对数及其对数函数题型整理
对数与对数函数知识点及例题
对数与对数函数知识点及例题一、知识点1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log aNM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bN a a log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.二、例题例1 计算:(1))32(log32-+ (2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-; (3)21lg 4932-34lg 8+lg 245. 解:(1)解法一 利用对数定义求值 设)32(log 32-+=x, 则(2+3)x =2-3=321+=(2+3)-1,∴x=-1. 解法二 利用对数的运算性质求解)32(log 32-+=32log + 321+=32log +(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1.(3)原式=21(lg32-lg49)-34lg81+21lg245 =21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5 =21lg(2×5)= 21lg10=21.例2 求下列函数的单调区间.(1)y=log 2(x-4); (2)y=log 0.5x 2.解:(1)定义域是(4,+∞),设t=x-4,当x >4时,t 随x 的增大而增大,而y=log 2t ,y 又随t 的增大而增大,∴(4,+∞)是y=log 2(x-4)的递增区间.(2)定义域{x |x ∈R ,且x≠0},设t=x 2,则y=log 0.5t当x >0时,t 随x 的增大而增大,y 随t 的增大而减小,∴(0,+∞)是y=log 0.5x 2的递减区间.当x <0时,t 随x 的增大而减小,y 随t 的增大而减小,∴(-∞,0)是y=log 0.5x 2的递增区间.例3 比较大小:(1)log 0.71.3和log 0.71.8.(2)(lg n )1.7和(lgn )2(n >1).(3)log 23和log 53.(4)log 35和log 64.解:(1)对数函数y=log 0.7x 在(0,+∞)内是减函数.因为1.3<1.8,所以log 0.71.3>log 0.71.8.(2)把lgn 看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn 讨论.若1>lgn >0,即1<n <10时,y=(lgn ) x 在R 上是减函数,所以(lgn )1.2>(lgn )2;若lgn >1,即n >10时,y=(lgn )2在R 上是增函数,所以(lgn )1.7>(lgn )2. (3)函数y=log 2x 和y=log 5x 当x >1时,y=log 2x 的图像在y=log 5x 图像上方.这里x=3,所以log 23>log 53.(4)log 35和log 64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log 35>log 33=1=log 66>log 64,所以log 35>log 64.例4 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x 则f (2+log 23)的值为 A.31 B.61 C.121 D.241 解析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D 例5: 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).注:研究函数的性质时,利用图象会更直观.例6: 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 例7: 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4.例8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1).(1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0.∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4.∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1.例9 (1)已知函数y=log 3(x 2-4mx+4m 2+m+)的定义域为R ,求实数m 的取值范围; (2)已知函数y=log a [x 2+(k+1)x-k+(a >0,且a≠1)的值域为R ,求实数k 的取值范围.解:(1)∵x 2-4mx+4m 2+m+ >0对一切实数x 恒成立,∴△=16m 2-4(4m 2+m+ )=-4(m+ )<0,∴>0.又∵m2-m+1>0,∴m-1>0,∴m>1.(2)∵y∈R,∴x2+(k+1)x-k+ 可取尽一切正实数.∴△=(k+1)2-4(-k+ )≥0,∴k2+6k≥0,∴k≥0,或k≤-6.例10求函数y=log0.5(-x2+2x+8)的单调区间.解.∵-x2+2x+8>0,∴-2<x<4,∴原函数的定义域为(-2,4).又∵函数u=-x2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数,∴函数y=log0.5(-x2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数.。
专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。
对数及对数函数知识点总结及题型分析
对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。
(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。
对数与对数函数知识点及题型归纳总结
对数与对数函数知识点及题型归纳总结对数与对数函数知识点及题型归纳总结知识点精讲⼀、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .⼆、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常⽤这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a题型归纳及思路提⽰题型 1 对数运算及对数⽅程、对数不等式思路提⽰对数的有关运算问题要注意公式的顺⽤、逆⽤、变形⽤等 .对数⽅程或对数不等式问题是要将其化为同底,利⽤对数单调性去掉对数符号,转化为不含对数的问题,但这⾥必须注意对数的真数为正 . ⼀、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注熟记对数的各种运算性质是求解本类问题的前提变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 32lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()C.( ,log a 3)D.(log a 3, )分析先将对数不等式化为同底的形式,再利⽤单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,⼜ 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x ⼆、对数⽅程例 2.59 解下列⽅151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析利⽤对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,⾸先⽅程中的 x 应满⾜x 10,原⽅程可变形为 25 x 2525 ,得 x 25 ,从⽽ x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原⽅程的解 .1(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是⽅程的解 . 评注解对数⽅程⼀定要注意对数⽅程成⽴条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利⽤对数函数的单调性来⽐较对数的⼤⼩,通常借助 0和 1作为分界点解析因为y log 5 x 在(0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )C.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则()A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 ⼤纲全国理 9)已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提⽰研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和⽅法问题是数和形结合的护体解释 .它为研究函数问题提供了思维⽅向、对数函数的图像例 2.62如图 2-15所⽰,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像,对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x变式 1 已知函数 f (x )为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所⽰,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标⼤⼩为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能⼀次为 2,3, , .故选 B .32评注对数函数在同⼀直⾓坐标系中的图像的相对位置与底数⼤⼩的关系如图 2-16 所⽰,则 0 c d 1 a b .ylog a x(a 0且a 1)在第⼀象限的图像, a 越⼤,图像越靠近 x 轴; a 越⼩,图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像⼤致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点⼆、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则解析因为 y log a x(a 0且a 1) 恒过点 (1,0) ,故令 x 1 1,即 x 0 时, y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a 上的最⼤值与最⼩值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最⼤值与最⼩值⼜ f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2. (log 2 x)2解析因为对数函数的底 a 1 ,所以函数f (x) log a x 在区间a,2a 上单调递增,故 f (x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最⼤值是最⼩值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最⼤值和最⼩值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x22解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最⼤值与最⼩值的差为题型 3 对数函数中的恒成⽴问题思路提⽰ (1)利⽤数形结合思想,结合对数函数的图像求解; (2)分离⾃变量与参变量,利⽤等价转化思想,转化为函数的最值问题,1 上恒成⽴ .解析依题意,函数 f (x)的图像如图 2-17所⽰,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析因为f(x) lgxx 1 2x a 4x 在x340 在 ,1 上恒成⽴ .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 a。
对数函数题型归纳大全非常完整
对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。
