2008年云南省双柏县初中毕业考试数学试卷及答案
云南省楚雄州双柏县八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某州双柏县2015-2016学年八年级数学上学期期末试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.9的算术平方根是()A.3 B.﹣3 C.9 D.±32.估计介于()A.与之间B.与之间C.与之间D.与之间3.下列说法正确的是()A.一个正数有一个正的平方根 B.0没有平方根C.一个正数有一个正的立方根 D.负数没有立方根4.使二次根式的有意义的x的取值X围是()A.x>0 B.x>1 C.x≥1 D.x≠15.为加快新农村试点示X建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个)36 27 31 56 48 54在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,546.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C.D.2y﹣x=57.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A.B.C.D.8.下列计算正确的是()A.B.C.D.=•二、填空题(本大题共7个小题,每小题3分,满分21分)9.=.10.如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=.11.写出一个经过一、三象限的正比例函数.12.命题“对顶角相等”的条件是,结论是.13.如果点A(a,b)在第四象限,那么点B(b,﹣a)在象限.14.方程组的解是.15.若一个三角形三个内角度数的比为1:2:3,则这个三角形是.三、解答题(本大题共有10个小题,满分75分)16.计算:(﹣)×.17.求一次函数y=3x﹣1与y=2x图象的交点坐标.18.如图,在△ABC中,EF∥AC,DF∥AB,∠B=45°,∠C=60°.求∠EFD的度数.19.《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?20.如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.21.如图,点B、E、C、F在同一直线上,AC与DE相交于点G,∠A=∠D,AC∥DF,求证:AB∥DE.22.已知一次函数y=kx+b的图象经过点A(2,﹣1)和点B,其中点B是直线与x轴的交点.(1)求这个函数的表达式.(2)在同一坐标系中,画出这两个函数的图象.23.已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值X围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?24.2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表某某息,求得a=,b=,c,d,m.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300 a b m所占百分比 c 34% 6%所占圆心角216° d 21.6°25.某游泳馆普通票价20元/X,暑假为了促销,新推出两种优惠卡:①金卡售价600元/X,每次凭卡不再收费.②银卡售价150元/X,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.2015-2016学年某某省某某州双柏县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.9的算术平方根是()A.3 B.﹣3 C.9 D.±3【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,即可求出结果.【解答】解:9的算术平方根是3;故选A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.估计介于()A.与之间B.与之间C.与之间D.与之间【考点】估算无理数的大小.【分析】先估算的X围,再进一步估算,即可解答.【解答】解:∵,∴﹣,∴,∴介于与之间,故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算的大小.3.下列说法正确的是()A.一个正数有一个正的平方根 B.0没有平方根C.一个正数有一个正的立方根 D.负数没有立方根【考点】立方根;平方根.【分析】根据平方根和立方根的定义进行判断即可.【解答】解:A、一个正数的平方根有两个,错误;B、0有平方根,错误;C、一个正数有一个正的立方根,正确;D、负数有立方根,错误;故选C.【点评】此题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.使二次根式的有意义的x的取值X围是()A.x>0 B.x>1 C.x≥1 D.x≠1【考点】二次根式有意义的条件.【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选C.【点评】本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x的不等式,难度适中.5.为加快新农村试点示X建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个)36 27 31 56 48 54在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,54【考点】中位数;加权平均数.【分析】根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.【解答】解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.【点评】本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.6.下列四个方程中,是二元一次方程的是()A.x﹣3=0 B.xy﹣x=5 C.D.2y﹣x=5【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、x﹣3=0是一元一次方程,故A错误;B、xy﹣x=5是二元二次方程,故B错误;C、﹣y=3是分式方程,故C错误;D、2y﹣x=5是二元一次方程,故D正确;故选:D.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.7.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】先根据k<0,b<0判断出一次函数y=kx﹣b的图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=kx﹣b,k<0,b<0,∴﹣b>0,∴函数图象经过一二四象限,故选C.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时的图象在一、二、四象限是解答此题的关键.8.下列计算正确的是()A.B.C.D.=•【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的加减运算对A、B、C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=3﹣2=,所以A选项正确;B、与不能合并,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==×,所以D选项错误.故选A.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(本大题共7个小题,每小题3分,满分21分)9.=﹣4.【考点】立方根.【专题】计算题.【分析】谁的立方等于﹣64,谁就是﹣64的立方根.【解答】解:∵(﹣4)3=﹣64,∴=﹣4,故答案为﹣4,【点评】本题考查了立方根的定义,属于基础题,比较简单.10.如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=64°.【考点】平行线的性质.【分析】首先根据三角形外角的性质,求出∠1的度数是多少;然后根据直线l1∥l2,可得∠α=∠1,据此求出∠α的度数是多少即可.【解答】解:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.【点评】此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.11.写出一个经过一、三象限的正比例函数y=5x.【考点】正比例函数的性质.【专题】开放型.【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过一、三象限确定出k 的符号,再写出符合条件的正比例函数即可.【解答】解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过一、三象限,∴k>0,∴符合条件的正比例函数解析式可以为:y=5x(答案不唯一).故答案为:y=5x.【点评】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时函数的图象经过一、三象限.12.命题“对顶角相等”的条件是两个角是对顶角,结论是这两个角相等.【考点】命题与定理.【分析】命题是判断一件事情,由条件和结论组成,都能写成“如果…那么…”的形式,此命题可写成:如果是对顶角,那么这两个角相等.【解答】解:此命题可写成:如果是对顶角,那么这两个角相等.因此条件是“两个角是对顶角”结论是“这两个角相等”故答案为:两个角是对顶角;这两个角相等.【点评】本题考查找命题里面的条件和结论,写成“如果…那么…”的形式可降低难度.13.如果点A(a,b)在第四象限,那么点B(b,﹣a)在三象限.【考点】点的坐标.【分析】根据第四象限的横坐标大于零,纵坐标小于零,可得a、b的取值X围,再根据不等式的性质,可得答案.【解答】解:由点A(a,b)在第四象限,得a>0,b<0,由不等式的性质,得b<0,﹣a<0.点B(b,﹣a)在三象限.故答案为:三.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.方程组的解是.【考点】解二元一次方程组.【分析】①+②得出3x=6,求出x=2,把x=2代入①得出2+y=5,求出y即可.【解答】解:①+②得:3x=6,解得:x=2,把x=2代入①得:2+y=5,解得:y=3,即原方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组的应用,关键是能把二元一次方程组转化成一元一次方程.15.若一个三角形三个内角度数的比为1:2:3,则这个三角形是直角三角形.【考点】三角形内角和定理.【分析】设三角形的三个内角分别是x,2x,3x,再由三角形内角和定理求出x的值即可.【解答】解:∵一个三角形三个内角度数的比为1:2:3,∴设三角形的三个内角分别是x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=90°.故答案为:直角三角形.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.三、解答题(本大题共有10个小题,满分75分)16.计算:(﹣)×.【考点】二次根式的混合运算.【分析】利用分配律以及二次根式的乘法法则计算,然后化简二次根式,进行加减运算即可.【解答】解:原式=﹣1=6﹣1=5.【点评】本题考查了二次根式的运算,在二次根式的混合运算中,要掌握好运算顺序及各运算律.17.求一次函数y=3x﹣1与y=2x图象的交点坐标.【考点】两条直线相交或平行问题.【分析】根据两条直线相交的问题,解由两个解析式组成的方程组即可得到两函数的交点坐标.【解答】解:解方程组得.所以一次函数y=3x﹣1与y=2x图象的交点坐标是(1,2).【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.18.如图,在△ABC中,EF∥AC,DF∥AB,∠B=45°,∠C=60°.求∠EFD的度数.【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠EFB=60°,∠DFC=45°,再由补角的性质得出∠EFD的度数.【解答】解:∵EF∥AC,∴∠EFB=∠C=60°,∵DF∥AB,∴∠DFC=∠B=45°,∴∠EFD=180°﹣60°﹣45°=75°【点评】本题考查了平行线的性质以及三角形的内角和定理,平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.19.《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?【考点】二元一次方程组的应用.【分析】设有x人,物品价值y元,根据题意可得,8×人数﹣3=物品价值,7×人数+4=物品价值,据此列方程组求解.【解答】解:设有x人,物品价值y元,根据题意得,,解得:.答:有7人,物品价值53元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.如图,A、B两点的坐标分别是(2,﹣3)、(﹣4,﹣3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.【考点】坐标确定位置.【分析】(1)根据点A、B两点的坐标先确定坐标原点,再求得P(4,3)的位置;(2)根据平面直角坐标系得出Q的坐标.【解答】解:(1)根据A、B两点的坐标可知:x轴平行于A、B两点所在的直线,且距离是3;y轴在距A点2(距B点4)位置处,如图建立直角坐标系,则点P(4,3)的位置,即如图所示的点P;(2)点Q 的坐标是(﹣2,2).【点评】本题考查了坐标确定位置,熟记平面直角坐标系的定义并确定出x轴与原点的位置是解题的关键.21.