八年级上册数学月考试题(三)
人教版八年级数学上册第三次月考试卷
人教版八年级数学上册第三次月考试卷人教版八年级数学上册第三次月考试卷一、选择题(每题2分,共12分)1.能用平方差公式计算的是( )A(x-2)(x+1) B(x+2)(2+x)C(x+y)(y- ) D(-a+b)(a-b)2.若x2+2(m-3)x+16是完全平方式,则m的值等于( )A 3B -5C 7D 7或-13 .若a≠b,则下列等式:①(a-b)2=(b-a)2 ②(a-b)2= -(b-a)2③(a+b)(a-b)=(-a-b)(b-a)④(-a-b)2=(a+b)2 其中正确的有( )A 1个B 2个C 3个D 4个4.若一个三角形中的最小角为ɑ,则ɑ的取值范围是( )A 0ºɑ180ºB 0ºɑ90ºC 60º≤ɑ90ºD 0ºɑ≤60º5.下列运算正确的是( )A x4+x2=x6B x2●x3=x6C (x2)3=x6D x2-y2=(x-y)26.直线a.b.c.表示三条互相交叉的公路,现在要建一个货物中转站,要求他到三条公路的距离相等,则可供选择的地址有( )A 1处B 2处C 3处D 4处二、填空(每题3分,共24分):7. -t3 ‧ (-t)4 ‧ (-t)3= ________8. 分解因式 m2n-6mn+9n=________9. 等腰三角形的一个外角是100°,则他的底角的度数是________10. 若x-m与2x+3的乘积中不含一次项,则m的值为_______11. (-)2002×(-1.5)2003=________12.直角坐标系中,点A(-2,2), B(0,1), 点P在x轴上,且△PAB是等腰三角形,则满足条件的点P共有______个13.如果(4a2b-3ab2)÷M=-4a+3b,那么单项式M=________14.平面直角坐标系中点P(2-m, m)关于x轴对称的点在第四象限,则m的取值范围是_______三、解答(每题5分,共20分)15.化简求值x(x-y)-y(y-x)+(x-y)2 其中x=-1,y=-216.如图,学校校园内有一块三角形空地,计划在这块空地上建成一个花园,美化校园环境,预计花园每平方米造价为50元,学校建这个花园需要投资多少?17.平面直角坐标中,每个小正方形的边长都为1个单位长度(1)画出 ABC向下平移3个单位长度的 A1B1C1(2)画出 A1B1C1关于y轴对称的 A2B2C2(3)写出 A1 、A2 的坐标18.△ABC中,AB=AD=DC,∠BAD=26°求∠B和∠C的度数四、解答题(每题7分,共28分)19.如图,D、E分别是AB、AC的中点,CD⊥AC于点D,BE⊥AC于点E 求证:AB=AC20.已知,a-b=3,ab=4求下列各式的值:(1)a2+b2(2)a+b21.如图,点M、N、B、G都在坐标轴上,将△MOG绕点O顺时针旋转90°正好与△BON重合,延长MG交BN于点P求证:(1)BG=OM-ON (2)MP⊥BN22.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,BD=DF(1)求证:CF=EB:(2)请你判断AE,AF与BE的大小关系,并说明理由五、解答题(每题8分,共16分)23 . 如图,EG∥AF,请你从下面三个条件中,选两个作为已知条件,另一个作为结论,推出一个正确的命题,并证明这个命题(只写出一种情况)①AB=AC;②DE=DF;③BE=CF.24. 先阅读下面的内容,再解决问题例题,若m2+2mn+2n2-6n+9=0,求m和n的值解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0,∴(m+n)2+(n-3)2=0, ∴m+n=0,n-3=0,∴m=-3,n=3问题:(1)若x2+2y2+2xy-4y+4=0,求xy的值;(2)已知啊,a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,求c的取值范围六、解答题(每题10分,共20分)25.乘法公式的探究及应用(1)如图14-Z-1①,可以求出阴影部分的面积是________(写成两数平方差的形式)(2)若将图①的阴影部分裁剪下来,重新拼成一个长方形(如图②),则他的宽是______,长是________,面积是_________________(写成多项式乘法的形式)(3)比较图①,图②中阴影部分的面积,可以得到公式______________(用式子表示)(4)运用你所得的公式,计算下列各题:①(n+1-m)(n+1+m); ②1003×99726.如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′与∠A的数量关系是_______________研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是______ 研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是___________.初二数学学习方法与技巧要有复习意识在初二数学的学习过程中,一定要善于及时复习,这样学生会逐渐养成一个良好的复习习惯,对于之前所学的数学知识如果能够及时复习,那么在初二数学成绩上面一定会有所提高的。
最新人教版八年级数学上册第三次月考试题
人教版八年级数学上册第三次月考试题一、单项选择题:(本大题共10个小题,每小题3分,共30分.)1.小颖用民度为奇数的三根木棒搭一个三角形,其中两根木棒的长度分别为7cm和3cm,则第三根木棒的长度是()A.7cm B.8cm C.11cm D.13cin2.下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.3.如果等腰三角形的一个角是80°,那么它的顶角是()A.80°或50°B.50°或20°C.50°D.80°或20°4.下列计算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a3)3=a9D.(3a3)3=9a35.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x、y(x>y)表示小长方形的长和宽,则下列关系式中错误的是()A.x2+y2=100 B.x﹣y=2 C.x+y=12 D.xy=356.若关于x的分式方程无解,则m的值是()A.m=2或m =6 B.m=2 C .m=6 D.m=2或m=﹣6 7.“绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在2019年3月12日植树节前植树2000棵,在植树400棵后,为了加快任务进程,采用新设备,植树效率比原来提升了25%,结果比原计划提前5天完成所有计划,设原计划每天植树x 棵,依题意可列方程()A.﹣=5B.﹣=5C.﹣=5D.﹣=58.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD9.如图,在△ABC中,∠CAB=90°,∠ABC=60°,BD平分∠ABC,若CD=6,则AD的长为()A.2 B.3 C.4 D.4.510.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B .相交C.垂直D.平行、相交或垂直二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:x3﹣2x2+x=.12.当x=1时,分式无意义;当x=2时,分式的值为零,则a+b=.13.若a﹣b=1,ab=2,那么a+b的值为.14.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=度.15.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程.16.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.三、解答题(本大题共7小题,共52分.解答应写明文字说明和运算步骤)17.(10分)计算(1)4(a﹣b)2﹣(2a+b)(2a﹣b).(2)先化简,再求值(a+2﹣)÷,其中a=1(3)解方程:﹣1=18.(6分)给出下列等式:21﹣20=20,22﹣21=21,23﹣22=22,24﹣23=23,……(1)探索上面式子的规律,试写出第n个等式,并证明其成立.(2)运用上述规律计算20+21+22+…+22017+22018值.19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.20.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上求作一点P,使△PAC的周长最小,并直接写出P的坐标.21.(6分)为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.22.(8分)如图,在平面直角坐标系中,等腰直角△ABC,AB⊥BC,AB=BC,点C在第一象限.已知点A(m,0),B(0,n)(n>m>0),点P在线段OB上,且OP=OA.(1)点C的坐标为(用含m,n的式子表示)(2)求证:CP⊥AP.23.(10分在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.(1)填空:∠C=,∠DBC=;(2)求证:△BDE≌△CDF.(3)如图2,D从点C出发,点E在PD上,以每秒1个单位的速度向终点A运动,过点B 作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤1≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.人教版八年级期中考试数学试题一、选择题(每小题4分,共40分)1.下列学习用具图标中,是轴对称图形的是()A.B.C .D.2.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数()A.50°B.100°C.70°D.80°3.如图,点B是线段AC上的一点,点D和点E在直线AC的上方,且AE∥BD.若∠C=70°,BC=BD,则∠A的度数为()A .30°B.40°C.45°D.50°4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点5.如图,AD是△ABC中∠BAC的角平分线,DE ⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.56.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm 7.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边8.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°9.三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR =PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是()A.①②B.①②③C.①②④D.①②③④二、填空题(每小题5分,共20分)11.若多边形的每个内角都相等,每个内角与相邻外角的差为100°,则这个多边形的边数为.12.如图,在等腰三角形ABC中,AB=AC,∠BAC=120°,分别以点C,A为圆心、大于CA 的长为半径画弧两弧交于点M,N,作直线MN分别交CB,CA于点E,F,则线段BE与线段EC的数量关系是.13.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=度.14.在等腰△ABC中,AB=AC,∠BAC=20°,点D在直线BC上,且CD=AC,连接AD,则∠ADC的度数为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD=12,试求PC+PE的最小值.16.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,BD=BC,过点D作AB的垂线交AC于点E,CD交BE于点F.求证:BE垂直平分CD.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.18.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,AB∥CD,O为∠BAC、∠DCA的平分线的交点,OE⊥AC于E,且OE =2,求AB与CD之间的距离.20.(10分)如图所示,(1)写出顶点C的坐标;(2)作△ABC关于y轴对称的△A1B1C1,并写出B1的坐标;(3)若点A2(a,b)与点A关于x轴对称,求a﹣b的值.六、(本题满分12分)21.(12分)如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.七、(本题满分12分)22.(12分)如图,在等腰△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=36°时,求∠DEF的度数.八、(本题满分14分)23.(14分)如图1,在Rt△ABC中,∠C=90°,∠A=30°,点D是AB中点,(1)点E为边AC上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(i)求证:△BCD为等边三角形;(ii)随着点E位置的变化,∠DBF的度数是否变化?若不变化,求出∠DBF的度数;(2)DP⊥AB交AC于点P,点E为线段AP上一点,连结BE,作∠BEQ=60°,如图2所示,EQ交PD延长线于Q,探究线段PE,PQ与AP之间的数量关系,并证明.。
