初高中数学衔接教材(第五课时)几何部分

合集下载

【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

2020初高中数学衔接教材爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。

由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。

面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。

现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

初高中数学衔接教材word版配答案

初高中数学衔接教材word版配答案

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

初中升高中数学衔接教材(郑州外国语)

初中升高中数学衔接教材(郑州外国语)

郑州外国语学校初高中数学衔接教材100页超权威超容量完整版典型试题举一反三理解记忆成功衔接{郑州外国语学校教材系列}第一部分如何做好初高中衔接1-3页脱节””4页现有初高中数学知识存在的““脱节第二部分现有初高中数学知识存在的第三部分初中数学与高中数学衔接紧密的知识点5-9页第四部分分章节讲解10-66页第五部分衔接知识点的专题强化训练67-100页第一部分,如何做好高、初中数学的衔接●第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

数学北师大版高中必修1初高中数学衔接教材(打印稿)

数学北师大版高中必修1初高中数学衔接教材(打印稿)

初高中数学衔接教材(初中部分)前言:初、高中数学衔接的问题分析 (1)乘法公式 (2)第一讲因式分解 (3)1.十字相乘法 (3)2.提取公因式法 (4)3:公式法 (4)4.分组分解法 (5)第二讲函数与方程 (5)2.1 一元二次方程 2.1.1根的判别式 (6)2.1.2 根与系数的关系(韦达定理) (6)2.2 二次函数 (10)2.2.1 二次函数y=ax2+bx+c的图象和性质 (10)2.2.2 二次函数的三种表示方式 (13)2.2.3 二次函数的简单应用 (14)第三讲三角形的“四心” (15)前言:初、高中数学衔接的问题分析1教材内容方面:①初中数学教材较通俗易懂,难度相对高中较小,大多研究的是常量,且较多的侧重于定量计算,而高中数学教材较多的研究的是变量,不但注重定量计算,而且还常需作定性研究。

②为了适应义务教育要求,初中数学教材降低幅度较大,而高中由于受客观上升学压力和评价标准的影响,实际难度难以下降,且又增加了应用性的知识,因此在一定程度上,反而加大了高、初中数学教材内容的台阶。

③部分教学内容已由原来的初中讲授移到高中讲授(如常用对数、二次函数的图象法),而高中一些教师对调整后的大纲要求认识不够,而对编在附录内的内容认为初中讲了,而未讲这部分知识,形成了初、高中两不管的教材,给学生后继过程学习带来了极大的困难。

初高中衔接,不是单纯的知识衔接,更不是买一本“衔接教程”,利用暑假提前上课,或让学生自学就当已经衔接过了.初高中衔接,是一个严肃、重要的教学任务,通过调查分析研究,整理出一份与以前知识、高中教师原有认知相比的需要衔接设想,供新课程教学实施的教师参考.下面列出初高中教材的对比表1.与以前知识、高中教师原有认知相比认为存在但初中已删除需衔接的内容用心爱心专心 12教学方法方面:①初中数学教材每课时安排内容较少,因此教学进度一般较慢,对重点内容及疑难问题教师均有较多的时间反复练习、答疑、解惑;而高中数学教材每课时内容通常较多,所以教学进度一般较快,即使是重点内容教师也没有更多的时间反复强调,这对习惯了初中较慢教学进度的高一新生来说,无疑是一大挑战,对部分接受能力较弱的学生,或基础缺陷的学生,常处于一知半解的状态。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初高中知识衔接数学教案

初高中知识衔接数学教案

初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。

教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。

教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。

教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。

教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。

第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。

第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。

第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。

第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。

第六步:作业布置(5分钟)布置相关作业,巩固所学知识。

教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。

在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。

同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。

初高中数学衔接校本教材(Word版)

初高中数学衔接校本教材(Word版)

《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。

既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢提几点建议:一、“信心”是源泉。

人缺乏信心,就丧失了驱动力,终将一事无成。

二、“恒心”是保障。

人缺乏恒心,将“三天打鱼,两天晒网”。

:三、“巧心”是支柱。

人无巧心,就缺乏灵气和创造力。

最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!}$临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。

主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。

怎样学好数学。

A.要学好数学,就应该了解数学本身具有的三大特点。

(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。

(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。

罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。

B.要学好数学,就应该重视数学思想方法的学习。

数学思想方法的学习是一个潜移默化的过程,是在多次领悟、反复应用的基础上形成的,所以一道题做完后,就应该进行反思,回味解题中所使用的思想方法。

初高中知识衔接教案数学

初高中知识衔接教案数学

初高中知识衔接教案数学
教学目标:
1.了解初中数学和高中数学之间的知识差距和联系
2.掌握初中数学和高中数学知识的衔接技巧
3.培养学生良好的学习习惯和数学思维能力
教学内容:
1.初中数学与高中数学的知识差距分析
2.初中数学与高中数学知识的延伸和深化
3.初中数学知识在高中数学中的应用
教学步骤:
一、导入:
1.通过谈论学生对初中数学和高中数学的认识和感受,引出本次课的主题。