(完整版)对数函数图像及其性质题型归纳,推荐文档
对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征Error!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x是对数函数,则实数a =__________.(1)图象与性质a >10<a <1图象(1)定义域{x |x >0}(2)值域{y |y R }∈(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x<1时,y >0性质(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3).y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1(4y ax ax R a =++数的定义域为,变式求实数的围。
(完整word版)对数函数图像及其性质题型归纳,推荐文档
对数函数及其性质题型总结1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧ log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.(1)性质(性质(7)直线x =1的右侧底大图低谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.题型一:定义域的求解 求下列函数的定义域.例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4);(3)y =.在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.题型二:对数值域问题对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.221log 1()4y ax ax R a =++数的定义域为,变式求实数的围。
对数及对数函数-知识点及题型归纳
●高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).★备考知考情通过对近几年高考试题的统计分析可以看出,本节内容. 资料. .. .在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理《名师一号》P27注意:知识点一对数及对数的运算性质1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”.. 资料. .. .. 资料. .. .注意:(补充)关注定义---指对互化的依据2.对数的性质与运算法则(1)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a (MN)=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n =nlog a M(n ∈R);④log a m M n=n m log a M.(2)对数的性质①a logaN =N ;②log a a N =N (a>0,且a≠1).. 资料. .. .(3)对数的重要公式①换底公式:log b N =log a N log a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10,log 1a a a ==知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!)a>1 0<a<12.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.(补充)设y=f(x)存在反函数,并记作y=f-1(x),1) 函数y=f(x)与其反函数y=f-1(x)的图象. 资料. .. .. 资料. .. .关于直线y x 对称.2) 如果点P(x 0,y 0)在函数y =f(x)的图象上,则必有f -1(y 0)=x 0 ,反函数的定义域、值域分别为原来函数的值域、定义域.3) 函数y =f(x)与其反函数y =f -1(x)的单调性相同.二、例题分析:(一)对数式的运算 例1.(1)《名师一号》P27 对点自测1(2013·陕西文3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A .log a b·log c b =log c aB .log a b·log c a =log c b. 资料. .. .C .log a (bc)=log a b·log a cD .log a (b +c)=log a b +log a c解析 由对数的运算性质:log a (bc)=log a b +log a c , 可判断选项C ,D 错误;选项A ,由对数的换底公式知,log a b·log c b =log c a ⇒lgb lga ·lgb lgc =lga lgc⇒lg 2b =lg 2a ,此式不恒成立,故错误;对选项B ,由对数的换底公式知,log a b·log c a =lgb lga ·lga lgc =lgb lgc=log c b ,故恒成立. 答案 B. 资料. .. .例1.(2) (补充) 计算下列各式的值 (1) 2lg 2lg 3111lg 0.36lg823+=++ (2) 温故知新P22 第8题()22log 3lg5lg 2lg504+⋅+= (3) 235111log log log 2589⋅⋅=答案:(1) 1 (2)10 (3)-12注意: 准确熟练记忆对数运算性质多练. 资料. .. .lg 2lg51+=《名师一号》P28 高频考点 例1【规律方法】 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.例2.(1)《名师一号》P27 对点自测2(2014·陕西卷)已知4a =2,lgx =a ,则x =________.解析 ∵4a =2,∴a =log 42=12.由lgx =12, 得x =10 12 =10.. 资料. .. .例2.(2)《名师一号》P28 高频考点 例1(1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43解析:由x =log 43,得4x =3,即2x =3,2-x =33, 所以(2x -2-x )2=⎝ ⎛⎭⎪⎫2332=43. 注意:指数与对数的互化a b =N ⇔b =log a N (a>0,a ≠1,N>0).. 资料. .. .练习:(补充)已知1135,2a bk a b ==+=求k答案: k =例3.《名师一号》P28 高频考点 例1(2)已知函数f(x)=⎩⎨⎧log 2x ,x>0,3-x +1,x≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值 是( )A .5B .3C .-1 D.72. 资料. .. .因为f(1)=log 21=0,所以f(f(1))=f(0)=2.因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312 +1 =3log 32 +1=2+1=3.所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.二、对数函数的图象及性质的应用例1. (补充)求下列函数的定义域.(1)y =log 0.5(4x -3).(2)y =log (x +1)(16-4x ).. 资料. .. .解析:(1)由函数定义知:⎩⎨⎧ log 0.5(4x -3)≥04x -3>0 ∴⎩⎨⎧ 4x -3≤14x -3>0,即34<x≤1. 故原函数的定义域是{x|34<x≤1}. (2)由函数有意义知⎩⎪⎨⎪⎧ x +1>0x +1≠116-4x >0∴⎩⎪⎨⎪⎧ x>-1x≠0x<2即-1<x<2,且x≠0.. 资料. .. . 故原函数的定义域为{x|-1<x<0,或0<x<2}.练习:已知集合(){}22log x y x ax a R =--=求实数a 的取值范围.解析:设f(x)=x 2-ax -a ,则y =log 2f(x),依题意,f(x)>0恒成立,∴Δ=a 2+4a<0∴-4<a<0,即a 的范围为(-4,0)例2.《名师一号》P27 对点自测5(2014·重庆卷)函数f(x)=log 2x ·log 2(2x)的最小值为________.. 资料. .. .解析 根据对数运算性质,f(x)=log 2x ·log 2 (2x)=12log 2x·[2log 2(2x)]=log 2x(1+log 2x)=(log 2x)2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14,当x =22时,函数取得最小值-14.注意:换元后“新元”的取值范围.. 资料. .. .练习:1、求下列函数的值域(1)y =log 15(-x 2+2x +4)[答案] [-1,+∞)(2)f(x)=log 22x -3log 2x 2+2⎝ ⎛⎭⎪⎫12≤x≤2 [解析] 令t =log 2x ,∵12≤x≤2∴-1≤t≤1. ∴函数化为y =t 2-6t +2=(t -3)2-7∵-1≤t≤1.∴当t =-1,即x =12时,y max =9. 当t =1,即x =2时,y min =-3,. 资料. .. . ∴函数的值域为[-3,9].2、已知集合(){}22log y y x ax aR =--=求实数a 的取值范围.[分析]当且仅当f(x)=x 2-ax -a 的值能够取遍一切正实数时,y =log 2(x 2-ax -a)的值域才为R.而当Δ<0时,f(x)>0恒成立,仅仅说明函数定义域为R ,而f(x)不一定能取遍一切正实数(一个不漏).要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x 轴有交点(但此时定义域不再为R)[正解] 要使函数y =log 2(x 2-ax -a)的值域为R ,应使f(x)=x 2-ax -a 能取遍一切正数,要使f(x)=x 2-ax -a能取遍一切正实数,应有Δ=a2+4a≥0,∴a≥0或a≤-4,∴所求a的取值范围为(-∞,-4]∪[0,+∞)例3. (1)《名师一号》P27 对点自测4已知a>0且a≠1,则函数y=log a(x+2 015)+2的图象恒过定点________.解析令x+2 015=1,即x=-2 014时,y=2,故其图象恒过定点(-2 014,2).. 资料. .. .. 资料. .. .练习:无论a 取何正数(a≠1),函数()33log a y x =-+恒过定点【答案】()43,注意:对数函数()01log ,a y x a a =>≠且图象都经过定点(1, 0)例3. (2) (补充)如右下图是对数函数①y =log a x ,②y =log b x ,③y =log c x ,④y =log d x 的图象,则a 、b 、c 、d 与1的大小关系是 ( )A.a>b>1>c>dB.b>a>1>d>cC.1>a>b>c>dD.a>b>1>d>c【答案】B在上图中画出直线y=1,分别与①、②、③、④交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知c<d<1<a<b.注意:(补充)两个单调性相同的对数函数,. 资料. .. .. 资料. .. .它们的图象在位于直线x=1右侧的部分是“底大图低”.利用1logaa=,图象都经过()1,a点,作直线1y=,则该直线与图象的交点的横坐标即为底数a。
对数函数专题——含参对数函数完整版题型汇总
对数函数专题——含参对数函数完整版题型汇总一、定义与性质1. 对数函数的定义对数函数是指定义域在正数集合上的函数,它的函数值是指数函数的反函数。
通常用符号 $\log$ 表示对数函数。
2. 对数函数的性质- 对数函数的图像是一条倾斜的曲线,与指数函数的图像关于直线 $y = x$ 对称。
- 对数函数具有单调递增性质,即随着自变量的增加,函数值也会增加。
- 对数函数的定义域是正数集合,值域是实数集合。
二、常见题型1. 对数运算题型例题:计算 $\log_3 27$。
解析:由于 $3^3 = 27$,所以 $\log_3 27 = 3$。
2. 对数方程题型例题:求解方程 $2^x = 8$。
解析:将 $8$ 表示成 $2$ 的幂次形式得到 $8 = 2^3$,所以$2^x = 2^3$,即 $x = 3$。
3. 对数不等式题型例题:求解不等式 $\log_2 \left( \frac{x}{3} \right) \geq 2$。
解析:根据对数定义,$\log_2 \left( \frac{x}{3} \right) \geq2$ 可转化为 $\frac{x}{3} \geq 2^2$,即 $\frac{x}{3} \geq 4$。
解得$x \geq 12$。