人教版八年级上数学第三次月考试题
八年级上第三次月考 数 学 试 题(时间120分钟,满分100分)班级________ 姓名________ 得分________一、选择题(每小题3分,共24分)1.在实数3140.5180.67327233π••----,,,,,,中,无理数有( )个A .1B .2C .3D .42. 32-的绝对值是( )A .32B .32-C .8D .-83.下列说法正确的是( )A .-4是-16的平方根B .4是(-4)2的一个平方根C .(-6)2的平方根是-6D .16的平方根是±44.已知一次函数(1)y a x b =-+的图象如图所示,则a 的取值范围是( ) A .1a >B .1a <C .0a >D .0a <5.满足下列哪种条件时,能判定△ABC 与△DEF 全等的是( )A .∠A=∠E ,AB=EF ,∠B=∠D ;B .AB=DE ,BC=EF ,∠A=∠E ;C .∠A=∠D ,AB=DE ,∠B=∠E ; D .AB=DE ,BC=EF ,∠C=∠F.6.已知一次函数的图象与直线y=-x +1平行,且过点(8,2),则此一次函数的解析式为( ) A .y=x -6B .y=-x +6C .y=-x +10D .y=2x -187.将函数y = 2 x + 4 的图象向下平移2个单位,所得的函数解析式为( ) A 、y = 2 x + 6 B 、y = 2 x + 2 C 、y = 2 x D 、y = 2 x – 2 8.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )(第4题图)A. B. C. D.二、填空题(每小题3分,共18分)1.若函数28(3)m y m x -=-是正比例函数,则常数m 的值是 . 2.函数3y x =-自变量x 取值范围是 . 3.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 . 4.已知0|21|2=+-++a b a ,则2a+3b=____________. 5.如图,已知函数y =3x +b 和y =a x -3的图象交于点P (-2,-5),则根据图象可得,不等式3x +b >a x -3的解集是______________.6.已知一个等腰三角形两边长分别为5,6,则它的周长为________. 三、解答题(每小题5分,共25分)1.解方程: 2(3)115x --= 2. 化简:622163-+---3.计算:2331(3)4()2272-+⨯--+.(第5题图)4.已知正比例函数图象经过点(-1,2)⑴求此正比例函数解析式;⑵点(2,-5)是否在此函数图象上?5. 已知:如图, AB=AC , ∠B=∠C.BE、DC交于O点.求证:BD=CE.四、解答题(每小题6分,共计18分)1.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)ABC △的面积是 .(2)在图中作出ABC △关于y 轴的对称图形111A B C △. (3)写出点111A B C ,,的坐标.2.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,求△ABC 的周长.xy A B CO52 4 6 -5-23、已知21x -的平方根是5±,31x y --的立方根是3,求68x y +-的算术平方根.五、解答题(1小题7分,2小题8分,共计15分)1、折线ABC 是甲地向乙地打长途 所需要付的 费y (元)与通话时间t (分钟)之间关系的图象(注意:通话时间不足1分钟按1•分钟计费).⑴通话1分钟,要付 费多少元?通话5分钟要付多少 费?⑵通话多少分钟内,所支付的 费一样多? ⑶通话3.2分钟应付 费多少元?y(元)t(分)52.54.53CBAO2、如图,直线6y kx=+与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0).⑴求k的值;⑵若点P(),x y是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;⑶探究:当点P运动到什么位置时,△OPA的面积为278,并说明理由.。
人教版2022-2023学年八年级数学上册第三次月考测试题(附答案)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题;共60分1.江西景德镇的青花瓷是中华陶瓷工艺的珍品,下列青花瓷上的青花图案既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列计算中正确的是()A.3a2+2a2=5a4B.(﹣2a)2÷a2=4C.(2a2)3=2a6D.a(a﹣b+1)=a2﹣ab3.一个等腰三角形的两条边长分别是方程2x2﹣13x+15=0的两根,则该等腰三角形的周长是()A.8B.11.5C.10D.8或11.54.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC5.下列等式恒成立的是()A.B.C.=D.6.如图所示,AC和BD相交于O,AO=DO,AB⊥AC,CD⊥BD,那么AB与CD的关系是()A.一定相等B.可能相等也可能不相等C.一定不相等D.增加条件后,它们相等7.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°8.如图,已知MN是△ABC边AB的垂直平分线,垂足为F,AD是∠CAB的平分线,且MN与AD交于O.连接BO并延长AC于E,则下列结论中,不一定成立的是()A.∠CAD=∠BAD B.OE=OF C.AF=BF D.OA=OB9.若x+y=2,x2﹣y2=4,则2x﹣2y的值为()A.2B.3C.4D.510.把一个铁丝围成的长为8、宽为6的长方形改成一个正方形,则这个正方形与原来的长方形相比()A.面积与周长都不变B.面积相等但周长发生变化C.周长相等但面积发生变化D.面积与周长都发生变化11.如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°12.若关于x的分式方程无解,则a的值为()A.﹣2或1B.1C.0或1D.3二、填空题;共30分13.若分式有意义,则x的取值范围是.14.若一个六边形六个外角的度数比是1:2:2:4:5:6,则这个六边形中,最大内角的度数为.15.如图,AB=AD,CB=CD,∠B=35°,∠BAD=46°,则∠ACD的度数是.16.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是边BC、AB上的任意一点,把△ABC沿着直线DE折叠,顶点B的对应点是B′,如果点B′和顶点A 重合,则CD=cm.17.如图,已知在△ABC中,AB=6,AC=8,BC=10,P为BC边上一个动点,连接AP,DE⊥AP,分别交AB、AC于点D、E,垂足为M,点N为DE的中点,若四边形ADPE 的面积为18,则AN的最大值为.18.如图,在等腰三角形ABC中,BE平分∠ABC,DE⊥AB于点D,腰AB的长比底BC 多3,△ABC的周长和面积都是24,则DE=.三、解答题;共60分19.分解因式:(1)9(m+n)2﹣(m﹣n)2.(2)(x2﹣6x)2+18(x2﹣6x)+81.(3)﹣4m3+16m2﹣26m.(4)(a2+4)2﹣16a2.20.计算:(1)(﹣x2)3•(x4)2;(2)(﹣m4)3+(﹣m3)4﹣2m5•m7;(3)(6a2b﹣5a2c2)÷(﹣3a2);(4).21.如图,数轴上点A、B对应的数分别是a和3,点A在点B的左边,AB=5.点P从A 点出发,以2个单位长度/秒的速度向右运动.同时,点Q从B点出发,以1个单位长度/秒的速度向左运动.(1)求a的值;(2)求经过多长时间PQ=1.22.如图,∠BAC=90°,AB=AC,D,E,A在一条直线上,BD⊥DE于点D,CE⊥DE 于点E,(1)若BC在DE的同侧(如图①)求证:DE=BD+CE.(2)若BC在DE的两侧(如图②),探究DE,BD,CE三条线段之间的关系,并说明理由.23.为了改善我县的交通现状,县政府决定扩建某段公路,甲、乙两工程队承包该段公路的修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的1.5倍;若由甲队先修建90天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为40万元,乙队每天的施工费用为52万元,工程预算的施工费用为6000万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?24.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)25.如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=3,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?26.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.参考答案一、选择题;共60分1.解:A、既是轴对称图形又是中心对称图形,故A正确;B、是轴对称图形,不是中心对称图形,故B错误;C、既不是轴对称图形,也不是中心对称图形,故C错误;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:A.2.解:A、原式=5a2,不符合题意;B、原式=4,符合题意;C、原式=8a6,不符合题意;D、原式=a2﹣ab+a,不符合题意,故选:B.3.解:解方程2x2﹣13x+15=0得:x=5或1.5,①当等腰三角形的三边为5,5,1.5时,能组成三角形,三角形的周长是5+5+1.5=11.5,②当等腰三角形的三边为1.5,1.5,5时,,1.5+1.5<5,不符合三角形的三边关系定理,不能组成三角形,舍去,∴该等腰三角形的周长是11.5.故选:B.4.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.5.解:A.+=,故A不符合题意;B.=,故B符合题意;C.=,故C不符合题意;D.=﹣,故D不符合题意;故选:B.6.解:∵AB⊥AC,CD⊥BD,∴∠A=∠D=90°,在△OAB和△ODC中,,∴△OAB≌△ODC(ASA),∴AB=CD,故选:A.7.解:∵CD∥AB,∠ECD=43°,∴∠A=∠ECD=43°,∵BC⊥AE,∴∠ACB=90°,∴∠B=90°﹣∠A=90°﹣43°=47°.故选:C.8.解:∵AD是∠CAB的平分线,∴∠CAD=∠BAD,∴A正确;∵BE不一定垂直AC,∴无法判断OE、OF是否相等,∴B错误;∵MN是边AB的垂直平分线,∴AF=BF,OA=OB,∴C、D正确.故选:B.9.解:∵x+y=2,x2﹣y2=4,∴(x+y)(x﹣y)=4,∴x﹣y=2,∴2x﹣2y=2(x﹣y)=2×2=4,故选:C.10.解:设正方形的边长x,根据题意得:2×(8+6)=4x,解得:x=7,∴长方形的面积为8×6=48,正方形的面积为7×7=49,48≠49,∴这个正方形与原来的长方形相比周长相等但面积发生变化.故选:C.11.解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.12.解:去分母得:x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理,得(a+2)x=3,1°由分式方程无解,得到x﹣1=0或x=0,即x=1或x=0,把x=1代入整式方程①得:a=1,把x=0代入整式方程①得:3=0(舍去),综上,a=1,2°(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=﹣2时,整式方程无解,综上所述,当a=1或a=﹣2时,原方程无解,故选:A.二、填空题;共30分13.解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.14.解:六边形的内角和为:(6﹣2)×180°=720°,∴最大的内角为720°×=720°×=216°.故答案为:216°.15.解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D=35°,∠BAC=∠DAC=∠BAD=×46°=23°,∴∠ACD=180°﹣∠D﹣∠DAC=180°﹣35°﹣23°=122°,故答案为:122°.16.