如图,点B、E、C、F在同一直线上,AC与DE相交于点G,∠A=∠D,AC∥DF,求证:AB∥DE.【考点】平行线的判定与性质.【专题】证明题.【分析】由平行线的性质得出∠D=∠EGC,由已知条件得出∠A=∠EGC,由平行线的判定方法即可得出结论.【解答】证明:∵AC∥DF,∴∠D=∠EGC,又∵∠A=∠D,∴∠A=∠EGC,∴AB∥DE.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,证出∠A=∠EGC 是解决问题的关键.22.已知一次函数y=kx+b的图象经过点A(2,﹣1)和点B,其中点B是直线与x轴的交点.(1)求这个函数的表达式.(2)在同一坐标系中,画出这两个函数的图象.【考点】两条直线相交或平行问题.【分析】(1)根据题意可得出B点坐标,结合A点坐标用待定系数法可求出函数解析式.(2)根据两点法,画出函数的图象即可.【解答】解:(1)因为,当y=0时,得0=﹣x+3,解得x=6,所以,点B的坐标是(6,0)又因为一次函数y=kx+b的图象经过点A(2,﹣1)和点B(6,0)所以,解得,所以,这个函数的表达式为y=x﹣;(2)在同一坐标系中,画出这两个函数的图象,如图所示:【点评】此题考查了待定系数法求一次函数解析式,以及一次函数图象,熟练掌握待定系数法是解本题的关键.23.已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值X围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?【考点】一次函数的应用.【分析】(1)根据剩余的路程=两地的距离﹣行驶的距离即可得到y与x的函数关系式,然后再求得汽车行驶200千米所需要的时间即可求得x的取值X围.(2)将x=2代入函数关系式,求得y值即可.【解答】解:(1)y=200﹣60x(0≤x≤);(2)将x=2代入函数关系式得:y=200﹣60×2=80千米.答:汽车距离B地80千米.【点评】本题主要考查的是列函数关系式,读懂题意,明确剩余的路程=两地的距离﹣行驶的距离是解答本题的关键.24.2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表某某息,求得a=170,b=30,c60%,d122.4°,m=500.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300 a b m所占百分比 c 34% 6%所占圆心角216° d 21.6°【考点】条形统计图;统计表;扇形统计图.【分析】(1)由机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,即可得到结果;(2)根据扇形统计图及统计表中提供的信息,列式计算即可得到结果.【解答】解:(1)(2+4)×=4,答:机场E投入的建设资金金额是4亿元,如图所示:(2)c=1﹣34%﹣6%=60%,300÷(1﹣34%﹣6%)=500(亿)a=500×34%=170(亿),b=500×6%=30(亿),d=360°﹣216°﹣21.6°=122.4°,m=300+170+30=500(亿).故答案为:170,30,60%,122.4°,500.【点评】本题主要考查了条形统计图与扇形统计图的应用,根据图象得出正确的信息是解题关键.25.某游泳馆普通票价20元/X,暑假为了促销,新推出两种优惠卡:①金卡售价600元/X,每次凭卡不再收费.②银卡售价150元/X,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.【考点】一次函数的应用.word【分析】(1)根据银卡售价150元/X,每次凭卡另收10元,以及旅游馆普通票价20元/X,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.【解答】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值X围得出是解题关键.21 / 21。
2008年云南省中考数学试卷附参考答案及评分标准
2008年云南省中考数学试卷(课改区)(含超量题满分110分,考试时间100分钟)一、选择题(本大题满分20分,每小题2分) 1.计算2-3的结果是A .5B .-5C .1D .-12.今年1至4月份,我省旅游业一直保持良好的发展势头,旅游收入累计达5163000000元,用科学记数法表示是A. 5163×106元 B. 5.163×108元 C. 5.163×109元 D. 5.163×1010元 3. 下列各图中,是中心对称图形的是4.函数1-=x y 中,自变量x 的取值范围是A. 1≥xB. 1->xC. 0>xD. 1≠x 5.下列各点中,在函数xy 2=图象上的点是A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)这些运动员跳高成绩的中位数和众数分别是A.1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,57. 如图1,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连结EG 与FH 交于点O ,则图中的菱形共有A .4个B .5个C .6个D .7个8.三角形在正方形网格纸中的位置如图2所示,则sin α的值是A. 43 B. 34 C. 53 D. 54ABCD图2α A BDC图3O AB D C图1O E HF G9.如图3,AB 和CD 都是⊙0的直径,∠AOC=90°,则∠C 的度数是A .20°B .25°C .30°D .50°10.一位篮球运动员站在罚球线后投篮,球入篮得分. 下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度h (米)与时间t (秒)之间变化关系的是二、填空题(本大题满分24分,每小题3分) 11.计算:=+⋅32a a a .12. 当x = 时,分式22+-x x 的值为零. 13. 如图4,直线a 、b 被直线 所截,如果a ∥b ,∠1=120°,那么∠2= 度.14. 图5是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 .15. 某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图6所示). 根据图6中的信息,可知在试验田中, 种甜玉米的产量比较稳定.16. 如图7,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为5米,已知小明的身高为1.5米,则这棵槟榔树的高是 米.17. 如图8,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.18. 用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示). h ) A .h ) B .h ) C .h ) D .12图4 ab实验田序号产量(吨)图6 图5 红红 红 白 白 蓝 AB DC 图8图7三、解答题(本大题满分66分)19.(本大题满分9分)化简:1112+-+a a a . 20.(本大题满分10分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元? 21.(本大题满分10分)△ABC 在平面直角坐标系中的位置如图9(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.图9(1) (2) (3)……共计145元 共计280元22.(本大题满分11分)图10-1和图10-2是某报纸公布的中国人口发展情况统计图和2000年中国人口年龄构成图. 请根据图中提供的信息,回答下列问题: (1)2000年,中国60岁及以上从口数为 1.32 亿,15~59岁人口数为 8.12 亿(精确到0.01亿);(2)预计到2050年,中国总人口数将达到 15.22 亿,60岁及以上人口数占总人口数的28.82 %(精确到0.01亿);(3)通过对中国人口发展情况统计图的分析,写出两条你认为正确的结论.老年人越来越多 中国人口以后会有所下降23.(本大题满分12分)如图11,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.510152023456总人口数60岁及以上人口数5101520123456人口数中国人口发展情况统计图年份人口/亿图10-1 2000年中国人口年龄构成图图10-2 A B C D EF图11G24.(本大题满分14分)如图12,已知二次函数图象的顶点坐标为C(1,0),直线mxy+=与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x 的取值范围;(3)D为直线ABDCEP是平行四形?若存在,请求出此时P图12参考答案及评分标准一、选择题(满分30分)DCBAC ABCBD 二、填空题(满分24分)11.32a 12. 2 13. 60 14. 2115. 乙 16. 7.5 17. 2 18. 10,3n+1 三、解答题(满分66分)19.原式112+-=a a ………………………………(3分) 1)1)(1(+-+=a a a ………………………………(6分) 1-=a ………………………………(9分)20. 设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元. ……………………(1分)依题意,得 ⎩⎨⎧=+=+280321452y x y x ………………………………(6分) 解这个方程组,得 ⎩⎨⎧==10125y x ………………………………(9分) 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分) (注:其他解法仿照以上评分标准.) 21.(1)A 1(0,4),B 1(2,2),C 1(1,1) (2)A 2(6,4),B 2(4,2),C 2(5,1) (3)△A 1B 1C 1与△A 2B 2C 2关于直线3=x 轴对称.注:本题第(1),(2)题各4分,第(3)小题2分. 22.(1)1.32,8.46;(2)15.22,28.8; (3)本题答案不唯一,言之有理即可.以下答案仅供参考.①2000—2050年中国60岁以及以上人口数呈上升趋势;②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大; ③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势; ④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%. 注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.23. (1) ΔAED ≌ΔDFC. ………………………………(1分)∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. ………………………………(3分) 又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, ………………………………(5分) ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,∴ ∠EAD=∠FDC. ………………………………(7分) ∴ ΔAED ≌ΔDFC (AAS ). ………………………………(8分)(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ………………………………(10分) ∵ DF=DE+EF ,∴ AE=FC+EF. ………………………………(12分)24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ………………………………(1分) ∴ m=1. ………………………………(2分)设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1. ………………………………(4分)∴ 所求二次函数的关系式为y=(x-1)2.即y=x 2-2x+1. ………………………………(5分) (2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E ………………………………(6分)=(x+1)-(x 2-2x+1) ………………………………(7分)=-x 2+3x. ………………………………(8分)即h=-x 2+3x (0<x <3). ………………………………(9分) (3) 存在. ………………………………(10分)解法1:要使四边形DCEP 是平行四边形,必需有PE=DC. …………………(11分) ∵ 点D 在直线y=x+1上, ∴ 点D 的坐标为(1,2),∴ -x 2+3x=2 .即x 2-3x+2=0 . ………………………………(12分) 解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分) 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. ………………(11分) 设直线CE 的函数关系式为y=x+b. ∵ 直线CE 经过点C(1,0), ∴ 0=1+b, ∴ b=-1 .∴ 直线CE 的函数关系式为y=x-1 .∴ ⎩⎨⎧+-=-=1212x x y x y 得x 2-3x+2=0. ………………………………(12分)解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分)。
中考数学专题测试5:不等式(组)(含答案)
中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。
云南省双柏县中考数学模拟考试题卷(一)