三、注意事项1. 在计算对数函数的值时,要注意指数与对数的关系,充分运用指数函数和对数函数的定义和性质。
2. 在解对数方程和不等式时,要注意将题目中的式子转化为指数形式,再进行相应的运算。
以上是对数函数专题中含参对数函数完整版题型汇总的简要内容。
对数函数作为数学中常见的函数之一,在应用中具有广泛的用途。
掌握对数函数的基本定义、性质和解题方法,有助于提高数学问题的解决能力。
根据对数函数知识点及题型归纳总结
根据对数函数知识点及题型归纳总结一、对数函数的基本概念- 对数函数是指以某个正数为底数的幂运算与常用对数的函数关系。
- 常用对数是以10为底的对数,通常用符号log表示。
- 自然对数是以常数e(约等于2.718)为底的对数,通常用符号ln表示。
二、对数函数的性质1. 对数函数的定义域和值域:- 对数函数的定义域为正实数集合。
- 对数函数的值域为实数集合。
2. 对数函数的图像特点:- 对数函数的图像是一条平滑的曲线,且过点(1, 0)。
- 对数函数的图像在(0, +∞)上是递增的。
- 自然对数函数ln(x)的图像在(0, +∞)上是上凸的。
3. 对数函数的性质和运算法则:- 对数函数中,底数为1的对数函数恒等于0。
- 对数函数的乘法法则:loga(mn) = loga(m) + loga(n)。
- 对数函数的除法法则:loga(m/n) = loga(m) - loga(n)。
- 对数函数的幂运算法则:loga(m^k) = k·loga(m)。
三、对数函数的常见题型1. 简单计算题型:- 计算给定底数和真数的对数值。
- 根据对数值计算给定底数和真数。
2. 方程求解题型:- 将对数方程转化为指数方程求解。
- 求解含对数的复合方程。
3. 不等式求解题型:- 将对数不等式转化为指数不等式求解。
- 求解含对数的复合不等式。
4. 图像应用题型:- 根据对数函数的图像特点作图。
- 根据图像解决实际问题。
总结:对数函数是数学中常用的函数之一,掌握对数函数的基本概念、性质和运算法则,能够灵活运用对数函数解决各种题型和实际问题。
希望通过这份文档,能够帮助大家系统地研究和掌握对数函数相关知识。
对数运算,对数函数图像性质题型归纳含详解
对数运算,对数函数图像性质题型归纳题型一:指数式与对数式互化1、将下列指数式改写为对数式:7/1 γ3 1(1)5'3=125; (2)鼠=4;(3) - =8; (4) 6'2 =-⑸ 54 = 625; (6)2一6(7)3" =27; = 5.732、将下列对数式改写成指数式:(1) log2 64 = 6 ;(2) log3— = -4 ;(3) lg0.001 = -3;81(4)%4 = -2 ⑸ log। 8 = -3 ;(6)ιθgJl +√2) = -1,题型二:对数的简单运算1、求下列各式的值:(1)lθg216j (2) log21 ;(3) log5 25 ;(4) log04 1 ;(5) IglO; (6) IglOO; (7) IgO.Ol;(8) ∣ne>5.2、求下列各式的值:(1) 2一喻3;(2) lθ2⅛35 (3) e3,n7;(4) log392; (5) IglOO2; (6) lg0.0012.3、计算:(1) log927 ;(2) ∣og用81;(3)卜唱方625题型三:求未知数1、求下列各式中工的值:⑴ log;x = -3;(2)logγ49 = 4 ;(3) lg0.00∞l = x j (4) ↑n y fe=-x∙2(5) log64x = -- ;(6) log x8 = 6;(7) lgl∞ = x j(8) -∖ne2 =x-32、求下列各式中X的值:⑴ log2(log5x) = 05(2) log3(lgx) = l.(3)已知Iog2(log3(log4x))=θ,且log4(log2y)=L求五.)口的值.(4) log3(3「l”og3(3i-g题型四:对数计算1、求下列各式的值: ∕1x 2log 32-log 332 + log 38(5)(l °s 2125 +1°8425+⅝85)∙(tog 1258÷log 254+log 52) (6) 1°δ2 25 lθ838 1°g l 27 4、计算下列各式的值:=22)log 256.25 + lgθ.θl + ln√β-2l+lθδz3(3)322log 32-log 3y + log 38-5,°g53 4log 23-log 2^÷7,o ^5÷log 9√3(4)- 4(4) log 3√27+lg25 + lg4 + 7,og72 +(-9.8)°(6) log 525 + lg —+ ln√^ + 2,og23 100(7)322log 32-log 3-+log 38lg5 + lg2-(-^-)^2 +(>∕2-l)0 +log^ 8(8)32、计算下列各式的值:21g 5 + ∣l g 8 + l g 5.1g20÷l g 22(l g 2)3 + 31g2.1g5 + (l g 5)3l g 25÷lg21g 50÷(l g 2)221g5 + ∣lg8 + lg5∙lg20 + (lg2)2 (4) 3(5) lg2×lg50+lg5×l g 20-21g 5×l g 23、计算下列各式的值:log 1 2 + 21g4 + lg→e 3,n2/ A、 ;O(6)lg5.1g20-lg2.1g 50-l g 25∙θg 251 1°g4 5-log 13-log 2 4 + 5,og5 2(2) 2 3(4) Iog23∙log35∙log516j(4) (log32+log92)(Iog 43 + Iog83).题型五:用已知参数表示1、已知48" =24,试用〃表示下列各式: (1) log 48 2 •(2) log 48 3 .一 M 32、设x = log0M, y = log 〃N (。
高中数学对数和对数函数知识点与例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。
但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
(完整版)对数及对数函数知识点及习题,推荐文档
对数及对数函数学习目标:(一)对数1.对数的概念一般地,如果,那么数叫做以为底的对数,记作:N a x=)1,0(≠>a a x a N 其中:是底数,是真数,是对数式N x a log =a N N a log 2、两个重要对数:常用对数:以10为底的对数;○1N lg 自然对数:以无理数为底的对数的对数.○2 71828.2=e N ln 3、对数式与指数式的互化xN a =log ⇔Na x =对数式指数式 对数底数← → 幂底数⇔a对数← → 指数真数←→ 幂x N 4、对数的性质(1)负数和零没有对数; (2)1的对数是零:;01log =a (3)底数的对数是1:; (4)对数恒等式:;1log =a a N aNa =log (5).n a n a =log5、对数的运算法则:()()log log log a a a MN M NM N R =+∈+,()log log log aa a MNM N M N R =-∈+, ()()log log a n a N n NN R =∈+()log log a naN nN N R =∈+16、对数换底公式:log log log log (.)log b a a n e g N N bL N N e N L N N ====其中…称为的自然对数称为常数对数27182810由换底公式推出一些常用的结论:(1) (2)log log log log a b a b b a b a ==11或·log log a m a nb mnb =(3) (4)log log a na nb b =loga m na mn=(二)对数函数(一)对数函数的概念1.定义:函数,且叫做对数函数其中是自变量,函数的定0(log >=a x y a )1≠a x 义域是(0,+∞).(二)对数函数的图象和性质在同一坐标系中画出下列对数函数的图象○1(1) (2) x y 2log =xy 21log =(3) (4) x y 3log =xy 31log =○2一、选择题:1.3log 9log 28的值是( )A .32 B .1C .23 D .22.已知x =2+1,则lo g 4(x 3-x -6)等于()A.23 B.45 C.0D.213.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .b a b a +++12 B .b a b a +++12C .ba ba +-+12D .ba ba +-+124.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1]D .(-∞,1)5.已知f (e x )=x ,则f (5)等于()A .e 5B .5eC .ln5D .log 5e6.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于()A .}1|{>x xB .}0|{>x xC .}1|{-<x x D .}11|{>-<x x x 或7.计算:log 2.56.25+lg1001+ln e +3log 122+= .8.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为.9.已知f (x )=x 2+(lg a +2)x +lg b ,f (-1)=-2,当x ∈R 时f (x )≥2x 恒成立,求实数a 的值,并求此时f (x )的最小值?10.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;11.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.。
对数与对数函数知识点及题型归纳总结
对数与对数函数知识点及题型归纳总结知识点精讲一、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .二、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常用这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a(a,b0且a 1,b 1);题型归纳及思路提示题型 1 对数运算及对数方程、对数不等式 思路提示对数的有关运算问题要注意公式的顺用、逆用、变形用等 .对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正 . 一、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注 熟记对数的各种运算性质是求解本类问题的前提 变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 3lg522lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()A.( ,0)B.(0, )C.( ,log a 3)D.(log a 3, )分析 先将对数不等式化为同底的形式,再利用单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,又 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x 二、对数方程 例 2.59 解下列方151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析 利用对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,首先方程中的 x 应满足x 10,原方程可变形为 25 x 2525 ,得 x 25 ,从而 x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原方程的解 .2( 2)log x 21(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是方程的解 . 评注解对数方程一定要注意对数方程成立条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利用对数函数的单调性来比较对数的大小,通常借助 0和 1作为分界点解析 因为y log 5 x 在 (0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )A.a b cB.a c bC.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则( )A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 大纲全国理 9) 已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法 问题是数和形结合的护体解释 .