解:设CD=xcm,则BD=(16﹣x)cm,由折叠得:AD=BD=16﹣x,在Rt△ACD中,由勾股定理得:CD2+AC2=AD2,∴x2+122=(16﹣x)2,解得:x=,即CD=(cm).故答案为:.17.解:∵△ABC中,AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵N为DE的中点,∴AN=DE,∵四边形ADPE的面积为18,DE⊥AP,∴DE•AP=18,即AN•AP=18,当AP取最小值时,AN有最大值,故当AP⊥BC时,AP值最小,最小值为=,此时AN=18÷=.故答案为:.18.解:如图,作EH⊥BC于H.∵EB平分∠ABC,ED⊥AB,EH⊥BC,∴ED=EH,设ED=EH=x,BC=y则AB=AC=y+3,由题意:,解得,∴DE=,故答案为.三、解答题;共60分19.解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(3m+3n+m﹣n)(3m+3n﹣m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).(2)(x2﹣6x)2+18(x2﹣6x)+81=(x2﹣6x+9)2=[(x﹣3)2]2=(x﹣3)4.(3)﹣4m3+16m2﹣26m=﹣2m(2m2﹣8m+13).(4)(a2+4)2﹣16a2=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2.20.解:(1)(﹣x2)3⋅(x4)2=﹣x6⋅x8=﹣x14;(2)(﹣m4)3+(﹣m3)4﹣2m5•m7=﹣m12+m12﹣2m12=﹣2m12;(3)(6a2b﹣5a2c2)÷(﹣3a2)=;(4)===.21.解:(1)∵B对应的数是3,点A在点B的左边,AB=5,∴a=3﹣5=﹣2,∴a的值是﹣2;(2)设运动时间为t秒,则P表示的数是﹣2+2t,Q表示的数是3﹣t,根据题意得:|﹣2+2t﹣(3﹣t)|=1,解得t=或t=2,∴经过秒或2秒,PQ=1.22.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB+∠AEC=90°,∴∠DAB+∠ABD=90°,∵∠BAC=90°,∴∠DAB+∠EAC=90°,∴∠EAC=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(2)解:DE=CE﹣DB,理由如下:由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴DE=CE﹣DB.23.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程所需天数是1.5x天,依题意得:,解得x=110,检验,当x=110时,1.5x=165≠0,所以原方程的解为x=110.所以1.5x=1.5×110=165(天).答:乙队单独完成这项工程需110天,甲队单独完成这项工程需165天.(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=66,需要施工的费用:66×(40+52)=6072(万元),∵6072>6000,6072﹣6000=72(万元),∴工程预算的费用不够用,需要追加预算72万元.24.解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)如图,(3)设DG长为x.∵S1=a[x﹣(a+2b)]=ax﹣a2﹣2ab,S2=2b(x﹣a)=2bx﹣2ab,∴S=S2﹣S1=(2bx﹣2ab)﹣(ax﹣a2﹣2ab)=(2b﹣a)x+a2,由题意得,若S为定值,则S将不随x的变化而变化,可知当2b﹣a=0时,即a=2b时,S=a2为定值,故答案为:a=2b,a2.25.解:(1)∵AD∥BC,∴∠F=∠DAE.又∵∠FEC=∠AED,∴∠ECF=∠ADE,∵E为CD中点,∴CE=DE,在△FEC与△AED中,,∴△FEC≌△AED(ASA),∴CF=AD.(2)当BC=5时,点B在线段AF的垂直平分线上,理由:∵BC=5,AD=3,AB=8,∴AB=BC+AD,又∵CF=AD,BC+CF=BF,∴AB=BF,∴△ABF是等腰三角形,∴点B在AF的垂直平分线上.26.(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.。
鲁教版2022-2023学年八年级数学上册第三次月考测试题(附答案)
鲁教版2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(本大题共15个小题,共60分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列等式从左到右的变形,属于因式分解的是()A.m(a+b)=ma+mb B.x2+2x+1=x(x+2)+1C.x2+x=x2(1+)D.x2﹣9=(x+3)(x﹣3)3.下列因式分解正确的是()A.(a﹣3)2=a2﹣6a+9B.﹣4a+a2=﹣a(4+a)C.a2+4a+4=(a+2)2D.a2﹣2a+1=a(a﹣2)+14.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.405.若x、y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.B.C.D.6.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是()A.=+1B.=+1C.=﹣1D.=﹣17.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣8.若关于x的分式方程=3的解是正数,则m的取值范围是()A.m>﹣3B.m≠1C.m>﹣3且m≠﹣2D.m>﹣3且m≠19.学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是()A.16,15B.11,15C.8,8.5D.8,910.若x1,x2,x3,x4的平均数为4,x5,x6,x7,…,x10的平均数为6,则x1,x2,…,x10的平均数为()A.5B.4.8C.5.2D.811.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.D.12.如图,将线段AB平移到线段CD的位置,则a+b的值为()A.4B.0C.3D.﹣513.在一次数学测试,某小组五名同学的成绩(单位:分)如下表(有两个数据被遮盖):组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A.80、2B.80、10C.78、2D.78、1014.如图,平行四边形ABCD中,AE平分∠DAB,AB=7,BC=4,则CE等于()A.6B.5C.4D.315.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF 相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①BD=BE;②∠A =∠BHE;③△BCF≌△DCE;④AB=BH.其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本大题共6个小题,共24分)16.a、b、c是等腰△ABC的三边长,其中a、b满足a2+b2﹣4a﹣10b+29=0,则△ABC的周长为17.若关于x的分式方程+=1无解,则m的值是.18.小明数学的平时成绩,期中考试成绩,期末考试成绩分别是:90分,80分,84分.学校按平时成绩:期中考试成绩:期末考试成绩=3:3:4进行总评,那么小明本学期数学总评分应为分.19.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为.20.如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED的度数为.(用含有α的式子表示)21.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.三、解答题(本大题共7个小题,共66分)22.请将下列各式因式分解:(1)3a(x﹣y)﹣5b(y﹣x);(2)x2(a﹣b)2﹣y2(b﹣a)2.(3)2x m y n﹣1﹣4x m﹣1y n(m,n均为大于1的整数).23.解方程:(1)=;(2)=+1.24.分式化简求值:(1)已知:x2+x﹣4=0,求代数式的值;(2),a取﹣1、0、1、2中的一个数.25.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)画出将△ABC绕点O顺时针旋转90度得到的图形△A1B1C1,并写出点A1的坐标;(2)画出△ABC关于点O的中心对称图形△A2B2C2,并写出点A2的坐标;(3)求△ABC的面积.26.为配合学校贯彻落实“双减”政策,搞好课后辅导服务活动.某文化用品商店用1000元购进了一批圆规,很快销售一空;商店又用1000元购进了第二批该种圆规,但进价比原来上涨了25%,结果第二次所购进圆规的数量比第一次少40件.(1)求两批圆规购进的进价分别是多少;(2)若商店将第一批圆规以每件7元,第二批圆规以每件8元的价格全部售出,则共可盈利多少元?27.如图,△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)将△ADE旋转,使得D、E、B三点在一条直线上时,求证:BD=CE;(2)在(1)的条件下,当BC=10,BE=6时,求DE的长.28.2021年4月13日,日本政府召开内阁会议正式决定,将福岛第一核电站超过100万公吨的核污水经过滤并稀释后排入大海,这一决定遭到包括福岛民众、日本渔民乃至国际社会的谴责和质疑.鉴于此次事件的恶劣影响,某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示.根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为分;(2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好.参考答案与试题解析一、选择题(本大题共15个小题,共60分)1.解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.2.解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.3.解:A、(a﹣3)2=a2﹣6a+9,是整式的乘法运算,故此选项不合题意;B、﹣4a+a2=﹣a(4﹣a),故此选项错误;C、a2+4a+4=(a+2)2,是因式分解,故此选项符合题意;D、a2﹣2a+1=a(a﹣2)+1,不符合因式分解的定义,故此选项不合题意;故选:C.4.解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.5.解:A.,不符合题意;B.,不符合题意;C.,不符合题意;D.,符合题意;故选:D.6.解:设甲单位有x人捐款,则乙单位有(x+50)人捐款,由题意,得=+1.故选:A.7.解:+==3,即a+2b=6ab,则原式===﹣,故选:D.8.解:去分母得:2x+m=3(x﹣1),解得:x=m+3,由分式方程解为正数,得到m+3>0,且m+3≠1,解得:m>﹣3且m≠﹣2.故选:C.9.解:由于一共有50个数据,其中8小时的人数最多,有16人,所以这组数据的众数为8小时,这50个数据的第25、26个数据分别为8、9,所以这组数据的中位数为=8.5(小时),故选:C.10.解:由题意可得,x1,x2,…,x10的平均数为:===5.2,故选:C.11.解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B',∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BCB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6,故选:D.12.解:由题意,线段AB向左平移3个单位,再向上平移4个单位得到线段CD,∴a=5﹣3=2,b=﹣2+4=2,∴a+b=4,故选:A.13.解:根据题意得:80×5﹣(81+79+80+82)=78(分),则C的得分是78分;方差=[(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选:C.14.解:∵四边形ABCD是平行四边形,∴DC=AB=7,AD=BC=4,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE=4,∴CE=7﹣4=3.故选:D.15.解:∵∠DBC=45°,DE⊥BC∴BD=BE,BE=DE∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90°∵∠BHE=∠DHF∴∠EBH=∠CDE∴△BEH≌△DEC∴∠BHE=∠C,BH=CD∵▱ABCD中∴∠C=∠A,AB=CD∴∠A=∠BHE,AB=BH∴正确的有①②④;故选:B.