云南省双柏县中考数学模拟考试题卷(一)命题:云南省双柏县教研室 郎绍波一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数法表示为【 】 A . 1.37×108米 B . 1.37×109米 C .13.7×108米 D . 137×106米 2.如图所示的图案中是轴对称图形的是【 】3.小昆设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入23后,输出的结果应为【 】A .10B .11C .12D .134.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是【 】A .B .C .D .5.已知⊙O 1和⊙O 2的半径分别为2cm 和5cm ,两圆的圆心距是3.5cm ,则两圆的位置关系是【 】A .内含B .外离C .内切D .相交 6.用两块边长为a 的等边三角形纸片拼成的四边形是【 】 A .等腰梯形 B .菱形 C .矩形 D . 正方形7.三角形的两边长分别是3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是【 】A .9B .11C .13D .11或138.如图,等腰Rt △ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位置(A ,C ,B 1在同一直线上),∠B =90º,如果AB =1,那么AC 运动到A 1C 1所经过的图形面积是【 】 A .23π B .32π C .34π D .43π二、填空题(本大题共7个小题,每小题3分,满分21分)9.-的相反数是_______________.10.不等式:2x +6<0的解集是 .A BC (C 1)B 1 A 1第8题A .2008年北京B .2004年雅典C .1988年汉城D .1980年莫斯科11.一射击运动员在一次射击比赛中打出的成绩如下表所示: 成绩(环)7 8 9 10次数 1 4 4 1 这次成绩的众数是_______________. 12.如图,AB =AD ,∠1=∠2,请你添加一个适当的条件, 使得△ABC ≌△ADE ,则需添加的条件是 (只要写出一个即可).13.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米.14.以边长1的正方形的对角线为边长作第二个正方形,以第二个正方形的对角线为边长作第三个正方形,……,如此做下去得到第n 个正方形.设第n 个正方形的面积为n S ,通过运算找规律,可以猜想出n S = .15.如图,有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120︒,则该AB 的长是 cm .三、解答题(本大题共10个小题,满分75分)16.(6分)请将式子:2-11(1)-11⨯++x x x 化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x 的值带入求值.17.(6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).18.(6分)如图,已知BE ⊥AD ,CF ⊥AD , 且BE =CF .请你判断AD 是△ABC 的中线 还是角平分线?请说明你判断的理由.第13题 D E CB EB AD2 1第12题 A B C D 第15题 DA B C FA B C19.(8分)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图. 如下所示: 组别 次数x频数(人数) 第1组 80100x <≤ 6 第2组 100120x <≤ 8第3组 120140x <≤a 第4组 140160x <≤ 18第5组 160180x <≤ 6 请结合图表完成下列问题:(1)表中的a = ;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4)若八年级学生一分钟跳绳次数(x )达标要求是:120x <不合格;120140x <≤为合格;140160x <≤为良;160x ≥为优.根据以上信息,请你给学校或八年级同学提一条合理化建议: .20.(6分)小杨同学为了测量一铁塔的高度CD ,如图,他先在A 处测得塔顶C 的仰角为︒30,再向塔的方向直行40米到达B 处,又测得塔顶C 的仰角为︒60,请你帮助小杨计算出这座铁塔的高度.(小杨的身高忽略不计,结果精确到0.1米,参考数据:732.13,414.12≈≈)21.(7分)九年级(4)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选正班长的概率是多少?(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.22.(7分)为响应承办“绿色奥运”的号召,某中学九年级(2)班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了1815 129 63 080 100 120 140 160 180 跳绳次数 频数(人6 8 6 18 C ︒30 ︒60 第20题A B D50%,结果每人比原计划少栽了2棵树.问实际有多少人参加了这次植树活动?23.(8分)如图,点A 、B 、D 、E 在⊙O 上,弦AE 、BD 的延长线相交于点C .若AB 是⊙O 的直径,D 是BC 的中点.(1)试判断AB 、AC 之间的大小关系,并给出证明;(2)在上述题设条件下,ΔABC 还需满足什么条件,点E 才一定是AC 的中点?(直24.(9分)某化妆公司每月付给销售人员的工资有两种方案. 方案一:没有底薪,只拿销售提成; 方案二:底薪加销售提成.设x (件)是销售商品的数量,y (元)是销售人员的月工资.如图所示,y 1为方案一的函数图象,y 2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题(注:销售提成是指从销售每件商品得到的销售费中提取一定数量的费用):(1)求y 1的函数解析式;(2)请问方案二中每月付给销售人员的底薪是多少元?(3)如果该公司销售人员小丽的月工资要超过1000元,那么小丽选用哪种方案最好,至少要销售商品多少件?25.(本小题(1)~(3)问共12分;第(4)问为附加题,共5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记) 如图,抛物线2y 23=--x x 与x 轴交A 、B 两点 (A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标;(2)求直线AC 的函数表达式;(3)P 是线段AC 上的一个动点,过P 点作y 轴的 平行线交抛物线于E 点,求线段PE 长度的最大值; (4)点G 抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;420 560 30 O x y (元2y1y 第24题 第23题 A B D C E OByxACPEO如果不存在,请说明理由.双柏县中考数学模拟考参考答案一.选择题1.A 2.D 3.B 4.A 5.D 6.B 7.C 8.D 二.填空题9. 10.x <-3 11.8、9(环) 12.∠D =∠B 或∠DEA =∠C 或AE =AC 等 13.5.6 14.12n - 15.53 三.解答题16.解:原式=(x +1)(x -1)x -1×(1+1x +1)=(x +1)(x +1+1x +1)=x +x +1=x +2方法一:当x =0时,原式=2 方法二:当x =2时,原式=417.如图,画对一个给3分18.AD 是△ABC 的中线.理由如下:在Rt △BDE 和Rt △CDF 中,因为BE =CF ,∠BDE =∠CDF , 所以Rt △BDE ≌Rt △CDF .所以BD =CD .故AD 是△ABC 的中线.19.(1) a = 12 ;(2)画图答案如图所示:(3)中位数落在第 3 组 (4)只要是合理建议.20.解:在△ABC 中,∠CAB=∠ACB =30°∴AB=CB=40m在Rt △BDC 中, DC =BC·sin60° ∴DC =6.34320≈(米) 答:这座铁塔的高度约为34.6米。
双柏县2008-2009学年度上学期期末教学质量监控检测九年级数学试卷(含答案)
双柏县2008-2009学年度上学期期末教学质量监控检测九 年 级 数 学 试 卷命题:双柏县教研室 郎绍波(全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程2560x x --=的根是( ) A .x 1=1,x 2=6 B .x 1=2,x 2=3 C .x 1=1,x 2=-6 D .x 1=-1,x 2=62.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A .球 B .圆柱 C .三棱柱 D .圆锥 3.到三角形三条边的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点4.既是轴对称,又是中心对称图形的是( )A .正三角形B .平行四边形C .矩形D .等腰梯形5.下列函数中,属于反比例函数的是( )A .3x y =B .13y x=C .52y x =-D .21y x =+6.在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A.45B.35C.43D.547.下列命题中,不正确...的是()A.对角线相等的平行四边形是矩形.B.有一个角为60°的等腰三角形是等边三角形.C.直角三角形斜边上的高等于斜边的一半.D.正方形的两条对角线相等且互相垂直平分.8.下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上.B.今年冬天双柏会下雪.C.随意掷两个均匀的骰子,朝上面的点数之和为1.D.一个转盘被分成4个扇形,按红、白、黄、白排列,转动转盘,指针停在红色区域.二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan45°= .10.已知函数22(1)my m x-=+是反比例函数,则m的值为.11.请你写出一个反比例函数的解析式使它的图象在第二、四象限.12.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线长为cm.13.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员小明能参加这次活动的概率是.14.依次连接菱形各边中点所得到的四边形是 . 15.如图,已知AC=DB ,要使△ABC ≌△DCB ,需添加的一个条件是 . 三、解答题(本大题共9个小题,满分75分)16.(本小题6分)解方程:2(2)x x x -=-17.(本小题6分)如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD ,AC=BC=CD .(1)求证:△ABD 是等腰三角形. (2)求∠BAD 的度数.AB CD18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米)(供选用的数据:sin 400.64≈,cos 400.77≈,tan 400.84≈)19.(本小题8分)“一方有难,八方支援”.今年11月2日,鄂嘉出现洪涝灾害,牵动着全县人民的心,我县医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援鄂嘉防汛救灾工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A 的概率.A20.(本小题10分)如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E . (1)已知CD=4cm ,求AC 的长. (2)求证:AB=AC+CD .21.(本小题9分)某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. (1)写出这一函数的表达式.(2)当气体体积为1 m 3时,气压是多少?(3)当气球内的气压大于140 kPa 时,气球将爆炸,为了安全起见,气体的体积应不大于多少?ACED22.(本小题10分)阅读探索:(1)解方程求出两个根1x 、2x ,并计算两个根的和与积,填入下表(2)观察表格中方程两个根的和、两个根的积与原方程的系数之间的关系有什么规律?写出你的结论.23.(本小题8分)已知,如图,AB、DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.DAEB C24.(本小题10分)动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?A DHB CG(方案一)A DFB C(方案二)EE双柏县2008-2009学年度上学期期末教学质量监控检测九年级数学试卷参考答案一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.D 2.A 3.A 4.C 5.B 6.B 7.C 8.C二、填空题(本大题共7个小题,每小题3分,满分21分)9.1 10.111.1yx=-……12.5 13.1414.矩形15.AB=DC或∠ACB=∠DBC三、解答题(本大题共9个小题,满分75分)16.(本小题6分)解方程得x1=1,x2=217.(本小题6分)解:(1)∵AC⊥BD,AC=BC=CD ∴∠ACB=∠ACD=90°∴△ACB≌△ACD ∴AB=AD ∴△ABD是等腰三角形.(2)∵AC⊥BD,AC=BC=CD ∴△ACB、△ACD都是等腰直角三角形.∴∠B=∠D=45°∴∠BAD=90°18.(本小题8分)解:在Rt△ADE中,tan∠ADE=DEAE∵DE=10,∠ADE=40°∴AE=DE tan∠ADE =10tan40°≈100.84⨯=8.4∴AB=AE+EB=AE+DC=8.4 1.59.9+=答:旗杆AB的高为9.9米19.(本小题8分)解:(1)用列表法或树状图表示所有可能结果如下:(1)列表法:(2)树状图:(2)P(恰好选中医生甲和护士A)=16,∴恰好选中医生甲和护士A的概率是1 620.(本小题10分)解:(1)∵AD 是△ABC 的角平分线,DC ⊥AC ,DE ⊥AB∴DE=CD=4cm , 又∵AC=BC ,∴∠B=∠BAC , 又∵∠C=90º,∴∠B=∠B DE=45º,∴BE=DE在等腰直角三角形BDE 中,由勾股定理得,BD=∴AC=BC=CD+BD=4+(cm)(2)由(1)的求解过程可知:△ACD ≌△AED ,∴AC=AE , 又∵BE=DE=CD ∴AB=AE+BE=AC+CD21.(本小题9分)解:(1)设p 与V 的函数关系式为kp=V, 将V=0.8,p=120代入上式,解得k=0.8×120=96 所以p 与V 的函数关系式为96p V=(2)当V=1时, p=96 (3)96p=140V 0.69V≥≤由,得,所以气球的体积应不大于0.69m 3 22.(本小题10分)(第(1)小题每空0.5分,共7分,第(2)小题3分)解:(1) , , 0, -2 ②32, 0,32, 0③ 2, 1, 3, 2 ④b a -,ca(2)已知:1x 和2x 是方程20 (0)ax bx c a ++=≠的两个根,那么,12b x x a +=-, 12c x x a⋅=. 23.(本小题8分)解:(1)画图略 (2)由(1)得:5DE ,DE 10(m)36==得 24.(本小题10分)解:(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形。