二、讲解:
1.介绍初中数学和高中数学知识的差距和联系,并列举具体例子进行讲解。

2.讲解初中数学知识在高中数学中的应用和延伸。

三、练习:
1.让学生通过习题练习,感受初高中数学知识的衔接。

2.分组讨论,帮助学生找到初高中数学知识的联系和延伸。

四、巩固:
1.布置作业,让学生通过作业巩固本节课的知识点。

2.鼓励学生主动学习,培养他们对数学知识的兴趣。

五、总结:
1.回顾本节课的内容,强调初高中数学知识的衔接和延伸的重要性。

2.激励学生努力学习,提高数学水平。

教学反思:
通过本节课的教学,学生能够逐渐认识到初高中数学知识的联系和差距,同时也培养了学生对数学的兴趣和学习能力。

在未来的教学中,需要更加注重启发学生的思维能力和培养他们的解决问题的能力。

初中高中衔接课数学教案

初中高中衔接课数学教案

初中高中衔接课数学教案
教学目标:
1. 了解初中数学和高中数学之间的联系和延伸。

2. 掌握基本的高中数学概念和方法。

3. 提高解决问题的能力和思维逻辑。

教学内容:
本课程主要包括以下内容:
1. 高中数学基本概念和方法。

2. 初中数学和高中数学的延伸联系。

3. 解题方法和策略。

教学步骤:
一、导入
1. 通过讨论初中数学和高中数学的异同点,引导学生思考数学知识的延伸和发展。

2. 提出本节课的学习目标和重点。

二、讲解
1. 介绍高中数学的基本概念和方法,如函数、导数、积分等。

2. 分析初中数学和高中数学之间的联系和延伸,引导学生理解并掌握新的数学知识。

三、练习
1. 给学生提供一些高中数学的练习题,让他们尝试应用新知识解决问题。

2. 引导学生讨论解题方法和策略,培养他们的思维能力和逻辑推理能力。

四、总结
1. 结合本节课的内容,总结初中高中数学的衔接和延伸关系。

2. 引导学生思考数学学习的重要性和方法,鼓励他们持续提高自己的数学能力。

五、作业布置
布置相关练习题和思考题,巩固本节课的内容并扩展学生的数学思维。

教学反思:
通过本节课的教学,学生可以更好地理解初中高中数学之间的联系和延伸关系,提高解题能力和思维逻辑。

同时,也可以帮助学生明确数学学习的重要性和方法,激发他们对数学学习的兴趣和热情。

希望学生能够认真学习,勇于思考,不断提高自己的数学水平。

初高中数学衔接教程教案

初高中数学衔接教程教案

初高中数学衔接教程教案
教学目标:
1. 了解初中数学与高中数学的主要差异和联系;
2. 掌握初中数学与高中数学的衔接知识;
3. 提高学生解决数学问题的能力。

教学重点:
1. 初中数学与高中数学的主要差异;
2. 初中数学与高中数学的衔接知识。

教学难点:
1. 如何理解初中数学与高中数学的联系;
2. 如何灵活运用初中数学知识解决高中数学问题。

教学内容:
1. 初中数学与高中数学的主要差异;
2. 线性方程组在初中与高中的应用;
3. 平面向量在初中与高中的应用;
4. 一元二次方程及其应用。

教学过程:
1. 导入环节:导入初中数学知识,引出高中数学衔接;
2. 理论讲解:讲解初中数学与高中数学的主要差异,以及线性方程组、平面向量、一元二次方程的相关概念;
3. 实例演练:通过实例演练,帮助学生理解初中数学与高中数学的联系;
4. 课堂练习:让学生独立解答一些相关问题,巩固所学知识;
5. 提高拓展:让学生尝试解决一些较为复杂的问题,提高解决问题的能力;
6. 总结回顾:总结本节课学习内容,强化学生对初高中数学衔接知识的理解。