二、填空题(本大题共6个小题,共24分.)16.解:∵a2+b2﹣4a﹣10b+29=0,∴(a2﹣4a+4)+(b2﹣10b+25)=0,∴(a﹣2)2+(b﹣5)2=0,∴a﹣2=0,b﹣5=0,解得,a=2,b=5,∵a、b、c是等腰△ABC的三边长,∴当a=c=2时,2+2<5,此时不能构成三角形,当b=c=5时,此时a=2,则△ABC的周长为:5+5+2=12,故答案为:12.17.解:去分母得:x2+mx+x﹣2=x2﹣2x,整理得:(m+3)x=2,当m+3=0,即m=﹣3时,方程无解;当m+3≠0时,解得:x=,由分式方程无解,得到x=0或x=2,当x=0时,m无解;当x=2时,m=﹣2,综上,m的值为﹣2或﹣3,故答案为:﹣3或﹣2.18.解:小明本学期数学总评分应为(90×3+80×3+84×4)÷(3+3+4)=84.6(分).故答案为:84.6.19.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故答案为48.20.解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵将△ABC绕点A顺时针旋转角α,得到△ADE,∴∠BAD=α,∴∠BED=180°﹣α.故答案为:180°﹣α.21.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:cm2.三、解答题(本大题共7个小题,共66分)22.解:(1)原式=3a(x﹣y)+5b(x﹣y)=(x﹣y)(3a+5b);(2)原式=x2(a﹣b)2﹣y2(a﹣b)2.=(a﹣b)2(x2﹣y2)=(a﹣b)2(x+y)(x﹣y);(3)原式=2x m﹣1y n﹣1(x﹣2y).23.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.24.解:(1)∵x2+x﹣4=0,∴x2+x=4,∴=•=•==;(2)原式=•﹣=﹣=﹣,∵a取0,1,﹣1时,原式都无意义,∴将a=2代入,原式=﹣=﹣1.25.解:(1)如图,△A1B1C1即为所求,点A1的坐标(5,3);(2)如图△A2B2C2即为所求,点A2的坐标(3,﹣5);(3)△ABC的面积=3×4﹣×1×3﹣×1×4﹣×2×3=5.5.26.解:(1)设第一批购进圆规的单价为x元/件,则第二批购进圆规的单价为(1+25%)x 元/件,依题意得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.则1.25x=1.25×5=6.25,答:第一批购进圆规的单价为5元/件,第二批进价为6.25元/件;(2)第一批购进圆规的数量为1000÷5=200(件),第二批购进圆规的数量为200−40=160(件),共盈利(200×7−1000)+(160×8−1000)=400+280=680(元).答:共盈利680元.27.证明:(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,在△ABD和△ACE中,,∴△DAB≌△EAC(SAS),∴DB=EC;(2)由(1)知△DAB≌△EAB,∴∠DBA=∠ECA,∵∠BAC=90°,∴∠ABC+∠ACB=90°,即∠ABC+(∠BCE+∠ACE)=90°,∴∠ABC+∠DBA+∠BCE=90°,即∠DBA+∠BCE=90°,∴∠BEC=90°,∵BC=10,BE=6,∴EC2=BC2﹣BE2=102﹣62=64,∴EC=8,∴DE=DB﹣BE=DB﹣CE=8﹣6=2.28.解:(1)五个人的成绩从小到大排列为:90、90、95、100、100.第3个数为中位数,所以中位数是95;故答案为:95;(2)高中代表队的平均数为(90+90+95+100+100)÷5=95(分),初中代表队的平均数为(80+90+90+90+100)÷5=90(分);(3)初中代表队的方差为×[(80﹣90)2+(90﹣90)2+(90﹣90)2+(90﹣90)2+(100﹣90)2]=40(分2),∵95>90,20<40,∴高中代表队成绩较好.。
浙教版2022-2023学年八年级数学上册第三次月考测试题(附答案)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题:共30分.1.如果电影院里的5排7座用(5,7)表示,那么7排8座可表示为()A.(5,7)B.(7,8)C.(8,7)D.(7,5)2.某辆速度为v(km/h)的车从甲地开往相距s(km)的乙地,全程所用的时间为t(h),在这个变化过程中,()A.s是变量B.t是常量C.v是常量D.s是常量3.如果一个三角形的两边长都是6,则第三边的长不能是()A.3B.6C.9D.134.平面直角坐标系中,点A(﹣1,3)到y轴的距离是()A.1B.2C.3D.45.已知﹣2x>4,则下列不等式一定成立的是()A.x<﹣2B.x<2C.x>﹣2D.x>26.某中学要在校园内划出一块面积是100m2的矩形土地做花面,设这个矩形相邻两边长分别为xm和ym,那么y关于x的函数表达式为()A.y=100x B.y=100﹣x C.y=50﹣x D.y=7.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为()A.16B.15C.14D.138.如图,△ABC中,∠BAC=130°,AB,AC的垂直平分线分别交BC于点E,F,与AB,AC分别交于点D,G,则∠EAF的度数为()A.65°B.60°C.70°D.80°9.如图是某蓄水池的横断面的示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水(注满水后停止注水),那么下列图中能大致表示水的深度h与注水时间t之间关系的图象的是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,BE平分∠ABC,CD⊥AB于D,BE与CD相交于F,则CF的长是()A.1B.C.D.2二、填空题:共24分。
11.“内错角相等,两直线平行”的逆命题是.12.到△ABC三个顶点的距离相等的点是△ABC的交点.13.在平面直角坐标系中,若点P(m+3,3﹣m)在y轴上,则m的值是.14.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为.15.一次知识竞赛一共有26道题,答对一题得4分、不答得0分,答错一题扣2分,小明有1道题没答,竞赛成绩不少于88分,则小明至少答对题.16.如图,在等腰△ABC中,AB=AC,∠BAC=α.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是(用含α的代数式表示).三、解答题。
华东师大版2022-2023学年八年级数学上册第三次月考测试题(附答案)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共40分)1.16的平方根是()A.4B.﹣4C.±4D.±22.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(3,﹣x2﹣1)关于x轴对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB 的距离是()A.3B.4C.5D.65.如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.4cm B.6cm C.8cm D.12cm6.在数中,有理数的个数为()A.3B.4C.5D.67.下列由线段a、b、c组成的三角形是直角三角形的是()A.a=4,b=5,c=6B.a=3,b=4,c=C.a=15,b=17,c=6D.a=,b=2,c=8.下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB∥CD,∠A=∠CC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D9.下列四张三角形纸片,剪一刀能得到等腰梯形的有()A.1张B.2张C.3张D.4张10.顺次连结菱形各边中点所得四边形是()A.平行四边形B.矩形C.菱形D.正方形二、填空题(共32分)11.的倒数是.12.在△ABC中,∠C=90°,DE是AB的垂直平分线,∠A=40°,则∠CDB=°.13.在△ABC中,∠A=60°,若使△ABC为正三角形,请你再添一个条件:.14.一块正常运行的手表,当时针旋转15°时,则分针旋转度.15.把一张长方形纸按如图所示折叠,所得的四边形ABCD是四边形.16.如图,是一个数值转换机的示意图,当输入的值x=时,输出的结果为.17.△ABC是一个边长为2cm的正三角形,AD为它的中线,点E是边AC的中点,点P为线段AD上一动点,则PE+PC的最小值是cm.18.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,若CD=1,AB=4,则△ABD的面积是.三、解答题(共78分.)19.计算:(2a+b)(2a﹣b)﹣4a(a﹣b).20.解分式方程:=﹣2.21.请你在下列每一个5×7的方格纸上,任意选出6个小方块,用笔涂黑,使被涂黑的方格所构成的图形既是轴对称图形,又是中心对称图形.(要求:不同的方格上画出不同的图形,画出三个即可.22.若△ABC的三边分别为a,b,c,其中a,b满足+(b﹣8)2=0.(1)求边长c的取值范围,(2)若△ABC是直角三角形,求△ABC的面积.23.如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件使△ABC≌△DEC,你添加的条件是;(2)添加条件后请证明△ABC≌△DEC.24.如图是一个长方体盒子,棱长AB=3cm,BF=3cm,BC=4cm.(1)连接BD,求BD的长;(2)一根长为6cm的木棒能放进这个盒子里去吗?说明你的理由.25.在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?26.已知,如图甲:△ABC是等腰直角三角形,∠ACB=90°,△ACD是等边三角形.(1)填空:当△ACD绕点C顺时针旋转时,旋转后的△ACD与△ABC构成一个轴对称图形(旋转的角度小于360°);(2)把图甲中△ACD绕点C顺时针旋转60°后得到如图乙,并连接EB,设线段CE与AB相交于点F.①求证:BE=BF;②若AC=2,求四边形ACBE的面积.参考答案一、选择题(共40分)1.解:16的平方根是±4,故选:C.2.解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,也不是中心对称图形,故B错误;C、不是轴对称图形,也不是中心对称图形,故C错误;D、是轴对称图形,也是中心对称图形,故D正确.故选:D.3.解:点P(3,﹣x2﹣1)关于x轴对称点坐标为:(3,x2+1),∵x2+1>0,∴点P(3,﹣x2﹣1)关于x轴对称点所在的象限是:第一象限.故选:A.4.解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.5.解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∴AB+BC+CD+AD=2(AB+BC),∵▱ABCD的周长是28cm,∴2(AB+CD)=28,∴AB+BC=14,∵△ABC的周长是22cm,∴AB+BC+AC=22cm,∴14+AC=22,∴AC=8,故选:C.6.解:在数中,理数有,,﹣,0.303030…,共4个.故选:B.7.解:A、因为42+52≠62,所以不能组成直角三角形,故本选项错误;B、因为32+()2=42,所以能组成直角三角形,故本选项正确;C、因为152+62≠172,所以能组成直角三角形,故本选项错误;D、因为()2+22≠()2,所以不能组成直角三角形,故本选项错误;故选:B.8.解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故选项A不符合题意;B、∵AB∥CD,∴∠B+∠C=180°,∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故选项B不符合题意;C、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故选项C符合题意;D、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:C.9.解:①180°﹣50°﹣80°=50°,三角形的三个角为50°、50°、80°,此图能剪出等腰梯形;②180°﹣50°﹣70°=60°,三角形的三个角为50°、60°、70°,此图不能剪出等腰梯形;③180°﹣50°﹣50°=80°;三角形的三个角为50°、50°、80°,此图能剪出等腰梯形;④180°﹣50°﹣90°=40°,三角形的三个角为50°、40°、90°,此图不能剪出等腰梯形;所以剪一刀能得到等腰梯形的有①③两张.故选B.10.