2008年初中毕业学业考试数学试题
2008年初中毕业学业考试数学试题(考试形式:闭卷;全卷共五大题25小题;卷面分数:120分;考试时限:120分钟) 考生注意:1.本试卷分为两卷,解答第Ⅰ卷(1~2页)时请将解答结果填写在第Ⅱ卷(3~8页)上指定的位置,否则答案无效,交卷时只交第Ⅱ卷. 2.答卷时允许使用科学计算器. 以下公式供参考:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b ,第Ⅰ卷 (选择题、填空题 共45分)一、选择题.(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第Ⅱ卷上指定的位置.01.实数a 、b 在数轴上的位置如图所示,则( ) A .b > 0 B .0> a C .b >a D .a>b02.如图是一个物体的三视图,则该物体的形状是( ) A .圆锥 B .圆柱C .三棱锥D .三棱柱03.下列四个数据中,是近似数的是( )A .三班有50人参加今年中考B .全市今年初中毕业学生有6321人C .我在初中学习了6本数学书D .玉泉铁塔高16.945米 04.在下列的计算中,正确的是( )A .2x +3y =5xyB .(a +2)(a -2)=a 2+4C .a 2•ab =a 3bD .(x -3)2=x 2+6x +905.如图,在△ABC 中,点D 、E 、F 分别是三边的中点,那么平移△ADE 可以得到( )A .△DBF 和△DEFB .△DBF 和△ABC C .△DEF 和△CEFD .△DBF 和△EFC06.据预报,2007年“五一”下雨的概率为80%,则下列理解正确的是( )A .“五一”80%的地区会下雨B .“五一”80%的时间会下雨C .“五一”一定会下雨D .“五一”下雨的可能性很大07.木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD ),这样做的根据是( )A .矩形的对称性B .矩形的四个角都是直角C .三角形的稳定性D .两点之间线段最短第9题图 A C 第7题图 B D第1题图F第5题图E C D B A第2题图 主视图 左视图 俯视图08.某皮鞋店在近一周内各种皮鞋的售出情况记录如下表,该店老板决定下周要多进一些40码皮鞋,其决策的依据是一周内所销售皮鞋数量的( )A .平均数B .众数C .中位数D .方差09.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,OC =5 cm ,则OD 的长是( ) A .3 cm B .2.5 cm C .2 cm D .1 cm 10.学校升旗仪式上,匀速上升国旗的高度与时间的关系可以用图象近似地刻画,其图象是( )二、填空题.(本大题共5小题,每小题3分,共15分) 请将下列各题的答案填写在第Ⅱ卷上指定的位置. 11.巴黎与北京两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数).2007年“中法文化交流之春”活动内容中的“城堡文化艺术展”将于5月26日在北京时间9:00开幕,那么实况转播开幕式从法国巴黎时间 开始.12.如图,AB 是⊙O 的切线,OB =2OA ,则∠B 的度数是__________.13.为测量校园平地上一棵大树的高度,学校数学兴趣小组做了如下的探索.他们根据光的反射原理,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面镜子放在离树底B 有9米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =0.9米,若观察者目高CD =1.65米,则树的高度AB 约为________米.14.为了迎接国家普及九年级义务教育验收,某学校对家长进行了教育教学工作满意度地调查,随机调查了25名家长,调查的结果如右表.根据表中给出的信息,请你估计一下本校800名家长中对学校教育教学工作不.满意的有 人. 15.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成.依此规律,第n个图案中白色正方形的个数为 .…第1个第2个第3个第15题图A B O第12题图第13题图2007年初中毕业学业考试数学训练题(一)第Ⅱ卷 (解答题 共75分)一、选择题答题栏.(请将第Ⅰ卷中选择题的答案填写在下表中)二、填空题答题栏.(请将第Ⅰ卷中填空题的答案填写在下表中)三、解答题.(本大题共4小题,每小题6分,共24分) 16.先化简(1+1x -1)÷xx 2-1,再选择一个恰当的x 的值代入并求值.17.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O .(1)用尺规作出OC 、OB 中点,分别为E 、F (保留作图痕迹,不写作法与证明); (2)连结AE 、DF ,求证AE=DF .18.2007年3月12日植树节,某中学教师参加义务植树活动,准备种植一批树苗.活动采用分工负责制,若每位教师种植10棵树苗,则还剩88棵;若每位教师种植12棵树苗,则有—名教师种植的树种苗不到4棵,求准备种植树苗的棵数与参加植树的教师人数.ABOCD第17题图19.如图,电路图上有A 、B 、C 、D 四个开关和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于 ;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.四、解答题.(本大题共3小题,每小题7分,共21分)20.如图,已知△ABC 内接于⊙O ,点D 在OC 的延长线上,∠B=∠D=30°.(1)AD 是⊙O 的切线吗?说明理由; (2)若OD ⊥AB ,BC =5,求AD 的长.O 第20题图●B CDA第19题图21.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x (分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分).(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由.22.如图,是学校背后山坡上一棵原航空标志的古柏树AB的示意图,在一个晴天里,数学教师带领学生进行测量树高的活动.通过分组活动,得到以下数据:一是测得太阳光线AC与垂线AB的夹角∠CAB为150;二是测得树在斜坡上影子BC的长为10m;三是测得影子BC与水平线的夹角∠BCD为300;请你帮助计算出树的高度AB (精确到0.1m).第23题图五、解答题.(本大题共3小题,每小题10分,共30分)23.如图,在△ABC 中,AB =4,AC =6,D 是BC 上的一个动点,过D 作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)△BDE 和△DCF 有怎样特殊的关系,为什么? (2)当D 运动到什么位置时,四边形AEDF 是菱形;(3)存在长与宽的比为2:1的矩形AEDF 吗?若不存在,说明理由;若存在,求出其面积.AB C FD E 第23题图24.在农村合作医疗卫生体系建设中,国家每年安排2亿元资金用于医疗系统设备更新.2006年初我国有7.46亿农村人口,其中参加农村合作医疗试点的人数为4.1亿,国家按照人均10元标准补助给农民所在的医疗机构,这样使农村合作医疗试点范围在年底达到1451个县(市、区),占全国总数的50.7%;2007年国家加大资金投入,预算投入的总资金比2006年投入总资金的2倍还多14.4亿元,使参加农村合作医疗人数的增长率比农民的人均补助标准年增长率多10个百分点,参加农村合作医疗的人数达到当年全部农村人口的87.5 %,试点县(市、区)扩大到80%.(1)2007年将有多少个县(市、区)参加农村合作医疗试点?(2)2007年参加农村合作医疗试点的人数比2006年增长了百分之几?(3)若农村人口自然增长率及国家给农民的人均医疗补助的增长率不变,那么到2008年解决全部农村人口的合作医疗问题国家财政应支出多少亿元?(结果保留整数)25.如图,已知矩形ABCO在坐标系的第一象限,它的长AO是宽OC的3倍,且有两边在坐标轴上.将△ACO沿对角线AC翻折得△ACP,P点落在经过矩形ABCO四个顶点的⊙E上,⊙E 的半径为R.(1)用R的式子表示点B的坐标;(2)若抛物线y=ax2+3x+c经过P、A两点,请你判断点C是否在此抛物线上;(3)若(2)中的抛物线的顶点为Q,该抛物线与x轴的另一个交点为M,那么直线OB将△AMQ 的面积分为两个部分的比值k是否是一个定值?如果不是,请说明理由;如果是,请求出其比值k.第25题图。
2008年云南省高中、中专招生统一考试数学试题(含答案)
云南省2008年高中(中专)招生统一考试数 学 试 题(全卷三个大题,共24个小题,共8页;满分120分,考试用时120分钟) 注意:1.本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.2.考试结束后,请将试题卷和答题卷一并交回.3.考生可将《2008年云南省高中(中专)招生考试说明与复习指导·数学手册》及科学计算器(品牌和型号不限)带入考场使用.一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下列计算正确的是( )A .B .0( 3.14)1π-=C .326a a a ⋅=11()22-=-D .93=±2.某几何体的三视图如左图所示,则此几何体是( ) A .正三棱柱 B .圆柱 C .长方体 D .圆锥3. 不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥C .1x ≤D .31x -≤≤4.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是( )A .9B .12C .15D .12或155.彩云中学九年级(一)班同学举行“奥运在我心中”演讲比赛.第三小组的六名同学成绩如下(单位:分): 9.1, 9.3, 9.5, 9.2, 9.4, 9.2. 则这组数据的众数是( ) A .9.1 B. 9.2C. 9.3D. 9.56.2008年5月12日14时28分,四川省汶川地区发生里氏8.0级大地震,云南省各界积极捐款捐物,支援灾区.据统计,截止2008年5月23日,全省共向灾区捐款捐物共计50140.9万元,这个数用科学记数法可表示为 ( ) A .65.0140910⨯ B .55.0140910⨯ C .45.0140910⨯D .350.140910⨯7.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .58.一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为( )A .6B .12C .24D .23二、填空题(本大题共7个小题,每小题3分,满分21分) 9.2008-的相反数是 .10.已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为 ___________________.11.如图,直线a 、b 被第三条直线c 所截,并且a ∥b ,若165∠=,则2∠= . 12.函数21y x =-中 ,自变量x 的取值范围是_________. 13.在ABC ∆中,:2:1A B ∠∠=,60C ∠=,则A ∠=_________. 14.分解因式:24x y y -= _______________________.15.已知,⊙1O 的半径为5,⊙2O 的半径为9,且⊙1O 与⊙2O 相切,则这两圆的圆心距为___________.b21三、解答题(本大题共9个小题,满分75分)16.(本小题6分)已知25x=-,求225611xx x x x+⎛⎫-÷⎪--⎝⎭的值.17.(本小题8分)如图,在梯形ABCD中,AD∥BC,AB DC=,若点M为线段AD上任意一点(M与A、D不重合).问:当点M在什么位置时,MB MC=,请说明理由.18.(本小题8分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)图形ABCD与图形A B C D关于直线MN成轴对称,请在图中画出对称轴并标注上1111相应字母M、N;(2)以图中O点为位似中心,将图形ABCD放大,得到放大后的图形A B C D,则图形2222 ABCD与图形A B C D的对应边的比是多少?(注:只要写出对应边的比即可)2222(3)求图形A B C D的面积.222219.(本小题7分)苍洱中学九年级学生进行了五次体育模拟测试,甲同学...的测试成绩如表(一),乙同学...