Ⅰ,6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为().A.500π3cm3B.866π3cm3 C.1372π3cm3D.2048π3cm3【答案】 A 解析:设球半径为R,由题可知R,R-2,正方体棱长一半可构成直角三角形,即△OBA为直角三角形,如图.BC=2,BA=4,OB=R-2,OA=R,由R2=(R-2)2+42,得R=5,所以球的体积为34500π5π33=(cm3),故选A.AC B1A1C1BNMP(2013·新课标Ⅰ,8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】 A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.(2013·新课标Ⅱ,4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】 D 解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.(2013·新课标Ⅱ,7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A 解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx 上的投影即正视图为右图,故选A.(2012·新课标Ⅰ,7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )B.C. D.A.6 B.9 C.12 D.15 【答案】 B 解析:由三视图可知,该几何体为三棱锥A-BCD,底面△BCD为底边为6,高为3的等腰三角形,侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.(2012·新课标Ⅰ,11)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.6B C.3D.2【答案】A 解析:如图所示,根据球的性质,知⊥1OO平面ABC,则COOO11⊥.在直角COO1∆中,1=OC,331=CO,所以36)33(122121=-=-=COOCOO.因此三棱锥S-ABC的体积6236433122=⨯⨯⨯==-ABCOVV,故选择A(2011·新课标Ⅰ,6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()【答案】D 解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的.故选D二、填空题(2018·新课标Ⅱ,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45︒.若SAB△的面积为_________.【答案】解析:由面积的关系可知:SA SB==由几何关系可知:SO AO==侧面积S SA l =⋅,2l OA π==,侧面积S SA l =⋅=(2017·新课标Ⅲ,)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45; ④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)【答案】② ③ 解析:由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故1AC =,AB =边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向,CA 为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,2AB '=设AB '与a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos AB θθαθ⎡--⋅==∈⎢'⎣⎦a .故ππ,42α⎡⎤∈⎢⎥⎣⎦,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b b b . 当AB '与a 夹角为60︒时,即π3α=,sin 32πθα===.因为22cos sin 1θθ+=,所以cos θ1cos 2βθ=. 因为π0,2β⎡⎤∈⎢⎥⎣⎦.所以π=3β,此时AB '与b 夹角为60︒.所以②正确,①错误.故填② ③.(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.(2011·新课标Ⅰ,15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 .【答案】解析:设ABCD 所在的截面圆的圆心为M,则=,22=,1623O ABCD V -=⨯⨯=三、解答题(2018·新课标I ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF 由BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD(2)【解法1】作PH ⊥EF ,垂足为H ,由(1)得,PH ⊥平面ABFD ,以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H xyz -由(1)可得DE ⊥PE ,又DP=2,DE=1,所以PE ,又PF=1,EF=2,故PE ⊥PF ,可得32PH EH ==,则333(0,0,0),(1,,0),(1,,),22H P D DP HP --== 为平面ABFD 的法向量,设DP 与平面ABFD 所成的角θ,则3sin HP DP HP DPθ⋅==⋅.所以DP 与平面ABFD 。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——09、解析几何 - 副本
解析几何【2010年新课标卷,12】已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为( )(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 【2010年新课标卷,15】过点A(4,1)的圆C 与直线10x y --=相切于点B(2,1).则圆C的方程为 .【2011年新课标Ⅰ卷,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .【2012年新课标Ⅰ卷,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2013年新课标Ⅰ卷,4】已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x 【2013年新课标Ⅰ卷,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【2013年新课标Ⅱ卷,11】设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A.24y x =或28y x = B.22y x =或28y x = C.24y x =或216y x =D.22y x =或216y x =【2013年新课标Ⅱ卷,12】已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2C.1(1]3D.11[,)32【2014年新课标Ⅰ卷,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m【2014年新课标Ⅰ卷,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72 B .52C .3D .2 【2014年新课标Ⅱ卷,6】设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.【2014年新课标Ⅱ卷,10】设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )A BC .6332D .94【2015年新课标Ⅰ卷,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(,)66-C .(33-D .()33- 【2015年新课标Ⅰ卷,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2015年新课标Ⅱ卷,7】过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10【2016年新课标Ⅰ卷,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2016年新课标Ⅰ卷,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( ) 【2016年新课标Ⅱ卷,4】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-C D .2【2018年新课标Ⅰ卷,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .4【2018年新课标Ⅱ卷,5】双曲线22221(0,0)x y a b a b-=>>为( )A .y =B .y =C .y =D .y = 【2017年新课标Ⅱ卷,16】已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【2017年新课标Ⅲ卷,5】已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【2018年新课标Ⅰ卷,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8【2016年新课标Ⅲ卷,16】已知直线l :30mx y m ++-=与圆2212x y +=交于,A B两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =则||CD =____________.【2017年新课标Ⅰ卷,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10【2011年新课标Ⅰ卷,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3【2012年新课标Ⅰ卷,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【2015年新课标Ⅱ卷,11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD 【2016年新课标Ⅱ卷,11】已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )A B .32C D .25.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .34【2017年新课标Ⅰ卷,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2017年新课标Ⅱ卷,9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD 【2017年新课标Ⅲ卷,10】已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .BCD .13【2018年新课标Ⅱ卷,12】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 【2018年新课标Ⅲ卷,6】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【2018年新课标Ⅲ卷,11】设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )A B .2 C D【2018年新课标Ⅲ卷,16】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.二、解答题.【2010年新课标卷,20】设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E 相较于A,B 两点,且2AF ,AB ,2BF 成等差数列.(Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程.【2011年新课标卷,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值. 【2012年新课标卷,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点. (1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点, 求坐标原点到m ,n 距离的比值.【2013年新课标Ⅰ卷,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【2013年新课标Ⅱ卷,20】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F的直线0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.【2014年新课标Ⅰ卷,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为,F 是椭圆的焦点,直线AF ,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2014年新课标Ⅱ卷,20】设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .【2015年新课标Ⅰ卷,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a=+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【2015年新课标Ⅱ卷,20】已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.【2016年新课标Ⅰ卷,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【2016年新课标Ⅱ卷,20】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求k 的取值范围.【2016年新课标Ⅲ卷,20】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【2017年新课标Ⅰ卷,20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2 ),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2017年新课标Ⅱ卷,20】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【2017年新课标Ⅲ卷,20】已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程.【2018年新课标Ⅰ卷,19】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【2018年新课标Ⅱ卷,19】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程(2)求过点A ,B 且与C 的准线相切的圆的方程.【2018年新课标Ⅲ卷,20】知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编09、解析几何(解析版)一、选择题与填空题.【2010年新课标卷,12】已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为( )(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 【答案】B【解析】设双曲线方程为22222222221,x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y由2222222222221122,b x a y a b b x a y a b -=-=得2212121212()()()0()y y b x x a y y x x -+-+=- AB PN N 又中点(-12,-15),k =k ,2222-12+1504=5b a b a ∴=即,22+9b a =所以224,=5a b =,选B【2010年新课标卷,15】过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 .【答案】223)2x y -+=( 【解析】设圆心(,)O a b ,借助图形可知3a =,又11032b OB b -∴=-=-与切线垂直,即22C (2)2r OB x y ==∴--=圆的方程为【2011年新课标Ⅰ卷,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3 【答案】B【解析】通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 【2011年新课标Ⅰ卷,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .【答案】221168x y +=【解析】由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求. 【2012年新课标Ⅰ卷,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【答案】C【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==, 260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-,所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .【2012年新课标Ⅰ卷,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B两点,||AB =,则C 的实轴长为( ) AB.C .4D .8【答案】C【解析】设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||AB =,所以222||(2||)448AB y y ===,从而212y =, 所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .【2013年新课标Ⅰ卷,4】已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【答案】C【解析】选C,∵c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,12b a =,∴渐近线方程为12b y x x a =±=±.【2013年新课标Ⅰ卷,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【答案】D【解析】选D ,设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2013年新课标Ⅱ卷,11】设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( )A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x = 【答案】C【解析】设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+2p =5,则x 0=5-2p.又点F 的坐标为(,0)2p ,所以以MF 为直径的圆的方程为220525()()224y x y -+-=.将x =0,y =2代入得2002404y y -+=,所以y 0=4.由20y =2px 0,得162(5)2pp =-,解之得p =2,或p =8.所以C 的方程为y 2=4x 或y 2=16x . 故选C.【2013年新课标Ⅱ卷,12】已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2C.1(1]3D.11[,)32【答案】B【解析】由题意知b ∈(0, 1),当直线过点(-1, 0)时,要将△ABC 分割为面积相等的两部分,直线必须过点11(,)22,此时有-a +b =0且1122a b +=,解得13b =;当a =1时,直线y =ax +b平行于直线AC ,要将△ABC 分割为面积相等的两部分,可求此时的1b =-. 【2014年新课标Ⅰ卷,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x -=,则点F 到C 的一条渐近线的距离d =A.【2014年新课标Ⅰ卷,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72 B .52C .3D .2 【答案】C【解析】选C ,过Q 作QM ⊥直线L 于M ,∵4FP FQ =∴34PQ PF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==【2014年新课标Ⅱ卷,6】设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________. 【答案】[1,1]-【解析】由图可知点M 所在直线1y =与圆O 相切,又1ON =,由正弦定理得sin sin ON OMOMN ONM=∠∠,sin OMONM =∠,即OM ONM =∠, ∵0ONM π≤∠≤,∴OM ≤011x -≤≤.【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||sin 45OA OM =o=||12OM ≤,解得||OM ≤,因为点M (x 0, 1),所以||OM =≤011x -≤≤,故0x 的取值范围是[1,1]-.【2014年新课标Ⅱ卷,10】设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) ABC .6332D .94【答案】D【解析】∵3(,0)4F ,∴设直线AB的方程为3)34y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ⋅=,由弦长公式得||12AB ==,由点到直线的距离公式得:O到直线AB的距离|00|38d -==,∴13912284OABS ∆=⨯⨯=. 【另解】直线AB的方程3)4y x =-代入抛物线方程得:2490y --=,∴12y y +=1294y y ⋅=-,∴139244OAB S ∆=⨯=. 【2015年新课标Ⅰ卷,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A.( B.( C.( D.( 【答案】A【解析】从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||3y =,则M 在双曲线的12M M 或34M M 上运动,0y∈(33-,故选A . 【2015年新课标Ⅰ卷,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【答案】22325()24x y -+=【解析】由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-; (方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=. (方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=. (方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. 【2015年新课标Ⅱ卷,7】过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10【答案】C【解析】由已知得,,所以k AB k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1, -2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得,所以,故选C. 【2015年新课标Ⅱ卷,11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD 【答案】D【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,|AB |=|BM |,∠ABM =120º,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中,|BN |=a ,||MN =,故点M 的坐标为(2)M a ,代入双曲线方程得a 2 = b 2 = c 2 -a 2,即c 2 = 2a 2,所以e = D.【2016年新课标Ⅰ卷,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【答案】A【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .【2016年新课标Ⅰ卷,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【答案】B【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0A x ,2p D ⎛- ⎝,点(0A x 在抛物线22y px=上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B . 【2016年新课标Ⅱ卷,4】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34- CD .2 【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .【2016年新课标Ⅱ卷,11】已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )AB .32CD .2【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---故选A .【2016年新课标Ⅲ卷,11】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12(C )23 (D )34【答案】A【2016年新课标Ⅲ卷,16】已知直线l:30mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =则||CD =____________.【答案】4【2017年新课标Ⅰ卷,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 【答案】A【解析】【法一】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知 11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴, 同理1cos P AF θ=-,1cos PBF θ=+,∴22221cos sin P PAB θθ==-, 又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ; 【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知:2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ;【2017年新课标Ⅰ卷,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【解析】【法一】如图,OA a =,AN AM b ==, ∵60MAN ∠=︒,∴AP =,OP =,∴tan AP OP θ==,又∵tan b a θ=b a =,解得223a b =,∴e =;【法二】如上图可知(,0)A a 到渐进线0bx ay -=的距离为abd AP c===, 1,60,cos cos302ab AP AMN a c AN AM b AMN ANb c e∠==∠=∴=====又,e∴=【法三】如图在等边三角形AMN ∆中,,AP FH b == 由OAP OFH ∆∆知2a a e c b c =⇒==;【法四】如图,由等面积法可得,在三角形OAN 中,132223ab c c b e a =⇒==;【法五】因为,AM b OA a ==且渐进线bxy a=可得三角形OAN 为双曲线三角线(即三边分别为,,ab c ),有几何意义易得30MAP MOA ∠=∠=t a n,33b MOA e a ∴∠====; 【2017年新课标Ⅱ卷,9】若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD .3【答案】A【解析】解法一:根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐进线的距离为,∴圆心到渐近线的距离为,即=,解得2e =.