解:∵E,H分别为AB,AD的中点,∴EH∥BD,同理,EF∥AC,GH∥AC,FG∥BD,∴EH∥FG,EF∥GH,∴四边形EFGH是平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∵EH∥BD,∴AC⊥EH,∵EF∥AC,∴EF⊥EH,∴平行四边形EFGH是矩形,故选:B.二、填空题(共32分)11.解:的倒数为=.故填.12.解:∵△ABC中,∠C=90°,∠A=40°,∴∠CBE=180°﹣∠C﹣∠A=180°﹣90°﹣40°=50°,∵DE是AB的垂直平分线,∴AD=DB,∠A=∠DBE=40°,∴∠DBC=∠CBE﹣∠DBE=50°﹣40°=10°,在△CDB中,∠C=90,∠DBC=10°,∴∠CDB=180°﹣∠C﹣∠DBC=180°﹣90°﹣10°=80°,∠CDB=80°.故答案为:80.13.解:添加的条件是:AB=AC(答案不唯一).故答案为:AB=AC(答案不唯一).14.解:当时针旋转15°时,分针旋转×360°=180°.15.解:∵纸片为长方形,∴AD∥BC.由叠法知∠B=45°,∠D=45°,∴∠B=∠D.∴ABCD是平行四边形.16.解:由题意知:输出的结果应该是()2×2﹣1=5.故答案为:5.17.解:如图连接BE,则BE就是PE+PC的最小值,∵△ABC是一个边长为2cm的正三角形,AD为它的中线,点E是边AC的中点,∴CE=1cm,∴BE==cm,∴PE+PC的最小值是cm.18.解:作DE⊥AB于E,由尺规作图可知,AD为∠CAB的平分线,又∠C=90°,DE⊥AB,∴DE=CD=1,∴△ABD的面积=×AB×DE=×4×1=2,故答案为:2.三、解答题(共78分.)19.解:(2a+b)(2a﹣b)﹣4a(a﹣b)=4a2﹣b2﹣4a2+4ab=4ab﹣b2.20.解:两边都乘以x﹣3得:1=4﹣x﹣2(x﹣3),去括号得,1=4﹣x﹣2x+6,移项得,x+2x=4+6﹣1,合并同类项得,3x=9,两边都除以3得,x=3,经检验x=3是增根,所以原分式方程无解.21.解:22.解:(1)∵a,b满足+(b﹣8)2=0,∴a﹣6=0,b﹣8=0,∴a=6,b=8,∴8﹣6<c<8+6,即2<c<14.故边长c的取值范围为:2<c<14;(2)b=8是直角边时,6是直角边,△ABC的面积=×6×8=24;b=8是斜边时,另一直角边==2,△ABC的面积=×6×2=6.综上所述,△ABC的面积为24或6.23.(1)解:添加的条件为:CB=CE;(2)证明:∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,∴∠ACB=∠ECD,在△ABC和△DEC中,∴△ABC≌△DEC.24.解:(1)连接BD,在Rt△ABD中,AB=3cm,BC=AD=4cm,由勾股定理得:BD===5cm.(2)不能放进去.理连接BH,在Rt△BDH中,BH===cm.25.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.26.解:(1)如图甲,当△ACD绕点C顺时针旋转75°或255°时,旋转后的△ACD与△ABC构成一个轴对称图形;(2)①证明:∵BC=CE,∠BCE=90°﹣∠ACE=30°,∴∠CEB=∠CBE=(180°﹣30°)÷2=75°,∠EBF=∠CBE﹣∠CBF=75°﹣45°=30°,∴∠EFB=180°﹣∠EBF﹣∠CEB=180°﹣30°﹣75°=75°,即∠EFB=∠FEB,故BE=BF;②如图乙,作△BCE边BC上的高EH,则EH=CE=1,所以,S四边形ACBE=S△ACE+S△BCE=×2×+×2×1=.故答案为:75°或255°.。
2022-2023学年苏科版八年级数学上册第三次月考测试题(附答案)
2022-2023学年苏科版八年级数学上册第三次月考测试题(附答案)一.选择题(每题3分,共24分)1.如下字体的四个汉字“立”“德”“树”“人”中,是轴对称图形的是()A.B.C.D.2.点(6,﹣3)关于x轴的对称点是()A.(6,3)B.(6,﹣3)C.(﹣6,3)D.(﹣6.﹣3)3.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17B.7C.14D.134.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±25.关于①与②的说法正确的是()A.①②都是有理数B.①是无理数,②是有理数C.①是有理数,②是无理数D.①②都是无理数6.在直角坐标系中,将点A(0,2)绕原点O逆时针方向旋转60°后的对应点B的坐标是()A.()B.()C.()D.()7.已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个8.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.24二.填空题(每题3分,共30分)9.若函数y=﹣2x+m是正比例函数,则m的值是.10.已知点P(m+2,2m﹣4)在x轴上,则m的值是.11.点A(﹣3,m)、B(2,n)都在一次函数y=﹣2x+3的图象,则m n(填“>”或“=“或“<”).12.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点.13.如图,△ABC中∠C=90°,D是BC上一点,∠1=∠2,CB=10,BD=6,则D到AB的距离为.14.如图,已知一次函数y=mx﹣n与y=2x﹣4的图象交于x轴上一点,则关于x、y的二元一次方程组的解是.15.直线L与直线y=2x+1的交点的横坐标为2,与直线y=﹣x+2的交点的纵坐标为1,则直线L对应的函数解析式是.16.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b=.17.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.18.一次函数y=kx+b,当﹣3≤x≤1时,对应的y的值为1≤y≤9,则kb的值为.三、解答题(共66分)19.(1)计算:;(2)解方程:4(x﹣1)2=920.已知z=m+y,m是常数,y是x的正比例函数.当x=2时,z=1;当x=3时,z=﹣1,求z与x的函数关系式.21.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.24.已知一次函数y=kx+b过点(﹣2,5),和直线y=﹣x+3,分别在下列条件下求这个一次函数的解析式.(1)它的图象与直线y=﹣x+3平行;(2)它的图象与y轴的交点和直线y=﹣x+3直线与y轴的交点关于x轴对称.25.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.26.寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个甲种旅行包和10个乙种旅行包共需5200元.(1)甲、乙两种旅行包的进价分别是多少元?(2)若该店恰好用了7000元购买旅行包;①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;②若该店将甲种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.27.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一.选择题(每题3分,共24分)1.解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.2.解:点(6,﹣3)关于x轴的对称点是:(6,3).故选:A.3.解:由勾股定理可得:斜边=,故选:D.4.解:∵函数y=(m﹣1)x2﹣|m|+3是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故选:B.5.解:①是有理数,②是无理数.故选:C.6.解:将点A(0,2)绕原点O逆时针方向旋转60°后的对应点B的坐标是(﹣,1),故选:B.7.解:∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,∴关于x与y的二元一次方程组无解.故选:A.8.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.二.填空题(每题3分,共30分)9.解:∵函数y=﹣2x+m是正比例函数,∴m=0,故答案为:0.10.解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得m=2.故答案为:2.11.解:∵一次函数y=﹣2x+3,∴函数y随x的增大而减小,∵点A(﹣3,m)、B(2,n)都在一次函数y=﹣2x+3的图象上,∴m>n,故答案为:>.12.解:∵2a+b=1,∴相当于y=ax+b中,当x=2时,y=1,∴一次函数图象必过点(2,1),故答案为:(2,1).13.解:∵CB=10,BD=6,∴CD=10﹣6=4.∵∠1=∠2.所以D点到AC和AB的距离相等.∵CD表示D点到AC的距离,∴D到AB的距离为4.故答案为4.14.解:因为一次函数y=mx﹣n与y=2x﹣4的图象交于x轴上一点,所以令y=0,把y=0代入y=2x﹣4得出x=2,所以关于x、y的二元一次方程组的解是,故答案为:,15.解:在直线y=2x+1中,令x=2,解得y=5.在y=﹣x+2中,令y=1,解得x=1.则直线L经过点(2,5),(1,1).设直线L的解析式是y=kx+b,根据题意,得,解得,故直线L对应的函数解析式是:y=4x﹣3.16.解:由题意可知:a=0+(4﹣2)=2;b=0+(2﹣1)=1;∴a+b=3.故答案为:3.17.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.18.解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得k=2,b=7.即kb=14;当k<0时,y随x的增大而减小,所以得,解得k=﹣2,b=3.即kb=﹣6.所以kb的值为14或﹣6.三、解答题(共96分)19.解:(1)原式=9﹣9+3=3;(2)4(x﹣1)2=9(x﹣1)2=,故x﹣1=±,解得:x1=,x2=﹣.20.解:设y=kx,则z=m+kx,根据题意得,解得.所以z与x的函数关系式为z=﹣2x+5.21.解:(1)∵点M在x轴上,∴2m+3=0解得:m=﹣1.5;(2)∵点M在第二象限内,∴,解得:﹣1.5<m<0;(3)∵点M在第一、三象限的角平分线上,∴m=2m+3,解得:m=﹣3.22.解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:23.(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;(2)解:AB=AF+2BE,理由如下:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.24.解:(1)根据题意得:k=,∴y=﹣x+b,把(﹣2,5)代入得:3+b=5,解得:b=2,∴一次函数的解析式为y=﹣x+2;(2)∵直线y=与y轴的交点为(0,3),∴所求直线与y轴的交点为(0,﹣3),设所求直线的解析式为y=kx+b,∵所求直线经过点(﹣2,5)和(0,﹣3),∴,解得:,∴所求的一次函数解析式为:y=﹣4x﹣3.25.解:(1)令y=0,得x=﹣,∴A点坐标为(﹣,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(﹣,0),∴x=±3,∴P点坐标分别为P1(3,0)或P2(﹣3,0).∴S△ABP1=×(+3)×3=,S△ABP2=×(3﹣)×3=,∴△ABP的面积为或26.解:(1)设甲种旅行包每个进价是x元,乙种旅行包每个进价是y元,可得:,解得,答:甲、乙两种旅行包的进价分别是160元,200元;(2)①设购进甲种旅行包m个,则乙种旅行包个;②设购进甲种旅行包m个,可得:w=(298﹣160)m+(325﹣200)×=38m+4375,∵m=40时,时,能获得最大利润,最大利润是5895元.27.解:(1)∵直线y=﹣x+1与x轴,y轴分别交于B,A两点,令x=0,则y=0+1=1,∴A(0,1),令y=0,则0=﹣x+1,解得:x=1.∴B(1,0).(2)∠AOP=∠BPQ.理由如下:过P点作PE⊥OA交OA于点E,∵A(0,1),B(1,0).∴OA=OB=1,∴∠OAB=∠OBA=45°,∵PE⊥OA,∴∠APE=45°,∵∠OPQ=45°,∴∠OPE+∠BPQ=90°,∵∠AOP+∠OPE=90°,∴∠AOP=∠BPQ.(3)△OPQ可以是等腰三角形.理由如下:如图,过P点PE⊥OA交OA于点E,(ⅰ)若OP=OQ,则∠OPQ=∠OQP,∴∠POQ=90°,∴点P与点A重合,∴点P坐标为(0,1),(ⅱ)若QP=QO,则∠OPQ=∠QOP=45°,所以PQ⊥QO,可设P(x,x)代入y=﹣x+1得x=,∴点P坐标为(,),(ⅲ)若PO=PQ∵∠OPQ+∠1=∠2+∠3,而∠OPQ=∠3=45°,∴∠1=∠2,又∵∠3=∠4=45°,∴△AOP≌△BPQ(AAS),PB=OA=1,∴AP=﹣1由勾股定理求得PE=AE=1﹣,∴EO=,∴点P坐标为(1﹣,),∴点P坐标为(0,1),(,)或(1﹣,)时,△OPQ是等腰三角形.。