的测试成绩折线统计图如图(一)所示:表(一)次数一二三四五分数46 47 48 49 50(1)请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲48 2乙48 48(2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.20.(本小题8分)云南省2006年至2007年茶叶种植面积....情况如表所示,表格......与产茶面积中的x、y分别为2006年和2007年全省茶叶种植面积:年份种植面积(万亩)产茶面积(万亩)y-2006年x154.22007年y298.6合计792.7565.8(1)请求出表格中x、y的值;(2)在2006年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2008年全省茶叶种植产茶总产量达到22万吨,求2006年至2008年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)21.(本小题8分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率;(2)请在4,7,8,9这4个数字中选出一个数字....填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字..的概..和.分别为奇数..与为偶数率相等,并说明理由.22.(本小题8分)已知,在同一直角坐标系中,反比例函数5yx=与二次函数22y x x c=-++的图像交于点(1)A m-,.(1)求m 、c的值;(2)求二次函数图像的对称轴和顶点坐标.23.(本小题10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60方向上,港口D在港口A北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.60o24.(本小题12分)如图,在直角坐标系中,半圆直径为OC ,半圆圆心D 的坐标为(0,2),四边形OABC 是矩形,点A 的坐标为(60),.(1)若过点(230)P ,且与半圆D 相切于点F 的切线分别与y 轴和BC 边交于点H 与点E ,求切线PF 所在直线的解析式;(2)若过点A 和点B 的切线分别与半圆相切于点1P 和2P (点1P 、2P 与点O 、C 不重合),请求1P 、2P 点的坐标并说明理由. (注:第(2)问可利用备用图作答)备用图云南省2008年高中(中专)招生统一考试数学试题参考答案及评分标准一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.B 2.A 3.D 4.C 5.B 6.C 7.B 8.A二、填空题(本大题共7个小题,每小题3分,满分21分)9. 2008 10. 15℃ 11.65° 12.1x ≠ 13.80° 14. (2)(2)y x x +-. 15. 4或14. 三、解答题(本大题共9个小题,满分75分)16.(本小题6分)解:原式256(1)(1)x x x x x x x ⎡⎤+=-⋅⎢⎥--⎣⎦5(1)51x x x x -=⋅=--. ···································· 5分 ∴当25x =-时,原式25()25=-⨯-=. ···················································· 6分17.(本小题8分)解:当点M 是AD 的中点时,MB MC =. ·························································· 2分 理由如下:如图,连结MB 、MC ,∵在梯形ABCD 中,AB DC =,∴梯形ABCD 是等腰梯形,从而A D ∠=∠. ·················································· 5分 ∵点M 是AD 的中点,∴MA MD =. 又∵AB DC =,∴△MAB ≌△MDC . ∴MB MC =. ························································································· 8分 18.(本小题8分)解:(1)如图所示:画出对称轴MN ; ·························································· 2分(2)对应边的比为1:2 ············································································· 5分(3)2222222211481622A B C D S B D A C =⨯⨯=⨯⨯=. ·············································· 8分19.(本小题7分)解:(1) ······················································· 5分(注:中位数2分、方差3分)中位数 平均数 方差 甲 48 48 2乙48480.8(2)乙同学的成绩较为稳定,因为乙同学五次测试成绩的方差小于甲同学五次测试成绩的方差. ·································································································· 7分 20.(本小题8分)解:(1)据表格,可得792.7154.2298.6565.8x y y +=⎧⎨-+=⎩,解方程组,得371.3421.4.x y =⎧⎨=⎩,······························································· 3分(2)设2006年至2008年全省茶叶种植产茶年总产量的平均增长率为p ,∵2006年全省茶叶种植产茶面积为267.2万亩,从而2006年全省茶叶种植产茶的总产量为267.20.05213.8944⨯=(万吨). ··································· 5分 据题意,得213.8944(1)22p +=,解方程,得1 1.26p +±≈, ∴0.26p = 或 2.26p =-(舍去),从而增长率为26%p =. 答:2006年至2008年全省年产茶总产量的平均增长率为26%. ·················· 8分21.(本小题8分)解:(1)∵没有标数字扇形的面积为整个圆盘面积的14,∴指针指向没有标数字扇形的概率为14P =. ···································· 3分(2)填入的数字为9时,两数和分别为奇数与为偶数的概率相等.理由如下:设填入的数字为x ,则有下表:和x 2 5 6 x 2x (偶)2+x 5+x 6+x 2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 66+x偶奇偶从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足2+x ,5+x ,6+x 三个数中有2个是奇数,一个是偶数.将所给的数字代入验算知, 9x =满足条件.∴填入的数字为9. ······································································ 8分 (注:本题答案不惟一,填入数字7也满足条件;只填数字不说理由的不给分.)22.(本小题8分) 解:(1)∵点A 在函数5y x =的图像上,∴551m ==--.········································ 2分 ∴点A 坐标为(1,5)--.∵点A 在二次函数图像上,∴125c --+=-,2c =-. ······························ 4分 (2)∵二次函数的解析式为222y x x =-+-,∴2222(1)1y x x x =-+-=---.∴对称轴为直线1x =,顶点坐标为(11)-,. ········································· 8分60o23.(本小题10分)解:连结AC 、AD 、BC 、BD ,延长AT ,过B 作BT AT ⊥于T ,AC 与BT 交于点E .过B 作BP AC ⊥于点P .由已知得90BAD ∠=,30BAC ∠=,32575AB =⨯=(海里), 在BEP ∆和AET ∆中,90BPE ATE ∠=∠=,AET BEP ∠=∠, ∴30EBP EAT ∠=∠=.∵60BAT ∠=,∴30BAP ∠=,从而17537.52BP =⨯=(海里). ··················· 4分∵港口C 在B 处的南偏东75方向上,∴45CBP ∠=.在等腰Rt CBP ∆中,75222BC BP ==(海里),∴BC <AB .BAD ∆是Rt ∆,∴BD AB >. 综上,可得港口C 离B 点位置最近.∴此船应转向南偏东75方向上直接驶向港口C . 设由B 驶向港口C 船的速度为每小时x 海里, ············································· 8分则据题意应有37.52(60548)5x÷⨯-<7,解不等式,得202x >(海里). 答:此船应转向沿南偏东75的方向向港口C 航行,且航行速度至少不低于每小时202海里,才能保证船在抵达港口前不会沉没. ··············································· 10分24.(本小题12分)解:(1)设切线PH 所在直线的解析式为y kx b =+. ····································· 1分解法一:设E 点的的坐标为(,4)E x ,过E 点作ET ⊥x 轴于点T ,连结DP 、DF ,则DF ⊥PE ,在R t △DOP 和R t △DFP 中,∵OP PF =, OD DF =,∴△DO P ≌△DFP .在R t △DOP 中,23tan 323DPO ∠==. ∴30DPO ∠=,从而知60OPE ∠=.在R t △EPT 中,可求得433PT =,∴E 点的坐标为2343⎛⎫ ⎪ ⎪⎝⎭,. ················· 4分 ∵直线过P 、E 两点,∴230,23 4.3k b k b ⎧+=⎪⎨+=⎪⎩ 解方程组,得36.k b ⎧=-⎪⎨=⎪⎩,∴切线PF 所在直线的解析式为36y x =-+. ··········································· 6分解法二:∵点P 的坐标为()230, ,且直线y kx b =+过点P ,∴230k b +=,23b k =-.设E 点的的坐标为(4)E x ,,过E 点作ET ⊥x 轴于点T . ∵切线过E 点,∴4E kx b +=,1(4)E x b k=-.∵EC EF =,PF PO =, ∴PE EF FP =+. ····································································· 4分 在Rt ETP △中,222PE ET PT =+,∴22211(4)23423(4)b b k k ⎡⎤⎡⎤-+=+--⎢⎥⎢⎥⎣⎦⎣⎦,解方程,得3k =-,6b =.∴切线PF 所在直线的解析式为36y x =-+. ··········································· 6分(2)如备用图,(ⅰ)当0k <时,设过点A 且与半圆相切于1P 点的切线方程为11y k x b =+,1P 点的坐标为11()x y ,,切线与边BC 交于点S ,过点S 作1ST ⊥x 轴于点1T .同上理,可得116b k =-,222111111(4)646(4)b b k k ⎡⎤⎡⎤-+=+--⎢⎥⎢⎥⎣⎦⎣⎦,解方程,得134k =-,192b =. ····································································· 8分∵直线11y k x b =+与边BC 交于点2(4)S x ,,∴239442x =-+,解方程,得223x =.∵111ST SA P Ay =,∴126643y ⎛⎫+=⨯ ⎪⎝⎭,解得1185y =,代入3942y x =-+,解得165x =. ∴所求满足条件的1P 点的坐标为618()55,.··················································· 10分 (ⅱ)当0k >时,据圆的对称性知2P 点是1P 点关于直线2y =对称的点,从而可得2P 点的坐标为6255⎛⎫ ⎪⎝⎭,. ··························································································· 12分。
2008年中考数学试题分类汇编(阅读、规律、代数式)
以下是河北省柳超的分类(2008年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2008年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2008年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2008年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2008年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。