解法二:设渐进线的方程为y kx =,∴=23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.【2017年新课标Ⅱ卷,16】已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = . 【答案】6【解析】∵ 点M 为线段NF 的中点,∴ 1M x =,∴ 23M MF x =+=,∴ 26NF MF ==.【2017年新课标Ⅲ卷,5】已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】∵双曲线的一条渐近线方程为y =,则b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b ==C 的方程为22145x y -=,故选B. 【2017年新课标Ⅲ卷,10】已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A. BCD .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a == 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a ==A 【2018年新课标Ⅰ卷,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8【答案】D【解析】过点)0,2(-且斜率为32的直线为)2(32+=x y ,① 将直线①代入抛物线方程得862-=y y ,解得⎩⎨⎧==21y x 或⎩⎨⎧==44y x ,则()2,1M ,)4,4(N .因为F 为抛物线焦点,则)0,1(F . 所以)2,0(=FM ,)4,3(=FN . 所以84230=⨯+⨯=⋅FM ,故选D.【2018年新课标Ⅰ卷,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .4【答案】B 【解析】由题意,,则,的渐近线方程为y 31±=由于30=∠=∠MOF NOF ,则9060≠=∠NOM , 由双曲线对称性,设90=∠OMN ,则,而2,90,30==∠=∠OF OMF FOM,故. 故选B.【2018年新课标Ⅱ卷,5】双曲线22221(0,0)x y a b a b-=>>为( )A.y = B.y = C.y = D.y =【答案】A【解析】c e a ==Q 2222221312b c a e a a -∴==-=-=,b a ∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A .【2018年新课标Ⅱ卷,12】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D . 【2018年新课标Ⅲ卷,6】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48, C. D.⎡⎣【答案】A【解答】由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==点P 到直线20x y ++=的距离的取值范围为d -≤≤d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.【2018年新课标Ⅲ卷,11】设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( ) AB .2CD【答案】C【解答】∵2||PF b =,2||OF c =,∴ ||PO a =;又因为1|||PF OP =,所以1||6PF a =;在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,222222224644633bb c a b c a c a c=⇒+-=⇒-=- 223c a ⇒=e ⇒=.【2018年新课标Ⅲ卷,16】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.【答案】2【解答】依题意得,抛物线C 的焦点为(1,0)F ,故可设直线:(1)AB y k x =-,联立2(1),4,y k x y x =-⎧⎨=⎩消去y 得2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =,∴12124()2y y k x x k k+=+-=,2121212[()1]4y y k x x x x =-++=-.又11(1,1)MA x y =+-,22(1,1)MB x y =+-,∴1212(1)(1)(1)(1)MA MB x x y y ⋅=+++--12121212()1()1x x x x y y y y =++++-++2224411410k k k+=++--+=,∴2k =.二、解答题.【2010年新课标卷,20】设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E 相较于A,B 两点,且2AF ,AB ,2BF 成等差数列.(Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程.解:(Ⅰ)由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+ 得43AB a =l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则,A B 两点坐标满足方程组22221y x c x y a b=+⎧⎪⎨+=⎪⎩ 化简得2222222()2()0a b x a cx a c b +++-=则212222a c x x a b -+=+,2221222()a cb x x a b =-+因为直线AB 斜率为1,所以12AB x -==得222443ab a a b =+ ∴222a b =∴E的离心率2c e a a ===(Ⅱ)设AB 中点为00(,)N x y ,由(I )知 212022223x x a c x c a b +-===-+,003c y x c =+=由PA PB =得1k =- 0011y x +=- 得3c =∴a =,3b =∴轨迹E 的方程为221189x y += 【2011年新课标卷,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.解:(I )设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-.再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (II )设()00,P x y 为曲线21:24C y x =-上一点,因为12y x '=,所以l 的斜率为012x . 因此直线l 的方程为()00012y y x x x -=-,即2000220x x y y x -+-=. 则O点到l 的距离d =. 又200124y x =-,所以2014122x d +⎫=≥ 当00x =时取等号,所以O 点到l 的距离的最小值为2.【2012年新课标卷,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点. (1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程; (2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点, 求坐标原点到m ,n 距离的比值.解:(1)若∠BFD =90°,则△BFD 为等腰直角三角形,且|BD|=2p ,圆F的半径||r FA ==,又根据抛物线的定义可得点A 到准线l 的距离||d FA ==.因为△ABD 的面积为24,所以1||2BD d ⋅⋅=122p ⋅= 所以24p =,由0>p ,解得2p =. 从而抛物线C 的方程为24x y =,圆F 的圆心F (0,1),半径||r FA == 因此圆F 的方程为22(1)8x y +-=. (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°, 根据抛物线的定义,得1||||||2AD FA AB ==,所以30ABD ∠=︒,从而直线m当直线m的斜率为3时,直线m的方程为32py x =+,原点O 到直线m的距离1pd =.依题意设直线n 的方程为3y x b =+,联立232y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb -=,因为直线n 与C 只有一个公共点,所以24803p pb ∆=+=,从而6pb =-. 所以直线n的方程为36py x =-,原点O 到直线n的距离2pd =因此坐标原点到m ,n 距离的比值为12236p dpd ==.当直线m的斜率为m ,n 距离的比值也为3.【2013年新课标Ⅰ卷,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=. 当k时,将y x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187. 【2013年新课标Ⅱ卷,20】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F的直线0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.解:(Ⅰ)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则221122=1x y a b +,222222=1x y a b+,2121=1y y x x ---,由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-.因为x 1+x 2=2x 0,y 1+y 2=2y 0,0012y x =,所以a 2=2b 2.又由题意知,M 的右焦点为0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为22=163x y +.(Ⅱ)由220,1,63x y x y ⎧+-=⎪⎨+=⎪⎩解析得3x y ⎧=⎪⎪⎨⎪=-⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此|AB |=3.由题意可设直线CD的方程为(3y x n n =+-<<,设C (x 3,y 3),D (x 4,y 4).由22,163y x n x y =+⎧⎪⎨+=⎪⎩得3x 2+4nx +2n 2-6=0.于是x 3,4=.因为直线CD 的斜率为1,所以|CD |43|x x -由已知,四边形ACBD的面积1||||2S CD AB =⋅当n =0时,S.所以四边形ACBD. 【2014年新课标Ⅰ卷,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(Ⅰ) 设(),0F c,由条件知2c =c =又c a =, 所以,2221b a c =-= ,故E 的方程2214x y +=. …….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,2x =从而212143k PQ x -=-=,又点O 到直线PQ的距离d =,所以∆OPQ 的面积21214OPQS d PQ k ∆==+ ,设t =,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,2k =±等号成立,且满足0∆>, 所以当∆OPQ 的面积最大时,l 的方程为:22y x =- 或22y x =--. 【2014年新课标Ⅱ卷,20】设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .解:(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34,∴2324b ac =,又222a b c =+,解得12c e a ==或2-(舍),故直线MN 的斜率为34时,C 的离心率为12.(Ⅱ)由题意知,点M 在第一象限,1(,0)F c -,2(,)b M c a,∴直线MN 的斜率为:22b ac ,则MN :222b y x ac =+;∵1(,0)F c -在直线MN 上,∴20()22b c ac =⨯-+, 得24b a =…①,∵15MN F N =,∴114MF F N =,且21(2,)b MF c a=--, ∴21(,)24c b F N a =--,∴23(,)24c b N a --,又∵23(,)24c b N a--在椭圆C 上, ∴4222291641b c a a b+=……②,联立①、②解得:7a =,b =【2015年新课标Ⅰ卷,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a=+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)当0k =时,点)M a和()N a -,2xy '=,故x =处的导数值为,切线方程为y a x -=-0y a --=;同理,x =-值为,切线方程为y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.【2015年新课标Ⅱ卷,20】已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(Ⅰ)设直线1122:(0,0),(,),(,),(,)M M l y kx b k b A x y B x y M x y =+≠≠,将y kx b =+代。
2010年-2018年新课标全国卷历年数列真题(解析版)
一、全国卷数列真题1.(2018年文科一卷)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 解:(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n-=,所以a n =n ·2n -1.2.(2018年理科二卷)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.解:(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--. 所以当n =4时,n S 取得最小值,最小值为−16.3.(2018年理科三卷)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 解:(1)设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解. 若12n n a -=,则21nn S =-.由63m S =得264m=,解得6m =.综上,6m =.4.(2017年文科一卷)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——09、解析几何
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编09、解析几何一、选择题与填空题.【2010年新课标卷,12】已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为( )(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -=【2010年新课标卷,15】过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 .【2011年新课标Ⅰ卷,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A .2 D .3【2011年新课标Ⅰ卷,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .【2012年新课标Ⅰ卷,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【2012年新课标Ⅰ卷,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2013年新课标Ⅰ卷,4】已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013年新课标Ⅰ卷,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【2013年新课标Ⅱ卷,11】设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( )A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x =【2013年新课标Ⅱ卷,12】已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2-C.1(1]3-D.11[,)32【2014年新课标Ⅰ卷,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m【2014年新课标Ⅰ卷,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72B .52C .3D .2【2014年新课标Ⅱ卷,6】设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.【2014年新课标Ⅱ卷,10】设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )A BC .6332D .94【2015年新课标Ⅰ卷,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(D .( 【2015年新课标Ⅰ卷,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2015年新课标Ⅱ卷,7】过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10【2015年新课标Ⅱ卷,11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD 【2016年新课标Ⅰ卷,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2016年新课标Ⅰ卷,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )【2016年新课标Ⅱ卷,4】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-C D .2【2016年新课标Ⅱ卷,11】已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )A B .32C D .2【2016年新课标Ⅲ卷,11】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12(C )23(D )34【2016年新课标Ⅲ卷,16】已知直线l:30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D两点,若AB =||CD =____________.【2017年新课标Ⅰ卷,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10【2017年新课标Ⅰ卷,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2017年新课标Ⅱ卷,9】若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 B【2017年新课标Ⅱ卷,16】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【2017年新课标Ⅲ卷,5】已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【2017年新课标Ⅲ卷,10】已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )ABCD .13【2018年新课标Ⅰ卷,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .8【2018年新课标Ⅰ卷,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( ) A .32B .3 C. D .4【2018年新课标Ⅱ卷,5】双曲线22221(0,0)x y a b a b-=>>)A .y =B .y =C .y =D .y =【2018年新课标Ⅱ卷,12】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A.23B .12C .13D .14 【2018年新课标Ⅲ卷,6】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【2018年新课标Ⅲ卷,11】设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF OP ,则C 的离心率为( )A B .2 C D 【2018年新课标Ⅲ卷,16】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.二、解答题.【2010年新课标卷,20】设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E相较于A,B 两点,且2AF ,AB ,2BF 成等差数列.(Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程.【2011年新课标卷,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.【2012年新课标卷,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2013年新课标Ⅰ卷,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【2013年新课标Ⅱ卷,20】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.【2014年新课标Ⅰ卷,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AF 的斜率为,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2014年新课标Ⅱ卷,20】设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .【2015年新课标Ⅰ卷,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【2015年新课标Ⅱ卷,20】已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.【2016年新课标Ⅰ卷,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【2016年新课标Ⅱ卷,20】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t =4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求k 的取值范围.【2016年新课标Ⅲ卷,20】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【2017年新课标Ⅰ卷,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2017年新课标Ⅱ卷,20】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【2017年新课标Ⅲ卷,20】已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程.【2018年新课标Ⅰ卷,19】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【2018年新课标Ⅱ卷,19】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程(2)求过点A ,B 且与C 的准线相切的圆的方程.【2018年新课标Ⅲ卷,20】知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编09、解析几何(解析版)一、选择题与填空题.【2010年新课标卷,12】已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为( )(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 【答案】B【解析】设双曲线方程为22222222221,x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y由2222222222221122,b x a y a b b x a y a b -=-=得2212121212()()()0()y y b x x a y y x x -+-+=-AB PN N 又中点(-12,-15),k =k ,2222-12+1504=5b a b a ∴=即,22+9b a =所以224,=5a b =,选B【2010年新课标卷,15】过点A(4,1)的圆C 与直线10x y --=相切于点 B(2,1).则圆C 的方程为 . 【答案】223)2x y -+=(【解析】设圆心(,)O a b ,借助图形可知3a =,又11032b OB b -∴=-=-与切线垂直,即22C (2)2r OB x y =--=圆的方程为【2011年新课标Ⅰ卷,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A.2 D .3 【答案】B【解析】通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 【2011年新课标Ⅰ卷,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .【答案】221168x y +=【解析】由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求. 【2012年新课标Ⅰ卷,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【答案】C【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==,260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-, 所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .【2012年新课标Ⅰ卷,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B两点,||AB =,则C 的实轴长为( )AB.C .4D .8【答案】C【解析】设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||AB =,所以222||(2||)448AB y y ===,从而212y =,所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .【2013年新课标Ⅰ卷,4】已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【答案】C【解析】选C,∵c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,12b a =, ∴渐近线方程为12b y x x a =±=±.【2013年新课标Ⅰ卷,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【答案】D【解析】选D ,设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2013年新课标Ⅱ卷,11】设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A.24y x =或28y x = B.22y x =或28y x = C.24y x =或216y x = D.22y x =或216y x =【答案】C【解析】设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+2p =5,则x 0=5-2p .又点F 的坐标为(,0)2p,所以以MF 为直径的圆的方程为220525()()224y x y -+-=.将x =0,y =2代入得2002404y y -+=,所以y 0=4.由20y =2px 0,得162(5)2p p =-,解之得p =2,或p =8.所以C 的方程为y 2=4x 或y 2=16x . 故选C.【2013年新课标Ⅱ卷,12】已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1)B.1(1)2-C.1(1]3-D.11[,)32【答案】B【解析】由题意知b ∈(0, 1),当直线过点(-1, 0)时,要将△ABC 分割为面积相等的两部分,直线必须过点11(,)22,此时有-a +b =0且1122a b +=,解得13b =;当a =1时,直线y =ax +b 平行于直线AC ,要将△ABC 分割为面积相等的两部分,可求此时的1b =.