它为研究函数问题提供了思维方向、对数函数的图像 例 2.62如图 2-15所示,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像, 对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x3 ,又 0 a 1,变式 1 已知函数 f (x ) 为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析 给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所示,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标大小为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能一次为 2,3, , .故选 B .32评注对 数函数 在同一 直角坐标系中 的图像的相对位置与底数大小的关系如图 2-16 所示,则 0 c d 1 a b .ylog a x(a 0且a 1)在第一象限的图像, a 越大,图像越靠近 x 轴; a 越小, 图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像大 致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点 二、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则A.a b C.c a cB.c b a b Db. ac 例 2.63 函数 y log a (x 1) 2的图像必过定点 分析 对数函数 y log a x(a 0且a 1)的图像过定点 (1,0) ,即 log a 1 0.解析因为 y log a x(a 0且a 1) 恒 过点 (1,0) ,故令 x 1 1,即 x 0 时 , y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a上的最大值与最小值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最大值与最小值又 f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2.(log 2 x)2解析因 为 对 数 函 数 的 底 a 1 , 所以函数f (x) log a x 在 区 间a,2a 上 单 调 递 增 , 故 f (x)maxlog a 2a, f(x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最大值是最小值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最大值和最小值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x212解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最大值与最小值的差为 题型 3 对数函数中的恒成立问题思路提示 (1)利用数形结合思想,结合对数函数的图像求解; (2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题,1 上恒成立 .解析依题意,函数 f (x)的图像如图 2-17所示,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析 因为f(x) lgxx 1 2x a 4x 在x3,1 上有意义,即1 2x40 在 ,1 上恒成立 .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 axx若 g(x) 存在最大值, 则 g(x) a 恒成立等价于 g(x)max a ;A.(0,1)B.(1,2)C. 1,2D. 0,121在2 ,1 上 为减函数 ,故 g(x) 在 ,1 上为增 函数, 所以对 任意的,1 时, g(x) g(1)因为 a ,1 上恒成立,所以 a所以 a 的取值范围是3,4若 g(x) 不存在最大值,设其值域为 g(x)m,n ,则 g(x) a 恒成立等价于 a n .变式 1 当 x (1,2) 时,不等式2x1log a x 恒成立,则 a 的取值范围是()1.设 a log 1 2,b log 1 3,c,则( )222A.a b cB.a c bC.b c aDb. a clog 2 ( x 1)(x 2)2.设函数 f(x)x1 12 1(x 2),若 f (x 0) 1 ,则 x 0 的取值范围是()A.( ,0) U(2,) B.(0,2)C.( , 1)U (3, )D.( 1,3)3.设定义在区间 (1 axb,b)上的函数 f (x) lg 是奇函数 (a,b R 且a1 2x2),则 A. 1, 2B. 0, 2C.(1, 2)D.(0, 2)4.已知 y log a (2ax) 在 0,1 上是 x 的减函数,则a 的取值范围是()最有效训练题0.2a b的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2, )评注 为了求 a 的取值范围, 把a 进行了分离, 变式 2 函数 f (x) log a (x 3a)(a0且a 1),当点 P(x, y) 是函数 y f(x)图像上的点时,点Q(x 2a, y)是函数 y g(x) 图像上的点 .1) 写出函数 y g(x) 的解析式; 2) 当 a a 2,a 3 时,恒有f(x) g(x) 1,试确定 a 的取值范围2y f (x) log 5 x 的零点个数是()A.3B.4C.5D.67.设函数 f(x) ln(x 1) ,若 1 a b 且f(a) f(b),则 a b 的取值范围是 ___________________ .8.已知 lg x lg y 2lg(2 x 3y) ,则 log 2 y ________________ .3x29.若函数 y log a (x 1 2 ax 1)在 1,2 上为增函数,则实数 a 的取值范围是 _____________ ..1 ax11.设 f(x) log 1 为奇函数, a 为常数 .2 x 1(1)求 a 的值;(2)证明: f(x)在区间 (1, )内单调递增;3)若对于区间 3,4 上的每一个 x 值,不等式 f (x)1212.已知集合 P,2 ,函数 y log 2( ax 22x 2) 的定义域为 Q .1)若 PI Q,求实数 a 的取值范围;2)若方程 log 2 ( ax 2 2x 2) 2在 P 内有解,求实数 a 的取值范围则函数2x ,10.已知函数f (x) log2x ,正实数m,n满足m n,且f(m) f(n),若f(x) 在区间m2,n 上的最大值为2 ,则m n __________________ .m 恒成立,求实数m 的取值范围2。
对数与对数函数题型归纳
对数与对数函数题型归纳题型一 对数式的化简与求值 【题型要点】对数运算的一般思路(1)转化:①利用a b =N ⇔b =log a N (a >0,且a ≠1)对题目条件进行转化. ②利用换底公式化为同底数的对数运算.(2)恒等式:关注log a 1=0,log a a N =N ,a log aN =N 的应用.(3)拆分:将真数化为积、商或底数的指数幂形式,正用对数的运算法则化简..(4)合并:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂的运算.【例1】(2019·全国卷Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________. 【例2】设2a =5b =m ,且1a +1b =2,则m 等于________.【例3】已知log 23=a ,3b =7,则log 37221的值为________.【例4】.计算log 29×log 34+2log 510+log 50.25等于( ) A .0 B .2 C .4D .6题型二 对数函数的图象及应用【题型要点】1.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b . 在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 2.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎪⎭⎫⎝⎛11,a ,特别地要注意a >1和0<a <1的两种不同情况. (2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【例1】已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x 与g (x )=-log b x 的图象可能是( )【例2】在同一直角坐标系中,函数y =1a x ,y =log a ⎪⎭⎫ ⎝⎛+21x (a >0,且a ≠1)的图象可能是( )题型三 对数函数的性质及应用 命题角度一 比较大小【题型要点】比较对数值大小的常见类型及解题方法50.5A .a <c <b B .a <b <c C .b <c <aD .c <a <b【例2】已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c的大小关系为()A .a >b >cB .b >a >cC .c >b >aD .c >a >b命题角度二 解对数不等式【题型要点】求解对数不等式的两种类型及方法【例3】设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【例4】已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________. 命题角度三 与对数函数有关的函数性质问题【题型要点】1.解与对数函数有关的函数性质问题的三个关注点 (1)定义域,所有问题都必须在定义域内讨论. (2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的. 2.解决与对数函数有关的函数的单调性问题的具体步骤【例5】函数y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .(2,+∞)【例6】.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.【例7】已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.题型四 数形结合法在对数函数问题中的应用【例1】设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【例2】设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.二、高效训练突破 一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤0,log 2x ,x >0,则⎪⎭⎫⎝⎛21f =( ) A .-1 B .1 C .-12D.222.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a3.已知a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <c <bD .a <b <c4.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )5.设a =log 0.30.4,b =log 30.4,则( ) A .ab <a +b <0 B .a +b <ab <0 C .ab <0<a +bD .a +b <0<ab6.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1 B .10.1 C .lg 10.1D .10-10.17.若log 2x =log 3y =log 5z <-1,则( ) A .2x <3y <5z B .5z <3y <2x C .3y <2x <5zD .5z <2x <3y8.已知2log 311=x x 1=log 132,x 2=2-12,x 3满足331x ⎪⎭⎫ ⎝⎛=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2二、填空题1.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则⎪⎭⎫⎝⎛21f =________. 2.已知2x =72y =A ,且1x +1y=2,则A 的值是________.3.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.4.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.5.已知函数y =log a (x -1)(a >0,且a ≠1)的图象过定点A ,若点A 也在函数f (x )=2x +b 的图象上,求f (log 23) 6.已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________.7.若函数f (x )=log a (x 2-ax +1)(a >0且a ≠1)没有最小值,则a 的取值范围是________. 8.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,则a 的取值范围为________. 三 解答题1.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡230,上的最大值.2.已知函数f(x)=log a x(a>0且a≠1)的图象过点(4,2).(1)求a的值;(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域;(3)在(2)的条件下,求g(x)的单调减区间.。