八年级(上)第一次月考数学试卷(含答案) (3)
八年级(上)第一次月考数学试卷一、选择题(本大题共11小题,共48分)1.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.122.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门3.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°4.如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出△APC≌△APD的是()A.BC=BD B.∠ACB=∠ADB C.AC=AD D.∠CAB=∠DAB 5.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高6.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()A.540°B.720°C.1080°D.1260°7.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33°B.23°C.27°D.37°9.如图,在△ABC中,CD、BE分别是AB、AC边上的高,若∠A=50°,则∠BPC等于()A.90°B.130°C.270°D.315°10.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D11.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共1小题,每小题4分,满分4分)12.如图1,已知AB=AC,D为∠BAC的平分线上面﹣点.连接BD,CD;全等三角形的对数是.如图2.已知AB=AC,D,E为∠BAC的平分线上面两点.连接BD,CD,BE,CE;全等三角形的对数是.如图3.已知AB=AC,D,E,F为∠BAC的平分线上面三点,连接BD,CD,BE,CE,BF,CF;全等三角形的对数是.…依此规律,第n个图形中有全等三角形的对数是.二、填空(每题4分共32分)13.已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)15.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.16.△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=.17.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是2和3,则EF的长为.18.如图,AD是△ABC中BC边上的中线,若AB=5,AC=8,则AD的取值范围是.19.如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=.20.如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1BC与∠=;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n﹣1 CD的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.A n﹣1三、解答题(本大题共7小题,满分70分)21.(8分)如图所示,△ABC中,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.22.(8分)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.23.(8分)如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F作EF⊥AC交AB于D,求证:DB=BC.24.(12分)如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处挂两根彩线EC、FC.求证:EC=FC.25.(10分)一个凸多边形除一个内角外,其余各内角的和为2570°,求这个内角的度数.26.(12分)如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.27.(12分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共11小题,共48分)1.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.2.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门【分析】利用三角形的稳定性进行解答.【解答】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.【点评】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.3.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.【解答】解:∵∠2=90°﹣45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选:D.【点评】本题考查的是三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.4.如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出△APC≌△APD的是()A.BC=BD B.∠ACB=∠ADB C.AC=AD D.∠CAB=∠DAB【分析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出正确结果.【解答】解:A、补充BC=BD,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误;B、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误.C、补充AC=AD,不能推出△APC≌△APD,故此选项正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故此选项错误;故选:C.【点评】此题主要考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.5.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选:D.【点评】本题考查了三角形的内角和定理,熟知三角形的内角和等于180°是解答此题的关键.6.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()A.540°B.720°C.1080°D.1260°【分析】先利用360°÷45°求出多边形的边数,再根据多边形的内角和公式(n﹣2)•180°计算即可求解.【解答】解:多边形的边数为:360°÷45°=8,多边形的内角和是:(8﹣2)•180°=1080°.故选:C.【点评】本题主要考查了正多边形的外角与边数的关系,以及多边形内角和公式,利用外角和为360°求出多边形的边数是解题的关键.7.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选:B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A.33°B.23°C.27°D.37°【分析】延长CD交AB于E,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠1,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长CD交AB于E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC﹣∠1=98°﹣75°=23°.故选:B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.9.如图,在△ABC中,CD、BE分别是AB、AC边上的高,若∠A=50°,则∠BPC等于()A.90°B.130°C.270°D.315°【分析】由∠A=50°,高线CD,即可推出∠ACD=40°,然后由∠BPC为△CPE的外角,根据外角的性质即可推出结果.【解答】解:∵∠A=50°,CD⊥AB,∴∠ACD=40°∵BE⊥AC,∴∠CEP=90°,∵∠BPC为△CPE的外角,∴∠BPC=130°.故选:B.【点评】本题主要考查垂线的性质,余角的性质,三角形内角和定理,三角形的外角的性质的知识点,关键在于根据相关的定理推出∠ACD和∠CEP的度数.10.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL 能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(共1小题,每小题4分,满分4分)12.如图1,已知AB=AC,D为∠BAC的平分线上面﹣点.连接BD,CD;全等三角形的对数是1.如图2.已知AB=AC,D,E为∠BAC的平分线上面两点.连接BD,CD,BE,CE;全等三角形的对数是3.如图3.已知AB=AC,D,E,F为∠BAC的平分线上面三点,连接BD,CD,BE,CE,BF,CF;全等三角形的对数是6.…依此规律,第n个图形中有全等三角形的对数是.【分析】探究规律,利用规律即可解决问题.【解答】解:如图1中,∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故答案为:1,3,6,.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.二、填空(每题4分共32分)13.已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=2c.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a﹣b+c>0,a﹣b﹣c<0,再根据绝对值的性质进行化简计算.【解答】解:根据三角形的三边关系,得a+c>b,a﹣b<c.∴a﹣b+c>0,a﹣b﹣c<0.∴原式=a﹣b+c﹣(a﹣b﹣c)=2c.【点评】此题综合考查了三角形的三边关系和绝对值的化简.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【分析】根据三角形的内角和与平角定义可求解.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.【点评】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.16.△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=120°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×120°=60°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了三角形的内角和定理,熟知三角形的内角和等于180°是解答此题的关键.17.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是2和3,则EF的长为5.【分析】根据正方形的性质得AB=BC,∠ABC=90°,再根据等角的余角相等得到∠EAB=∠FBC,则可根据“ASA”判断△ABE≌△BCF,所以BE=CF=2,进而求出EF的长.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∵AE⊥BE,CF⊥BF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF=3,AE=BF=2,∴EF=BE+BF=5.故答案为5.【点评】本题考查了全等三角形的判定与性质:正方形的性质,熟练掌握全等三角形的判定和性质是解题的关键.18.如图,AD是△ABC中BC边上的中线,若AB=5,AC=8,则AD的取值范围是 1.5<AD<6.5.【分析】延长AD到E,使DE=AD,然后利用“边角边”证明△ABD和△ECD全等,根据全等三角形对应边相等可得CE=AB,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的取值范围,然后即可得解.【解答】解:如图,延长AD到E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△ABD和△ECD中,∵,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=8,∴8﹣5<AE<8+5,即3<2AD<13,∴1.5<AD<6.5,故答案为:1.5<AD<6.5.