【2014年新课标Ⅰ卷,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )AB .3 CD .3m【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C的一条渐近线的距离d =选A.【2014年新课标Ⅰ卷,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72B .52C .3D .2【答案】C【解析】选C ,过Q 作QM⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==【2014年新课标Ⅱ卷,6】设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________. 【答案】[1,1]-【解析】由图可知点M 所在直线1y =与圆O 相切,又1ON =,由正弦定理得sin sin ON OMOMN ONM=∠∠,sin OMONM =∠,即OM ONM ∠, ∵0ONM π≤∠≤,∴OM ≤011x -≤≤.【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||sin 45OA OM =o||1OM ≤,解得||OM M (x 0, 1),所以||OM =011x -≤≤,故0x 的取值范围是[1,1]-.【2014年新课标Ⅱ卷,10】设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )ABC .6332D .94【答案】D【解析】∵3(,0)4F ,∴设直线AB的方程为3)4y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ⋅=,由弦长公式得||12AB =,由点到直线的距离公式得:O 到直线AB的距离|0038d -==,∴13912284OABS ∆=⨯⨯=.【另解】直线AB 的方程3)34y x =-代入抛物线方程得:2490y --=,∴12y y +=1294y y ⋅=-,∴139244OAB S ∆=⨯=.【2015年新课标Ⅰ卷,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(66-C .(33-D .(,)33- 【答案】A【解析】从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||3y =,则M 在双曲线的12M M 或34M M 上运动,0y ∈(,故选A .【2015年新课标Ⅰ卷,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【答案】22325()24x y -+=【解析】由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-;(方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=. (方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=.(方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. 【2015年新课标Ⅱ卷,7】过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10【答案】C【解析】由已知得,,所以k AB k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1, -2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得,所以,故选C.【2015年新课标Ⅱ卷,11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD 【答案】D【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,|AB |=|BM |,∠ABM =120º,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中,|BN |=a ,||MN ,故点M 的坐标为(2)M a ,代入双曲线方程得a 2= b 2= c 2-a 2,即c 2= 2a 2,所以e = D.【2016年新课标Ⅰ卷,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【答案】A【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .【2016年新课标Ⅰ卷,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【答案】B【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,A x,2p D ⎛- ⎝,点(0,A x 在抛物线22y px=上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0,A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B . 【2016年新课标Ⅱ卷,4】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-CD .2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .【2016年新课标Ⅱ卷,11】已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )AB .32CD .2【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---. 故选A .【2016年新课标Ⅲ卷,11】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】A【2016年新课标Ⅲ卷,16】已知直线l:30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D两点,若AB =||CD =____________. 【答案】4【2017年新课标Ⅰ卷,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 【答案】A【解析】【法一】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知 11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴, 同理1cos P AF θ=-,1cos PBF θ=+,∴22221cos sin P PAB θθ==-,又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ; 【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ; 【2017年新课标Ⅰ卷,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【解析】【法一】如图,OA a =,AN AM b ==, ∵60MAN ∠=︒,∴AP =,OP =,∴tan AP OP θ==,又∵tan b aθ=b a =, 解得223a b =,∴e ===【法二】如上图可知(,0)A a 到渐进线0bx ay -=的距离为abd AP c===, 1,60,cos cos302ab AP AMN a c AN AM b AMN ANb c e∠==∠=∴=====又,e ∴=,2AP FH b ==【法三】如图在等边三角形AMN ∆中由OAP OFH ∆∆知2a a e c b c =⇒==;【法四】如图,由等面积法可得,在三角形OAN 中,132223ab c c b e a =⇒==;bx y a=【法五】因为,AM b OA a ==且渐进线可得三角形OAN 为双曲线三角线(即三边分别为,,a b c ),有几何意义易得30MAP MOA∠=∠=tan ,33b MOA e a ∴∠====;【2017年新课标Ⅱ卷,9】若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2 B【答案】A【解析】解法一:根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐=2e =.解法二:设渐进线的方程为ykx ==23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.【2017年新课标Ⅱ卷,16】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【答案】6【解析】∵ 点M 为线段NF 的中点,∴ 1M x =,∴ 23M MF x =+=,∴ 26NF MF ==.【2017年新课标Ⅲ卷,5】已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -= B .22145x y -= C .22154xy -= D .22143x y -= 【答案】B【解析】∵双曲线的一条渐近线方程为y =,则b a ① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b ==C 的方程为22145x y -=,故选B. 【2017年新课标Ⅲ卷,10】已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a == 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a == A【2018年新课标Ⅰ卷,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .8【答案】D【解析】过点)0,2(-且斜率为32的直线为)2(32+=x y ,① 将直线①代入抛物线方程得862-=y y ,解得⎩⎨⎧==21y x 或⎩⎨⎧==44y x ,则()2,1M ,)4,4(N . 因为F 为抛物线焦点,则)0,1(F . 所以)2,0(=FM ,)4,3(=FN . 所以84230=⨯+⨯=⋅FN FM ,故选D.【2018年新课标Ⅰ卷,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .4【答案】B 【解析】由题意,,则,的渐近线方程为9060≠=NOM ,,则,故. 故选B.【2018年新课标Ⅱ卷,5】双曲线22221(0,0)x y a b a b-=>>)A.y = B.y = C.y = D.y =【答案】A【解析】c e a ==Q 2222221312b c a e a a-∴==-=-=,b a ∴ 因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A .【2018年新课标Ⅱ卷,12】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A.23 B .12 C .13D .14 【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由AP2tan PAF ∠=,2sin PAF ∴∠=,2cos PAF ∠= 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .【2018年新课标Ⅲ卷,6】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48, C. D.⎡⎣【答案】A【解答】由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==P 到直线20x y ++=的距离的取值范围为d ≤d ≤≤1||[2,6]2ABP S AB d ∆=⋅∈.【2018年新课标Ⅲ卷,11】设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF OP ,则C 的离心率为( )AB .2 CD【答案】C 【解答】∵2||PF b =,2||OF c =,∴ ||PO a =;又因为1|||PF OP ,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅, ∴222222222224)464463322b c bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅223c a ⇒=e ⇒=.【2018年新课标Ⅲ卷,16】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.【答案】2【解答】依题意得,抛物线C 的焦点为(1,0)F ,故可设直线:(1)AB y k x =-,联立2(1),4,y k x y x =-⎧⎨=⎩消去y 得2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k++=,121x x =,∴12124()2y y k x x k k+=+-=,2121212[()1]4y y k x x x x =-++=-.又11(1,1)MA x y =+-,22(1,1)MB x y =+-,∴1212(1)(1)(1)(1)MA MB x x y y ⋅=+++--12121212()1()1x x x x y y y y =++++-++2224411410k k k+=++--+=, ∴2k =.二、解答题.【2010年新课标卷,20】设12,F F 分别是椭圆E:22221x y a b+=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E相较于A,B 两点,且2AF ,AB ,2BF 成等差数列.(Ⅰ)求E 的离心率;(Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程.Ⅰ)由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+得43AB a =l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则,A B 两点坐标满足方程组 22221y x c x y a b=+⎧⎪⎨+=⎪⎩ 化简得2222222()2()0a b x a cx a c b +++-=则212222a c x x a b -+=+,2221222()a cb x x a b =-+因为直线AB 斜率为1,所以12AB x -==得222443ab a a b =+ ∴222a b =∴E的离心率c e a ===(Ⅱ)设AB 中点为00(,)N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+= 由PA PB =得1k =- 0011y x +=- 得3c =∴a =3b =∴轨迹E 的方程为221189x y +=【2011年新课标卷,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值. 解:(I )设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-.再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (II )设()00,P x y 为曲线21:24C y x =-上一点,因为12y x '=,所以l 的斜率为012x .因此直线l 的方程为()00012y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离d =. 又200124y x =-,所以2014122x d +⎫==≥ 当00x =时取等号,所以O 点到l 的距离的最小值为2.【2012年新课标卷,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程; (2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.解:(1)若∠BFD =90°,则△BFD 为等腰直角三角形,且|BD|=2p ,圆F的半径||r FA ==, 又根据抛物线的定义可得点A 到准线l 的距离||d FA ==.因为△ABD 的面积为24,所以1||2BD d ⋅⋅=122p ⋅= 所以24p =,由0>p ,解得2p =. 从而抛物线C 的方程为24x y =,圆F 的圆心F (0,1),半径||r FA == 因此圆F 的方程为22(1)8x y +-=. (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°, 根据抛物线的定义,得1||||||2AD FA AB ==,所以30ABD ∠=︒,从而直线m或当直线mm的方程为2p y x =+,原点O 到直线m的距离1pd =.依题意设直线n的方程为3y x b =+,联立22y x b x py⎧=+⎪⎨⎪=⎩,得2203x px pb --=, 因为直线n 与C 只有一个公共点,所以24803p pb ∆=+=,从而6pb =-. 所以直线n的方程为6p y x =-,原点O 到直线n的距离2pd =. 因此坐标原点到m ,n 距离的比值为12236p dpd ==.当直线m的斜率为m ,n 距离的比值也为3.【2013年新课标Ⅰ卷,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.【2013年新课标Ⅱ卷,20】平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.解:(Ⅰ)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则221122=1x y a b +,222222=1x y a b +,2121=1y y x x ---,由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-.因为x 1+x 2=2x 0,y 1+y 2=2y 0,0012y x =,所以a 2=2b 2. 又由题意知,M 的右焦点为0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为22=163x y +. (Ⅱ)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解析得33x y ⎧=⎪⎪⎨⎪=-⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此|AB |=.由题意可设直线CD 的方程为(3y x n n =+-<<,设C (x 3,y 3),D (x 4,y 4).由22,163y x n x y =+⎧⎪⎨+=⎪⎩得3x 2+4nx +2n 2-6=0.于是x 3,4=.因为直线CD 的斜率为1,所以|CD |43|x x -=.由已知,四边形ACBD的面积1||||2S CD AB =⋅当n =0时,S.所以四边形ACBD. 【2014年新课标Ⅰ卷,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AF的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(Ⅰ) 设(),0F c,由条件知2c =c =又c a =, 所以,2221b a c =-= ,故E 的方程2214x y +=. …….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,2x =从而212143k PQ x -=-=,又点O 到直线PQ的距离d =,所以∆OPQ 的面积12OPQS d PQ ∆== t =,则0t >,244144OPQt S t t t∆==≤++,当且仅当2t =,k =0∆>, 所以当∆OPQ 的面积最大时,l的方程为:2y x =-或2y x =-.【2014年新课标Ⅱ卷,20】设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .解:(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34,∴2324b ac =,又222a b c =+,解得12c e a ==或2-(舍),故直线MN 的斜率为34时,C 的离心率为12.(Ⅱ)由题意知,点M 在第一象限,1(,0)F c -,2(,)b M c a ,∴直线MN 的斜率为:22b ac ,则MN :222b y x ac=+;∵1(,0)F c -在直线MN 上,∴20()22b c ac=⨯-+, 得24b a =…①,∵15MN F N =,∴114MF F N =,且21(2,)b MF c a=--, ∴21(,)24c b F N a =--,∴23(,)24c b N a --,又∵23(,)24c b N a --在椭圆C 上, ∴4222291641b c a a b+=……②,联立①、②解得:7a =,b =【2015年新课标Ⅰ卷,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)当0k =时,点)M a和()N a -,2xy '=,故x =y a x -=-0y a --=;同理,x =-y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k .直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.【2015年新课标Ⅱ卷,20】已知椭圆C:2229x y m+=(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅱ)若l过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否平行四边形?若能,求此时l的斜率;若不能,说明理由.解:(Ⅰ)设直线1122:(0,0),(,),(,),(,)M Ml y kx b k b A x y B x y M x y=+≠≠,将y kx b=+代入2229x y m+=得2222(9)20k x kbx b m+++-=,故12229Mx x kbxk+-==+,299M Mby kx bk=+=+. 于是直线OM的斜率9MOMMykx k==-,即9OMk k⋅=-,所以直线OM的斜率与l的斜率的乘积为定值.(Ⅱ)四边形OAPB能为平行四边形,因为直线l过点(,)3mm,所以l不过原点且与C有两个交点的充要条件是0,3k k>≠,由(Ⅰ)得OM的方程为9y xk=-.设点P的横坐标为Px,由22299y xkx y m⎧=-⎪⎨⎪+=⎩,得2222981Pk mxk=+,即Px=,将点(,)3mm的坐标代入l的方程得(3)3m kb-=,因此2(3)3(9)Mk k mxk-=+. 四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即2P Mx x=2(3)23(9)k k mk-=⨯+,解得1244k k==,因为0,3,1,2i ik k i>≠=,所以当l的斜率为44+OAPB为平行四边形.【2016年新课标Ⅰ卷,20】设圆015222=-++xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l交圆A于DC,两点,过B作AC的平行线交AD于点E.(Ⅰ)证明EBEA+为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线1C,直线l交1C于NM,两点,过B且与l垂直的直线与圆A交于QP,两点,求四边形MPNQ面积的取值范围.解:(Ⅰ)圆A整理为()22116x y++=BE ACQ∥,则C EBD=∠∠,由ACEBD D∴=∠∠,则EB ED=,AE EB AE ED∴+=+=根据椭圆定义为一个椭圆,方程为24x(Ⅱ)221:143x yC+=;设:1l x my=+联立1l C与椭圆:221143x myx y=+⎧⎪⎨+=⎪⎩()2234690m y my++-=,则。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——10、概率统计
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编10、概率统计一、选择题与填空题.(2010年新课标卷,6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) (A )100 (B )200 (C )300 (D )400 【答案】B【解析】设没有发芽的种子数为随机变量ξ,则~ (1000,0.1)B ξ,10000.1100E ξ=⨯=, 补种的种子数X=2ξ,故EX=E =2E =200ξξ(2)命题意图:考察二项分布期望公式及公式()E a b aE b ξξ+=+【2011年新课标卷,4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A .13 B .12 C .23 D .34【答案】A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=,故选A. 【2011年新课标卷,8】512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 【答案】D【解析】令x=1得a=1.故原式=511()(2)x x x x +-.511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,故选D.【2012年新课标卷,2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种【答案】A【解析】先安排甲组,共有122412C C ⋅=种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选A . 【2012年新课标卷,15】某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元 件3正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服 从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________. 【答案】38【解析】由已知三个电子元件的使用寿命超过1000小时的概率均为21. 因此该部件的使用寿命超过1000小时的概率为8321)411(=⨯-=P .【2013年新课标Ⅰ卷,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C. 【2013年新课标Ⅰ卷,9】设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 【答案】B【解析】由题意可知,a =2C mm ,b =21C mm +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 【2013年新课标Ⅱ卷,14】从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______. 【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3),共2种,所以221C 14n =,即24111142n n n n ==(-)(-),亦即n 2-n -56=0,解得n =8.元件2元件3元件1【2014年新课标Ⅰ卷,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A .18B .38C .58D .78【答案】D【解析】4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=,故选D. 或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=,故选D. 【2014年新课标Ⅰ卷,13)】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【答案】-20【解析】8()x y +展开式的通项为818(0,1,,8)r r rr T C x y r -+==,∴777888T C xy xy ==,626267828T C x y x y ==,∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y -=-,故系数为-20.【2014年新课标Ⅱ卷,5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45【答案】A【解析】设 A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. 【2015年新课标Ⅰ卷,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【答案】A【解析】该同学通过测试的概率为223230.60.40.60.6(1.20.6)0.648C ⋅+=+=,或312310.40.40.60.648C --⋅=,故选A ..