高考数学专题复习 对数及对数函数(原卷版+解析版)
第六讲 对数及对数函数【套路秘籍】一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M . 二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【套路修炼】考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40=. (2)若3a=5b=225,则1a +1b = 。
(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。
【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为. 2.若3x =4y=36,则2x +1y=.3. 设2a =5b=m ,且1a +1b=2,则m =.4.计算:(1-log 63)2+log 62·log 618log 64=.5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.7.方程33x -56=3x -1的实数解为.考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38【举一反三】1.下列函数是对数函数的是( )A .y =log 3(x +1)B .y =log a (2x)(a >0,a ≠1)C .y =lnxD .y =log a x 2(a >0,a ≠1) 2.下列函数,是对数函数的是 A .y=lg10xB .y=log 3x2C .y=lnxD .y=log13(x –1)3.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为A .(–∞,3]B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)考向三 对数的单调性【例3】(1)函数f(x)=lg(6x −x 2)的单调递减区间为 。
考点12对数与对数函数(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)
考点12对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.【知识点】1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作,其中叫做对数的底数,叫做真数.以10为底的对数叫做常用对数,记作.以e为底的对数叫做自然对数,记作.2.对数的性质与运算性质(1)对数的性质:log a1=,log a a=,log a Na=(a>0,且a≠1,N>0).(2)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:①log a(MN)=;②log a MN=;③log a M n=(n∈R).(3)对数换底公式:log a b=log c blog c a(a>0,且a≠1;b>0;c>0,且c≠1).3.对数函数的图象与性质a>10<a<1图象定义域值域性过定点,即x=1时,y=0当x >1时, ;当0<x <1时,当x >1时, ;当0<x <1时,质在(0,+∞)上是 在(0,+∞)上是4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 (a >0,且a ≠1)互为反函数,它们的图象关于直线 对称.常用结论1.log a b ·log b a =1,log m na b =n m log a b .2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象恒过点(1,0),(a ,1),(1a,-1).【核心题型】题型一 对数式的运算解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简.(2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.【例题1】(23-24高三下·湖南衡阳·阶段练习)集合{}1N |124,x A x -=Σ£则集合{}|log ,,a B m m b a b A ==Î的元素个数为( )A .3B .4C .5D .6【变式1】(2024·全国·模拟预测)在一个空房间中大声讲话会产生回音,这个现象叫做“混响”.用声强来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()0e tW t W t -=,其中t 是一个常数.把混响时间R T 定义为声音的声强衰减到原来的610-所需的时间,则R T 约为(参考数据:ln20.7,ln5 1.6»»)( )A .6.72tB .8.3tC .13.8tD .148t【变式2】(2024·辽宁丹东·一模)若23a=,35b =,54c =,则4log abc =( )A .-2B .12C D .1【变式3】(2024·全国·模拟预测)已知数列{}n a 为等差数列,且14681180a a a a a ++++=,则()257log a a +的值为( )A .4B .5C .6D .3题型二 对数函数的图象及应用对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.【例题2】(2024·北京东城·一模)设函数()11ln f x x=+,则( )A .()12f x f x æö+=ç÷èøB .()12f x f x æö-=ç÷èøC .()12f x f x æö=ç÷èøD .()12f x f x æö=ç÷èø【变式1】(2024·陕西咸阳·二模)已知集合105x A xx ìü+=³íý-îþ,(){}22log 16B x y x ==-,则()R A B Ç=ð( )A .()1,4-B .[]1,4-C .(]1,5-D .()4,5【变式2】(2024·全国·模拟预测)若3939log 2log 0m nm n -+-=,则mn的取值范围为( )A .()0,2B .(]0,2C .()2,+¥D .[)2,+¥【变式3】(2024·重庆·模拟预测)若函数()()2ln 23f x x ax a =-+在[)1,¥+上单调递增,则实数a 的取值范围是( )A .(,1-¥]B .(]1,1-C .[)1,¥-+D .[)1,¥+题型三 对数函数的性质及应用求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.命题点1 比较对数式的大小【例题3】(2024·云南·一模)已知()lg f x x =,若()11,,342a f b f c f æöæö===ç÷ç÷èøèø,则( )A .a b c >>B .a c b >>C .c a b>>D .b a c>>【变式1】(2024·全国·二模)已知()()30.43333,log ,log log a b a c a ===,则( )A .a b c >>B .a c b >>C .b c a>>D .c a b>>【变式2】(2024·浙江温州·二模)已知0.50.3sin0.5,3,log 0.5a b c ===,则,,a b c 的大小关系是( )A .a b c<<B .a c b<<C .c a b<<D .c b a<<【变式3】(2024·重庆·模拟预测)设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c<a<b B .b<c<a C .b a c<<D .a b c<<命题点2 解对数方程、不等式【例题4】(2023·山东·模拟预测)已知集合{}24830M x x x =-+<,{}30log 1N x x =<<,则M N È=( )A .1,32æöç÷èøB .31,2æöç÷èøC .()1,3D .13,22æöç÷èø【变式1】(2024·上海青浦·二模)已知()lg 1f x x =-,()lg 3g x x =-,若()()()()f x g x f x g x +=+,则满足条件的x 的取值范围是.【变式2】(2024·湖北·一模)已知函数()()1,0ln 1,0x x f x x x +£ì=í+>î,则关于x 的不等式()1f x ≤的解集为 .【变式3】(23-24高三下·北京·开学考试)函数()lg 52y x -的定义域是 .命题点3 对数函数的性质及应用【例题5】(2024·广东·一模)已知集合1111,,,,2,32323A ìü=--íýîþ,若,,a b c A Î且互不相等,则使得指数函数x y a =,对数函数log b y x =,幂函数c y x =中至少有两个函数在(0,)+¥上单调递增的有序数对(,,)a b c 的个数是( )A .16B .24C .32D .48【变式1】(2024·江西九江·二模)若函数()()ln 1f x ax =+在(1,2)上单调递减,则实数a 的取值范围是( )A .(),0¥-B .1,02æö-ç÷èøC .1,02éö-÷êëøD .[)1,0-【变式2】(2024·全国·模拟预测)在区间[]1,4内随机取一个数b ,则函数()()22log 28f x x bx =-+在区间[]1,2上单调递减的概率为( )A .116B .18C .14D .13【变式3】(2024·辽宁·一模)若函数()f x 使得数列()n a f n =,*n ÎN 为递减数列,则称函数()f x 为“数列保减函数”,已知函数()ln f x x ax =-为“数列保减函数”,则a 的取值范围( )A .[)ln 3,+¥B .()ln 2,+¥C .[)1,+¥D .()0,¥+【课后强化】基础保分练一、单选题1.(2023高三上·四川·学业考试)函数()ln f x x =的图象是( )A .B .C .D .2.(2024·广西·二模)已知函数()()()()2ln e 2e R f x x a x a éù=-++Îëû为偶函数,则()f x 的最小值为( )A .2B .0C .1D .ln23.(2024·湖南·一模)已知,a b ÎR ,且0,0a b >>,则1ab >是ln ln 0a b ×>的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(2024·浙江·二模)若函数()()ln e 1x f x ax =++为偶函数,则实数a 的值为( )A .12-B .0C .12D .1二、多选题5.(23-24高三上·河南·阶段练习)已知函数()ln f x x =,0a b <<,且()()f a f b =,则下列说法正确的是( )A .1ab =B .10ab =C .2+a b 的最小值为D .()()22118a b +++>6.(2024·甘肃武威·模拟预测)函数()log 11(0,1)a y x a a =-+>¹的图象恒过定点P ,若点P 在直线10(0,0)mx ny m n +-=>>上,则( )A .18mm ³B .22142m n +³C .214m n +>D .12813m n +>+三、填空题7.(2024·云南红河·二模)已知()f x 是定义在R 上的奇函数,当0x >时,()21log f x x =+,则()()20f f -+=.8.