教学反思:
通过本节课的教学内容,学生应该能够逐步理解初中数学与高中数学的联系,并能够将初中数学知识灵活运用到高中数学问题中去。

教师应该根据学生实际情况灵活调整教学内容和方法,帮助学生更好地掌握数学知识。

初高中数学衔接教材

初高中数学衔接教材

初高中数学衔接教材前言二次函数、二次方程、二次不等式在高中数学中占有重要地位,是高中数学学习的基础,在高中学习中一直是“重头戏”,高中函数、三角、解析几何的许多内容都与二次函数、二次方程、二次不等式有关.高中数学中有许多重要的基础性知识应用广泛,如一元二次方程根的分布、一元三次方程与不等式、高次不等式、含参数的不等式解法、“打勾函数”、恒成立问题、存在性问题、分式函数的值域等,这些知识在初高中教材中又是不常见的,几乎没有,本书在这些方面作一些补充和尝试.本书可以作为初高中衔接的教材,也是高一新生的入门教材,在高一阶段也可作为校本教材使用.目 录第一章 一元二次方程 (1)1.1一元二次方程的判别式及其作用 ...............................................................1 1.2一元二次方程根的求解 ...........................................................................1 1.3 韦达定理及其应用 .................................................................................6 1.4一元三次方程根的求解 (8)第二章 二次函数 (12)2.1二次函数常见的三种表达形式 ………………………………………………………12 2.2 二次函数在特定区间内的值域(最值) …………………………………………………17 2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质 …………………………21 2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质 ……24 2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 26第三章 一元二次不等式 (29)3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法 (29)3.2 含参数的一元二次不等式的解法 ……………………………………………………35 3.3 一元二次方程)0(02≠=++a c bx ax 根的研究 (39)第四章 高次不等式的解法 (47)第五章 简单分式函数的值域求法 (51)5.1 函数dcx bax y ++=(其中)0≠ac 的值域 (51)5.2 函数e dx cbx ax y +++=2(其中)0≠ad 的值域 (53)5.3 函数e dx cx b ax y +++=2(其中)0≠ac 与fex dx cbx ax y ++++=22(其中)0≠ad 的值域 55第六章 恒成立问题与存在性问题 (58)6.1恒成立问题与存在性问题两个常见结论 ......................................................58 6.2 二次函数的恒成立问题 (60)第一章 一元二次方程一元二次方程是高中数学学习的基础,在高中数学中占有十分重要的位置.一元二次方程根的求解、韦达定理、判别式、根的范围的分析等都是高中数学学习的基础.1.1一元二次方程的判别式及其作用对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆. 当0>∆时,方程有两个不等实根,当0=∆时,方程有两个相等实根, 当0<∆时,方程没有实数根.1.2一元二次方程根的求解一元二次方程根的求解常用三种办法:十字相乘法(因式分解),配方法,公式法. 1.2.1 十字相乘法(因式分解) 因式分解(分解因式),把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.因式分解法就是通过因式分解将一元二次方程化成0))((=++d cx b ax 的形式(注意方程右边一定是0)从而得出a b x -=或cdx -=.十字相乘法(因式分解)是解一元二次方程最常用的方法,应用最为广泛,一定要掌握,并多加练习, 但只适用于左边易分解而右边是零的一元二次方程 .例1.2.1解下列一元二次方程 :(1) 06722=++x x ;(2) 022=--x x . 解:(1) 应用十字相乘法. 把22x 拆成x 2和x , 把6拆成2和3 x 2 3 (也可以拆成1和6 , 2和3 的位置也可变化, 具体取哪一种,要看 x 2 十字相乘能否凑成一次项的系数), 如右图,然后再将x 2和2相乘得x 4, 将x 和3相乘得到x 3,最后将x 4和x 3加起来,看是不是等于式子中的一次项x 7,如果是,就OK 了.0)2)(32(=++x x , 从而得它的两个根为21-=x ,232-=x .(2) 应用十字相乘法化为0)1)(2(=+-x x ,得它的两个根为21=x ,12-=x .1.2.2配方法 先把方程化为形如c b a c b ax ,,()(2=+为常数,0≠a )的方程,再用直接开平方法得方程的解.配方法是解一元二次方程公式法的基础,没有配方法就没有公式法.例1.2.2 解一元二次方程:0262=--x x .解:由0262=--x x ,得11)3(2=-x ,得113±=x .1.2.3 公式法 公式法是解一元二次方程的通法,较配方法简单.当十字相乘法(因式分解)较困难时,是解一元二次方程最常用的方法.对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆.当0>∆时,方程有两个不等实根,aacb b x 242-±-=;当0=∆时,方程有两个相等实根,ab x 2-=; 当0<∆时,方程没有实数根.例1.2.3 解一元二次方程:0242=--x x . 解:,2,4,1-=-==c b a 024)2(14)4(2>=-⨯⨯--=∆,方程有两个不等实根:622244±=±=x .课后作业1.2分别解下列一元二次方程.1.(1)01322=++y y ;(2)01092=--x x ; (3)031032=++x x .2.(1) 0262=--x x ; (2) 01562=-+x x ; (3)061352=-+x x .3.(1)02452=--x x ; (2) 081032=-+x x ;(3)01272=++x x .4.(1)0622=--x x ; (2) 0862=-+x x ;(3)022=++x x .5.(1)0152=+-x x ; (2) 0632=--x x ;(3)02722=++x x .6..; ;0432)3(0523)2(023)1(222=--=++-=+-x x x x x x7..; ;0162)3(0126)2(02073)1(222=+-=--=-+x x x x x x8.(1) 06122=--x x ; (2) 0671122=--x x ; (3) 06122=+-x x .9.已知m 是实常数,解下列一元二次方程:(1) 0222=-+m mx x ; (2) 05161222=+-m xm x .1.3 韦达定理及其应用对一般地,一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,方程有两个实根21,x x ,则有ac x x a b x x =⋅-=+2121,.例 1.3.1 已知21,x x 是方程 07232=--x x 的两根,求: 2221)1(x x +;221)()2(x x -;21)3(x x -.解:由韦达定理37,322121-=⋅=+x x x x .则(1) 946)37(2942)(212212221=-⨯-=-+=+x x x x x x . (2) 221)(x x -988)37(4944)(21221=-⨯-=-+=x x x x .(3) 2232)(22121=-=-x x x x .例1.3.2 已知21,x x 是下列各方程的两实根, 分别求221)(x x -:)31(333)2(022)1(2222222±≠=--=++-k b kx x k x k x k )(;)( .解:(1) 由韦达定理1,)2(2212221=⋅+=+x x kk x x .则 221)(x x -4242221221)1(164)2(44)(k k k k x x x x +=-+=-+=.(2) 0)327(18)31(222=+-+-b kx x k ,由韦达定理13327,13182221221-+=⋅-=+k b x x k k x x ,则 221)(x x -222222222221221)13()39(1213)327(4)13(3244)(--+=-+--=-+=k k b b k b k k x x x x .课后作业1.31.已知21,x x 是方程 04322=-+x x 的两实根,求:2221)1(x x +;221)()2(x x -;21)3(x x -.2.已知21,x x 是方程 05232=++-x x 的两实根,求)1)(1(21--x x 的值.3.已知21,x x 是方程03)12(2=+-+x k x 的两实根,若+21x x 0)1)(1(21=--x x , 求k 的值 .4.已知方程 02=++c bx ax 的两实根为2,-3,解方程02=+-c ax bx .5.已知2,121==x x 是方程 0)1(2=+++b x ab ax 的两实根,求b a ,的值.6.已知21,x x 是方程 0542=+-m x x 的两实根,若0)2)(2(21=++x x , 求m 的值 .7.已知21,x x 是方程[]421422=-++)(k kx x 的两根, 求221)(x x -.8.已知21,x x 是方程 0722=+-x x λ的两实根,若51221<+x x x x , 求实数λ的取值范围 .9.已知21,x x 是方程 06)12(32=+-+x a x 的两不等实根,若 121<-x x , 求实数a 的取值范围 .1.4一元三次方程根的求解 1.4.1一元三次方程猜根法求解高中数学中, 一元三次方程根的求解, 主要采用先猜一个有理根 , 再进行因式分解法求解.因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先猜出它的一个有理根,才能作因式分解.当然,因式分解的解法很简便,直接把三次方程降次.一般地, 对一个一元三次方程:0012233=+++a x a x a x a , 如果它有有理根nmx =(既约分数),其中Z n m ∈,, 且0≠n , 则m 是0a 的约数,n 是3a 的约数.例1.4.1 解一元三次方程:0563=+-x x .解:5,603==a a , 则0a 的约数有5,1±±=m , 3a 的约数有6,3,2,1±±±±=n , 若原方程有有理根,则有理根必为65,61,35,31,25,21,5,1±±±±±±±±=x , 先猜简单的1-=x 为它的根,则该一元三次方程可化为0)566)(1(2=+-+x x x ,由于方程05662=+-x x 无实根,从而得它只有一个实数根:1-=x .例1.4.2 解一元三次方程:0223=-+x x .解:对左边作因式分解,得0)22)(1(2=++-x x x , 得方程只有一个实数根:1=x . 例1.4.3 解一元三次方程:02223=+--a a a .解:先猜一个根1=a ,则化为0)2)(1(2=---a a a ,再因式分解可得三个实数根1,1,2-=a .1.4.2一元三次方程卡尔丹公式法求解(含复数根)方程03=++q px x 的三个根为(其中231iw +-=, i 为虚数单位) 332332127422742p q q p q q x +--+++-=;3322332227422742p q q w p q q w x +--⋅+++-⋅=;3323322327422742p q q w p q q w x +--⋅+++-⋅=.标准型一元三次方程023=+++d cx bx ax (其中R d c b a ∈,,,,且0≠a ),令aby x 3-=代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程03=++q py y .【卡尔丹判别法】 当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根; 当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根; 当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根.1.4.3一元三次方程盛金公式法求解盛金公式法求解一元三次方程,在这里不作介绍,有兴趣可上网查询.