【2015年新课标Ⅰ卷,10】25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为21253230C C C =,故选C.另解:5252()()x x y x x y ⎡⎤++=++⎣⎦,含2y 的项223235()T C x x y =+,其中23()x x +中含5x 的项为141533C x x C x =,所以52x y 的系数为215330C C =,故选C .【2015年新课标Ⅱ卷,3】根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关. 【答案】D【解析】由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.【2016年新课标Ⅰ卷,4】某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是( )A .31B .21 C .32 D .43 【答案】B【解析】如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率10101402P +==,故选B .【2016年新课标Ⅰ卷,14】5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】:设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k ∈,∴()()5552155C 2C 2k kkkk kk T x x x---+==.当532k -=时,4k =,即454543255C 210T x x --==,故答案为10.【2016年新课标Ⅱ卷,5】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .9【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B .【2016年新课标Ⅱ卷,10】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n m B .2n m C .4m n D .2m n【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,∴4πm n=,故选C .【2016年新课标Ⅱ卷,15】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】(1,3)【解析】由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足; 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3). 【2017年新课标Ⅰ卷,2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )G•F•E•A .14 B .π8 C .12 D .π4【答案】B【解析】设正方形边长为2,则圆半径为1,则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2,则此点取自黑色部分的概率为ππ248=,故选B ;【2016年新课标Ⅲ卷,4】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个 【答案】D【2017年新课标Ⅰ卷,6】621(1)(1)x x++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 【答案】C【解析】()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭,对()61x +的2x 项系数为2665C 152⨯==, 对()6211x x⋅+的2x 项系数为46C =15,∴2x 的系数为151530+=,故选C ; 【2017年新课标Ⅱ卷,6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能.法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能,故选D.【2017年新课标Ⅱ卷,13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .i 【2017年新课标Ⅲ卷,3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A. i 【2017年新课标Ⅲ卷,4】5()(2)x y x y +-的展开式中33x y 的系数为( )A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.【2018年新课标Ⅰ卷,3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】选A.设建设前经济总收入为100,则建设后经济总收入为200.种植收入 养殖收入 第三产业收入其他收入总计 建设前 60 30 6 4 100 建设后74605610200由上表可知A 选项结论不正确。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——12、程序框图.docx
2010-2018 年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编12、程序框图【2010年新卷,】如果行右面的框,入N 5 ,出的数等于()7( A )5( B)4(C )6( D)5 4556【 2011 年新卷, 3】行右面的程序框,如果入的N 是 6,那么出的p 是()A. 120B. 720 C . 1440 D . 5040【 2012年新卷, 6】如果行右和程序框,入正整数 N( N 2 )和数 a1,a2,⋯,a N,出A,B,()A .AB a1,a2,⋯,a N的和B.A Ba1,a2,⋯,a N的算平均数2C .A和B分是a1,a2,⋯,a N中最大的数和最小的数D .A和B分是a1,a2,⋯,a N中最小的数和最大的数【 2010 年新卷, 7】【2011年新卷,3】【2012年新卷,6】【 2013 年新课标Ⅰ卷, 5】执行下面的程序框图,如果输入的 t ∈ [- 1,3],则输出的 s 属于().A . [- 3,4]B . [- 5,2]C . [- 4,3]D . [- 2,5]【 2013 年新课标Ⅱ卷, 6】执行右面的程序框图, 如果输入的 N10 ,那么输出的 S ()A. 11 1 1 B. 11 1 12 3 102! 3! 10! C. 11 1 1 D. 11 1 12 3112! 3!11!【 2013 年新课标Ⅰ卷, 5】 【 2013 年新课标Ⅱ卷, 6】【 2014年新课标Ⅰ卷, 7a, b, k 分别为1,2,3 =】执行下图的程序框图, 若输入的 ,则输出的 M()A .20 16 7 153B .C .D .开始528输入 x ,tM 1 , S 3【 2014 年新课标Ⅱ卷,7】执行右面程序框图,如果输入的 x ,tk 1均为 2,则输出的S= ()是 否A . 4B . 5C . 6D . 7k tM xM输出Sk结束S M Sk k 1【2015年新课标Ⅰ卷, 】执行右面的程序框图, 如果输入的 t 0.01 ,则输出的n( )9A . 5B . 6C . 7D . 8【 2015 年新课标Ⅱ卷, 8】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的 “更相减损术 ”. 执行该程序框图,若输入 a , b 分别为 14, 18,则输出的 a =( )A . 0B . 2C . 4D . 14x 0 ,, n1,则输【2016年新课标Ⅰ卷,】执行右面的程序框图,如果输入的y 19出 x, y 的值满足()A . y 2x. y 3x C . y 4x D . y 5xB开始输入 x, y, nn n 1n 1, y nyx x2x 2y 236?否是输出 x, y结束【 2015 年新课标Ⅰ卷, 9】【 2015 年新课标Ⅱ卷, 8】 【 2016 年新课标Ⅰ卷, 9】开始【 2016 年新课标Ⅱ卷, 8】中国古代有计算多项式值的秦九韶算法, 输入x , n右图是实现该算法的程序框图.执行该程序框图,若输入的 x=2,k0 , sn=2,依次输入的a 为 2, 2, 5,则输出的 s=()输入aA . 7B . 12C . 17D . 34sxas kk1kn否是输出s结束【 2016年新课标Ⅲ卷, 7】执行下图的程序框图,如果输入的a4, b 6 ,那么输出的n()( A ) 3(B) 4( C) 5( D) 6【 2017年新课标Ⅰ卷, 8】右面程序框图是为了求出满足3n2n1000 的最小偶数n,那么在和两个空白框中,可以分别填入()A .A>1000 和 n=n+1B. A>1000 和 n=n+2C .A1000和 n nD. A1000和n n+2= +1=【 2017年新课标Ⅱ卷, 8】执行右面的程序框图,如果输入的a1,则输出的 S()A. 2B. 3 C . 4 D . 5【 2016 年新课标Ⅲ卷,7】【2017年新课标Ⅰ卷,8】【2017年新课标Ⅱ卷,8】【 2017 年新课标Ⅲ卷,7】执行右图的程序框图,为使输出值小于 91,则输入的正整数N 的最小值为()A. 5B. 4C. 3 D . 2S 的【 2018 年新 Ⅱ卷, 7】 算S 1 1 1 1 1 12 3 ⋯99 , 了右 的程序框 ,4 100 在空白框中 填入( ) A . i i 1 B . i i 2 C . ii3D . i i4开始N 0, T 0i 1是否i 1001NN S N T iT T1 输出 S i 1结束2010-2018 年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编12、程序框图【 2010 年新课标卷, 7】如果执行右面的框图,输入 N 5 ,则输出的数等于( )( A )5( B )4(C )6( D )545 56【答案】 B11111【解析】S22 3 34 4 5561(1 1) ( 1 1) (1 1) (1 1) (1 1) 52 233 44556 6所以选 D【 2011 年新课标卷, 3】执行右面的程序框图,如果输入的 N是 6,那么输出的 p 是( )A . 120B . 720C . 1440D . 5040【答案】 B【解析】框图表示 a n n a n 1 ,且 a 1 1 所求 a 6 720 ,故选B.【 2012 年新卷, 6】如果行右和程序框,入正整数 N ( N 2 )和数a1,a2,⋯,aN,出,,()A BA .AB a1,a2,⋯,a N的和B.A Ba1,a2,⋯,2a N的算平均数C .A和B分是a1,a2,⋯,a N中最大的数和最小的数D .A和B分是a1,a2,⋯,a N中最小的数和最大的数【答案】 C【解析】由程序框可知, A 表示a1,a2,⋯,a N中最大的数,B 表示a1,a2,⋯,a N中最小的数,故C .【 2013 年新Ⅰ卷,5】行下面的程序框,如果入的t∈ [- 1,3],出的s 属于 ().A. [- 3,4]B. [- 5,2] C . [- 4,3]D. [- 2,5]【答案】 A【解析】A.若 t∈ [-1,1),行s= 3t,故 s∈[- 3,3).若 t∈ [1,3] ,行s= 4t- t2,其称t= 2.故当 t= 2 , s 取得最大 4.当 t= 1 或 3 , s 取得最小3, s∈ [3,4].上可知,出的s∈ [- 3,4].【 2013年新Ⅱ卷,6】行右面的程序框,如果入的N 10 ,那么出的 S()A.1111B. 111123102!3!10!C.1111D. 111123112!3!11!【答案】 B【解析】由程序框 知,当k = 1, S = 0, T = 1 , T = 1, S = 1;当 k = 2 , T1, S=1+ 1;22当 k = 3 , T2 1, S 1+12 1 ;32 3当 k = 4 , T1 , S 1+ 111 ;23 22 32 344⋯ ⋯⋯ ⋯;当 k = 10 , T23 1 10 , S 1+11 1 ,42! 3!10!k 增加 111, 足 k > N , 出 S ,故 B .【 2014 年新 Ⅰ卷, 7】 行下 的程序框 , 若 入的 a, b, k 分 1,2,3, 出的 M()A .20 16 7 15B .5C .D .328【答案】 D【解析】D , 入 a1, b 2, k 3 ;=n 1 : M1 12 n 2 : M22 3n 3 : M3 3 2 83, a 2, b 3 ; 22 8 , a3 ,b 8; 3 2 3 15 , a 8 , b15; 8 3 8开始入 x ,tM 1 , S 3n 4 : 出 M15.8k 1是k t否【 2014 年新 Ⅱ卷,7】 行右面程序框 ,如果 入的x , tM x均 2, 出的 S= ( )MkA . 4B . 5C . 6D . 7【答案】 DS M S【解析】 入的x , t 均 2.判断 12 ?是, M1 2 2 ,k k 11S2 3 5k1 12 ;判断 2 2 ?是, M2 22 , S2 5 7 ,2k 2 13 ,判断 3 2 ?否, 出 S 7.【 2015 年新 Ⅰ卷, 9】 行右面的程序框 ,如果 入的t0.01 ,输出S结束输出的 n ()A . 5B . 6C . 7D . 8【答案】 C【解析】 t0.01 保持不变,初始值 s 1, n 0, m1 0.5 ,2执行第 1次, s 0.5,m 0.25, n 1 , s t ,执行循环体;执行第 2 次, s 0.25, m 0.125, n2, s t ,执行循环体;执行第 3 次, s 0.125, m 0.0625, n 3 , s t ,执行循环体;执行第 4 次, s0.0625, m 0.03125, n 4 , s t ,执行循环体;执行第 5 次, s0.03125, m 0.015625, n 4 , s t ,执行循环体;执行第 6 次,s 0.015625, m0.0078125, n 5 , s t ,执行循环体;执行第 7 次, s 0.0078125, m0.00390625, n 6 , s t ,跳出循环体,输出n7 ,故选 C . .【 2015 年新课标Ⅱ卷, 8】右边程序框图的算法思路源于我国古代数学名著 《九章算术》 中的 “更相减损术 ”. 执行该程序框图,若输入 a , b 分别为 14, 18,则输出的 a =( )A . 0B . 2C . 4D . 14【答案】 B【解析】程序在执行过程中, a , b 的值依次为 a=14, b=18,b=4, a=10, a=6 , a=2 ,b=2,此时 a=b=2 程序结束,输出 a 的值为 2,故选 B .【 2016 年新课标Ⅰ卷, 9】执行右面的程序框图,如果输入的开始 x 0, y 1, n 1,则输出 x, y 的值满足()A . y 2xB . y 3xC . y 4x输入 x, y, nD . y 5xn n 1 x xn 1, y ny【答案】 C2【解析】第一次循环:x 0, y1, x 2 y 2 1 36 ;2 236?1, y17否xy2, x 2 y 2第二次循环: x36 ;是24输出 x , y第三次循环: x3, y 6, x 2 y 236 ;结束23, y6 ,满足 y 4x故选 C .输出 x;2【 2016 年新课标Ⅱ卷,8】中国古代有计算多项式值的秦九韶算法,开始右图是实现该算法的程序框图.执行该程序框图,若输入的x=2 ,输入x , nn=2,依次输入的 a 为 2, 2, 5,则输出的 s=()k0 , s0 A. 7B. 12C. 17D. 34输入a【答案】 C【解析】第一次运算: s02 2 2 ,第二次运算: s 2 2 2 6 ,s s x a第三次运算: s 6 2517 ,故选C.kk1k n否是输出s结束【 2016 年新课标Ⅲ卷,7】执行下图的程序框图,如果输入的a 4,b 6 ,那么输出的n()( A ) 3(B) 4( C) 5( D) 6【答案】 B【 2017 年新课标Ⅰ卷, 8 】右面程序框图是为了求出满足3n2n1000 的最小偶数n,那么在和两个空白框中,可以分别填入()A .A>1000 和C .A 1000 和n=n+1n=n+1B.A>1000 和D. A 1000 和n=n+2n=n+2【答案】 D【解析】因 要求A 大于 1000 出,且框 中在 “否 ” 出∴ “”中不能 入A1000,排除A 、B ,又要求n 偶数,且n 初始0,“”中 n 依次加2 可保 其 偶,故D.【 2017 年新 Ⅱ卷, 8】 行右面的程序框 ,如果 入的a1 ,出的 S()A . 2B . 3C . 4D . 5【答案】 B【解析】∵S 0 0 , K 0 1 , a 01 , S S a K , aa ,∴ 行第一次循 : S 1 1 a 11 K 12 ;行第二次循 : S 2 1 a 2 1 K 2 3 ;行第三次循 : S 32 a 31K 3 4 ;行第四次循 : S 4 2 a 4 1 K 4 5 ;行第五次循 :S 53 a 51K 5 6 ;行第五次循 : S 6 3 a 6 1 K 6 7 ;当 K 6 7 6 , 止循 , 出 S 6 3 ,故 出 3.【 2017 年新 Ⅲ卷, 7】 行右 的程序框 , 使 出S 的小于 91, 入的正整数 N 的最小 ( )A . 5B . 4C . 3D . 2 【答案】 D 【解析】程序运行 程如下表所示:tS M 初始状0 1001 第 1 次循 束100 102第 2次循 束90 1 3此 S 90 91 首次 足条件, 程序需在 t 3 跳出开始循 ,即 N2足条件的最小 ,故 D.N0, T 0 【 2018 年新 Ⅱ卷,7】 算 i 1S 1 1 1 11 12 3 ⋯99 , 了右 的程序框 ,是否4 100在空白框中 填入( )i100A . i i 1B . i i 21C . ii3D . ii4NS N TNiT1输出 STi 1结束【答案】 B1 得程序框图先对奇数项累加,偶数项累加,最后【解析】由 S 1111L123499100再相减.因此在空白框中应填入i i 2 ,故选B.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——07、不等式与线性规划问题
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编07、不等式与线性规划问题【2011新课标卷,13】若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .【2012新课标卷,14】设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.【2013新课标Ⅱ卷,9】已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A.14B.12C.1D.2【2014新课标Ⅰ卷,9)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【2014新课标Ⅰ卷,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .【2014新课标Ⅱ卷,9】设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2【2015新课标Ⅰ卷,15】若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【2015新课标Ⅱ卷,14】若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.【2016新课标Ⅰ卷,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【2017新课标Ⅰ卷,14】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【2017新课标Ⅱ卷,5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9【2017新课标Ⅲ卷,13】若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【2018新课标Ⅰ卷,13】若x y ,满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为________.【2018年新课标Ⅱ卷,14】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编07、不等式与线性规划问题(解析版)【2011新课标卷,13】若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 .A.14B.12C.1D.2【答案】B【解析】由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的解得12a =. 故直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,选B.【2014新课标Ⅰ卷,9)】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】C【解析】作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.【2014新课标Ⅰ卷,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 【答案】A【解析】:∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.【2014新课标Ⅱ卷,9】设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2【答案】B【解析】作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z取最大值为A (1, -2a )l 0 l 1 3x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=0 52CA B2×5-2=8.【2015新课标Ⅰ卷,15】若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 . 【答案】3【解析】根据约束条件画出可行域,如图所示;yx的几何意义可以看做可行域内一点与坐标原点连线的斜率,因此可知在点(1,3)A 处取到最大值,且求得最大值为3.【2015新课标Ⅱ卷,14】若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______. 【答案】32【解析】画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.【2016新课标Ⅰ卷,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000【解析】:设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为**1.50.51500.3905360000x y x y x y x y x N y N⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+; 作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0),在(60,100)处取得最大值,210060900100216000z =⨯+⨯=【2017新课标Ⅰ卷,14】设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .【答案】-5【解析】法一:不等式组21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩表示的平面区域如图所示,由32z x y =-得322z y x =-,求z 的最小值,即求直线322z y x =- 的纵截距的最大值,当直线322zy x =-过图中点A 时,纵截距最大, 由2121x y x y +=-⎧⎨+=⎩解得A 点坐标为(1,1)-,此时3(1)215z =⨯--⨯=-;法二:由线性规划知,32z x y =-在可行域的端点取到,即211(1,1)211x y x A x y y +==-⎧⎧⇒⇒-⎨⎨+=-=⎩⎩,325A z x y =-=-,10113(,)211333x x y B x y y ⎧=⎪-=⎧⎪⇒⇒⎨⎨+=-⎩⎪=⎪⎩,1323Bz x y =-=, 21111(,)0133x y x C x y y +=-=-⎧⎧⇒⇒--⎨⎨-==⎩⎩,1323C z x y =-=-, {}min min ,,5A B C z z z z ==-;【2017新课标Ⅱ卷,5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-.【0,⎨⎪⎩y ≥34x y -的最小值为________.【答案】1-【解析】由题意,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.AB(1,1)(2,0)x y -=20x y +-=yx【2018新课标Ⅰ卷,13】若x y ,满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为________.【答案】6【解析】解析:画出可行域如右图所示: 将32z x y =+变形为322z y x =-+,z 最大,即截距2z 最大.则当直线32y x =-平移经过点(2,0)A 时,截距最大. max32206z ∴=⨯+⨯=.【2018年新课标Ⅱ卷,14】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9【解析】作可行域,则直线z x y =+过点()5,4A 时z 取最大值9.。
2010-2019年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——03、导数及其应用