(23-24高三上·上海普陀·期末)已知()()2log 11a f x x =-+(0a >且1)a ¹,函数()y f x =的图象恒过定点P ,则点P 的坐标为 .四、解答题9.(23-24高三上·青海西宁·阶段练习)已知2log 0.2a =,0.22b =,0.30.2c =,比较a 、b 、c 的大小.10.(23-24高三上·上海长宁·期中)已知函数()log a f x x =,其中常数0a >且1a ¹.(1)判断上述函数在区间(]0,1上的单调性,并用函数单调性定义证明你的结论;(2)若0t >,利用上述函数在区间(]0,1上的单调性,讨论()f t 和221f t æöç÷+èø的大小关系,并述理由.11.(23-24高三上·山东泰安·阶段练习)已知()()213log 5f x x ax a =-+.(1)若2a =,求()f x 的值域;(2)若()f x 在[)1,+¥上单调递减,求a 的取值范围.综合提升练一、单选题1.(2024高三上·全国·竞赛)2log 4=( )A .1-B .0C .1D .22.(2024·陕西西安·一模)设集合11A x x ìü=<íýîþ,1lg B y y x ìü==íýîþ,则A B Ç=R ð( )A .RB .()0,¥+C .ÆD .()(),01,¥¥-È+3.(23-24高三上·四川成都·阶段练习)已知函数||2()e log ||x f x x =+,设0.12141(log ),(7),(log 25)3a f b f c f -===,则a ,b ,c 的大小关系为( )A .b a c <<B .c a b <<C .c b a <<D .a c b<<4.(23-24高三上·北京大兴·阶段练习)已知()f x 是定义在R 上周期为2的奇函数,当()0,1x Î时,()1lg1f x x=-,则()f x 在()1,2上是( ).A .增函数且()0f x <B .增函数且()0f x >C .减函数且()0f x <D .减函数且()0f x >5.(23-24高三上·山东济宁·期中)已知函数()()22,01ln ,0x x x f x x x x ì-+³ï=í-+<ïî,则函数()1y f f x =-éùëû的零点个数是( ).A .2B .3C .4D .56.(2024·全国·模拟预测)下列结论中错误的个数为( )①3lg21lge log e <(其中e 为自然对数的底数);②()12682éù-=-ëû;③lg3lg223=;④2ln 2e e x x x x-=(其中0x >).A .0B .1C .2D .37.(23-24高三下·山东菏泽·阶段练习)若对于任意正数x y ,,不等式()1ln ln x x x y ay +³-恒成立,则实数a 的取值范围是( )A .10,e æùçúèûB .311,e e éùêúëûC .21,e éö+¥÷êëøD .31,e éö+¥÷êëø8.(23-24高三下·陕西安康·阶段练习)已知98a =,109a m =-,87a n =-,则( )A .0m n >>B .0m n >>C .0n m >>D .0n m>>二、多选题9.(2024高三·全国·专题练习)已知定义在R 上的函数()()22log f x x ax b =++,()()()g x x a x b =-+,其中a ,b 分别是将一枚质地均匀的骰子抛掷两次得到的点数.设“函数()f x 的值域为[)0,¥+”为事件A ,“函数()g x 为偶函数”为事件B ,则下列结论正确的是( )A .()118P AB =B .()736P A B +=C .()12P B A =D .()130P B A =10.(23-24高三上·江苏淮安·期中)已知函数()()41log 142xf x x =+-,则下列说法中正确的是( )A .函数()f x 的图象关于y 轴对称B .函数()f x 的图象关于原点对称C .函数()f x 在[)0,¥+上是增函数D .函数()f x 的值域为1,2éö+¥÷êëø11.(2023·全国·模拟预测)已知log log a b c c >(,0a b >且,,1a b c ¹),则下列说法正确的是( )A .当1c >时,a b <B .当01c <<时,a b<C .当a b <时,(1)(1)(1)0a b c --->D .当1b a <<时,220c -<三、填空题12.(23-24高三上·上海静安·阶段练习)由函数的观点,不等式3log 33xx <-的解集是.13.(2024高三·全国·专题练习)已知12,x x 是方程2210log 10x x x x +=+=,的两个根,则12x x +=14.(2024·天津·一模)已知定义在()0,¥+上的函数()f x 满足()()5f x f x =,当[)1,5x Î时,()ln f x x =.若在区间[)1,25内,函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围为.四、解答题15.(23-24高三上·黑龙江齐齐哈尔·阶段练习)已知函数()()2lg 22f x ax ax =-+的定义域为R .(1)求实数a 的取值范围;(2)若0a >,函数()f x 在[]0,3上的最大值与最小值的和为lg 5,求实数a 的值.16.(2023·陕西·模拟预测)已知函数()11log ,112a xf x f x-æö==-ç÷+èø.(1)求a 及函数()f x 的定义域;(2)求函数()()()log 33a g x f x x =--的零点.17.(23-24高三上·湖北·期中)记n M 是各项均为正数的数列{}n a 的前n 项积,已知11a =,12n n n n a M M M +=-.(1)求{}n a 的通项公式;(2)证明:22n M n n +-£.18.(2023高三·全国·专题练习)设函数()()2ln 2x xx f a +=--的定义域为D ,若命题p :“x D $Î,()0f x £”为假命题,则a 的取值范围是?19.(23-24高三上·安徽淮南·阶段练习)(1)已知函数()()2223,log f x x x g x x m =-+=+,若对[][]122,4,16,32x x "Î$Î,使得()()12f x g x ³,求实数m 的取值范围;(2)若命题p :函数()()3log a f x x ax =-(0a >且1a ¹)在区间1,02æö-ç÷èø内单调递增是真命题,求a 的取值范围.拓展冲刺练一、单选题1.(23-24高三下·江西·阶段练习)已知实数a ,b 满足1622,log 3aa b +==,则( )A .a b >B .a b <C .a b =D .a ,b 的大小无法判断2.(2024·湖南岳阳·二模)设2log 3a =,3log 5b =,5log 8c =,则( )A .a b c>>B .b a c>>C .b c a>>D .c a b>>3.(2024·陕西西安·一模)已知函数()()2e e x x f x x -=+,若满足()3132log log 2e 0e f m f m æö+--<ç÷èø,则实数m 的取值范围为( )A .10,3æöç÷èøB .1,33æöç÷èøC .()0,3D .()3,+¥4.(23-24高三下·江西·开学考试)142857被称为世界上最神秘的数字,1428571142857,1428572285714,1428573428571,1428574571428,´=´=´=´=1428575714285,1428576857142´=´=,所得结果是这些数字反复出现,若0.142857ln1.285714e ,1,2a b c ==+=,则( )A .a b c >>B .c b a >>C .b a c>>D .a c b>>5.(23-24高三上·山东日照·阶段练习)已知函数()211()lg 220232023x xf x x x --=-++,则不等式()()33f x f x <+成立的x 的取值范围是( )A .13,42æö-ç÷èøB .123,0,432æöæö-ç÷ç÷èøèøU C .()31,00,2æö-ç÷èøU D .23,32æöç÷èø二、多选题6.(2024高三·全国·专题练习)(多选)若实数a ,b 满足log 3a <log 3b ,则下列各式一定正确的是( )A .3a <3b B .(13)a -b >1C .ln (b -a )>0D .log a 3<log b 37.(2023·辽宁抚顺·模拟预测)已知实数a ,b 满足0a >,1a ¹,0b >,且ln b =下列结论正确的是( )A .当01a <<时,b a <B .当1a >时,b a >C .log 1a b >D .log 2a b >三、填空题8.(23-24高三上·湖南·阶段练习)已知正实数,a b 满足:3327log a b ba=+,则a 与3b 大小关系为 .9.(2022·全国·模拟预测)已知数列{}n a 的通项公式为2n na =,若[]x 表示不超过x 的最大整数,如[0.5]0=,[lg 499]2=,则数列[]{}lg n a 的前2022项的和为 .四、解答题10.(23-24高三上·上海浦东新·期中)已知函数()21log 1ax f x x+=-是奇函数.(1)求实数a 的值;(2)当0b >,b ÎR ,解关于x 的不等式()21log xf x b+>.11.(2023·上海·模拟预测)已知()()e ln 1xf x x =+.记()()g x mf ax =,其中常数m ,0a >.(1)证明:对任意m ,0a >,曲线()y g x =过定点;(2)证明:对任意s ,0t >,()()()f s t f s f t +>+;(3)若对一切1x ³和一切使得()11g =的函数()y g x =,y x l ³恒成立,求实数l 的取值范围.。
对数公式及对数函数的总结
对数运算和对数函数对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数。
③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>。
常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数函数及其性质类型一、对数公式的应用1计算下列对数2解对数的值:18lg 7lg 37lg214lg -+-0=-+-1)21(2lg 225lg-1 13341log 2log 27+2(lg 8⎛⎫-⨯ ⎪⎝⎭的值0 提示:对数公式的运算如果0,1,0,0a a M N >≠>>,那么(1)加法:log log log ()a a a M N MN +=(2)减法:log log log a a aM M N N-= (3)数乘:log log ()na a n M M n R =∈(4)log a N a N =(5)log log (0,)b n a a nM M b n R b=≠∈ (6)换底公式:log log (0,1)log b a b NN b b a=>≠且(7)1log log =⋅a b b a (8)a b b a log 1log =类型二、求下列函数的定义域问题 1函数)13lg(13)(2++-=x xx x f 的定义域是)1,31(-2设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()4,11,4Y --3函数()f x =的定义域为(]1,0()0,1(Y -)提示:(1)分式函数,分母不为0,如0,1≠=x xy 。
(2)二次根式函数,被开方数大于等于0,0,≥=x x y 。
高一数学对数及对数式运算5大常考题型总结(解析版)