相关链接:/s5518/msgview-49671-5.html1.4.4 一元三次方程的根与系数的关系方程023=++++d cx bx ax (其中R d c b a ∈,,,,且0≠a )的三个根为1x ,2x ,3x ,则))()((32123x x x x x x a d cx bx ax ---=+++,展开即得abx x x -=++321, a c x x x x x x =++133221, ad x x x -=⋅⋅321.课后作业1.4分别解下列一元三次方程:1.(1) 04115223=+-+x x x ; (2) 01223=--x x ;2.(1) 01323=--x x ; (2)04323=+-x x .3.(1) 063223=++-x x x ; (2)062523=+--x x x .4.(1) 02323=--+x x x ; (2)027523=-+-x x x .5.(1) 03323=+--x x x ; (2)03103=--x x .6.(1) 015323=++-x x x ; (2)041919623=---x x x .7.(1) 0577223=+--x x x ; (2)06174323=+--x x x .8.(1) 01216311023=-++x x x ; (2) 03118423=+-+x x x .第二章 二次函数二次函数的三种表示方法、二次函数的图象和性质以及二次函数的简单应用是本节内容的重点.在高中数学中,经常采用区间来表示相应的实数值的集合.具体规定如下:()a ,∞-表示小于a 的实数的集合{}a x x <; ()∞+,a 表示大于a 的实数的集合{}a x x>;(]a ,∞-表示小于等于a 的实数的集合{}a x x≤;[)∞+,a 表示大于等于a 的实数的集合{}a x x ≥;()b a ,表示大于a 且小于b (其中a b >)的实数的集合{}b x a x<<;[]b a ,表示大于等于a 且小于等于b (其中a b >)的实数的集合{}b x a x ≤≤;[)b a ,表示大于等于a 且小于b (其中a b >)的实数的集合{}b x a x<≤; (]b a ,表示大于a 且小于等于b (其中a b >)的实数的集合{}b x a x≤<.2.1二次函数常见的三种表达形式2.1.1交点式:))((21x x x x a y --=,其中点)0,(,)0,(21x x 为该二次函数与x 轴的交点.在画交点式图象时采用描点法,一般应画出下列关键点: ①x 轴上的交点)0,(1x ,)0,(2x ;②y 轴上的交点),0(21x ax ;③顶点(横坐标为221x x x +=);④其它特殊点(例如1±=x 等).例2.1.1 画出下列二次函数的图象: (1))2)(1(+-=x x y ;(2))5)(2(21+-=x x y ;(3))3)(1(2++-=x x y . 解: (1) (2) (3)k h x a y +-=2)(,其中点),(k h 2.1.2顶点式:为该二次函数的顶点.要求能够熟练作出顶点式函数的图象,熟练说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值.二次函数k h x a y +-=2)(的图象开口由a 的正负决定:当0>a 时,开口向上;当0<a 时,开口向下.二次函数k h x a y +-=2)(的图象开口大小由a 决定:a 越大,开口越小;a 越小,开口越大.二次函数的单调性由a 的正负和对称轴决定:当0>a 时,开口向上时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小(称之为单调递减,记为↓-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之增大(称之为单调递增,记为↑∞+),(h );当0<a 时,开口向下时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小增大(称之为单调递增,记为↑-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之减少(称之为单调递减,记为↓∞+),(h );例2.1.2画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)2)1(2+-=x y ;(2) 1)1(2-+-=x y .解:(1)如图2.1.2(1),开口向上, 对称轴1=x , 顶点坐标)2,1(,↑∞+↓-∞),1()1,(,2m i n =y ,无最大.(2) 如图2.1.2(2),开口向下, 对称轴1-=x , 图2.1.2(1) 图2.1.2(2)顶点坐标)1,1(--,↓∞+-↑--∞),1()1,(,1max -=y ,无最小.2.1.3一般式:)0(2≠++=a c bx ax y .要研究函数)0(2≠++=a c bx ax y 的图象和性质,一般应熟练把它化为顶点式:k h x a y +-=2)(,写出它的对称轴a b x 2-=和顶点坐标)44,2(2ab ac a b --,转化为上面的顶点式类型.)0(2≠++=a c bx ax y 的图象与系数c b a ,,的关系:a 的正负由开口方向决定,当x0>a 时开口向上, 当0<a 时开口向下;b 的大小(正负)由对称轴abx 2-=和开口(a 的正负)联合决定;c 的大小(正负)由它的图象与坐标轴y 轴的交点),0(c 的位置决定 .如图 2.1.3,当判别式042>-=∆ac b 时, )0(2≠++=a c bx ax y 的图象与x 轴有两个不同的交点;当042=-=∆ac b 时,图象与x 轴有且只有一个公共点;当042<-=∆ac b 时,图象与x 轴没有公共点.当0>a 且判别式042<-=∆ac b 时,)0(2≠++=a c bx ax y 的图象恒在x 轴的上方.当0<a 且判别式042<-=∆ac b 时, )0(2≠++=a c bx ax y 的图象恒在x 轴的下方.图2.1.3(1)0,0>∆>a 图2.1.3(2)0,0=∆>a 图2.1.3(3)0,0<∆>a图2.1.3(4)0,0>∆<a 图2.1.3(5)0,0=∆<a 图2.1.3(6)0,0<∆<a例2.1.3把下列二次函数的一般式化为顶点式:(1)172-+=x x y ;(2)2522-+-=x x y ;(3)23212+-=x x y . 解:(1)45327(2-+=x y . (2)89)45(22+--=x y . (3)25)3(212--=x y .例2.1.4分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)342++=x x y ;(2) 452-+-=x x y .解:(1)1)2(2-+=x y ,开口向上, 对称轴2-=x ,顶点坐标)1,2(--, ↑∞+-↓--∞),2()2,(,1min -=y ,无最大.(2)49)25(2+--=x y ,开口向下, 对称轴25=x , 顶点坐标)49,25(,↓∞+↑-∞),25()25,(,49max =y ,无最小.例 2.1.5 已知函数a x a ax x f +-+=)()(312在[)∞+,1上单调递增, 求实数a 的取值范围.解:0=a 或⎪⎩⎪⎨⎧≤->,1213,0aa a 得a 的取值范围是10≤≤a .课后作业2.11.分别画出下列二次函数的图象: (1))2)(1(-+=x x y ;(2))2)(23(31+-=x x y ;(3))1)(12(-+-=x x y .2.画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值: (1)2)2(2--=x y ;(2) 5)2(2++-=x y ;(3)1)1(32+--=x y .3.把下列二次函数的一般式化为顶点式: (1) 33322-+-=x x y ; (2) 1532+-=x x y ; (3) x x y --=243.4.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) x x y 232--=; (2) 122-+=x x y .5.分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值. (1) 142--=x x y ; (2) 1522++-=x x y ; (3)1232-+=x x y .6.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) x x y 22+-= ; (2) 2432--=x x y .7.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) 12+--=x x y ; (2) 132-+-=x x y .8.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) ;122+-=ax x y (2) .()012≠-+-=a x ax y2.2 二次函数在特定区间内的值域(最值)二次函数在特定区间内的值域(最值)求解的步骤:①先画出原函数在实数集R上的图象;②再在①的基础上画出它在特定区间内的图象;③ 根据图象得出该二次函数在特定区间内的值域(最值).例2.2.1求下列二次函数在特定区间内的值域:(1))21(2≤≤-=x x y ;(2))2(32≥+-=x x y ;(3))12(122<<---=x x x y .解:(1)值域[]4,0. (2)值域]1,(--∞. (3)值域⎪⎭⎫⎢⎣⎡-9,89. 例2.2.2求二次函数)21(2)(2≤≤--=x ax x x f 的最小值.解:二次函数对称轴a x =.当1-<a 时,如图2.2.2(1),a f x f 21)1()(min +=-=; 当21≤≤-a 时,如图2.2.2(2),2min )()(a a f x f -==; 当2>a 时,如图2.2.2(3),a f x f 44)2()(min -==.图2.2.2(1) 图2.2.2(2) 图2.2.2(3) 例2.2.3求二次函数)2(4)(2+≤≤+-=a x a x x x f 的最大值. 解:二次函数对称轴2=x ,开口向下.当0<a 时,如图2.2.3(1),2max 4)2()(a a f x f -=+=;图2.2.3(1) 图2.2.3(2) 图2.2.3(3) 当20≤≤a 时,如图2.2.3(2),4)2()(max ==f x f ;当2>a 时,如图2.2.3(3),2max 4)()(a a a f x f -==.例 2.2.4 已知函数)0(3)12()(2≠--+=a x a ax x f 在区间⎥⎦⎤⎢⎣⎡-2,23上的最大值为1,求实数a 的值.解:由于二次函数的最值必在端点或对称轴处取得,先由158)2(=-=a f 得43=a ,由12343)23(=--=-a f 得310-=a , 由14)12(12)221(2=---=-aa a a a f 得223±-=a . 经经验得适合条件的43=a ,或223--=a . 课后作业2.21.分别画出下列函数的图象:(1) )1232->-=x x x y (;(2))21(22≤<-+-=x x x y ; (3))1,2(422-<>++-=x x x x y 或.(1) (2) (3) 2.分别画出下列函数的图象:(1) )0(13212≤++-=x x x y ; (2) )31(342≤<--=x x x y ; (3) )1(12->+--=x x x y .(1) (2) (3)3.求下列函数的值域:(1))11(12≤≤-++-=x x x y ; (2))421(142<≤--=x x x y ; (3))11(1622≤≤-+-=x x x y .4.若二次函数)31(3)(2≤≤-+-=x m x x x f 的最大值为2 ,求m 的值.5.若二次函数)0(152)(2m x x x x f ≤≤-+-=的最大值为817,求m 的取值范围.6.求下列函数的值域:(1)1424++-=x x y ;(2)124++=x x y .7.求函数)11(1324≤≤-+-=x x x y 的值域.8.求函数)3(42<≤-=x m x x y 的值域.9.求二次函数)21(12)(2≤≤-+-=x ax x x f 的最小值.10.求函数)20(122≤≤-+-=x ax x y 的值域.11.若函数)10(8512≤≤+++-=x a ax x y 的最大值为25,求实数a .12.若0>a ,函数)11(12≤≤-++--=x b ax x y 的最大值为0 ,最小值为-4,求实数b a , 的值.13.求函数)11(132+≤≤-+-=a x a x x y 的值域.14.已知21,x x 是方程0622=++-a ax x 的两实根, 求2221)1()1(-+-x x 的最小值.15.若函数)5(462+≤≤+-=a x a x x y 的最大值为20,求实数a 的值.16.若函数)10(2≤≤-+=x a x ax y 的最大值为817,求实数a 的值.2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质2.3.1 函数x y =与函数x y =的图象关系.