2010-2019年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编03、导数及其应用一、选择题与填空题.【2010年新课标卷,3】曲线2xy x =+在点()1,1--处的切线方程为( ) (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--【2011年新课标卷,9】由曲线y =直线2y x =-及y 轴所围成的图形的面积为( )(A )103 (B )4 (C )163(D )6【2012年新课标卷,12】设点P 在曲线12x y e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln2-B ln 2)-C .1ln2+D ln 2)+【2013年新课标Ⅰ卷,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.【2013年新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '=【2014年新课标Ⅰ卷,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【2014年新课标Ⅱ卷,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【2014年新课标Ⅱ卷,12】设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U【2015年新课标Ⅰ卷,12】设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,2e 4⎡⎫-⎪⎢⎣⎭ C . 33,2e 4⎡⎫⎪⎢⎣⎭ D . 3,12e ⎡⎫⎪⎢⎣⎭【2015年新课标Ⅱ卷,12】设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【2016年新课标Ⅱ卷,16】若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = .【2016年新课标Ⅲ卷,15】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【2017年新课标Ⅰ卷,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2017年新课标Ⅱ卷,11】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1【2018年新课标Ⅰ卷,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是______. 【2018年新课标Ⅱ卷,13】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【2018年新课标Ⅲ卷,14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =______.【2019年新课标Ⅰ卷,13】曲线23()e xy x x =+在点(0,0)处的切线方程为___________. 【2019年新课标Ⅲ卷,6】已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -== D. 1,1a e b -==-二、解答题.【2010年新课标卷,21】设函数f(x)=21xe x ax ---.(Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a 的取值范围.【2011年新课标卷,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 【2012年新课标卷,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥221)(,求b a )1(+的最大值. 【2013年新课标Ⅰ卷,21】设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. 【2013年新课标Ⅱ卷,21】已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.【2014年新课标Ⅰ卷,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【2014年新课标Ⅱ卷,21】已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001). 【2015年新课标Ⅰ卷,21】已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.【2015年新课标Ⅱ卷,21】设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 【2016年新课标Ⅰ卷,12】已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 【2016年新课标Ⅱ卷,21】 (Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.【2016年新课标Ⅲ卷,21】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【2017年新课标Ⅰ卷,21】已知函数()()22xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2017年新课标Ⅱ卷,21】已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.【2017年新课标Ⅲ卷,21】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 【2018年新课标Ⅰ卷,21】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【2018年新课标Ⅱ卷,21】已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .【2018年新课标Ⅲ卷,21】已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【2019年新课标Ⅰ卷,20】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【2019年新课标Ⅱ卷,20】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.【2019年新课标Ⅲ卷,20】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.2010-2019年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编03、导数及其应用一、选择题与填空题.【2010年新课标卷,3】曲线2xy x =+在点()1,1--处的切线方程为( ) (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--【答案】A 【解析】''122,|2(2)x y k y x =-=∴==+Q , 切线方程为[](1)2(1)y x --=-- ,即21y x =+.【2011年新课标卷,9】由曲线y =直线2y x =-及y 轴所围成的图形的面积为( )(A )103 (B )4 (C )163(D )6【答案】C【解析】用定积分求解432420021162)(2)|323s x dx x x x =+=-+=⎰,选C【2012年新课标卷,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( ) A .1ln2-Bln 2)-C .1ln2+Dln 2)+【答案】B【解析】函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒= 由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-,【2013年新课标Ⅰ卷,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________. 【答案】16【解析】∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∞)上为减函数.∴f (-2=[1-(-2-2][(-22+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2+15] =(-8++=80-64=16. 故f (x )的最大值为16.【2013年新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '= 【答案】C【解析】∵f ´(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f (x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.【2014年新课标Ⅰ卷,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B【解析1】由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意.当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且0x >0,只需2()0f a>,即24a >,2a <-.选B 【解析2】由已知0a ≠,()f x =3231ax x -+有唯一的正零点,等价于3113a x x =-g 有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->,()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,选B【2014年新课标Ⅱ卷,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【答案】D 【解析】∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =.【2014年新课标Ⅱ卷,12】设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U 【答案】C【解析】∵()xf x mπ'=,令()0xf x m π'==得1(),2x m k k Z =+∈, ∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(=Θ的极值为3±,∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<Q , 2234∴m m <+, 即:24m >,故:2m <-或2m >.【2015年新课标Ⅰ卷,12】设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,2e 4⎡⎫-⎪⎢⎣⎭ C . 33,2e 4⎡⎫⎪⎢⎣⎭ D . 3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】设()g x =(21)xe x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,min [()]g x =122e --,当0x =时,(0)1g =-,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D .. 作为选择题,该题也可先找到满足0()0f x <的整数0x ,由0x 的唯一性列不等式组求解.由(0)10f a =-+<得00x =.又0x 是唯一使()0f x <的整数,所以(1)0(1)0f f -≥⎧⎨≥⎩,解得32a e ≥,又1a <,且34a =时符合题意.故选D .. 【2015年新课标Ⅱ卷,12】设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【答案】A【解析】记函数()()f x g x x =,则2()()()x f x f x g x x'-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x<-1时,g(x)<0,则f(x)>0,综上所述,使得f(x)>0成立的x的取值范围是(-∞, -1)∪(0, 1),故选A.【2016年新课标Ⅱ卷,16】若直线y = kx+b是曲线y = ln x+2的切线,也是曲线y = ln(x+1)的切线,则b = .【答案】1ln2-【解析】ln2y x=+的切线为:111ln1y x xx=⋅++(设切点横坐标为1x),()ln1y x=+的切线为:()22221ln111xy x xx x=++-++,∴()122122111ln1ln11x xxx xx⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x=212x=-,∴1ln11ln2b x=+=-.【2016年新课标Ⅲ卷,15】已知()f x为偶函数,当0x<时,()ln()3f x x x=-+,则曲线()y f x=在点(1,3)-处的切线方程是_______________.【答案】21y x=--【解析】当0x>时,0x-<,则()ln3f x x x-=-.又因为()f x为偶函数,所以()()ln3f x f x x x=-=-,所以1()3f xx'=-,则切线斜率为(1)2f'=-,所以切线方程为32(1)y x+=--,即21y x=--.【2017年新课标Ⅰ卷,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】15【解析】由题,连接OD,交BC与点G,由题,OD BC⊥,3OG BC=,即OG的长度与BC的长度或成正比,设OG x=,则23BC x=,5DG x=-,三棱锥的高22225102510h DG OG x x x x=-=-+--21233332ABCS x x=⋅=△,则213ABC V S h =⋅=△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,则()()280f x f =≤,则45V =,∴体积最大值为3.【2017年新课标Ⅱ卷,11】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦,∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为()11f =-.故选A【2018年新课标Ⅰ卷,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是______.【答案】2-【解析】易知()f x 的最小正周期为2T π=,则问题转化求()f x 在[]0,2π的最小值.()2sin sin 2f x x x =+Q'2()2cos 2cos 22cos 2(2cos 1)f x x x x x ∴=+=+-22(2cos cos 1)2(cos 1)(2cos 1)x x x x =+-=+-令cos (11)t x t =-≤≤,则'()2(1)(21)f x t t =+-令'()0f x =,得112t t =-=或 ∴当112t -≤<时,'()0f x ≤,()f x 单调递减; 当112t <≤时,'()0f x >,()f x 单调递增. ∴当12t =时,()f x 取得最小值,此时15cos 233x x x ππ=⇒==或又2()2sinsin3332f πππ=+=Q 5510()2sin sin 3332f πππ=+=-min ()2f x ∴=-【2018年新课标Ⅱ卷,13】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】2y x =【解析】21y x '=+Q ,2201k ∴==+,2y x ∴=. 【2018年新课标Ⅲ卷,14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =______.【答案】3-【解析】(1)x xy ae ax e =+,则(0)12f a '=+=-,所以3a =-.【2019年新课标Ⅰ卷,13】曲线23()e xy x x =+在点(0,0)处的切线方程为___________. 【答案】30x y -=【解析】/223(21)3()3(31),x x xy x e x x e x x e =+++=++所以/0|3x k y ===所以曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【2019年新课标Ⅲ卷,6】已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -== D. 1,1a e b -==-【答案】D【解析】ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 二、解答题.【2010年新课标卷,21】设函数f(x)=21x e x ax ---. (Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a 的取值范围.解:(I )0a =时,()1xf x e x =--,'()1xf x e =-当(,0)x ∈-∞时,'()0f x <,当(0,)x ∈+∞时,'()0f x > 故()f x 在(,0)-∞上单调递减,在(0,)+∞单调递增 (II )'()12xf x e ax =--由(I )可知1x e x ≥+,当且仅当0x =时等号成立,故 '()2(12)f x x ax a x ≥-=- ∴当120a -≥,即12a ≤时,'()0(0)f x x ≥≥, (0)0f =∴当0x ≥时,()0f x ≥ 由1(0)xe x x >+≠可得1(0)xe x x ->-≠则当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=-- ∴当(0,ln 2)x a ∈时,'()0f x <,而(0)0f = ∴当(0,ln 2)x a ∈时,()0f x <综上得a 的取值范围为1(,]2-∞【2011年新课标卷,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解:(I )()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+ 由于直线230x y +-=的斜率为12-,且过点()1,1,故()()11112f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =.(II )由(I )知()ln 11x f x x x =++,所以()()()2211ln 12ln 11k x x k f x x x x x x ⎛⎫--⎛⎫ ⎪-+=+ ⎪ ⎪--⎝⎭⎝⎭考虑函数()()()()2112ln 0k x h x x x x--=+>,则()()()22112k x xh x x -++'=(i )设0k ≤,由()()()22211k x x h x x +--'=知,当1x ≠时,()0h x '<. 而()10h =,故当()0,1x ∈时,()0h x <,可得()2101h x x >-;当()1,x ∈+∞时,()0h x <,可得()2101h x x>- 从而当0x >,且1x ≠时,()ln 01x k f x x x ⎛⎫-+> ⎪-⎝⎭,即()ln 1x k f x x x ⎛⎫>+ ⎪-⎝⎭.(ii )设01k <<,由于当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()()21120k x x -++>,故()0h x '>,而()10h =,故当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()0h x >,可得()2101h x x <-,与题设矛盾. (iii )设1k ≥,此时()0h x '>,而()10h =,故当()1,x ∈+∞时,()0h x >,得()2101h x x <-,与题设矛盾. 综合得,k 的取值范围为(],0-∞.【2012年新课标卷,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值. 解:(1)因为2121)0()1(')(x x f e f x f x +-=-,所以1'()'(1)(0)x f x f e f x -=-+,所以1(0)'(1)'(1)'(1)(0)1f f ef f f ⎧=⋅⎪⎨⎪=-+⎩,解得(0)1f =,'(1)f e =. 所以)(x f 的解析式为21()2x f x e x x =-+,由此得'()1x f x e x =-+. 而'()1xf x e x =-+是R 上的增函数,且'(0)0f =,因此,当(0,)x ∈+∞时,'()'(0)0f x f >=,)(x f 在(0,)+∞上是增函数; 当(,0)x ∈-∞时,'()'(0)0f x f <=,)(x f 在(,0)-∞上是减函数. 综上所述,函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞.(2)由已知条件得(1)xe a x b -+≥. ①(i )若10a +<,则对任意常数b ,当0x <,且11bx a -<+, 可得(1)xe a x b -+<,因此①式不成立. (ii )若10a +=,则(1)0a b +=.(iii )若10a +>,设()(1)xg x e a x =-+,则'()(1)xg x e a =-+.当(,ln(1))x a ∈-∞+,'()0g x <;当(ln(1),)x a ∈++∞,'()0g x > 从而()g x 在(,ln(1))a -∞+单调递减,在(ln(1),)a ++∞单调递增. 所以b ax x x f ++≥221)(等价于1(1)ln(1)b a a a ≤+-++. ② 因此22(1)(1)(1)ln(1)a b a a a +≤+-++.设22()(1)(1)ln(1)h a a a a =+-++,则'()(1)(12ln(1))h a a a =+-+. 所以()h a 在12(1,1)e --单调递增,在12(1,)e -+∞单调递减, 故()h a 在121a e =-在处取得最大值,从而()2e h a ≤,即(1)2e a b +≤. 当121a e =-,122e b =时,②式成立,故b ax x x f ++≥221)(. 综合得,b a )1(+的最大值为2e.【2013年新课标Ⅰ卷,21】设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].【2013年新课标Ⅱ卷,21】已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.解:(Ⅰ)f ′(x )=1xe x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11xe x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12xe x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0xe =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=012x ++x 0=20012x x (+)+>0. 综上,当m ≤2时,f (x )>0.【2014年新课标Ⅰ卷,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.解:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln x x x x a b b f x ae x e e e x x x--'=+-+ 由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分(Ⅱ)由(Ⅰ)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln x x x xe e->-设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g ee =-.设函数2()xh x xe e-=-,则()()1x h x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x在()0,+∞的最小值1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x >. ……………12分 【2014年新课标Ⅱ卷,21】已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001).解:(Ⅰ)1()2()2=220.x x x x xxf x e e x x R f x e e e e --'=--∈∴=+-+-≥=Q ,,∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增.(Ⅱ)22()(2)4()44(2),x x x xg x f x bf x e e x b e e x --=-=-----Q ∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++-2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥Q ,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2.(Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-,当b =2时,36ln 202g =->,3ln 20.692812>>;当14b =+时,ln(1b -=32)ln 202g =--<,ln 20.6934<<,所以ln2的近似值为0.693. 【2015年新课标Ⅰ卷,21】已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<)且()0f x '>(1x <),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点.【2015年新课标Ⅱ卷,21】设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 解:(Ⅰ)()(1)2mxf x m ex '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mxe -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mx e -<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11mm e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①. 设函数()1tg t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1me m e -+>-,综上,m 的取值范围是[-1,1].【2016年新课标Ⅰ卷,12】已知函数2)1()2()(-+-=x a e x x f x 有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(1)由已知得,'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+ ①当0a =时,则()(2)xf x x e =-,()f x 只有一个零点,不合题意. ②当0a >时,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.()f x ∴在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-Q ,且当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞. 故()f x 存在两个零点,符合题意.③当0a <时,由'()0f x =得 1x =或ln(2)x a =-. <1>若02ea -≤<,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点,不合题意. <2>若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -上单调递减,在(ln(2),)a -+∞上单调递增. 又当1x ≤时,()0f x <,所以()f x 不存在两个零点,不合题意. 综上所述,a 的取值范围为(0,)+∞.(2)由(1)知,函数()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增. 设12x x <,则121x x <<.令22()()(2)(2)(1)(22)(21)xxF x f x f x x e a x x e a x =--=-+------- (22)(1)x x ex =-> 则'()2(22)20(1)xxxF x e x e xe x =+-=>>∴函数()F x 在(1,)+∞上单调递增.()(1)0F x F ∴>=,即()(2)(1)f x f x x >->21x >Q 122()()(2)f x f x f x ∴=>-又Q 121,21x x <-<,且函数()f x 在(,1)-∞单调递减122x x ∴<-,即122x x +<.【2016年新课标Ⅱ卷,21】 (Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.证明:⑴()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞U ,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. ⑵ ()()()24e2e xxa x x ax a g x x ----'=()4e 2e 2xxx x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 【2016年新课标Ⅲ卷,21】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---.(Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-. ………4分当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >. (ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=.当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤. 【2017年新课标Ⅰ卷,21】已知函数()()22xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)xx x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)令()0f x =,则22x x xe x a e e+=+.再令0xt e =>,则22ln t t a t t +=+, 而()f x 有两个零点,则22ln t t a t t +=+有两解,即直线y a =与曲线22ln t t y t t+=+有两个交点;令()22ln (0)t t g t t t t +=>+,则()()()()()2222211ln 2ln t t t t t g t t t t t +--+'==++, 令()1ln h t t t =--,则()110h t t'=--<,注意到()10h =,所以()g t 在()0,1上单调递增,在()1,+∞上单调递减,即()()max 11g t g ==;而0lim (),lim ()0t t g t g t →→+∞→-∞→,所以当()0,1t ∈时,()(),1g t ∈-∞;当()0,1t ∈时,()()0,1g t ∈,所以,当22ln t ta t t+=+有两解时,a 的取值范围为()0,1. 【2017年新课标Ⅱ卷,21】已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.解:(1)由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥, 即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立.令()1ln g x x x =--,()11'1x g x x x-=-=, 当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤;当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-. 所以,1a ≥. 综上,1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x x ϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1,且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e -≠得()()120f x f e e -->=所以220()2ef x --<<.【2017年新课标Ⅲ卷,21】已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值.解:⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾 ③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——03、导数及其应用