18.(2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.10. ( 2008年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P , 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q , 再记直角三角形 ,,22111Q P P Q OP 的面积分别为 ,,21S S ,这样就有,24,21322321nn S n n S -=-=… ; 记21S S W += 1-++n S , 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2008年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的写出你的结论.24.(2008年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售: 方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买; 方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。
2008年云南省中考数学试卷答案
2008年云南省中考数学试卷(课改区)参考答案及评分标准一、选择题(满分30分)DCBAC ABCBD 二、填空题(满分24分)11.32a 12. 2 13. 60 14. 21 15. 乙 16. 7.5 17.2 18. 10,3n+1三、解答题(满分66分) 19.原式112+-=a a………………………………(3分)1)1)(1(+-+=a a a ………………………………(6分)1-=a ………………………………(9分)20. 设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元. ……………………(1分) 依题意,得 ⎩⎨⎧=+=+280321452y x y x ………………………………(6分) 解这个方程组,得 ⎩⎨⎧==10125y x ………………………………(9分)答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分) (注:其他解法仿照以上评分标准.) 21.(1)A 1(0,4),B 1(2,2),C 1(1,1) (2)A 2(6,4),B 2(4,2),C 2(5,1) (3)△A 1B 1C 1与△A 2B 2C 2关于直线3=x 轴对称.注:本题第(1),(2)题各4分,第(3)小题2分. 22.(1)1.32,8.46;(2)15.22,28.8; (3)本题答案不唯一,言之有理即可.以下答案仅供参考.①2000—2050年中国60岁以及以上人口数呈上升趋势;②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大; ③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势; ④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%. 注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.23. (1) ΔAED ≌ΔDFC. ………………………………(1分)∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. ………………………………(3分) 又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, ………………………………(5分)∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,∴ ∠EAD=∠FDC. ………………………………(7分) ∴ ΔAED ≌ΔDFC (AAS ). ………………………………(8分)(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ………………………………(10分) ∵ DF=DE+EF ,∴ AE=FC+EF. ………………………………(12分)24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ………………………………(1分) ∴ m=1. ………………………………(2分)设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1. ………………………………(4分)∴ 所求二次函数的关系式为y=(x-1)2.即y=x 2-2x+1. ………………………………(5分) (2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E ………………………………(6分)=(x+1)-(x 2-2x+1) ………………………………(7分)=-x 2+3x. ………………………………(8分)即h=-x 2+3x (0<x <3). ………………………………(9分) (3) 存在. ………………………………(10分)解法1:要使四边形DCEP 是平行四边形,必需有PE=DC. …………………(11分) ∵ 点D 在直线y=x+1上, ∴ 点D 的坐标为(1,2),∴ -x 2+3x=2 .即x 2-3x+2=0 . ………………………………(12分) 解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分) 解法2:要使四边形DCEP 是平行四边形,必需有BP ∥CE. ………………(11分) 设直线CE 的函数关系式为y=x+b. ∵ 直线CE 经过点C(1,0), ∴ 0=1+b, ∴ b=-1 .∴ 直线CE 的函数关系式为y=x-1 .∴ ⎩⎨⎧+-=-=1212x x y x y 得x 2-3x+2=0. ………………………………(12分)解之,得 x 1=2,x 2=1 (不合题意,舍去) ………………………………(13分) ∴ 当P 点的坐标为(2,3)时,四边形DCEP 是平行四边形. ……………(14分)A BC A 1 B 1 C 1 C 2B 2 A 2 1 2 3 4 5 6 7 -1 -2 -3 1 O 2x y。
2008年云南双柏县-1
双柏县2008年初中毕业考试数 学 试 卷(全卷三个大题,共25个小题;考试时间120分钟;满分:120分)注意:考生可将《2008年云南省高中(中专)招生考试说明与复习指导·数学手册》及科学计算器(品牌和型号不限)带入考场使用. 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.-2的倒数是( )A .12-B .12C . 2D .-22.下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 3.下图中所示的几何体的主视图是( )4.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3A .B .C .D .5.下列事件是必然事件的是( ) A .今年6月20日双柏的天气一定是晴天 B .2008年奥运会刘翔一定能夺得110米跨栏冠军 C .在学校操场上抛出的篮球会下落 D .打开电视,正在播广告6.圆锥侧面展开图可能是下列图中的( )7.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )8.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点DA .B .C .D .A .B .C . .二、填空题(本大题共7个小题,每小题3分,满分21分)9.分解因式:21x -= . 10.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °.11.双柏鄂加老虎山电站年发电量约为156亿千瓦时,用科学记数法表示156亿千瓦时= 千瓦时. 12.函数13y x =-中,自变量x 的取值范围是 . 13.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.14.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .15.如图,点P 在AOB ∠的平分线上,若使AOPBOP △≌△, 则需添加的一个条件是 . (只写一个即可,不添加辅助线)12c a b兴趣爱好图1图2输入x(2)⨯- 4+ 输出ABPO三、解答题(本大题共10个小题,满分75分)16.(本小题6分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.17.(本小题6分)解分式方程:233x x=-.18.(本小题6分)AB 是⊙O的直径,PA 切⊙O 于A,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.AP19.(本小题8分)如图,E F,是平行四边形ABCD的对角线AC上的点,CE AF=.请你猜想:BE与DF有怎样的位置..关系和数量..关系?并对你的猜想加以证明.猜想:证明:20.(本小题6分)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.21.(本小题6分)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得68=∠ACB.求所测之处河AB的宽度.(o o osin68≈0.93,cos68≈0.37,tan68≈2.48AOBAB CDEF22.(本题8分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.23.(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.24.(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元?(2)设x表示公民每月收入(单位:元),y表示应交税款(单位:元),当2500≤x≤4000时,请写出y关于x的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?加题10分,每小题5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记)已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求△ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.双柏县2008年初中毕业考试数学试卷参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.A 2.B 3. D 4.D 5.C 6.D 7.C 8.B 二、填空题(本大题共7个小题,每小题3分,满分21分)9.(x +1)(x -1) 10.60 11.1.56×109 12.x ≠3 13.到5 14.0 15.OA=OB 或∠OAP=∠OBP 或∠OPA=∠OPB 三、解答题(本大题共10个小题,满分75分)16.(本小题6分)解:解:原式22222()a ab b a b =---- 22222a ab b a b =---+ 2ab =-将112a b ==-,代入上式得 原式12(1)2=-⨯⨯-1=17.(本小题6分)解:去分母,得23(3)x x =-去括号,移项,合并,得9x = 检验,得9x =是原方程的根. 18.(本小题6分)PA 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=.30P ∠=,∴60AOP ∠=.∴1302B AOP ∠=∠=.白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始19.(本小题8分)猜想:BE DF∥,BE DF=证明:证法一:如图19-1四边形ABCD是平行四边形.BC AD∴=12∠=∠又CE AF=BCE DAF∴△≌△BE DF∴=34∠=∠BE DF∴∥证法二:如图19-2连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥20.(本小题6分)如图.三步各计2分,共6分.21.(本小题6分)解:解:在BACRt∆中,68=∠ACB,∴24848.210068tan=⨯≈⋅=ACAB(米)答:所测之处河的宽度AB约为248米22.(本题8分)解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163P==.AB CDEF图19-2OAB CDEF图19-123 41AOB23.(本小题8分)解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元。
双柏县初中学业水平考试数学模拟试题(二)含答案
1 / 5CBAOA CBD E1 D FE ABC 云南省双柏县初中学业水平考试数学模拟试题(二)命题:双柏县教研室 郎绍波一、填空题(本大题共6个小题,每小题3分,满分18分) 1.-5的倒数是 .2.计算:(-1) +(3.14-π)0= . 3.函数y 5x =+中自变量x 的取值范围是 .4.《云南省“十三五”规划纲要》中指出:到,昆明中心城市人口达到400万人左右。