把函数x y =的图象在x 轴下方部分翻转到x 轴上方即得函数x y =的图象.2.3.2 函数x y =与函数m x y -=的图象关系.把函数x y =的图象向右(0>m )或向左()0<m 平移m 个单位即得函数m x y -=的图象.2.3.3 函数x y =与函数x a y =(0>a )的图象关系.把函数x y =的图象中的折线的倾斜度变化一下 即得函数x a y =(0>a )的图象.思考题:①函数x y =与函数x a y =(0<a )的图象关系;②函数m x y -=与函数m x a y -=的图象关系.例2.3.1 解不等式x x -≥32.解:法一 讨论法 0≥x 时,1,32≥-≥x x x ;0≤x 时,3,32-≤-≥-x x x ;综上所述,原不等式的解集是{}13≥-≤x x x 或.法二 图象法 在同一坐标系下画出函数x y 2= 与x y -=3的图象,由x x -=32得1=x ;由x x -=-32 得3-=x ;如右图,得不等式的解集是{}13≥-≤x x x 或.例2.3.2 解不等式22-≤x x .解:法一 讨论法 2≥x 时,,22-≤x x 得2-≤x 不合;20<≤x 时,,22x x -≤得32≤x ,此时,320≤≤x ;0<x 时,,22x x -≤-得2-≥x ,此时,02<≤-x ;综上所述,原不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .法二 图象法 在同一坐标系下画出函数x y 2= 与2-=x y 的图象,由x x -=22得32=x ;由x x -=-22 得2-=x ;如右图,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x . 法三 平方法 两边平方得 22)2()2(-≤x x ,0)2()2(22≤--x x ,0)23)(2(≤-+x x ,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .例 2.3.3 解下列不等式:(1) 5132<-≤x ; (2)235>-x . 解:(1)2135-≤-<-x 或5132<-≤x ,134-≤<-x 或633<≤x , 所以不等式的解集是)2,1[]31,34( --. (2)先化为253>-x ,253>-x 或253-<-x ,即73>x 或33<x ,所以不等式的解集是),37()1,(∞+∞- .例2.3.4 讨论函数1-=x y 与函数x a y =(a 为常数,且0≠a )图象的交点个数. 解:当0<a 时,如图2.3.3(1), 两图象交点0个;当0<a 时,如图2.3.3(1), 两图象交点0个;当10<<a 或1>a 时,如图2.3.3(2), 2.3.3(3) 两图象交点2个; 当1=a 时,如图2.3.3(4), 两图象交点1个.图2.3.3(1) 图2.3.3(2) 图2.3.3(3) 图2.3.3(4)课后作业2.31.分别画出下列函数的图象:(1) 3-=x y ; (2) 12+=x y .2.分别解下列不等式:(1) 3≥x ; (2)2<x .3.分别解下列不等式:(1) 221≤-<x ; (2)312>+x .4.分别解下列不等式:(1) 143<-x ; (2)352≥-x .5.分别解下列不等式:(1) 13+>x x ; (2)522-≥-x x .6.分别解下列不等式:(1) 123+≤-x x ; (2)x x -<+112.7.分别解下列不等式:(1) 113>+-x x ; (2)452≤-+x x .8.分别解下列不等式:(1) 212+>-x x ; (2) 113-≤+x x .9.解关于x 的不等式:a x x +>2(a 为常数).10.解关于x 的不等式:32-≥-x a x (a 为常数).11.解关于x 的不等式:a x x -<2(a 为常数,且0≠a ).2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质例2.4.1 画出函数21-+-=x x y 的图象. 解:当2≥x 时,32-=x y ,当21<≤x 时,1=y ,当1<x 时,x y 23-=,如右图例2.4.2 画出函数21---=x x y 的图象. 解:当2≥x 时,1=y , 当21<≤x 时,32-=x y , 当1<x 时,1-=y ,如右图例2.4.3 画出函数212-+-=x x y 的图象. 解:当2≥x 时,43-=x y ,当21<≤x 时,x y =, 当1<x 时,x y 34-=,如右图例2.4.4 画出函数212---=x x y 的图象.解:当2≥x 时,x y =, 当21<≤x 时,43-=x y , 当1<x 时,x y -=,如右图思考题:函数n x b m x a y -+-=的图象如何画最简便?课后作业2.41.分别画出下列函数的图象:(1)21++-=x x y ; (2)3212-++=x x y .2.分别画出下列函数的图象:(1)12+--=x x y ; (2)x x y 343--=.3. 若不等式a x x ≥+-2对任意的实数x 恒成立,求实数a 的取值范围.4.若不等式a x x 232212++<+-对任意的实数x 恒成立,求实数a 的取值范围.5.若存在实数x ,使得不等式a x x >--3成立,求实数a 的取值范围.6. 分别画出下列函数的图象:(1)221-++=x x y ; (2)22+-=x x y .7.分别画出下列函数的图象:(1)13+-=x x y ; (2)x x y 22--=.8.若不等式a x x >+--214对任意的实数x 恒成立,求实数a 的取值范围.2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 2.5.1 函数的图象与性质“耐克函数”a a xax y ,0(>+=为常数)的图象, 因它的图象像个勾形,又俗称"打图2.5(1) 图2.5(2)勾函数",也称为"双勾函数".如图2.5(1).函数a a xax y ,0(<+=为常数)在↑-∞)0,(,在↑∞+),0(,如图2.5(2).例2.5.1 求函数)0,21(2≠≤<-+=x x xx y 且的值域.解:如右图,可知函数的值域是()[)∞+-∞-,223, .例2.5.2 画函数xx y 2-=的图象. 解:由0=y 得2±=x ,函数在()↑∞+,0↑-∞)0,(,图象如右图.2.5.2 函数a a xax y ,0(<+=为常数)单调性的证明 先证明函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.设021>>x x ,则212121221121))(()()(x x x x a x x x ax x a x y y --=+-+=-, 因为021>>x x ,所以021>x x ,021>-x x ;又0<a ,所以021>-a x x , 从而021>-y y ,即21y y >,由定义可知,函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.思考题:你能证明函数a a xax y ,0(<+=为常数)在)0,(-∞单调递增吗?课后作业2.5分别求下列函数的值域: 1.(1) )4(9≥+=x x x y ; (2) )1(41-<+=x xx y .2.(1) )0,42(4≠≤<-+=x x x x y 且; (2) )21(13≥-<+=x x xx y 或.3.(1) )2(14>-+=x x x y ; (2) )0(34<--=x x xy .4.(1) )1(114≠-+=x x x y ; (2) 1(128<-+=x x x y ,且)21≠x5.(1) )3(234>--=x x x y ; (2) )0(314<--=x x xy .6.(1) 1522++=x x y ; (2) 2322++=x x y .7.xx y 5-=(1>x ).8.xx y -+=213(3≥x ).yx第三章 一元二次不等式3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法一元二次不等式的一般形式是02>++c bx ax 或02<++c bx ax (其中0≠a ) .解一元二次不等式,应结合对应的二次函数)0(2≠++=a c bx ax y 的图象进行记忆,必须熟练掌握.3.1.1如图 3.1.1(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0>a 时,不等式02>++c bx ax 的解集是{}12x x x x x <>或,不等式02<++c bx ax 的解集是{}21x x x x <<;如图3.1.1(2),当判别式042=-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧-≠∈a b x R x x 2,且,不等式02<++c bx ax 的解集是∅;如图3.1.1(3),当判别式042<-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是R,不等式02<++c bx ax 的解集是∅.图3.1.1(1)0>∆ 图3.1.1(2)0= 图3.1.1(3)0<∆3.1.2如图 3.1.2(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0<a 时,不等式02>++c bx ax 的解集是{}21x x x x <<,不等式02<++c bx ax 的解集是{}12x x x x x <>或;如图3.1.2(2),当判别式042=-=∆ac b ,且0<a 时,不等式02>++c bx ax 的解集是∅,不等式02<++cbxax的解集是⎭⎬⎫⎩⎨⎧-≠∈abxRxx2,且;如图3.1.2(3),当判别式042<-=∆acb,0<a时,不等式02>++cbxax等式02<++cbxax的解集是R.图3.1.2(1)0>∆图3.1.2(2)0=∆图3.1.2(3)0<∆思考题:不等式02≥++cbxax和02≤++cbxax的解集分别是什么?3.1.3一元二次不等式和一元二次方程都是一元二次函数的特殊情况.一元二次方程)0(2≠=++acbxax的根21,xx就是一元二次函数)0(2≠++=acbxaxy的图象与x轴交点的横坐标;一元二次不等式02>++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴上方的点对应的横坐标;一元二次不等式02<++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴下方的点对应的横坐标.一元二次不等式、一元二次方程和一元二次函数是密切联系的,应该进行联系记忆与应用.3.1.4解一元二次不等式02>++cbxax或02<++cbxax(其中0≠a) 的标准步骤是:①先求判别式acb42-=∆.当0>∆时, 求出对应的一元二次方程)0(2≠=++acbxax的两个实根21,xx;②画出二次函数的草图;③根据图像和不等式的类型得它的解集.例3.1.1 解下列一元二次不等式:(1)06722<+-x x ;(2) 0342>+-x x .解:(1) 062449>⨯⨯-=∆,对应方程06722=+-x x 的两个根为23,221==x x ,根据对应二次函数图象开口向上, 得不等式解集为⎭⎬⎫⎩⎨⎧<<223x x . (2)对应方程0342=+-x x 的两个根为3,121==x x ,根据对应二次函数图象开口向上, 得不等式解集为{}31><x x x 或 .例3.1.2 解下列一元二次不等式:(1)07522<+-x x ;(2)0752<-+-x x ; (3)05432≤++-x x .解:(1)03172425<-=⨯⨯-=∆,根据对应二次函数图象开口向上, 得解集为∅.(2) 03)7()1(425<-=-⨯-⨯-=∆,对应二次函数图象开口向下, 得解集为R.(3)对应方程05432=++-x x 的两个根为3192±=x ,根据对应二次函数图象开口向下, 得不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+≥-≤31923192x x x 或.例3.1.3 解一元二次不等式:5432≤-<-x x . 解:法一 54)2(32≤--<-x ,9)2(12≤-<x ,得123-<-≤-x 或321≤-<x ,从而得原不等式的解集是[)(]5,31,1 -.法二 先分别求出直线3-=y ,5=y 与函数x x y 42-=的图象的交点的横坐标.由542=-x x ,得5=x 或1-=x , 由342-=-x x ,得3=x 或1=x ,如图,由图象可知原不等式的解集是[)(]5,31,1 -.例 3.1.4 若一元二次不等式02≥++c bx ax 的解集是{}41≤≤x x ,解不等式02<++c ax bx .解:根据抛物线的开口与解集的关系可知0<a ,且对应的对应的一元二次方程02=++c bx ax 的两个实根4,121==x x ,依韦达定理得⎪⎩⎪⎨⎧===-=+,4,52121a c x x a b x x ⎩⎨⎧=-=⇒,4,5a c a b 代入得0452<++-a ax ax , 即有0452<--x x ,从而得不等式的解集是⎭⎬⎫⎩⎨⎧<<-154x x .