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编03、导数及其应用一、选择题与填空题.【2010年新课标卷,3】曲线2xy x =+在点()1,1--处的切线方程为( ) (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--【2011年新课标卷,9】由曲线y =,直线2y x =-及y 轴所围成的图形的面积为( )(A )103 (B )4 (C )163(D )6 【2012年新课标卷,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln 2-B ln 2)-C .1ln 2+D ln 2)+【2013年新课标Ⅰ卷,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.【2013年新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '=【2014年新课标Ⅰ卷,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【2014年新课标Ⅱ卷,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【2014年新课标Ⅱ卷,12】设函数()x f x m π,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U【2015年新课标Ⅰ卷,12】设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,2e 4⎡⎫-⎪⎢⎣⎭ C . 33,2e 4⎡⎫⎪⎢⎣⎭ D . 3,12e ⎡⎫⎪⎢⎣⎭【2015年新课标Ⅱ卷,12】设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【2016年新课标Ⅱ卷,16】若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 【2016年新课标Ⅲ卷,15】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【2017年新课标Ⅰ卷,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2017年新课标Ⅱ卷,11】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1【2018年新课标Ⅰ卷,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是______.【2018年新课标Ⅱ卷,13】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【2018年新课标Ⅲ卷,14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =______. 二、解答题.【2010年新课标卷,21】设函数f(x)=21x e x ax ---.(Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a 的取值范围. 【2011年新课标卷,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 【2012年新课标卷,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥221)(,求b a )1(+的最大值. 【2013年新课标Ⅰ卷,21】设函数f (x )=x 2+ax +b ,g (x )=e x(cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. 【2013年新课标Ⅱ卷,21】已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.【2014年新课标Ⅰ卷,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【2014年新课标Ⅱ卷,21】已知函数()2x x f x e e x -=--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001).【2015年新课标Ⅰ卷,21】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数. 【2015年新课标Ⅱ卷,21】设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 【2016年新课标Ⅰ卷,12】已知函数2)1()2()(-+-=x a e x x f x 有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 【2016年新课标Ⅱ卷,21】 (Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x -->有最小值.设g(x )的最小值为()h a ,求函数()h a 的值域. 【2016年新课标Ⅲ卷,21】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A . (Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【2017年新课标Ⅰ卷,21】已知函数()()22xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2017年新课标Ⅱ卷,21】已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【2017年新课标Ⅲ卷,21】已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 【2018年新课标Ⅰ卷,21】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【2018年新课标Ⅱ卷,21】已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .【2018年新课标Ⅲ卷,21】已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编03、导数及其应用一、选择题与填空题.【2010年新课标卷,3】曲线2xy x =+在点()1,1--处的切线方程为( ) (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--【答案】A 【解析】''122,|2(2)x y k y x =-=∴==+, 切线方程为[](1)2(1)y x --=--,即21y x =+. 【2011年新课标卷,9】由曲线y ,直线2y x =-及y 轴所围成的图形的面积为( )(A )103 (B )4(C )163(D )6 【答案】C【解析】用定积分求解432420021162)(2)|323s x dx x x x =+=-+=⎰,选C【2012年新课标卷,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为()A .1ln 2-B ln 2)- C .1ln 2+ D ln 2)+【答案】B【解析】函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ 最小值为min 2ln 2)d -,【2013年新课标Ⅰ卷,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________. 【答案】16【解析】∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∴f (-2=[1-(-22][(-22+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2++15]=(-8++=80-64=16. 故f (x )的最大值为16.【2013年新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '= 【答案】C【解析】∵f ´(x )=3x 2+2ax +b ,∴y =f(x )的图像大致如右图所示,若x 0是f (x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.【2014年新课标Ⅰ卷,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B【解析1】由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意. 当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且0x >0,只需2()0f a>,即24a >,2a <-.选B【解析2】由已知0a ≠,()f x =3231ax x -+有唯一的正零点,等价于3113a x x=- 有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->,()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,选B【2014年新课标Ⅱ卷,8】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【答案】D 【解析】∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =.【2014年新课标Ⅱ卷,12】设函数()x f x mπ,若存在()f x 的极值点0x 满足2220[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U【答案】C【解析】∵()xf x mπ'=,令()0xf x m π'==得1(),2x m k k Z =+∈, ∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(= 的极值为3±,∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<, 2234∴m m <+, 即:24m >,故:2m <-或2m >.【2015年新课标Ⅰ卷,12】设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B . 33,2e 4⎡⎫-⎪⎢⎣⎭ C . 33,2e 4⎡⎫⎪⎢⎣⎭ D . 3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,min [()]g x =122e --,当0x =时,(0)1g =-,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D .. 作为选择题,该题也可先找到满足0()0f x <的整数0x ,由0x 的唯一性列不等式组求解.由(0)10f a =-+<得00x =.又0x 是唯一使()0f x <的整数,所以(1)0(1)0f f -≥⎧⎨≥⎩,解得32a e ≥,又1a <,且34a =时符合题意.故选D .. 【2015年新课标Ⅱ卷,12】设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【答案】A【解析】记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A .【2016年新课标Ⅱ卷,16】若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 【答案】1ln2-【解析】ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.【2016年新课标Ⅲ卷,15】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________. 【答案】21y x =--【解析】当0x >时,0x -<,则()ln 3f x x x -=-.又因为()f x 为偶函数,所以()()ln 3f x f x x x =-=-,所以1()3f x x '=-,则切线斜率为(1)2f '=-,所以切线方程为32(1)y x +=--,即21y x =--.【2017年新课标Ⅰ卷,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【答案】【解析】由题,连接OD ,交BC 与点G ,由题,OD BC ⊥,OG =,即OG 的长度与BC 的长度或成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h 2132ABC S x =⋅=△,则213ABC V S h =⋅=△令()452510f x x x =-,5(0,)2x ∈,()3410050f x x x '=-,令()0f x '>,即4320x x -<,2x <,则()()280f x f =≤,则45V ,∴体积最大值为3. 【2017年新课标Ⅱ卷,11】若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e -- C.35e - D.1 【答案】A【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦, ∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为.故选A【2018年新课标Ⅰ卷,16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是______.【答案】2-【解析】易知()f x 的最小正周期为2T π=,则问题转化求()f x 在[]0,2π的最小值.()2sin sin 2f x x x =+'2()2cos 2cos22cos 2(2cos 1)f x x x x x ∴=+=+-22(2cos cos 1)2(cos 1)(2cos 1)x x x x =+-=+-令cos (11)t x t =-≤≤,则'()2(1)(21)f x t t =+-令'()0f x =,得112t t =-=或∴当112t -≤<时,'()0f x ≤,()f x 单调递减;当112t <≤时,'()0f x >,()f x 单调递增.∴当12t =时,()f x 取得最小值,此时15cos 233x x x ππ=⇒==或又2()2sin sin 333f πππ=+=5510()2sin sin 333f πππ=+= min ()f x ∴= 【2018年新课标Ⅱ卷,13】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】2y x =【解析】21y x '=+Q ,2201k ∴==+,2y x ∴=. 【2018年新课标Ⅲ卷,14】曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =______. 【答案】3-【解析】(1)x x y ae ax e =+,则(0)12f a '=+=-,所以3a =-. 二、解答题.【2010年新课标卷,21】设函数f(x)=21x e x ax ---. (Ⅰ)若a=0,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a 的取值范围.解:(I )0a =时,()1xf x e x =--,'()1xf x e =-当(,0)x ∈-∞时,'()0f x <,当(0,)x ∈+∞时,'()0f x > 故()f x 在(,0)-∞上单调递减,在(0,)+∞单调递增 (II )'()12x f x e ax =--由(I )可知1x e x ≥+,当且仅当0x =时等号成立,故 '()2(12)f x x ax a x ≥-=- ∴当120a -≥,即12a ≤时,'()0(0)f x x ≥≥, (0)0f =∴当0x ≥时,()0f x ≥由1(0)x e x x >+≠可得1(0)x e x x ->-≠则当12a >时,'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=-- ∴当(0,ln 2)x a ∈时,'()0f x <,而(0)0f = ∴当(0,ln 2)x a ∈时,()0f x <综上得a 的取值范围为1(,]2-∞【2011年新课标卷,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解:(I )()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+ 由于直线230x y +-=的斜率为12-,且过点()1,1,故()()11112f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (II )由(I )知()ln 11x f x x x =++,所以()()()2211ln 12ln 11k x x k f x x x x x x ⎛⎫--⎛⎫ ⎪-+=+ ⎪ ⎪--⎝⎭⎝⎭考虑函数()()()()2112ln 0k x h x x x x--=+>,则()()()22112k x xh x x -++'=(i )设0k ≤,由()()()22211k x x h x x +--'=知,当1x ≠时,()0h x '<. 而()10h =,故当()0,1x ∈时,()0h x <,可得()2101h x x >-; 当()1,x ∈+∞时,()0h x <,可得()2101h x x >- 从而当0x >,且1x ≠时,()ln 01x k f x x x ⎛⎫-+> ⎪-⎝⎭,即()ln 1x k f x x x ⎛⎫>+ ⎪-⎝⎭.(ii )设01k <<,由于当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()()21120k x x -++>,故()0h x '>,而()10h =,故当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()0h x >,可得()2101h x x <-,与题设矛盾. (iii )设1k ≥,此时()0h x '>,而()10h =,故当()1,x ∈+∞时,()0h x >,得()2101h x x <-,与题设矛盾. 综合得,k 的取值范围为(],0-∞.【2012年新课标卷,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值. 解:(1)因为2121)0()1(')(x x f e f x f x +-=-,所以1'()'(1)(0)x f x f e f x -=-+,所以1(0)'(1)'(1)'(1)(0)1f f ef f f ⎧=⋅⎪⎨⎪=-+⎩,解得(0)1f =,'(1)f e =. 所以)(x f 的解析式为21()2xf x e x x =-+,由此得'()1x f x e x =-+. 而'()1xf x e x =-+是R 上的增函数,且'(0)0f =,因此,当(0,)x ∈+∞时,'()'(0)0f x f >=,)(x f 在(0,)+∞上是增函数; 当(,0)x ∈-∞时,'()'(0)0f x f <=,)(x f 在(,0)-∞上是减函数. 综上所述,函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞.(2)由已知条件得(1)xe a x b -+≥. ①(i )若10a +<,则对任意常数b ,当0x <,且11bx a -<+, 可得(1)xe a x b -+<,因此①式不成立. (ii )若10a +=,则(1)0a b +=. (iii )若10a +>,设()(1)xg x e a x =-+,则'()(1)xg x e a =-+.当(,ln(1))x a ∈-∞+,'()0g x <;当(ln(1),)x a ∈++∞,'()0g x > 从而()g x 在(,ln(1))a -∞+单调递减,在(ln(1),)a ++∞单调递增.所以b ax x x f ++≥221)(等价于1(1)ln(1)b a a a ≤+-++. ② 因此22(1)(1)(1)ln(1)a b a a a +≤+-++.设22()(1)(1)ln(1)h a a a a =+-++,则'()(1)(12ln(1))h a a a =+-+.所以()h a 在12(1,1)e --单调递增,在12(1,)e -+∞单调递减, 故()h a 在121a e =-在处取得最大值,从而()2e h a ≤,即(1)2e a b +≤. 当121a e =-,122e b =时,②式成立,故b ax x x f ++≥221)(.综合得,b a )1(+的最大值为2e.【2013年新课标Ⅰ卷,21】设函数f (x )=x 2+ax +b ,g (x )=e x(cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x(cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x(x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1). 由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.综上,k 的取值范围是[1,e 2].【2013年新课标Ⅱ卷,21】已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. 解:(Ⅰ)f ′(x )=1xe x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x-ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11xe x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12xe x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0x e =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=012x ++x 0=20012x x (+)+>0. 综上,当m ≤2时,f (x )>0.【2014年新课标Ⅰ卷,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+.(Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.解:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln xx x x a b b f x ae x e e e x x x--'=+-+ 由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分 (Ⅱ)由(Ⅰ)知,12()ln x xe f x e x x-=+,从而()1f x >等价于2ln xx x xe e ->-设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e =-. 设函数2()xh x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x >. ……………12分 【2014年新课标Ⅱ卷,21】已知函数()2x x f x e e x -=--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143,估计ln2的近似值(精确到0.001).解:(Ⅰ)1()2()2=220.x x x x x xf x e e x x R f x e e e e --'=--∈∴=+-+-≥=,, ∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增. (Ⅱ)22()(2)4()44(2),x x x x g x f x bf x e e x b e e x --=-=-----∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++-2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥=,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2.(Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-,当b =2时,36ln 202g =->,3ln 20.692812>>;当1b =+时,ln(1b -=,32)ln 202g =--<,ln 20.6934<<,所以ln2的近似值为0.693. 【2015年新课标Ⅰ卷,21】已知函数31()4f x x ax =++,()ln g x x =-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数. 解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点; 当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么(i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =点,且14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点.【2015年新课标Ⅱ卷,21】设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.解:(Ⅰ)()(1)2mx f x m e x '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mx e -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mx e -<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11mm e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①.设函数()1t g t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-,综上,m 的取值范围是[-1,1].【2016年新课标Ⅰ卷,12】已知函数2)1()2()(-+-=x a e x x f x 有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解:(1)由已知得,'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+ ①当0a =时,则()(2)x f x x e =-,()f x 只有一个零点,不合题意. ②当0a >时,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.()f x ∴在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,且当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞.故()f x 存在两个零点,符合题意.③当0a <时,由'()0f x =得 1x =或ln(2)x a =-. <1>若02ea -≤<,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点,不合题意.<2>若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -上单调递减,在(ln(2),)a -+∞上单调递增. 又当1x ≤时,()0f x <,所以()f x 不存在两个零点,不合题意. 综上所述,a 的取值范围为(0,)+∞.(2)由(1)知,函数()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增. 设12x x <,则121x x <<.