将400万用科学计数法表示为 人.5.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为 .6.我们把分子为1的分数叫做单位分数.如111234,,,,任何一个单位分数都可以拆成两个不同的单位分数的和,如11111111123634124520=+=+=+, , ,,根据对上述式子的观察,请你写出110= .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是( )A .422a a a =÷ B .22()()a b a b a b ++=+C .523-=D .-21()=42-- 8.下列四个几何体中,主视图为矩形的是( )A .B .C .D .9.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .等边三角形 B .平行四边形C .梯形D .矩形10.不等式4-x ≤2(3-x )的正整数解有( )A .1个B .2个C .3个D .无数个11.如图,已知:CD ∥BE ,∠1=68°,那么∠B 的度数为( )A .68°B .102°C .110°D .112°12.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ).A .50元,30元B .50元,40元C .50元,50元D .55元,50元13.如图,△ABC 是⊙O 内接三角形,∠ACB=26°,则∠ABO 的度数是( ) A . 64° B .52°C . 54°D .70°14.已知,函数ky x=的图象经过点(-1,2),则函数y=kx +2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限三、解答题(本大题共9个小题,满分70分) 15.(7分)计算:先化简,再求值:222221211x x xx x x x -+÷--++-,其中2x =.16.(7分)如图,在平行四边形ABCD 中,E 、F 为对角线AC 上两点,且AE=CF ,请你从图中找出一对全等三角形,并给予证明.2 / 53 2 14 EA FC BD17.(8分)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行100米到达C 处,再测得山顶A 的仰角为45°,求山高AD 是多少米?(结果保留整数,测角仪忽略不计,参考数据2 1.41,3 1.73≈≈)18.(7分)昆楚高速公路全长170千米,甲、乙两车同时从昆明、楚雄两地高速路收费站相向匀速开出,经过50分钟相遇,甲车比乙车每小时多行驶10千米.求甲、乙两车的速度.19.(8分)某超市计划在开业庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元. (1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果; (2)某顾客参加一次抽奖,能获得返还现金的概率是多少?20.(8分)某校组织了一次九年级科技小制作比赛,有A 、B 、C 、D 四个班共提供了100件参赛作品.C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整; (3)通过计算说明,哪个班的获奖率高?21.(8分)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式.(2)月通话时间为多长时,A 、B 两种套餐收费一样? (3)什么情况下A 套餐更省钱?22.(8分)如图,矩形ABCD 中,AB=8,AD=6,点E 、F 分别在边CD 、AB 上. (1)若DE=BF ,求证:四边形AFCE 是平行四边形; (2)若四边形AFCE 是菱形,求菱形AFCE 的周长.23.(9分)如图,已知抛物线y=x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,O 是坐标原点,点A 的坐标是(﹣1,0),点C 的坐标是(0,﹣3).(1)求抛物线y=x 2+bx +c 的函数表达式; (2)求直线BC 的函数表达式; (3)试判断△OBC 的形状;(4)在线段BC 上是否存在一点P ,使△ABP ∽△CBA ?若存在,求出点P 的坐标;如果不存在,请说明理由.yCA OBxD FEABC双柏县初中学业水平模拟考试数学试题(二)参考答案一.填空题:1.15- 2.2 3.x ≥-5 4.4×106 5.3π 6.1111110+二.选择题:7.A 8.C 9.D 10.B 11.D 12.C 13.A 14.C三.解答题: 15.(7分)2222222(1)=1211112(1)122222(1)12(1)2(1)2(1)x x x x x x x x x x x x x x x x x x x x x x x x -+-+÷---++-+-+-----=-=-=-----解:()()当2x =时,原式=22222(1)2(21)x x ----==---16.(7分)解:△AED ≌△CFB (共有三对三角形全等,只要写出其中一对即可)∵ 四边形ABCD 是平行四边形∴ DA=BC ,DA ∥BC∴ ∠DAC=∠BCA在 △AED 和△CFB 中, ∵ DA=BC ,∠DAE=∠BCF ,AE=CF ∴ △AED ≌△CFB 17.(8分)解:如图,∠ABD=30°,∠ACD=45°,BC=100m ,设AD=x m ,在Rt △ACD 中,∵tan ∠ACD=ADCD, ∴CD=AD=x , ∴BD=BC+CD=x +100,在Rt △ABD 中,∵tan ∠ABD=ADBD, ∴ x =33(x +100),∴ x =50(3+1)≈137, 答:山高AD 约为137米.18.(7分)解:设乙车速度为x 千米/时,甲车速度为(x +10)千米/时,根据题意得56(x +x +10)=170, 解得: x =97 则甲车速度为:x +10=97+10=107千米/时答:甲车速度为107千米/时,乙车速度为97千米/时.19.(8分)解:(1)画树状图得:或者,列表得:第二次 第一次1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 456784 / 5EAFCBDyCAOBxyCAOBxPD则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:63168=.20.(8分)解:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班参赛作品有25件(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:(3)A班的获奖率为:14100%40% 10035%⨯=⨯,B班的获奖率为:11100%44% 25⨯=,C班的获奖率为:50%,D班的获奖率为:8100%40% 10020%⨯=⨯,故C班的获奖率高.21.(8分)解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)当月通话时间多于300分钟时,A套餐更省钱.22.(8分)解:(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,在Rt△ADE中,AE2=62+x2,且CE=8﹣x,∴62+x2=(8﹣x)2,解得:x=74,则菱形的边长为:8﹣74=254,周长为:4×254=25,故菱形AFCE的周长为25.23.(9分)解:(1)将点A的坐标(﹣1,0),点C的坐标(0,﹣3)代入抛物线解析式得:10233b c bc c-+==-⎧⎧⎨⎨=-=-⎩⎩,解得,故抛物线解析式为:y=x2﹣2x﹣3.(2)当x2﹣2x﹣3=0时,得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则30133k d kd d+==⎧⎧⎨⎨=-=-⎩⎩,解得,故直线BC的解析式为:y=x﹣3,(3)∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°∴△OBC是等腰直角三角形.(4)存在一点P,使△ABP∽△CBA连接AP、AC,过点P作PD⊥x轴于点D,∵△ABP∽△CBA,∴AB BP=BC AB,∵BO=OC=3,∴2,∵A(﹣1,0),B(3,0),∴AB=4,5 / 5∴BP 82BP 4332,解得由题意可得:PD ∥OC ,∴DB=DP=83, ∴OD=3﹣83=13, 则P (13,﹣83).。
楚雄州双柏县初中学业水平考试模拟试卷(二)及答案
主视图左视图附视图a b2 1 第11题图第一个图形 第二个图形 第三个图形 第四个图形 楚雄州双柏县初中学业水平模拟考试数学试题(二)命题:楚雄州双柏县教研室 郎绍波一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.-2的倒数是【 】 A .12-B .12C .2D .-2 2.在四川雅安芦山“4.20”地震中,截止5月底,中国红十字会官网称,红会系统收到社会各界捐赠款物约800000000元.这个数用科学记数法可表示为【 】 A .8×107 B .8×108 C .80×107 D .80×108 3.下列运算正确的是【 】A .236x x x ⋅= B .235()x x =C 93=D .0(2)0-=4.如图,是某几何体的三视图,该几何体是【 】 A .圆柱 B .圆锥 C .直棱柱 D .球5.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,a ,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是【 】 A .2和2 B .4和2 C .2和3 D .3和2 6.直线y = x 与双曲线1y x=-在同一坐标系中的大致位置是【 】A .B .C .D .7.在平面直角坐标系中,若点P (x -2,x )在第一象限,则x 的取值范围是【 】 A .0<x <2 B .x <2 C .x >0 D .x >28.两圆的半径分别为2和3,圆心距为5,则这两个圆的位置关系是【 】A .相交B .外切C .内切D .相离二、填空题(本大题共6个小题,每小题3分,满分18分) 9.函数y x=x 的取值范围是 . 10.分解因式:m 3-4m 2+ 4m = .11.如图,已知a ∥b ,∠1=140°,则∠2=_________.12.一个多边形的内角和是900°,则这个多边形的边数是 .13.一个菱形的周长是20cm ,其中一条对角线长是8cm ,则另一条对角线长是 cm . 14.观察下列图形:它们是按一定的规律排列,依照此规律第 n 个图形共有 个. 三、解答题(本大题共9个小题,满分58分) 15.(4分)先化简,在求值:1(1)(2)1x x -÷--,其中x =0.16.(5分)某中学九年级学生在开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们在点C 测得教学楼AB 的顶点A 的仰角为32°,又测得点C 到教学楼AB 的底部B 点的距离是24米.求出这幢教学楼的高度. (结果精确到1米,参考数据:sin32°≈0.55, cos32°≈0.83, tan32°≈0.66)17.(6分)如图,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB ∥EF . (1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ;(2)添加了条件后,证明△ABC ≌△EFD .AB C 第16题图 OxyOyxyxOyOFA BCDyA O C MB x18.(6分)如图,在平面直角坐标系中,每个小正方形边长都为1个单位长度.(1)画出将△ABC 向右平移5个单位长度得到的△A 1B 1C 1;(2)画出△ABC 关于x 轴对称的△A 2B 2C 2; (3)画出△A 1B 1C 1绕着点B 1顺时针旋转180°后得到的△A 3B 3C 3.19.(6分)3月国务院公布的房地产调控“国五条”实施细则中明确指出:房产转让按差额(销售价款-房产原值)的20%计算个人所得税.之前只按照销售价1%征收个人所得税.现李某有一套住房按照“国五条”要求已征收了个人所得税40000元,如果之前只需要征收4000元.请你算一算这套住房的原价和现价各是多少?20.(8分)近来,校园安全问题引起了社会的极大关注,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A 级:90分——100分;B 级:75分——89分;C 级:60分——74分;D 级:60分以下).请结合图中提供的信息,解答下列问题:(1)请把条形统计图补充完整;(2)样本中C 级的学生人数占抽样学生人数的百分比是 ; (3)扇形统计图中C 级所在的扇形的圆心角度数是 ;(4)若该校共有2000名学生,请你用此样本估计安全知识竞赛中A 级和B 级的学生共约有多少人?21.(6分)我省体育中考现场考试内容有四项:男生1000米(女生800米)跑和篮球为必测项目;另在立定跳远、1分钟跳绳(二选一)和坐位体前屈、肺活量(二选一)中选择两项. (1)每位考生有几种选择方案?(2)用A 、B 、C 、D 画树状图或列表法求小李与小王选择同种方案的概率.22.(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.(1)求∠A 的度数;(2)若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积.23.(9分)如图,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.A 49%B 36%C ABCD人数 493651020 30 40 50 FAOE B D第22题图C xyB A C第18题图 第20题图楚雄州双柏县初中学业水平模拟考试(二)数学答题卷(全卷三个大题,共23个小题;满分100分,考试用时120分钟)题号一二三总分得分注意:请按试题卷上的题号顺序在答题卷相应位置作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)题号 1 2 3 4 5 6 7 8答案二、填空题(本大题共6个小题,每小题3分,满分18分)9. 10. 11.12. 13. 14.三、解答题(本大题共9个小题,满分58分)15.(4分)解:16.(5分)解:17.(6分)解:18.(6分)解:19.(6分)解:得分评卷人得分评卷人得分评卷人AFAB CDE第17题图xyBAC第18题图A 49%B 36%CA BCD人数 4936510 20 30 40 50 yA O C MB x第23题图20.(8分)解:21.(6分)解:22.(8分)解:23.(9分)解:FAO E B D第22题图CyA O C M BxD楚雄州双柏县初中学业水平模拟考试数学试题(二)参考答案一.选择题: 1.A 2.B 3.C 4.A 5.D 6.B 7.D 8.B二.填空题: 9.x ≥0 10.m (m -2)2 11.40° 12.7 13.6 14.3n+1 三.解答题: 15.