课后作业3.1分别解下列一元二次不等式:1.(1)042>-x ; (2) 0232≤-x .2.(1)022>--x x ; (2) 0322≥+--x x .3.(1)0752>++x x ; (2)0432<+-x x ; (3)0162≥--x x .4.(1)0652>--x x ; (2) 0742>--x x .5.(1) 08232≤+--x x ; (2)0432≥-+-x x .6.(1)0682≤--x x ; (2) 0622≥+--x x ;7.(1) 01422>+-x x ; (2)091242>+-x x ; (3) 0962≤+-x x .8.(1)06722≥++x x ; (2) 0962≤+-x x .9.(1)0252042<+-x x ; (2) 0151482>+--x x .10.(1)01032>-+x x ; (2) 099102<-+x x .11.(1)0252≤++-x x ; (2)02322<-+-x x .12.(1)01232>+-x x ; (2)061362≤+-x x .13.(1)0362≤--x x ; (2) 0162492≥-+-x x .14.(1)02632>+-x x ; (2) 0622<-+x x .15.(1) 0532≤--x x ; (2)01692>+-x x .16.(1) 05442≥--x x ; (2) 04922>+-x x .17.(1)02322≤-+x x ; (2) 01262>--x x .18.(1)0141332≤+-x x ; (2)0313102≤++-x x .19.(1)514212<--≤x x ; (2)1332>+->x x .20.若一元二次不等式0)1(2>--+c x b x 的解集是{}31-<>x x x 或,求不等式022≥+-b x cx 的解.21.若一元二次不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧<<2131x x,求不等式 02<++a bx cx 的解.3.2 含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论(讨论应要求一步到位,避免讨论中又有讨论),讨论时考虑以下几个方面: ①一元二次不等式,对应的一元二方程是否有根,需要讨论方程的判别式Δ的正负或零;②一元二次不等式,对应的一元二方程有两不等实根,则需要讨论两根的大小,先考虑两根相等;③应对一元二次不等式的二次项的系数的正负进行分类讨论.例3.2.1已知a 为实常数,解下列关于x 的不等式:(1) 012>++ax x ; (2) 0)()2(222≥+-++a a x a x .解: (1) 42-=∆a , 由0=∆得2±=a . 当2±=a 时, 解集是⎭⎬⎫⎩⎨⎧-≠2a x x ; 当2>a 或2-<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<242422a a x a a x x 或;当22<<-a 时, 解集是R .(2) 先用十字相乘法把不等式化为0)1)(2(≥++-a x a x ,由0)1(2>---a a得32->a . 当32->a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≥--≤21a x a x x 或;当32-=a 时,不等式的解集是R ;当32-<a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≤--≥21a x a x x 或. 例3.2.2已知a 为实常数,解下列关于x 的不等式:0122<+-x ax . 解: a 44-=∆,由0=∆得1=a .当0>∆且0≠a 时,对应方程的两个根aax -±=112,1. 当0<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->-+<a a x a a x x 1111或;当0=a 时, 不等式即为021<-x ,解集是⎭⎬⎫⎩⎨⎧>21x x ; 当10<<a 时, 不等式的解集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->>-+a a x a a x 1111;当1≥a 时, 不等式的解集是∅.例3.2.3 当a 为何值时, 关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立?解:当0392=+=-a a ,即3-=a 时,适合,3=a 显然不合;当092≠-a 时, 要使关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立,须满足⎩⎨⎧<-++=∆<-,0)9(4)3(,09222a a a 即⎪⎩⎪⎨⎧<<-<<-,593,33a a 得593<<-a ; 综上所述,a 的取值范围是593<≤-a .课后作业3.2已知: a 为实常数 , 分别解下列关于x 的不等式: 1.0)1(2<++-a x a x .2.0)33()2(2>+--+a x a x .3. 03222≤-+a ax x .4. 033)12(22<+-++a a x a x .6. 01242≤+-ax x .7. 01)2(2>++-x a x .8.0222>+-a x x .9.03)16(22>-++-a x a x .10.012>--+a x ax .11.012>+--a x ax .12.0)1(22≤++-a x a ax .13.02)12(2≥++-x a ax .15.022>--a x ax .16.01422≤+++a x ax .17.0)14(4)1(2>+-+-a ax x a .18.若关于x 的不等式06)1(22>++-x a ax 对任意实数恒成立,求a 的取值范围.19. 已知不等式0622<+-k x kx (常数0≠k ).(1) 如果不等式的解集是{}2,3->-<x x x 或,求常数k 的值; (2) 如果不等式的解集是实数集R ,求常数k 的取值范围.3.3 一元二次方程)0(02≠=++a c bx ax 根的研究一元二次方程)0(02≠=++a c bx ax 根的研究,一般有两种方法:一是利用韦达定理(只适用于两个根与0的关系),如类型1,2,3等;二是利用对应的二次函数c bx ax x f ++=2)(的四要素(开口, 对称轴, 判别式, 根的范围的端点值)进行研究, 如类型4,5,6,7,8,9,10,11,12等.类型1:两根均为不同正根⎝⎛>=>-=+>-=∆⇔.0,0,0421212a c x x a bx x ac b例3.3.1若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为正根,求a 的取值范围.解: ⎝⎛>=>-=+≥--=∆,01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><>-≤+≥,,或,或0021232232a a a a a 得232+≥a .类型2:两根均为不同负根⎝⎛>=<-=+>-=∆⇔.0,0,0421212a cx x a bx x ac b例3.3.2 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为负根,求a 的取值范围.解: ⎝⎛>=<-=+≥--=∆.01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-≤+≥,,,或021*******a a a a 得2320-≤<a .y类型3:两根为一正一负021<=⇔acx x .例3.3.3 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根异号,求a 的取值范围. 解:0121<=ax x 得0<a .类型4:两根均为大于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔.0)(,2,042m f a m a b ac b例3.3.4已知方程0)3(42=++-a x ax )0(≠a 有两个大于1的不等实根,求实数a 的取值范围.解:⎪⎩⎪⎨⎧>+-=∆>>-=0)3(416,12,0)12()1(a a aa a af ⎪⎪⎩⎪⎪⎨⎧<<-<<<>⇒,14,20,021a a a a 或得121<<a .类型5:两根均为小于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔.0)(,2,042m f a m a b ac b例 3.3.5 若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根均小于2,求a 的取值范围.解:⎪⎩⎪⎨⎧>-=⋅<≥+-=∆0)55()2(220)3(416a a f a aa a ,,⎪⎩⎪⎨⎧<><≤≤⇒,或>,或1-40110,a a a a a 得04<≤a -.类型6:两根中一根小于m ,另一根大于m 0)(<⋅⇔m f a例3.3.6若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根中一根小于-2,另一根大于-2 ,求a 的取值范围.解:0)115()2(<+=-a a af ,得0511<<-a . 类型7:两根均为),(n m 内的不同根()n m <⎪⎪⎩⎪⎪⎨⎧<><-<>-=∆⇔.,0)(0)(,2,042n af m af n a b m ac b例3.3.7已知方程015)34(22=++-x a x 的两不等根均在区间)5,2(内,求实数a 的取值范围.解:⎪⎪⎩⎪⎪⎨⎧>++-=>++-=<+<>-+=∆,015)34(550)5(015)34(28)2(,54342,0120)342a f a f a a ,(得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<<<--<->,25,817,417454330243302a a a a a ,或 得实数a 的取值范围是81743302<<-a . 类型8:两根均为),(n m 外的不同 根()n m <⎩⎨⎧<<⇔.,0)(0)(n af m af例3.3.8若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根小于1,另一根大于3 , 求a 的取值范围.解:⎩⎨⎧<-=<-=0)36()3(0)312()1(a a af a a af ,⎩⎨⎧<><>⇒,或,或0204a a a a 得4>a 或0<a .类型9:两根中一根在),(11n m ,另一根在),(22n m (2211n m n m <≤<) ⎩⎨⎧<<⇔.0)()(,0)()(2211n f m f n f m f例3.3.9若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根在(1, 2),另一根在(3, 5) , 求a 的取值范围.解:⎩⎨⎧<⋅-=<--=05)36()3()3(0)49)(312()2()1(a a f f a a f f ,⎪⎩⎪⎨⎧<><<⇒,或,02449a a a 得449<<a .类型10:两根中至少有一根大于m⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证).例3.3.10已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.类型11:两根中至少有一根小于m⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证). (此类问题也可转化为函数值域问题)例3.3.11已知方程0)3(42=++-a x ax 至少有一个小于2的实根,求实数a 的取值范类型12:两根中至少有一根在),(n m 内()n m <例3.3.12已知方程0)3(42=++-a x ax 至少有一根在)5,2(内,求实数a 的取值范课后作业3.31.若关于x 的方程03)12(2=-++-a x a x 有两个不等正根,求实数a 的取值范围.2.若关于x 的方程012=++-a ax x 有两个不等负根,求实数a 的取值范围.3.若关于x 的方程014)2(2=+++-a x x a 有一正一负的两根,求实数a 的取值范围.4.已知关于x 的方程023222=---a x ax 的一根大于1,另一根小于1,求实数a的取值范围.5.已知关于x 的方程0)320(2=-+-a ax x 的两个不同根21,x x 满足2131x x <<<,求实数a 的取值范围.6.已知关于x 的方程012)2(2=-+-+a x a x 的两个不同根21,x x 满足21021<<<<x x , 求实数a 的取值范围.7.已知关于x 的方程07)25()3(2=++-+x a x a 在()1,0和()3,2各有一根,求实数a 的取值范围.。