令22()()(2)(2)(1)(22)(21)x x F x f x f x x e a x x e a x =--=-+------- (22)(1)xx ex =-> 则'()2(22)20(1)x x x F x e x e xe x =+-=>>∴函数()F x 在(1,)+∞上单调递增.()(1)0F x F ∴>=,即()(2)(1)f x f x x >->21x > 122()()(2)f x f x f x ∴=>-又121,21x x <-<,且函数()f x 在(,1)-∞单调递减122x x ∴<-,即122x x +<.【2016年新课标Ⅱ卷,21】 (Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.证明:⑴()()()22224e e 222xxx x f x x x x⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. ⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102tt k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 【2016年新课标Ⅲ卷,21】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---.(Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = 因此,32A a =-. ………4分当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-.令1114a a --<<,解得13a <-(舍去),15a >. (ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=.当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤. 【2017年新课标Ⅰ卷,21】已知函数()()22xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)令()0f x =,则22x x xe x a e e+=+.再令0xt e =>,则22ln t t a t t +=+, 而()f x 有两个零点,则22ln t t a t t +=+有两解,即直线y a =与曲线22ln t t y t t+=+有两个交点; 令()22ln (0)t t g t t t t +=>+,则()()()()()2222211ln 2ln t t t t t g t t t t t +--+'==++, 令()1ln h t t t =--,则()110h t t'=--<,注意到()10h =,所以()g t 在()0,1上单调递增,在()1,+∞上单调递减,即()()max 11g t g ==;而0lim (),lim ()0t t g t g t →→+∞→-∞→,所以当()0,1t ∈时,()(),1g t ∈-∞;当()0,1t ∈时,()()0,1g t ∈, 所以,当22ln t ta t t+=+有两解时,a 的取值范围为()0,1. 【2017年新课标Ⅱ卷,21】已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 解:(1)由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥, 即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立. 令()1ln g x x x =--,()11'1x g x x x-=-=, 当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤; 当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-. 所以,1a ≥. 综上,1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x x ϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1, 且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e-≠得()()120f x f e e -->= 所以220()2e f x --<<.【2017年新课标Ⅲ卷,21】已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 解:⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意 综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤ 则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.【2018年新课标Ⅰ卷,21】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--. 解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =x =当(0,(,)22a a x ∈+∞U 时,()0f x '<;当(22a a x -∈时,()0f x '>.所以()f x在(0,),()22a a ++∞单调递减,在(22a a 单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 【2018年新课标Ⅱ卷,21】已知函数2()e x f x ax =-. (1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .解:(1)当1a =时,()1f x ≥等价于()21e 10xx -+-≤,设函数()()21e 1x g x x -=+-,则()()()2221e 1e x xg'x x x x --=--+=--,当1x ≠时,()0g'x <,所以()g x 在()0,+∞单调递减, 而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21e xh x ax -=-,()f x 在()0,+∞只有一个零点当且仅当()h x 在()0,+∞只有一个零点.当0a ≤时,()0h x >,()h x 没有零点; 当0a >时,()()2e xh x ax x -'=-.当()0,2x ∈时,()0h'x <;当()2,x ∈+∞时,()0h'x >.。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——11、复数
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编11、复数【2010年新课标卷,2】已知复数z =,z 是z 的共轭复数,则z z ⋅=( )(A )14 (B )12 (C )1 (D )2【2011年新课标卷,1】复数212ii +-的共轭复数是( )A .35i -B .35i C .i - D .i【2012年新课标卷,3】下面是关于复数21z i =-+的四个命题:1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-.其中的真命题为( )A .2p ,3pB .1p ,2pC .2p ,4pD .3p ,4p【2013年新课标Ⅰ卷,2】若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45- C .4 D .45【2013年新课标Ⅱ卷,2】设复数z 满足(1i)2i z -=,则z =( )A.1i -+B.1i --C.1i +D.1i -【2014年新课标Ⅰ卷,2)】32(1)(1)i i +-=( )A .1i +B .1i -C .1i -+D .1i --【2014年新课标Ⅱ卷,2】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i【2015年新课标Ⅰ卷,1】设复数z 满足1i 1zz +=-,则||z =( )A .1 B.2【2015年新课标Ⅱ卷,2】若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2【2016年新课标Ⅰ卷,2】设yi x i +=+1)1(,其中y x ,是实数,则=+yi x ( )A .1B .2C .3D .2【2016年新课标Ⅱ卷,1】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是()A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)【2016年新课标Ⅲ卷,2】若i 12z =+,则4i1zz =-( )(A)1 (B) -1 (C)i (D) i -【2017年新课标Ⅰ卷,3】设有下面四个命题1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p【2017年新课标Ⅱ卷,1】31i i+=+( ) A .12i + B .12i - C .2i + D .2i -【2017年新课标Ⅲ卷,2】设复数z 满足(1i)2i z +=,则z =( )A .12 B C D .2 【2018年新课标Ⅰ卷,1】设1i 2i 1i z -=++,则z =A .0B .12C .1D 【2018年新课标Ⅱ卷,1】12i 12i+=-( ) A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+ 【2018年新课标Ⅲ卷,2】()()1i 2i +-=( ) A .3i -- B .3i -+ C .3i - D .3i +2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编11、复数(解析版)【2010年新课标卷,2】已知复数z =z 是z 的共轭复数,则z z ⋅=( ) (A )14 (B )12(C )1 (D )2 【答案】A【解析】2244i i z ====-⨯z =14z z ⋅= 【2011年新课标卷,1】复数212i i+-的共轭复数是( ) A .35i - B .35i C .i - D .i【答案】C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C 【2012年新课标卷,3】下面是关于复数21z i =-+的四个命题:1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-.其中的真命题为( )A .2p ,3pB .1p ,2pC .2p ,4pD .3p ,4p 【答案】C【解析】因为22(1)11(1)(1)i z i i i i --===---+-+--,所以||z =22(1)2z i i =--=, z 的共轭复数为1i -+,z 的虚部为1-,所以2p ,4p 为真命题,故选择C .【2013年新课标Ⅰ卷,2】若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ). A .-4 B .45-C .4D .45 【答案】D【解析】∵(3-4i)z =|4+3i|,∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,故选D. 【2013年新课标Ⅱ卷,2】设复数z 满足(1i)2i z -=,则z =( ) A.1i -+B.1i --C.1i +D.1i - 【答案】A【解析】由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i -+=-1+i .故选A. 【2014年新课标Ⅰ卷,2)】32(1)(1)i i +-=( ) A .1i + B .1i - C .1i -+ D .1i --【答案】D 【解析】∵32(1)(1)i i +-=2(1)12i i i i +=---,选D. 【2014年新课标Ⅱ卷,2】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i 【答案】A【解析】∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.故选A.【2015年新课标Ⅰ卷,1】设复数z 满足1i 1z z+=-,则||z =( )A .1B .2【答案】A 【解析】由1i 1z z +=-得1i(1)z z +=-,即1i 1i z -+=+,2(1i)(1i)(1i)i (1i)(1i)2z -+---===+-,||z =1,选A . 【2015年新课标Ⅱ卷,2】若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2【答案】B【解析】由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.【2016年新课标Ⅰ卷,2】设yi x i +=+1)1(,其中y x ,是实数,则=+yi x ( )A .1B .2C .3D .2 【答案】B【解析】由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi +B . 【2016年新课标Ⅱ卷,1】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016年新课标Ⅲ卷,2】若i 12z =+,则4i 1zz =-( )(A)1 (B) -1 (C)i (D) i -【答案】C 【解析】4i 4i i(12i)(12i)11zz ==+---,故选C .【2017年新课标Ⅰ卷,3】设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【解析】1:p 设z a bi =+,则2211a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;【2017年新课标Ⅱ卷,1】31i i+=+( ) A .12i + B .12i - C .2i + D .2i -【答案】D 【解析】()()()()3134221112i i i i i i i i +-+-===-++-.故选D. 【2017年新课标Ⅲ卷,2】设复数z 满足(1i)2i z +=,则z =( )A .12 BCD .2 【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则z == C. 【2018年新课标Ⅰ卷,1】设1i 2i 1i z -=++,则z = A .0 B .12 C .1D 【答案】C【解析】i i i i i i i z 2)1)(1()1(2112+-+-=++-= i i i =+-=2221=∴z ,故选C.【2018年新课标Ⅱ卷,1】12i 12i+=-( ) A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+ 【答案】D 【解析】()212i 12i 34i 12i 55++-+==-Q ,故选D . 【2018年新课标Ⅲ卷,2】()()1i 2i +-=( ) A .3i -- B .3i -+ C .3i -D .3i + 【答案】D【解答】2(1)(2)23i i i i i +-=+-=+,故选D.。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——02、函数及其性质
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编02、函数及其性质【2010年全国新课标卷,8】设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>( )(A ){}2x x x <-或>4 (B ){}0x x x <或>4(C ){}0x x x <或>6 (D ){}2x x x <-或>2【2010年全国新课标卷,11】已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( )(A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24【2011年全国新课标卷,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = (B) 1y x =+ C .21y x =-+ (D) 2xy -=【2011年全国新课标卷,12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .8 【2012年全国新课标卷,10】已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )【2013年全国新课标Ⅰ卷,11】已知函数f (x )=f ( ). A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 【2013年全国新课标Ⅱ卷,8】设3log 6a =,5log 10b =,7log 14c =,则( )A.c b a >>B.b c a >>C.a c b >>D.a b c >>【2013年全国新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '=【2014年全国新课标Ⅰ卷,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【2014年全国新课标Ⅱ卷,15】已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围A .B . D .是_________.【2015年全国新课标Ⅰ卷,13】若函数f (x )=x ln (x +2a x +)为偶函数,则a =【2015年全国新课标Ⅱ卷,5】设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12【2015年全国新课标Ⅱ卷,10】如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .【2016年全国新课标Ⅰ卷,7】函数xe x y -=22在]2,2[-的图像大致为( )A .B .C .D .【2016年全国新课标Ⅰ卷,8】若1>>b a ,10<<c ,则( )A .c c b a <B .cc ba ab < C .c b c a a b log log < D .c c b a log log <【2016年全国新课标Ⅱ卷,12】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m1y x2-2O1yx2-2O1yx2-2O1yx2-2O【2016年全国新课标Ⅲ卷,6】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【2017年全国新课标Ⅰ卷,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B . [1,1]-C . [0,4]D . [1,3]【2017年全国新课标Ⅰ卷,11】设,,x y z 为正数,且235x y z ==,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z【2017年全国新课标Ⅲ卷,11】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【2017年全国新课标Ⅲ卷,15】设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【2018年全国新课标Ⅰ卷,9】已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,【2018年全国新课标Ⅱ卷,3】函数()2e e x xf x x --=的图像大致为 ( )【2018年全国新课标Ⅱ卷,11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( ) A .50- B .0 C .2 D .50【2018年全国新课标Ⅲ卷,7】函数422y x x =-++的图像大致为( )【2018年全国新课标Ⅲ卷,12】设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【2018年全国新课标Ⅲ卷,15】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编02、函数及其性质(解析版)【2010年全国新课标卷,8】设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>( )(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2【答案】B【解析】30()802x f x x x ≥=->>当时,由得()()022f x f x x x ∴>><-又为偶函数,时或 (2)02222,40f x x x x x ∴->⇔->-<-><或即或,选B命题意图:利用函数性质解不等式【2010年全国新课标卷,11】已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是( )(A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24 【答案】C【解析】 ,,a b c 互不相等,不妨设a b c <<()(),lg lg f a f b a b =-=由得,即ab=1 abc c ∴=,显然1012c <<所以选C命题意图:考察数形结合思想,利用图像处理函数与方程问题【2011年全国新课标卷,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = (B) 1y x =+ C .21y x =-+ (D) 2xy -=【答案】B【解析】由图像知选B【2011年全国新课标卷,12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .8 【答案】D【解析】图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x , 则182736452x x x x x x x x +=+=+=+=,所以选D【2012年全国新课标卷,10】已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )【答案】B【解析】()y f x =的定义域为{|1x x >-且0}x≠,排除D ;因为221(1)1'()[ln(1)](1)[ln(1)]x x f x x x x x x --+==+-++-,所以当(1,0)x ∈-时,'()0f x <,()y f x =在(-1,0)上是减函数;当(0,)x ∈+∞时,'()0f x >,()y f x =在(0,)+∞上是增函数.排除A 、C ,故选择B .【2013年全国新课标Ⅰ卷,11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 【答案】D【解析】选D ,由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax . 当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a ,∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0].【2013年全国新课标Ⅱ卷,8】设3log 6a =,5log 10b =,7log 14c =,则( )A.c b a >>B.b c a >>C.a c b >>D.a b c >>【答案】D【解析】根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a . 故选D. 【2013年全国新课标Ⅱ卷,10】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '=【答案】C【解析】若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )A .B .D .=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.【2014年全国新课标Ⅰ卷,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】C【解析】设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.【2014年全国新课标Ⅱ卷,15】已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. 【答案】(1,3)-【解析】∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<<【2015年全国新课标Ⅰ卷,13】若函数f (x )=x ln (x +2a x +)为偶函数,则a = 【答案】1【解析】由函数f (x )=x ln (x +2a x +)为偶函数,则2()ln()g x x a x =++为奇函数((0)ln 0g a ==);由22ln()ln(())0x a x x a x +++-++-=(()()0g x g x +-=),得ln 0a =,1a =,故填1. 【2015年全国新课标Ⅱ卷,5】设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( ) A .3B .6C .9D .12【答案】C【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=. 【2015年全国新课标Ⅱ卷,10】如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .【答案】B【解析】由已知得,当点P 在BC 边上运动时,即04x π≤≤时,2tan 4tan PA PB x x +=+;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,2211(1)1(1)1tan tan PA PB x x +=-+++2x π=时,22PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=2tan 4tan x x +,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .【2016年全国新课标Ⅰ卷,7】函数xe x y -=22在]2,2[-的图像大致为( )C . D.【答案】D【解析】()22288 2.80f e =->->,排除A ;()22288 2.71f e =-<-<,排除B ;0x >时,()22xf x x e =-,()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C ;故选D .【2016年全国新课标Ⅰ卷,8】若1>>b a ,10<<c ,则( )A .c c b a <B .c c ba ab <C .c b c a a b log log <D .c c b a log log < 【答案】C【解析】由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误;要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a ,构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c c b c a c a a b b <⇔<,C 正确;要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb ,而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误;故选C .【2016年全国新课标Ⅱ卷,12】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .【2016年全国新课标Ⅲ卷,6】已知432a =,254b =,1325c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 【2017年全国新课标Ⅰ卷,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B . [1,1]-C . [0,4]D . [1,3]【答案】D 【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤,等价于()()()121f f x f --≤≤,又()f x 在()-∞+∞,单调递减,121x ∴--≤≤,3x ∴1≤≤,故选D .【2017年全国新课标Ⅰ卷,11】设,,x y z 为正数,且235x y z ==,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 【答案】D【解析】取对数:5ln 3ln 2ln z y x ==,y x y x y x 3212ln 3ln 2ln 33ln 2323ln 2ln 32>⇒>==⇒=,z x z x z x 5212ln 5ln 2ln 55ln 2525ln 2ln 52<⇒<==⇒=,z x y 523<<∴,故选D ;【2017年全国新课标Ⅲ卷,11】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点 ∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.【2017年全国新课标Ⅲ卷,15】设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.【2018年全国新课标Ⅰ卷,9】已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,【答案】C【解析】()g x 存在2个零点∴方程()0f x x a ++=有两个根 ⇔方程()=f x x a --有两个根⇔函数()y f x =与函数y x a =--的图象有两个不同交点如右图所示,则只需1a -≤即可1a ∴≥-,即a 的取值范围是[1,)-+∞.故选C.【2018年全国新课标Ⅱ卷,3】函数()2e e x xf x x --=的图像大致为( )【答案】B【解析】0x ≠,()()2e e x xf x f x x ---==-,()f x ∴为奇函数,舍去A ,()11e e 0f -=->,∴舍去D ; ()()()()()243e e e e 22e 2e xx x x x xx xx x f x x x ---+---++'==,2x ∴>,()0f x '>,所以舍去C ;故选B . 【2018年全国新课标Ⅱ卷,11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( ) A .50- B .0 C .2 D .50 【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+,所以()()11f x f x +=--,()()()311f x f x f x ∴+=-+=-,4T ∴=, 因此()()()()()()()()()()1235012123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦, ()()()()3142f f f f =-=-,,()()()()12340f f f f ∴+++=,()()()()22220f f f f =-=-∴=,从而()()()()()1235012f f f f f ++++==,故选C .【2018年全国新课标Ⅲ卷,7】函数422y x x =-++的图像大致为( )【答案】D【解答】当0x =时,2y =,可以排除A 、B 选项;又因为322424(y x x x x x '=-+=-+-,则()0f x '>的解集为22(,)(0,)2-∞,()f x 单调递增区间为2(,)2-∞-,2(0,2;()0f x '<的解集为22((,)22-+∞,()f x 单调递减区间为2(2-,2)2+∞.结合图象,可知D 选项正确. 【2018年全国新课标Ⅲ卷,12】设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解答】∵0.2log 0.3a =,2log 0.3b =,∴0.31log 0.2a =,0.31log 2b =, ∴0.311log 0.4a b +=,∴1101a b <+<即01a b ab+<<, 又∵0a >,0b <,∴0ab a b <+<,故选B.【2018年全国新课标Ⅲ卷,15】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解答】由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.。