【点评】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延,作辅助线构造出全等三角形是解题的关键.19.如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=540°.【分析】如图所示,由三角形外角的性质可知:∠A +∠B =∠MJL ,∠C +∠D =∠NLJ ,∠H +∠K =∠GMJ ,∠E +∠F =∠GNL ,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:延长AK 交BC 于J ,延长DE 交BC 于L ,由三角形的外角的性质可知:∠A +∠B =∠MJL ,∠C +∠D =∠NLJ ,∠H +∠K =∠GMJ ,∠E +∠F =∠GNL ,∴∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =(5﹣2)×180°=3×180°=540°.故答案为:540°.【点评】本题主要考查的是三角形外角的性质和多边形的内角和公式的应用,利用三角形外角和的性质将所求各角的和转化为五边形的内角和是解题的关键.20.如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,则∠A 1= 32° ;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n ﹣1BC 与∠A n ﹣1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为 6 .【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC =∠ABC ,∠A 1CD=∠ACD ,然后整理得到∠A 1=∠A ,由∠A 1CD =∠A 1+∠A 1BC ,∠ACD =∠ABC +∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【解答】解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A=64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=∠A,同理可得∠A1=2∠A2,∴∠A2=∠A,∴∠A=2n∠A n,∴∠A n=()n∠A=,∵∠A n的度数为整数,∵n=6.故答案为:32°,6.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的是解题的关键.三、解答题(本大题共7小题,满分70分)21.(8分)如图所示,△ABC中,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=60°,∠BDC=95°,求△BDE各内角的度数.【分析】根据角平分线的性质,可得∠ABD与∠CBD的关系,根据平行线的性质,可得∠CBD与∠BDE的关系,根据三角形外角的性质,可得∠EBD的大小,根据三角形的内角和,可得答案.【解答】解:∵BD是∠ABC的平分线,∴∠ABD=∠CBD.∵DE∥BC,交AB于点E,∴∠CBD=∠BDE∴∠EBD=∠BDE.∵∠BDC是△ABD的外角,∴∠A+∠ABD=∠BDC,∴∠EBD=∠BDC﹣∠A=95°﹣60°=35°,∴∠BDE=∠DBE=35°,∴∠BED=180°﹣∠EBD﹣∠EDB=180°﹣35°﹣35°=110°.【点评】本题主要考查平行线的性质、三角形的外角性质、三角形内角和定理,难度不大,是三角形部分的基础习题.解答的关键是要熟练掌握:(1)三角形的外角等于和它不相邻的两个内角的和;(2)三角形的内角和为180°.22.(8分)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个等腰三角形的底边长.【分析】作出图形,设AD=DC=x,BC=y,然后分两种情况列出方程组求解,再根据三角形的三边关系判断即可得解.【解答】解:如图所示,设AD=DC=x,BC=y,由题意得,或,解得或,当,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系;当时,等腰三角形的三边为14,14,5,所以,这个等腰三角形的底边长是5,综上所述,这个等腰三角形的底边长5.【点评】本题考查了等腰三角形的性质性质,三角形的三边关系,难点在于分情况讨论,作出图形更形象直观.23.(8分)如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F作EF⊥AC交AB于D,求证:DB=BC.【分析】根据余角的定义得出∠A=∠F,再根据ASA证明△FDB和△BAC全等,最后根据全等三角形的性质证明即可.【解答】证明:∵∠ABC=90°,∴∠DBF=90°,∴∠DBF=∠ABC,∵EF⊥AC,∴∠AED=∠DBF=90°,∵∠ADE=∠BDF∴∠A=∠F,在△FDB和△ACB中,,∴△ABC≌△FBD(ASA),∴DB=BC.【点评】此题考查全等三角形的判定和性质,关键是利用互余得出∠D=∠B,再根据ASA证明三角形全等.24.(12分)如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处挂两根彩线EC、FC.求证:EC=FC.【分析】连接AC,先利用SSS证明△ABC≌△ADC,根据全等三角形的对应角相等得出∠EAC=∠FAC,再利用SAS证明△EAC≌△FAC,即可得到EC=FC.【解答】证明:如图,连结AC.在△ABC与△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠EAC=∠FAC.∵E、F分别是AB、AD的中点,∴AE=AB,AF=AD,∵AB=AD,∴AE=AF.在△AEC与△AFC中,,∴△AEC≌△AFC(SAS),∴EC=FC.【点评】本题主要考查全等三角形的判定与性质及学生对规律的探索能力,难度适中.本题通过作出辅助线,构造三角形全等的条件,判定三角形全等,从而利用三角形全等的性质得到边相等.25.(10分)一个凸多边形除一个内角外,其余各内角的和为2570°,求这个内角的度数.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解:设这是一个n边形,这个内角的度教为x度因为(n﹣2)180°=2570°+x所以x=(n﹣2)180°﹣2570°化简得x=180°n﹣2930°,∵0<x<180°,0<180°n﹣2930°<180°,解得:16.2<n<l7.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度教是2700°﹣2570=130°.【点评】本题考查了多边形的内角与外角,利用多边形的内角和公式来解决问题.26.(12分)如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)根据已知得出关于mn的方程组,求出即可;(2)分为两种情况:①当P在线段OA上时,求出三角形BOP的面积,得出不等式组,求出其解集即可;②当P在线段OA的延长线上时,求出三角形BOP的面积,得出不等式组,求出其解集即可;(3)当OP=OB=3时,分为两种情况,画出符合条件的两种图形,结合图形和全等三角形的性质即可得出答案.【解答】解:(1)∵|m﹣n﹣3|+=0,∴m﹣n﹣3=0,2n﹣6=0,解得:n=3,m=6,∴OA=6,OB=3;(2)分为两种情况:①当P在线段OA上时,AP=t,PO=6﹣t,∴△BOP的面积S=×(6﹣t)×3=9﹣t,∵若△POB的面积不大于3且不等于0,∴0<9﹣t≤3,解得:4≤t<6;②当P在线段OA的延长线上时,如图,AP=t,PO=t﹣6,∴△BOP的面积S=×(t﹣6)×3=t﹣9,∵若△POB的面积不大于3且不等于0,∴0<t﹣9≤3,解得:6<t≤8;即t的范围是4≤t≤8且t≠6;(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P,使△EOP≌△AOB,t的值是3或9.【点评】本题考查了绝对值,二次根式的性质,垂直定义,全等三角形的性质和判定等知识点的综合运用,题目比较典型,但是有一定的难度,注意要进行分类讨论啊.27.(12分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=40°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.【分析】(1)根据题意观察图形连接AD并延长至点F,由外角定理可知,一个三角形的外角等于与它不相邻的两个内角的和,则容易得到∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值.②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由(2)的方法,进而可得答案.【解答】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;而∠DCE=(∠ADB+∠AEB)+∠A,代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;③∠BG1C═(∠ABD+∠ACD)+∠A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°∴(140﹣x)+x=77,14﹣x+x=77,x=70∴∠A为70°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.。
人教版2022-2023学年八年级数学上册第三次月考测试题(附答案) (4)
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共40分)1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列各式计算正确的是()A.2a2+a3=3a5B.(3xy)2÷xy=3xyC.(2b2)3=8a5D.2x•3x5=6x63.在平面直角坐标系中,点(4,﹣3)关于x轴对称的点的坐标是()A.(4,3)B.(﹣4,3)C.(3,﹣4)D.(﹣3,﹣4)4.如果正多边形的每个内角都等于140°,则这个正多边形的边数是()A.10B.9C.8D.75.一个三角形两边长分别为3cm和4cm,则该三角形的第三边可能是()A.1cm B.4cm C.7cm D.10cm6.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.AC=DF D.∠ACB=∠F 7.化简的结果是()A.x+1B.C.x﹣1D.8.如图,将一副三角尺按如图所示的方式摆放,则∠α=()A.45°B.60°C.75°D.90°9.如图,在△ABC中,F是高AD和BE的交点,BD=12,DC=9,AD=BD,则线段AF 的长度为()A.1B.2C.4D.310.如图,在△ABC中,AC=BC,AB=6,CD=4,CD⊥AB于点D,EF垂直平分BC交AB于点E,交BC于点F,P是线段EF上的一个动点,则△PBD的周长的最小值是()A.6B.7C.10D.12二、填空题(共24分)11.当x时,分式有意义.12.分解因式:a3﹣a=.13.等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为.14.如图,在△ABC中,将∠B、∠C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若∠A=80°,则∠MQE=度.15.在9×7的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC三个顶点的坐标分别为A(1,1),B(4,1),C(5,3).如果要使△ABD与△ABC全等,那么符合条件的点D的坐标是.16.对于任意实数(a,b)ⓒ(c,d),规定(a,b)ⓒ(c,d)=ad﹣bc,则当x2﹣3x+2=0时,(x﹣1,x)ⓒ(4﹣x,x﹣1)=.三.解答题(共86分)17.计算:a(a+1)﹣(a﹣3)(3+a).18.先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.19.已知:如图,点E、A、C在同一条直线上,AB∥CD,AB=CE,AC=CD,求证:∠B =∠E.20.如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.21.如图,在△ABC,∠C=90°.(1)作出∠ABC的角平分线,与AC交于点D.(尺规作图,并保留作图痕迹)(2)若CD=3,AB=6,BC=4,求△ABC的面积.22.明明同学用10块高度都是3cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙上面刚好可以放进一个等腰直角三角形(AC=BC,∠ACB=90°)点C在DE上,点A 和点B分别与木墙的顶端重合,求两堵木墙之间的距离.23.