数学初高中衔接教材教案

数学初高中衔接教材教案

数学初高中衔接教材教案课时安排:每周一次,共计10次教学目标:1. 掌握初中数学的基础知识,并能够灵活运用到高中数学中;2. 培养学生的数学思维能力和解题技巧;3. 提高学生对数学的兴趣和学习动力。

教学内容:1. 初中数学的复习和巩固,包括代数、几何、概率等方面的知识;2. 高中数学的引导学习,主要涉及到初步微积分、三角函数、数列等内容;3. 解题技巧的训练,包括数学问题的分析、归纳、解题方法的选择等。

教学方法:1. 讲解与练习相结合,注重学生的实际操作;2. 引导学生思考,激发他们对数学问题的兴趣和探究欲望;3. 提倡学生之间的互动,鼓励他们相互帮助、合作解题。

教学过程:1. 第一次课:复习初中代数知识,包括方程、不等式、函数等内容;2. 第二次课:复习初中几何知识,包括平面几何和立体几何;3. 第三次课:引导学生了解高中微积分的基本概念,并进行简单的计算;4. 第四次课:介绍高中三角函数的性质和应用,训练学生的计算能力;5. 第五次课:学习数列的基本概念和求和公式,培养学生对数列问题的处理能力;6. 第六至第十次课:综合训练,进行各种类型数学题目的解答,加深学生对数学知识的理解和掌握。

评估方式:1. 每次课后布置一定量的作业,检测学生对所学知识的掌握情况;2. 定期进行小测验,考查学生的解题能力和思维能力;3. 最终进行期末考试,综合评价学生的学习成绩和能力表现。