高考理科数学试题及答案详细解析全国卷1、2、3卷 (2).doc
- 1 - 2018年普通高等学校招生全国统一考试全国卷1理科数学本试题卷共6页23题含选考题。
全卷满分150分。
考试用时120分钟。
注意事项1、本试卷分为第Ⅰ卷选择题和第II卷非选择题两部分.第Ⅰ卷1至3页第II卷3至5页.2、答题前考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成答在本试题上无效.4、考试结束后将本试题和答题卡一并上交。
第Ⅰ卷一、选择题本大题共12小题每小题5分在每小题给出的四个选项中只有一项是符合题目要求的.1.设121izii则zA. 0B. 12 C. 1 D. 2解析2(1)22izii所以|z|1故答案为C.2. 已知集合220Axxx则RCAA.12xx B. 12xxC.2|1|xxxx D.2|1|xxxx解析由220xx得(1)(2)0xx所以2x或1x所以RCA12xx故答案为B.3. 某地区经过一年的新农村建设农村的经济收入增加了一倍实现翻番为更好地了解该地区农村的经济收入变化情况统计了该地区新农村建设前后农村的经济收入构成比例得- 2 - 到如下饼图则下列结论中丌正确的是A. 新农村建设后种植收入减少B. 新农村建设后其他收入增加了一倍以上C. 新农村建设后养殖收入增加了一倍D. 新农村建设后养殖收入不第三产业收入的总和超过了经济收入的一半解析由已知条件经过一年的新农村建设农村的经济收入增加了一倍实现翻番37%274% 所以尽管种植收入所占的比例小了但比以往的收入却是增加了.故答案为A.4. 设nS为等差数列na的前n项和若3243SSS12a则5aA. 12B. 10C. 10D. 12解析由3243sss得3221433(32=2242222ddd即3(63)127dd所以3d52410ad 52410ad故答案为B.5. 设函数321fxxaxax若fx为奇函数则曲线yfx在点0,0处的切线方程为A. 2yx B. yx C. 2yx D. yx解析由fx为奇函数得1a2()31,fxx所以切线的方程为yx.故答案为D.6. 在ABC中AD为BC边上的中线E为AD的中点则EB- 3 - A.ACAB4143B. ACAB4341C.ACAB413D.ACAB4341解析 11131()22244EBABAEABADABABACABAC故答案为A. 7.某圆柱的高为2底面周长为16其三视图如右图. 圆柱表面上的点M在正视图上的对应点为A圆柱表面上的点N在左视图上的对应点为B则在此圆柱侧面上从M到N的路径中最短路径的长度为 A. 172 B.52 C.3 D. 2解析如图画出圆柱的侧面展开图在展开图中线段MN的长度52即为最短长度故答案为B.8.设抛物线xyC4:2的焦点为F过点0,2且斜率为32的直线不C交于NM,两点则FNFMA. 5B.6C. 7D. 8解析联立直线与抛物线的方程得M(12),N(4,4)所以FNFM8故答案为D.9.已知函数,0,ln,0,xexfxxxgxfxxa.若gx存在2个零点则a的取值范围是A.1,0 B.0, C.1, D.1,解析∵()()gxfxxa存在2个零点即()yfx与yxa有两个交点)(xf的图象如MN24- 4 - 图要使得yxa与)(xf有两个交点则有1a即1a故答案为 C.10下图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成三个半圆的直径分别为直角三角形ABC的斜边BC直角边ACAB,.ABC的三边所围成的区域记为Ⅰ黑色部分记为Ⅱ其余部分记为Ⅲ在整个图形中随机取一点此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,ppp则A. 21pp B.31pp C. 32pp D. 321ppp解析取2ABAC,则22BC∴区域Ⅰ的面积为112222S区域Ⅲ的面积为231(2)222S区域Ⅱ的面积为22312SS故12pp.故答案为A. 11.已知双曲线13:22yxC O为坐标原点F为C的右焦点过F的直线不C的两条渐近线的交点分别为NM,.若OMN为直角三角形则MNA. 23 B. 3 C. 32 D. 4解析渐近线方程为 2203xy即33yx∵OMN为直角三角形假设2ONM如图∴3NMk直线MN方程为3(2)yx.联立33(2)yxyx∴33(,)22N即3ON∴3MON∴3MN故答案为B. 12. 已知正方体的棱长为1每条棱所在的直线不平面所成的角都相等则截此正方体所得截面面积的最大值为- 5 - A. 433 B. 332 C.423 D. 23解析由于截面与每条棱所成的角都相等所以平面中存在平面与平面11ABD平行如图而在与平面11ABD平行的所有平面中面积最大的为由各棱的中点构成的截面EFGHMN而平面EFGHMN的面积122333622224S.故答案为A. 第II卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题每个试题考生都必须作答.第(22)~(23)题为选考题考生根据要求作答.二、填空题本题共4小题每小题5分.13.若x y满足约束条件22010xyxyy则32zxy的最大值为_______________.解析画出可行域如图所示可知目标函数过点(2,0)时取得最大值max32206z. 故答案为6.14.记nS为数列na的前n项和若21nnSa则6S_______________.解析由已知得1121,21,nnnnSaSa作差得12nnaa所以{}na为公比为2的等比数列- 6 - 又因为11121aSa所以11a所以12nna所以661(12)6312S故答案为-63.15.从2位女生4位男生中选3人参加科技比赛且至少有1位女生入选则丌同的选法共有__________种。
2010-2019年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——10、概率统计
2010-2019年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编10、概率统计一、选择题与填空题.(2010年新课标卷,6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()(A)100 (B)200 (C)300 (D)400【2011年新课标卷,4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34【2011年新课标卷,8】512ax xx x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为()A.-40 B.-20 C.20 D.40【2012年新课标卷,2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【2012年新课标卷,15】某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________.【2013年新课标Ⅰ卷,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是() A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【2013年新课标Ⅰ卷,9】设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x +y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=().A.5 B.6 C.7 D.8【2013年新课标Ⅱ卷,14】从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______.元件2元件3元件1【2014年新课标Ⅰ卷,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A .18B .38C .58D .78【2014年新课标Ⅰ卷,13)】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案)【2014年新课标Ⅱ卷,5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【2015年新课标Ⅰ卷,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【2015年新课标Ⅰ卷,10】25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .60【2015年新课标Ⅱ卷,3】根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.【2016年新课标Ⅰ卷,4】某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是( )A .31B .21C .32D .43 【2016年新课标Ⅰ卷,14】5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)【2016年新课标Ⅱ卷,5】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为G•F•E•( )A .24B .18C .12D .9【2016年新课标Ⅱ卷,10】从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n mB .2n mC .4m nD .2m n【2016年新课标Ⅱ卷,15】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【2017年新课标Ⅰ卷,2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π4【2016年新课标Ⅲ卷,4】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个【2017年新课标Ⅰ卷,6】621(1)(1)x x++展开式中2x 的系数为( ) A .15 B .20 C .30 D .35【2017年新课标Ⅱ卷,6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【2017年新课标Ⅱ卷,13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则()=D X .【2017年新课标Ⅲ卷,3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【2017年新课标Ⅲ卷,4】5()(2)x y x y +-的展开式中33x y 的系数为( )A .-80B .-40C .40D .80【2018年新课标Ⅰ卷,3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【2018年新课标Ⅰ卷,10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.ABC△的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p3【2018年新课标Ⅰ卷,15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【2018年新课标Ⅱ卷,8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118【2018年新课标Ⅲ卷,5】522xx⎛⎫+⎪⎝⎭的展开式中4x的系数为()A.10 B.20 C.40 D.80【2018年新课标Ⅲ卷,8】某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数, 2.4DX=,()()46P X P X=<=,则p=()A.0.7 B.0.6 C.0.4 D.0.3【2019年新课标Ⅰ卷,6】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116【2019年新课标Ⅰ卷,15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【2019年新课标Ⅱ卷,5】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差【2019年新课标Ⅱ卷,13】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【2019年新课标Ⅲ卷,3】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A. 0.5B. 0.6C. 0.7D. 0.8【2019年新课标Ⅲ卷,4】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A. 12B. 16C. 20D. 24二、解答题.(2010年新课标卷,19)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 【2011年新课标卷,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表 指标值分组[90,94) [94,98) [98,102) [102,106) [106,110] 频数 8 20 42 22 8 指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110](Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y(单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【2012年新课标卷,18】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【2013年新课标Ⅰ卷,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.t(Ⅰ)将T 表示为x 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100, 110),则取x =105,且x =105的概率等于需求量落入[100, 110)的概率),求利润T 的数学期望.【2014年新课标Ⅰ卷,18)】从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i)利用该正态分布,求(187.8212.2)P Z <<;(ii)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .150若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.【2014年新课标Ⅱ卷,19】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份2007 2008 2009 2010 2011 2012 2013 年份代号t1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆn i i i n i i t ty y b tt ==--=-∑∑,ˆˆay bt =-. 【2015年新课标Ⅰ卷,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,,8i =L )数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 821()ii x x =-∑ 821()i i w w =-∑ 81()()i i i x x y y =--∑ 81()()i i i w w y y =--∑46.6 563 6.8 289.8 1.6 1469 108.8表中i i w x =8118i i w w ==∑ (Ⅰ)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-,根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据1122(,),(,),,(,)n n u v u v u v L ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为µ121()()()n i i i n i i u u v v uu β==-=--∑∑,µµv u αβ=-. 【2015年新课标Ⅱ卷,18】某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区 62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区 73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【2016年新课标Ⅰ卷,19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求5.0)(≥≤n X P ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19=n 与20=n 之中选其一,应选用哪个?【2016年新课标Ⅱ卷,18】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.【2016年新课标Ⅲ卷,18】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y==∑,7140.17i ii t y==∑721()0.55ii y y =-=∑,7≈2.646.参考公式:相关系数12211()()()(yy)niii n ni ii i t t y y r t t ===--=--∑∑∑回归方程$$y a b =+$ 中斜率和截距的最小二乘估计公式分别为: 121()()()nii i nii tt y y btt ==--=-∑∑$,$a y bt =-$.【2017年新课标Ⅰ卷,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716iix x===∑,161622221111()(16)0.2121616i ii is x x x x===-=-≈∑∑,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值ˆμ,用样本标准差s作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,0.0080.09≈.【2017年新课标Ⅱ卷,18】淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A的概率;箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bcKa b c d a c b d-=++++【2017年新课标Ⅲ卷,18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温[)1015,[)1520,[)2025,[)2530,[)3035,[)3540,天数 2 16 36 25 7 4(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【2018年新课标Ⅰ卷,20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【2018年新课标Ⅱ卷,18】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【2018年新课标Ⅲ卷,18】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编
11、复数
【2010年新课标卷,2】已知复数
z =
,z 是z 的共轭复数,则z z ⋅=( ) (A )14 (B )12
(C )1 (D )2 【答案】A
【解析】z ====
z =14z z ⋅= 【2011年新课标卷,1】复数
212i i +-的共轭复数是( ) A .35i - B .35i C .i - D .i
【答案】C
【解析】212i i
+-=(2)(12),5i i i ++=共轭复数为C 【2012年新课标卷,3】下面是关于复数21z i =
-+的四个命题: 1p :||2z =;2p :22z i =;3p :z 的共轭复数为1i +;4p :z 的虚部为1-. 其中的真命题为( )
A .2p ,3p
B .1p ,2p
C .2p ,4p
D .3p ,4p 【答案】C
【解析】因为22(1)11(1)(1)
i z i i i i --===---+-+--,所以||z =22(1)2z i i =--=, z 的共轭复数为1i -+,z 的虚部为1-,所以2p ,4p 为真命题,故选择C .
【2013年新课标Ⅰ卷,2】若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ). A .-4 B .45-
C .4
D .45 【答案】D
【解析】∵(3-4i)z =|4+3i|,∴55(34i)34i 34i (34i)(34i)55
z +=
==+--+. 故z 的虚部为45,故选D.
【2013年新课标Ⅱ卷,2】设复数z 满足(1i)2i z -=,则z =( )
A.1i -+
B.1i --
C.1i +
D.1i -
【答案】A 【解析】由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i -+=-1+i .故选A. 【2014年新课标Ⅰ卷,2)】3
2(1)(1)
i i +-=( ) A .1i + B .1i - C .1i -+ D .1i --
【答案】D 【解析】∵32(1)(1)
i i +-=2(1)12i i i i +=---,选D. 【2014年新课标Ⅱ卷,2】设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )
A .- 5
B .5
C .- 4 + i
D .- 4 - i 【答案】A
【解析】∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+, ∴2212(2)(2)2145z z i i i =+-+=-=--=-.故选A.
【2015年新课标Ⅰ卷,1】设复数z 满足1i 1z z
+=-,则||z =( )
A .1
B
C
D .2
【答案】A 【解析】由1i 1z z +=-得1i(1)z z +=-,即1i 1i z -+=+,2(1i)(1i)(1i)i (1i)(1i)2
z -+---===+-,||z =1,选A .
【2015年新课标Ⅱ卷,2】若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )
A .-1
B .0
C .1
D .2 【答案】B
【解析】由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.
【2016年新课标Ⅰ卷,2】设yi x i +=+1)1(,其中y x ,是实数,则=+yi x ( )
A .1
B .2
C .3
D .2
【答案】B
【解析】由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,
x yi +=B .
【2016年新课标Ⅱ卷,1】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )
A .(-3,1)
B .(-1,3)
C .(1,+∞)
D .(-∞,-3)
【答案】A
【解析】∴30m +>,10m -<,∴31m -<<,故选A .
【2016年新课标Ⅲ卷,2】若i 12z =+,则4i 1zz =-( )
(A)1 (B) -1 (C)i (D) i -
【答案】C 【解析】4i 4i i
(12i)(12i)11zz ==+---,故选C .
【2017年新课标Ⅰ卷,3】设有下面四个命题
1:p 若复数z 满足1z
∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .
其中的真命题为( )
A .13,p p
B .14,p p
C .23,p p
D .24,p p
【答案】B
【解析】1:p 设z a bi =+,则22
11a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;
3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;
4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;
【2017年新课标Ⅱ卷,1】31i i
+=+( ) A .12i + B .12i - C .2i + D .2i -
【答案】D
【解析】 ()()()()3134221112
i i i i i i i i +-+-===-++-.故选D. 【2017年新课标Ⅲ卷,2】设复数z 满足(1i)2i z +=,则z =( )
A .12 B
C
. D .2
【答案】C
【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2
z -+====+++-,则z == C. 【2018年新课标Ⅰ卷,1】设1i 2i 1i z -=
++,则z =
A .0
B .12
C .1
D 【答案】C 【解析】i i i i i i i z 2)
1)(1()1(2112
+-+-=++-= i i i =+-=2221=∴z ,故选C. 【2018年新课标Ⅱ卷,1】
12i 12i
+=-( ) A .43i 55-- B .43i 55-+ C .34i 55
-- D .34i 55
-+ 【答案】D 【解析】()212i 12i 34i 12i 55
++-+==-Q ,故选D . 【2018年新课标Ⅲ卷,2】()()1i 2i +-=( ) A .3i -- B .3i -+ C .3i - D .3i +
【答案】D
【解答】2(1)(2)23i i i i i +-=+-=+,故选D.。