对数及对数式运算5大常考题型总结【知识点梳理 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数. (2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;①常用对数:以10为底,记为lg N ; ①自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①特殊对数:1log 0a =;log 1aa =;其中0a >且1a ≠①对数恒等式:log Na a N =(其中0a >且1a ≠,0N >) ①对数换底公式:log log log c a cb b a= 如:252log 7lg7ln7log 7=log 5lg5ln7==. (4)对数的运算法则:①外和内乘原理:log ()log log a a a MN M N =+; ①外差内除原理:log log log aa a MM N N=-; ①提公次方法:log log (m n a a nb b m m=,)n R ∈; ①指中有对,没心没肺:log a b a b =和log b a a b = 如:433log 81log 34==,2log 525=. (5)换底公式和对数运算的一些方法:①常用换底:log log log c a c b b a= 如:252log 7lg7ln7log 7=log 5lg5ln7==. ①倒数原理:1log log a b b a =如:321log 2log 3=. ①约分法则:log log log a b a b c c ⋅= 如: 232log 3log 4log 4=2⋅=;35157log 15log 7log 5log 31⋅⋅⋅=.①归一法则:()2lg 2+lg51lg 2lg5+lg 2+lg5=lg 2lg5+lg 2+lg5=lg5+lg 21=⇒⋅=.【题型目录】 题型一:对数的定义 题型二: 指数对数的互化 题型三: 对数的运算求值题型四:换底公式的应用 题型五:对数式的应用题 【典型例题】 题型一:对数的定义【例1】(2021·全国高一课前预习)在()()31log 32a b a -=-中,实数a 的取值范围为______. 【答案】1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解析】由题意,要使式子()()31log 32a b a -=-有意义,则满足310311320a a a ->⎧⎪-≠⎨⎪->⎩,解得1233a <<或2332a <<,即实数a 的取值范围为1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.【题型专练】1.(2022江苏省江阴市第一中学高一期中)使式子(31)log (3)x x --有意义的x 的取值范围是( ) A .3x > B .3x <C .133x <<D .133x <<且23x ≠【答案】D【分析】对数函数中,底数大于0且不等于1,真数大于0,列出不等式,求出x 的取值范围.【详解】由题意得:31031130x x x ->⎧⎪-≠⎨⎪->⎩,解得:133x <<且23x ≠.故选:D2.(2022全国·高一课时练习)若()()1log 1k k +-有意义,则实数k 的取值范围是______. 【答案】()()1,00,1-【分析】结合对数性质建立不等关系,即可求解.【详解】若()()1log 1k k +-有意义,则满足101110k k k +>⎧⎪+≠⎨⎪->⎩,解得()()1,00,1k ∈-⋃.故答案为:()()1,00,1-题型二: 指数对数的互化【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.(1)53=125; (2)4-2=116; (3)log 3127=-3. 【答案】(1)log 5125=3;(2)41log 216=-;(3)31327-= 【解析】(1)①53=125,①log 5125=3.(2)①21416-=,①41log 216=-. (3)①31log 327=-,①31327-=【题型专练】1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.(1)3128-=; (2)17ab ⎛⎫= ⎪⎝⎭;(3)1lg31000=-. 【答案】(1)21log 38=-;(2)17log b a =;(3)31101000-=.【解析】(1)由3128-=可得21log 38=-; (2)由17ab ⎛⎫= ⎪⎝⎭得17log b a =;(3)由1lg 31000=-可得31101000-= 2.(2022全国高一课时练习)指数式和对数式互相转化:(1)4e a =⇒____________.(2)31327-=⇒____________. (3)21log 416=-⇒____________.(4)2log 83=⇒____________. 【答案】ln 4a = 31log 327=- 41216-= 328= 【解析】log (0,1,0)ba a Nb N a a N =⇔=>≠>.故答案为:ln 4a =,31log 327=-,41216-=,328=. 题型三: 对数的运算求值【例1】(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .53【答案】C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a a a bb b -====. 故选:C.【例2】(2022陕西·长安一中高一期中)设函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)(log 6)f f -⋅=( )A .3B .6C .9D .12【答案】C【分析】根据给定分段函数直接计算即可得解【详解】函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)1log 43f -=+=,2log 62(log 6)223f =÷=,所以2(2)(log 6)9f f -⋅=. 故选:C【例3】(2022全国高一专题练习)计算:(1)659log 25log 3log 6⋅⋅=_________. (2)()()24525log 5log 0.2log 2log 0.5++=_________. (3)235111log log log 2589⋅⋅=_________. (4)()24892log 3log 9log 27log 3log 32n n n ++++⋅__________.(5)6log 2323)+-=__________. 【答案】114 12- 5212【解析】(1)原式226565365331log 5log 3log 62log 5log 3log 6log 5log 3log 62=⋅⋅=⋅⨯=⋅⋅lg5lg3lg 61lg 6lg5lg3=⋅⋅= (2)原式22552511log 5log log 2log log 5log 252⎛=++= ⎝25111log 5log 2224=⨯= (3)原式232235235log 5log 2log 32log 5(3)log 2(2)log 3---=⋅⋅=-⨯-⨯-23512log 5log 2log 312=-⋅⋅=-(4)原式()23223522223log 3log 3log 3log 3log 2n n n =++++⋅()22522222335log 3log 3log 3log 3log 2log 35lo 2g 22nn n =++++⋅=⨯= (5)26662log (2323)log (2323)log 61+-=+-==所以原式12故答案为:1,14,12-,52,12【例4】(2022·全国·高一课时练习)已知()122021log 5a x x x ⋅⋅⋅=,则222122021log log log a a a x x x ++⋅⋅⋅+=______.【答案】10【分析】由同底数对数加法公式以及log log ba a Nb N =,可得答案.【详解】因为()122021log 5a x x x ⋅⋅⋅=,所以222122021log log log a a a x x x ++⋅⋅⋅+()()222122021122021log 2log 10a a x x x x x x =⋅⋅⋅⋅⋅⋅=⋅⋅⋅=.故答案为:10.【例5】(2022·陕西·西安市雁塔区第二中学高二期末(文))计算:0ln 221.1e 0.5lg 252lg 2-+-++=__________ 【答案】1【分析】根据指数的运算以及对数的运算性质即可求出. 【详解】原式=()1242lg5lg2121+-++=-+=. 故答案为:1.【例6】(2021·江苏省沭阳高级中学高一期中)已知0x >,0y >,且lg 2lg8lg 2x y+=,则x y +的最小值为___________. 【答案】526+【分析】由lg 2lg8lg 2x y +=可得31x y +=,则()21213x y x y x y ⎛⎫+=++ ⎪⎝⎭化简后利用基本不等式可求得答案【详解】因为lg 2lg8lg 2x y +=,所以3lg(28)lg 2lg 2x y x y +⋅==, 所以31x y +=, 因为0x >,0y >,所以()21213x y x y x y ⎛⎫+=++ ⎪⎝⎭623y x x y=+++ 652526y xx y≥+⋅=+, 当且仅当6y xx y =,即3662,3x y -=-=时取等号,, 所以21x y +的最小值为526+,故答案为:526+ 【题型专练】1.(2020全国卷①)设3log 42a =,则4a -=( ) A .116B .19C .18D .16【答案】B【详解】因24log 4log 33==a a ,所以9342==a ,故11449a a -== 2.(2022·陕西·宝鸡市渭滨区教研室高二期末(文))若()()231log (1)x x f x x x ⎧≤=⎨>⎩,则()()016f f +=_________.【答案】5【分析】根据给定的分段函数,直接代值计算作答.【详解】因函数()()231log (1)x x f x x x ⎧≤=⎨>⎩,所以()()020163log 16145f f +=+=+=.故答案为:53.(2022长沙市明德中学高一开学考试)计算:2log 321lg252log ln1162+++=______ 【答案】12-【解析】原式()1lg 211lg5340lg5lg 212222=+-++=+-=-.故答案为:12- 4.(2022·江苏·高一)计算()32log 2lg 2lg 2lg5lg53-++-=___________ 【答案】12【分析】利用对数运算及指数式与对数式互化计算作答【详解】()332log 2log 2111lg 2lg 2lg5lg53lg 2(lg 2lg5)lg5(3)lg 2lg522--++-=++-=+-=.故答案为:126.(2022·陕西·交大附中模拟预测(理))设函数()()2log 4,22,2x x x f x x ⎧-+<=⎨>⎩,则()()24log 5f f -+=( )A .5B .6C .7D .8【答案】D【分析】根据给定的分段函数,判断自变量取值区间,再代入计算作答.【详解】因23252<<,则22log 53<<,而()()2log 4,22,2x x x f x x ⎧-+<=⎨>⎩,所以()()2log 5224log 5log (44)2358f f -+=++=+=.故选:D7.(2022江苏高二课时练习)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( )A .9B .8C .7D .6【答案】A【详解】因()lg lg lg 2a b a b +=+,所以()b a ab 2lg lg +=,所以b a ab 2+=,所以12=+abba ,即 121=+ab ,所以()9522212241222=+⋅≥+++=⎪⎭⎫⎝⎛++=+a b b a a b b a b a b a b a 8.(2022全国高一课时练习)计算:22log 4log 1323lg 3log 2lg 5+-⋅-=________.【答案】4【解析】原式0lg 243lg 3lg 541lg 2lg 54lg 3=+-⋅-=+--=. 故答案为:4.9.(2022全国高一课时练习)计算:(()22222lg5lg 2lg 21+-+____.【答案】1【解析】原式)()222lg5lg 22lg 21=-+)()22lg 2lg5lg 21=+-2lg 21= 212=-1= ,故答案为:1 .题型四:换底公式的应用【例1】(2022·全国·高一课时练习)已知53a =,32b =,则5log 10ab -=( ) A .1 B .2 C .5 D .4【答案】A【分析】先求得,a b ,然后结合对数运算求得正确答案. 【详解】①53a =,32b =,①5log 3a =,3log 2b =, 5553log 10log 10log 3log 2ab -=-⨯=5555555log 2log 10log 3log 10log 2log 51log 3-⨯=-==. 故选:A【例2】(2022全国高一课时练习)设25a b m ==,且112a b+=,则m =( )A 10B .10C .20D .100【答案】A【解析】由25a b m ==,可得2log a m =,5log b m =, 由换底公式得1log 2m a =,1log 5m b=, 所以11log 2log 5log 102m m m a b+=+==,又因为0m >,可得10m = 故选:A.【例3】(2022·全国·高一课时练习)已知lg 2a =,lg3b =,则36log 5=( ) A .221a b a +- B .12aa b-+ C .22a a b -+ D .122a a b -+ 【答案】D【分析】利用对数的运算法则及性质进行运算可得答案. 【详解】因为lg 2a =,lg3b =,所以()36lg 51lg 21log 5lg 362lg 2lg 322aa b--===++. 故选:D.