教学资料:1. 课堂教案、习题册、解题方法指导;2. 教学PPT、教学视频等多媒体资源;3. 学生课堂笔记、作业纸等学习材料。

备注:本教案可根据实际情况进行适当调整和补充。

初高中数学衔接教材系列:第5课时绝对值与绝对值不等式教案

初高中数学衔接教材系列:第5课时绝对值与绝对值不等式教案

第5课时 绝对值与绝对值不等式一、公式介绍:绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、例题讲解:例1解方程(1)2230x x --= (2)2110x x ---=(1)解法一:原方程可化为 2200230230003)1)03)1)033x x x x x x x x x x x x x x ≥<⎧⎧⎨⎨--=+-=⎩⎩≥<⎧⎧⇒⎨⎨-+=+-=⎩⎩⇒==- 或或((((或解法二:222323(3)(1)0x x x x x x --=--=-+= 30x ∴-=,则3x =,因而方程的解为3 3.x x ==-或(2)解:原方程可化为2200020001)02)1)0012x x x x x x x x x x x x x x x ≥<⎧⎧⎨⎨-=+-=⎩⎩≥<⎧⎧⇒⎨⎨-=+-=⎩⎩⇒===- 或或(((或或 例2 解不等式:13x x -+->4.解:由01=-x ,得1=x ;由30x -=,得3x =; 则原不等式可化为1133(1)(3)4(1)(3)4(1)(3)41133024404x x x x x x x x x x x x x x x x <≤<≥⎧⎧⎧⎨⎨⎨---->--->-+->⎩⎩⎩<≤<≥⎧⎧⎧⇒⎨⎨⎨<>>⎩⎩⎩⇒<> 或或或或或 所以不等式的解集为{}04x x x <>或。

例3 不等式a x x <-+-34的解集为A ,若A 为非空集合,求a 的取值范围。

解:作函数 ⎪⎩⎪⎨⎧-∞∈+-∈∞+∈-=-+-=)3,(72]4,3[1),4(7234x x x x x x x y 的图象∴ 1>a三、巩固练习: (1)若5=x ,则=x ________;若4-=x ,则=x _________.(2)如果5=+b a ,且1-=a ,则=b ________;若21=-c ,则=c ________.(3)下列叙述正确的是________若a b =,则a b = ② 若a b >,则a b >③ 若a b <,则a b < ④ 若a b =,则a b =±2.化简:5213(5)x x x -+->3.解不等式:(1) 13x ->; (2) 327x x ++-< ;(3) 116x x -++>.。

初高中数学几何衔接

初高中数学几何衔接

初高中衔接教材编排之答禄夫天创作创作时间:贰零贰壹年柒月贰叁拾日第一部分相交线1角的定义:具有公共端点的两条射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

暗示方法符号:∠两条相交线出现四个角2余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。

等角的余角相等,等角的补角相等3对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角如图1,两条直线相交,构成两对对顶角。

∠1与∠3为一对对顶角,∠2与∠4为一对对顶角。

图1注意:1.对顶角一定相等,但是相等的角纷歧定是对顶角。

2.对顶角必须有共同顶点。

3.对顶角是成对出现的。

在证明过程中使用对顶角的性质时,以图1为例,∴∠1=∠3,∠2=∠4(对顶角相等)。

4同位角,内错角,同旁内角同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方,我们把这种位置关系的角称为同位角.互为同位角的有:∠1与∠5,∠2与∠6,∠4与∠8,∠3与∠7;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.互为内错角的有:∠3与∠5,∠2与∠8同旁内角:两条直线被第三条直线所截,在两条直线之间,并在第三条直线同旁的两个角称为同旁内角 .互为同旁内角的有:∠3与∠8,∠2与∠5例题【基础题】请找出图中的同位角,内错角,同旁内角例题、【基础题】如图,O是直线AB一点,∠BOD=∠COE=90º,则(1)如果∠1=30º,那么∠2=,∠3= 。

(2)和∠1互为余角的有。

和∠1相等的角有。

例题【基础】32º的余角为,137º的补角是。

第二部分平行线1.定义在同一平面内,不相交的两条直线叫做平行线.2.特征在同一平面内【必须满足,这是一个难点】不相交说明强调在一个平面内,是因为高中的时候会出现一条线和一个面,那么这个时候存在着线和这个面内的有些直线不服行的问题,这个有点难理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学衔接教材
第五课时
课前回顾:
1.解不等式
(1)0562
4>+-x x (2)0)3)(1()2)(1(≥+---x x x x (3)⎩⎨⎧==+52622xy y x
2.求二次函数5322+-=x x y 在22≤≤-x 上的最大值和最小值,并求出函数取得最大值和最小值时所对应的x 值.
3.一元二次方程042=+-a x x 有两个实数根,一个比3大,一个比3小,求a 的取值范围.
一、 二次函数图象的对称变换
例1、求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式:
(1)直线x =-1; (2)直线y =1.
针对训练:
求把二次函数y =x 2-2x +3的图象关于下列直线对称后所得到图象对应的函数解析式:
(1)直线x =1;
(2)直线y =-1.
x y O x =-1 A (1,-1) A 1(-3,-1) 图2.2-7 x y O y =1 A (1,-1) B (1,3) 图2.2-8
二、与圆有关的比例线段
定理 图形
已知 结论 证法
相交弦定

⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结
AC 、BD ,证:△APC∽△DPB .
相交弦定
理的推论
⊙O 中,AB 为直径,CD⊥AB 于P. PC 2=PA·PB . 用相交弦定理.
切割线定

⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT
割线定理
PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD
过P 作PT 切⊙O 于T ,用两次切割线定理
例1.⊙O 中的两条弦AB 与CD 相交于E ,若AE =6cm ,BE =2cm ,CD =7cm ,那么CE =_________cm 。

例2.如图3,P 是⊙O 外一点,PC 切⊙O 于点C ,PAB 是⊙O 的割线,交⊙O 于A 、B 两点,如果PA :PB =1:4,PC =12cm ,⊙O 的半径为10cm ,则圆心O 到AB 的距离是___________cm 。

三、平行线分线段成比例定理
平行线分线段成比例定理:
三条平行线截两条直线,所得的对应线段成比例.
例1 如图, 123////l l l ,
且2,3,4,AB BC DF ===求,DE EF .
1.如图,ABC V 中,AD =DF =FB ,AE =EG =GC ,FG =4,则( )
A .DE =1,BC =7
B .DE =2,B
C =6
C .DE =3,BC =5
D .D
E =2,BC =8
四、射影定理
Rt △ABC 中,∠C=90º,CD ⊥AB 于D ,则
CD 2= ·
AC 2= ·
BC 2= · 例1、 如图,在直角三角形ABC 中,BAC Ð为直角,AD BC D ^于.
求证:(1)2AB BD BC =?,2AC CD CB =?;
(2)2AD BD CD =?
针对训练:
1、已知:如图,△ABC 中,∠ACB=90°,CD⊥AB 于D ,S △ABC =20,AB=10.
求AD 、BD 的长.
2、已知,△ABC 中,∠ACB=90°,CD⊥AB 于D 。

(1)若AD=8,BD=2,求AC 的长。

(2)若AC=12,BC=16,求CD 、AD 的长.
C B
A D
五、三角形的重心
三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.
求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知 D 、E 、F 分别为ABC V 三边BC 、CA 、AB 的中点,
求证 AD 、BE 、CF 交于一点,且都被该点分成2:1.
证明 连结DE ,设AD 、BE 交于点G ,
Q D 、E 分别为BC 、AE 的中点,则DE //AB ,且1
2DE AB =,
GDE \V ∽GAB V ,且相似比为1:2,
2,2AG GD BG GE \==. 设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F ==
则G 与'G 重合,
\ AD 、BE 、CF 交于一点,且都被该点分成2:1
.。

相关文档
最新文档