如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,连接BD,点G在BC的延长线上,且CD=CG.(1)求证:△ABC是等边三角形;(2)若BF=3,求CG的长.24.如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为64,一张A型纸板和一张B型纸板的面积之和为40,求ab 的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15.求图3阴影部分的面积.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD 交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=24°,∠B为钝角,直接写出所有可能的∠B的度数是.参考答案一、选择题(共40分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.解:A、2a2与a3不是同类项不能合并,故本选项不符合题意;B、(3xy)2÷(xy)=9x2y2÷xy=9xy,故本选项不符合题意;C、(2b2)3=23×(b2)3=8b6,故本选项不符合题意;D、2x•3x5=6x6,故本选项符合题意;故选:D.3.解:点(4,﹣3)关于x轴对称的点的坐标是(4,3).故选:A.4.解:由题意可得:180°•(n﹣2)=140°•n,解得n=9,故多边形是九边形.故选:B.5.解:∵三角形的两边长分别为3cm和4cm,∴1cm<第三边的长<7cm,故该三角形第三边的长可能是4cm.故选:B.6.解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:C.7.解:原式=﹣===x+1.故选:A.8.解:如图所示:∵∠3=30°,∠4=45°,∴∠2=∠4﹣∠3=45°﹣30°=15°,∴∠1=∠2=15°,∴∠5=90°﹣∠1=90°﹣15°=75°,∴∠α=∠5=75°,故选:C.9.证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=9,∴AD=BD=BC﹣DF=12,∴AF=AD﹣DF=3;故选:D.10.解:如图,连接CP,∵AC=BC,CD⊥AB,∴BD=AD=3,∵EF垂直平分BC,∴PB=PC,∴PB+PD=PC+PD,∵PC+PD≥CD,CD=4,∴PC+PD≥4,∴PC+PD的最小值为4,∴△PBD的最小值为4+3=7,故选:B.二、填空题(共24分)11.解:由题意得,x﹣2≠0,解得x≠2.故答案为:≠2.12.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).13.解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.14.解:∵线段MN、EF为折痕,∴∠B=∠MGB,∠C=∠EGC,∵∠A=80°,∴∠B+∠C=180°﹣80°=100°,∴∠MGB+∠EGC=∠B+∠C=100°,∴∠MGE=180°﹣100°=80°,故答案为:80.15.解:如图所示,有三种情况:,故答案为:(5,﹣1)或(0,3)或(0,﹣1).16.解:原式=(x﹣1)2﹣x(4﹣x)=x2﹣2x+1﹣4x+x2=2x2﹣6x+1,∵x2﹣3x+2=0,∴x2﹣3x=﹣2,∴原式=2(x2﹣3x)+1=2×(﹣2)+1=﹣4+1=﹣3.故答案为:﹣3.三.解答题(共86分)17.解:原式=a2+a﹣a2+9=a+9.18.解:原式=×=.因为x不能取±1,2,所以把x=0代入,原式==﹣.19.证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.20.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=30米,∴x=10(米),2x2+5xy=2×100+5×10×30=1700(平方米),20×1700=34000(元).答:铺完这块草坪一共要34000元.21.解:(1)如图所示,BD即为所求;(2)过D作DE⊥AB于E,∴DE=CD=3,∵AB=6,∴△ABC的面积=△BCD的面积+△ABD的面积=×3×4+×6×3=15.22.解:由题意得:AD=9cm,BE=21cm,AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=EC=9cm,DC=BE=21cm,∴DE=DC+CE=30(cm),答:两堵木墙之间的距离为30cm.23.(1)证明:∵DE⊥AB于点E,DF⊥BC于点F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=CD,在Rt△ADE与Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL),∴∠A=ACB,∴AB=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形;(2)解:由(1)知,△AC是等边三角形,∴∠ACB=60°,∵CD=CG,∴∠G=∠CDG=30°,连接BD,则∠DBC=30°,∴BD=GD,∴BF=FG=3,∵∠DFC=90°,∠BCA=60°,∴∠CDF=30°,∴CF=CD=CG,∴CG=2.24.解:(1)用两种方法表示出图2的总面积为(a+b)2和a2+2ab+b2,关于a,b的等式(a+b)2=a2+2ab+b2,故答案为:(a+b)2;a2+2ab+b2;(a+b)2=a2+2ab+b2;(2)由题意得,(a+b)2=a2+2ab+b2=64,a2+b2=40,∴ab====12;(3)由题意得图3中阴影部分的面积为:+a2﹣==,∴当a+b=8,ab=15时,图3中阴影部分的面积为:==.25.(1)解:∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴,∵BD是△ABC的一条特异线,∴△ABD和△BCD是等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,∴∠BDC=72°;故答案为:72.(2)证明:∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)解:BD是特异线时,如图,当AB=BD=DC时,则∠ABC=∠ABD+∠DBC=132°+12°=144°,如图当AD=AB,DB=DC时,则∠ABC=∠ABD+∠DBC=78°+39°=117°,如图,当AD=DB=BC时,则∠ABC=∠ABD+∠DBC=24°+84°=108°,当AD=DB=DC时,∠ABC为锐角,不合题,舍去,当AD为特异线时,如图,当AB=BD,AD=DC时,则∠ABC=148°;综上∠ABC=148°或144°或117°或108°.故答案为:148°或144°或117°或108°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B F C
D
重庆市巫溪中学初2011级八年级上第三次月考数学试卷
(考试时间:120分钟 总分:150分)
(命题:罗永福 审题:顾家才 吴启能 贺德军队 冉茂生 杨伟名)
一.选择题:(本题共10小题;每小题4分,共40分) 1.下列图案是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个
2.下列计算正确的是( )
A .6
3
3
x x x =+ B .3
2
6
a a a =÷ C .a
b b a 853=+ D .333)(b a ab -=- 3.
37-
、0
3.1415、2
π
2.123122312233…中,无理数的个数为( ) A 、2个 B 、3个
C 、4个
D 、5个
4.下列说法正确的是:( )
A 、-4是-16的平方根
B 、4是(-4)2的平方根
C 、(-6)2的平方根是-6
D
±4
5、下列各组数中互为相反数的是( ) A
2-
B 、2-
C 、2
2-与
D
、6.如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添 一个条件仍不能证明ABC≌△DEF的是( ) A .AB=DE B ..DF ∥AC C .∠E=∠ABC D .AB ∥DE
7.已知x 2+kxy +64y 2
是一个完全平方式,则k 的值是( ) A .8 B .±8 C .16 D .±16 8.如图∠BOP=∠AOP=15°,PC//OB ,PD ⊥PB 于D ,PC=2,
则PD 的长度为( )。
A 、4 B 、3 C 、2 D 、1
9.如图,在直角坐标系xoy 中, △ABC 是关于直线y =1轴对称的图形,
已知点A 坐标是(4,4),则点B 的坐标是( )
A 、(4,-4)
B 、(-4,2)
C 、(4,-2)
D 、(-2,4)
10.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到
A
B
C
D P
达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况 如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟, 那么他们从B 地返回学校用的时间是( ) A. 45.2分钟 B. 48分钟 C. 46分钟
D. 33分钟
二、填空题:(本题共10小题,每题3分,共30分) 11、64的立方根是 。
12
、在数轴上表示的点离原点的距离是 。
13、计算:)3()2(332xy x -= ____。
14、一次函数y =-3x +5的图象经过___________
15、在括号内填上适当的式子( )(-2x +3y)=9y 2—4x 2 16、若2=1.414 ,
20=4.4722,则 -2000=_____ ___。
17.已知:如图,在△ABC 中,点D 在BC 边上,且AC=AB=BD ,DA=DC ,则∠BAC= 度. 18. △ABC 中,∠BAC=100°,若DE 、FG 分别垂直平分AB 和AC ,则∠EAF=_____________
(第15图)
(第16题图) 19.函数y=kx+b (k≠0)的图象平行于直线y=2x+3,且交y 轴于点(0,-1),•则其解析式是_________. 20.如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有________
A.1个 B .2个 C .3个 D .4个 三、解答题:(本题共7个大题,80分) 21.(每小题5分,共20分)
(1)计算;2
31(2)2⎛⎫
-- ⎪⎝⎭
(2)(-2m-1)2-(2m +1)(2m —1)
(3)4x 2-(2-x +3)(-2x -3). (4)(2x-y+3z )(3z-2x+y)
B A
C G
D
E
F
22.(10分)先化简,再求值.[(x +2y)2-(x +y)(3x -y)-5y 2]÷2x ,其中x =-2,y =1
2.
23.(10分)如图,已知直线1:23l y x =+,直线2:5l y x =-+,直线1l 、2l 分别交x 轴于 B 、C 两点,1l 、2l 相交于点A 。
(1) 求A 、B 、C 三点坐标; (2) 求△ABC 的面积。
.
24.(10分)如图,OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E ,F 是OC 上除点P 、O 外一点,连结DF 、EF ,则DF 与EF 的关系如何?证明你的结论。
25.(10分)直线y = kx+6与x 轴y 轴分别相交于点E 、F. 点E 的坐标为(- 8, 0), 点A 的坐标为(- 6,0). 点
P (x,y )是第二象限内的直线上的一个动点。
(1)求k 的值;
(2)当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置(求P 的坐标)时,△OPA
F E
D C
B A
O P
26、(10分)小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖.
(1)小明要买20个练习本,到哪个商店购买较省钱?
(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式,它们都是正比例函数吗?
(3)小明现有24元钱,最多可买多少个本子?
27.(10分)巫溪大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。
一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。
①三人间、双人间普通客房各住了多少间?
②设三人间共住了x人,则双人间住了_______人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;
③在直角坐标系内画出这个函数图象;
④如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?。