【例4】(2022·天津·高考真题)化简()()48392log 3log 3log 2log 2++的值为( )A .1B .2C .4D .6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=, 故选:B【例5】(2021·江苏·高一专题练习)若实数a 、b 、c 满足2540320152019a b c ===,则下列式子正确的是A .122a b c +=B .221a b c +=C .112a b c +=D .212a b c+=【答案】A【分析】由指数式化对数式,然后利用换底公式得出20191log 52a =,20151log 403b =,20191log 2015c=,利用对数的运算性质和20155403=⨯可得出122a b c+=成立.【详解】由已知,得 2540320152019a b c ===,得 52log 2019a =, 403log 2019b =,22log 015019c =,所以21log 52a =,20191log 403b =,20191log 2015c=,而54032015⨯=,则201920192019log 5log 403log 2015+=, 所以1112a b c +=,即 122a b c+=. 故选A. 【题型专练】1.(2022湖南·长沙麓山国际实验学校高一开学考试)已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( ) A .d ac = B .a cd = C .c ab = D .d a c =+【答案】B【分析】根据对数运算法则,以及指对互化,即可判断选项. 【详解】5log ,lg b a b c ==,两式相除得55log ,log 10lg b a a b c c ==,又5510,log 10dd =∴=,所以a d cd a c=⇒=. 故选:B.2.(2022湖北黄石·高一期中)已知1a b >>,若5log log ,2b a a b b a a b +==,则2+a b =___________.【答案】8【分析】利用指数函数、对数函数的性质、运算法则直接求解. 【详解】解:由5log log 2a b b a +=,且log log 1a b b a ⋅= 所以log ,log a b b a 是方程25102x x -+=的两根, 解得log 2b a =或1log 2b a =, 又1a b >>,所以log 2b a =,即2a b =,又b a a b = 从而22b a b b a b =⇒=,且2a b =,则2b =,4a =. 所以28a b +=. 故答案为:8.3.(2021·上海高一专题练习)已知3log 2m =,用含m 的式子表示32log 18=_________. 【答案】25m m+ 【解析】3333325333log 18log 2log 9log 222log 18log 32log 25log 25m m +++====.故答案为:25m m+ 4.(2022·陕西·交大附中模拟预测(理))若23a b m ==,且112a b+=,则m =_____________. 【答案】6【分析】由23a b m ==,可得2log a m =,3log b m =,0m >,从而利用换底公式及对数的运算性质即可求解.【详解】解:因为23a b m ==,所以2log a m =,3log b m =,0m >,又112a b+=, 所以()2311log 2log 3log 232log lo 1g 1m m m a b m m+=+=+=⨯=, 所以26m =,所以6m =, 故答案为:6.5.(2022·全国·高一单元测试)把满足()231log 3log 4log 2n n +⨯⨯⋅⋅⋅⨯+,*n ∈N 为整数的n 叫作“贺数”,则在区间()1,50内所有“贺数”的个数是______. 【答案】4【分析】利用换底公式计算可得()()2312log 3log 4log 2log 2n n n +⨯⨯⋅⋅⋅⨯+=+,即可判断.【详解】解:因为()231log 3log 4log 2n n +⨯⨯⋅⋅⋅⨯+()()()()2lg 2lg 2lg3lg 4log 2lg 2lg3lg 1lg 2n n n n =++⨯⨯⋅⋅⋅⨯==++, 又2log 42=,2log 83=,2log 164=,2log 325=,2log 646=,……, 所以当24n +=,8,16,32时,()2log 2n +为整数, 所以在区间()1,50内“贺数”的个数是4. 故答案为:46.若b a ,均为不等于1的正数,且满足b a b a nm821,22==⎪⎭⎫⎝⎛=,且,则=+221n m .【答案】3【详解】因2ma 2log am =,因212nb ⎛⎫= ⎪⎝⎭,所以22221log log b b n -==,所以=+221n m b ab a b b a a 222222log log log 2log 22log 12log 2log 21=-=-=-+,因为b a 8=,所以38log log 22==ba题型五:对数式的应用题【例1】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg 2Em m E -=,其中星等为k m 的星的亮度为(12)k E k =,.已知太阳的星等是26.7-,天狼星的星等是1.45-,则太阳与天狼星的亮度的比值为( )A .10.110B .10.1C .lg10.1D .10.110-【答案】A【详解】设太阳的星等为126.7m =-,对应的亮度为1E ,天狼星的星等为2 1.45m =-,对应的亮度为2E , 则由12125lg 2E m m E -=得1251.4526.7lg 2E E -+=,即125lg25.252E E =,所以12lg 10.1E E =,所以10.11210E E =【例2】(2020•全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公 布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()1t K I t e --=+,其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln193≈)( ) A .60B .63C .66D .69【答案】C 【详解】由题意知0.23(*53)0.951t K K e --=+,所以0.23(*53)10.951t e --=+,即()0.23*5311002010.959519t e--+===,所以()0.23*53119t e--=,所以()0.23*531ln ln 19t e--=,即()0.23*533t --=-,所以3*53130.23t --=≈-,所以*66t ≈ 【例3】(2021•全国甲卷文)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(√1010≈1.259)( ) A .1.5 B .1.2 C .0.8 D .0.6【答案】C【详解】由题意知5lg 4.9V +=,所以lg 0.1V =-,即0.11101011100.81.2591010V -===≈≈ 【例4】(2022·全国·模拟预测)地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.里氏震级()M 是用距震中100千米处的标准地震仪所记录的地震波的最大振幅的对数值来表示的.里氏震级的计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,2021年7月28日发生在美国阿拉斯加半岛以南91公里处的8.2级地震的最大振幅约是2021年8月4日发生在日本本州近岸5.3级地震的最大振幅的( )倍(精确到1).(参考数据:0.410 2.512≈,0.510 3.162≈, 2.810631≈) A .794 B .631C .316D .251【答案】A【分析】将阿拉斯加半岛的震幅1A 和日本本州近岸5.3级地震的震幅2A 表示成指数形式,作商即可. 【详解】由题意00lg lg lgAM A A A =-=,即10M A A =,则010M A A =⋅; 当8.2M =时,地震的最大振幅8.21010A A =⋅,当 5.3M =时,地震的最大振幅 5.32010A A =⋅,所以8.22.90.40.5201 5.3201010101010 2.5123.16210079410A A A A ⋅===⨯⨯≈⨯⨯≈⋅, 即12794A A ≈; 故选:A .【例5】(2022·辽宁·抚顺市第二中学三模)一热水放在常温环境下经过t 分钟后的温度T 将合公式:()012tha a T T T T ⎛⎫-=- ⎪⎝⎭,其中a T 是环境温度,0T 为热水的初始温度,h 称为半衰期.一杯85①的热水,放置在25①的房间中,如果热水降温到55①,需要10分钟,则一杯100①的热水放置在25①的房间中,欲降温到55①,大约需要多少分钟?( )(lg 20.3010,lg30.4771≈≈) A .11.3 B .13.2 C .15.6 D .17.1【答案】B【分析】依题意求出半衰期h ,再把h 的值代入利用换底公式计算,即可求出结果.【详解】解:根据题意,1015525()(8525)2h-=-,即10121()2h =,解得10h =,1015525(10025)2t⎛⎫∴-=- ⎪⎝⎭,即101225t⎛⎫= ⎪⎝⎭,所以122lg22lg 2120.301015log 1.3221105lg 20.3010lg2t -⨯-====≈--,所以13.2t ≈; 故选:B 【题型专练】1.(2022·吉林一中高二阶段练习(理))深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg 20.3010≈)( ) A .128 B .130 C .132 D .134【答案】B【分析】由已知可得45D =,再由184)0.55(0.1G⨯<,结合指对数关系及对数函数的性质求解即可.【详解】由题设,18180.50.4D =,则45D =,所以184)0.55(0.1G ⨯<,即45118lg 518(1lg 2)18log 129.75lg 52lg 213lg 2G ->==≈--, 所以所需的训练迭代轮数至少为130次. 故选:B2.(2022·内蒙古包头·二模(理))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为k E ()1,2k =.已知星A 的星等是 3.5-,星B 的星等是 1.5-,则星A 与星B 的亮度的比值为( ) A .4510 B .4510-C .5410D .5410-【答案】A【分析】根据题意,运用代入法,结合对数与指数的互化公式进行求解即可. 【详解】因为12125lg 2E m m E -=,星A 的星等是 3.5-,星B 的星等是 1.5-,所以41115222541.5( 3.5)lg lg 1025E E E E E E ---=⇒=⇒=, 故选:A3.(2022福建省安溪第一中学高一月考)某种类型的细胞按如下规律分裂:每经过1小时,有约占总数12的细胞分裂一次,分裂细胞由1个细胞分裂成2个细胞,现有100个细胞按上述规律分裂,要使细胞总数超过1010个,需至少经过( )(参考数据:lg 20.3010=,lg30.4771=)A .44小时B .45小时C .46小时D .47小时【答案】C【详解】设x 小时后,细胞总数为y ,则x y ⎪⎭⎫ ⎝⎛⋅=23100,令101023100>⎪⎭⎫ ⎝⎛⋅x ,可得81023>⎪⎭⎫ ⎝⎛x,两边取对数可得3lg82x >,又因176.02lg 3lg 23lg =-=,所以45.45176.08≈>x 4.(2022河北高一期末)地震学家里克特制定了一种表明地震能量大小的尺度,就是使用测振仪衡量地震能量等级,其计算公式0lg lg M A A =-,M 表示里氏震级,A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测振仪距实际震中的距离造成的偏差),计算7.8级地震的最大振幅是4.5级地震的最大振幅的倍数 (答案精确到个位,参考数据:lg398 2.6≈,lg1995 3.3≈,lg 7.80.89≈,lg30.48≈)A .1995B .398C .89D .48【答案】A【详解】设7.8级地震的最大振幅是1A ,4.5级地震的最大振幅2A ,依题意得:01lg lg 8.7A A -=,02lg lg 5.4A A -=,两式相减得则由11223.3lg lg lgA A A A =-=,又因lg1995 3.3≈,所以121995A A = 5.某公司为激励创新,计划逐年加大研发奖金投入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。