(4分)解:1111211(1)(2)=()1112121x x x x x x x x x x---÷--==------- 当x =0时,原式= 116.(5分)解:在Rt △ABC 中,tanC=ABCB,则AB=CB ·tanC=24×0.66=15.84(米)≈16(米) 答:这幢教学楼的高度约为16米17.(6分)解:(1)添加的条件是:∠ACB=∠EDF (或∠A=∠E 或AB = EF ) (2)在△ABC 和△EFD 中,∵AB ∥EF ∴∠B=∠F又∵BC = FD ,∠ACB=∠EDF ∴△ABC ≌△EFD 18.(6分)如右图19.(6分)解:设这套住房的原价为x 元, 现价为y 元,根据题意得:20%()40000200000,1%4000400000y x x y y -==⎧⎧⎨⎨==⎩⎩解得 答:设这套住房的原价为200000元元,现价为400000元20.(8分)解:(1)抽样总人数为49÷49%=100人,C 级的学生数为100-49-36-5=10人;(2)C 级的学生百分比为10÷100=10%; (3)360°×10%=36°;(4)安全知识竞赛中A 级和B 级的学生数为2000×(49%+36%)=1700人.21.(6分)解:(1)每位考生有4种选择方案(2)用A 、B 、C 、D 代表四种选择方案,列表法是:A B C DA (A ,A)(A ,B) (A ,C) (A ,D)B (B ,A) (B ,B) (B ,C) (B ,D)C (C ,A) (C ,B) (C ,C) (C ,D)D (D ,A) (D ,B) (D ,C) (D ,D)则:小李与小王选择同种方案的概率为P=41164= 22.(8分)解:(1) 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°∵∠D =30°,∴∠COD =60°∵OA =OC ,∴∠A =∠ACO =30°(2)∵CF ⊥直径AB , CF =34,∴CE =23 ∴在Rt △OCE 中,OE =2,OC =4∴2BOC 60483603S ππ⨯扇形==,EOC12232S ⨯⨯==23 ∴EOCBOC 23S S Sπ阴影扇形8=-=-323.(9分)(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有:12=16404=1420-4a abc c b a b c c -+=⎧⎧⎪⎪=-⎨⎨⎪⎪++==⎩⎩,解得 ∴抛物线的解析式y =12x 2+x ﹣4 (2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ). 则AD=m +4,MD=﹣n ,n =12m 2+m ﹣4 . ∴S = S △AMD +S 梯形DMBO -S △ABO=12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12×4×4 =﹣2n ﹣2m ﹣8 =﹣2(12m 2+m ﹣4)﹣2m ﹣8=﹣m 2-4m (-4< m < 0) ∴S 最大值 = 4E DCBAOFBA CB 1 A 1C 1yA 3 C 3 C 2A 2 x(3)设P(x,12x2+x﹣4).①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=﹣x,则Q(x,﹣x).由PQ=OB,得|﹣x﹣(12x2+x﹣4)|=4,解得x=0,﹣4,﹣2±5x=0不合题意,舍去.由此可得Q(﹣4,4)或(﹣52﹣52﹣55②如图2,当BO为对角线时,易知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=﹣x得出Q为(4,﹣4).故满足题意的Q点的坐标有四个,分别是(-4,4 ),(4,-4),(-2+52-25-2-252+5。
中考数学专题训练及答案——解答题
中考数学专题训练及答案——解答题1. (2008永州市) (8分)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆? 2、 (2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.3、(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x φ并把解集在已画好的数轴上表示出来。
4、(2008山西太原)解不等式组:()2532213x x x x+≤+⎧⎪⎨-⎪⎩p 5、(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套? 6、(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x7.(2008浙江金华))解不等式:5x- 3 < 1- 3x8、(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.9、(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目 票价(元/场)男 篮 1000足 球 800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?10、(2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.11. (2008江苏镇江)解不等式组921102x x ->⎧⎪⎨-⎪⎩≥,.12. (2008湖北仙桃等) 解不等式组⎪⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.13、(2008安徽芜湖)解不等式组36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①② 14、(2008年宁波市)解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,15.(2008徐州)解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断x =不等式组.54-5-4-3-2-1321017.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.20、(2008山东济南)解不等式组⎩⎨⎧<+>+63042x x ,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店 200 170 乙店160150(1)设分配给甲店A 型产品件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;0x -2>3121215-≥++x x(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A ,B 两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。
数学中考试题分类汇编 整式及分解因式 (含答案)
2008年数学中考试题分类汇编 整式、分解因式一、选择题1、(2008湖南邵阳)13--等于( )A.2 B.2- C.4 D.4-2、(2008广东)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a3、(2008广东深圳)下列运算正确的是( )A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a ÷52a a =4、(2008湖北襄樊)下列运算正确的是( )A.x 3·x 4=x 12B.(-6x 6)÷(-2x 2)=3x 3C.2a-3a=-aD.(x-2)2=x 2-45、(2008湖北孝感)下列运算中正确的是( )A. 336x y x =B. ()325m m =C. 22122x x -= D. ()()633a a a -÷-=- 6、(2008江苏盐城)下列运算正确的是( )A .236a a a =B .236()a a =C .236a a a +=D .23a a a -=7、(2008浙江湖州)计算(-x )2·x 3所得的结果是( )A 、x 5B 、-x 5C 、x 6D 、-x 68、(2008泰州市)下列运算结果正确的是( )A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷9、(2008台湾)有两个多项式M =2x 2+3x +1,N =4x 2-4x -3,则下列哪一个为M 与N 的公因式?( )A. x +1B.x -1C. 2x +1D. 2x -110、(2008资阳市 )下列运算正确的是( )A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 211、(2008湘潭市)下列式子,正确的是( )A. 3+B. 1)1=C. 122-=-D. 2222()x xy y x y +-=-12、(2008湘潭市)下列命题是假.命题的是( )A. 若x y <,则x +2008<y +2008B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小13、(2008广东)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a14、(2008山东东营)下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a15、(2008浙江金华)化简a+b+(a-b )的最后结果是( )A 、2a+2bB 、2bC 、2aD 、016、(2008泰安)下列运算正确的是( )A .651a a -=B .235()a a =C .235325a a a +=D .235236a a a =17、(2008佛山)化简()m n m n --+的结果是( )A .0B .2mC .2n -D .22m n -18、(2008山东东营)下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a19、(2008浙江金华)化简a+b+(a-b )的最后结果是( )A 、2a+2bB 、2bC 、2aD 、020、(2008泰安)下列运算正确的是( )A .651a a -=B .235()a a =C .235325a a a +=D .235236a a a =21、(2008佛山)化简()m n m n --+的结果是( )A .0B .2mC .2n -D .22m n -22、(2008山东菏泽)下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a23、(2008山东菏泽)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )A .26元B .27元C .28元D .29元24、(2008江苏连云港)化简24a a 的结果是( )A .8aB .6aC .4aD .2a25、(2008北京)若20x ++=,则xy 的值为( ) A .8- B .6- C .5D .626、(2008湖北咸宁)化简()m n m n +--的结果为( ) A .2m B .2m - C .2n D .2n -27、(2008安徽)下列多项式中,能用公式法分解因式的是( )A .2x xy -B .2x xy +C .22x y -D .22x y +28、(2008湖北鄂州)下列计算正确的是( )A =.632x x x ÷= C .33-=± D .224()a a a -=29、(2008地区不名)下列运算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷=30、(2008山东枣庄)下列运算中,正确的是( )A .235a a a +=B .3412a a a ⋅=C .236a a a =÷D .43a a a -=31、(2008浙江嘉兴)下列运算正确的是( )A .235a a a =B .22()ab ab =C .329()a a =D .632a a a ÷=32、(2008山东枣庄)一个正方体的表面展开图如图所示,每一个面上都写有一个整数, 并且相对两个面上所写的两个整数之和都相等,那么( )A .a =1,b =5B .a =5,b =1C .a =11,b =5D .a =5,b =1133、(2008湖南郴州)下列计算错误的是( )A .-(-2)=2B =.22x +32x =52x D .235()a a =34、(2008江苏南京)计算(ab 2)3的结果是( )A.ab 5B.ab 6C.a 2b3 D.a 3b 635、(2008山东济南)下列计算正确的是( ) A.a 3+a 4=a 7 B. a 3·a 4=a 7 C. (a 3)4=a 7 D. a 6÷a 3=a 236、(2008江苏宿迁) 下列计算正确的是( )A .623a a a =⋅B .632)(a a =C .32532a a a =+D .332323a a a =÷ 37、(2008湖南怀化)下列运算中,结果正确的是( )A.844a a a =+B.523a a a =∙C.428a a a =÷D.()63262a a -=- 38、(2008重庆)计算23x x ⋅的结果是( )A 、6xB 、5xC 、2xD 、x39、(2008河北)计算223a a +的结果是( )A .23aB .24aC .43aD .44a40、(2008湖南长沙)下面计算正确的是( )A 、221-=-B 、24±=C 、(3n m ⋅)2=6n m ⋅D 、426m m m =÷ 41、(2008福建龙岩) 下面计算正确的是( )A .3232a a a =+B .428a a a =÷C .623·a a a =D .623)(a a =42、(2008青海)下列计算中正确的是( )A .336x x x +=B .339x x x =C .235()x x =D .32(3)()3x x x -÷-=43、(2008青海西宁)计算:23m m - 的结果有( )A .6m -B .5mC .6mD .5m -44、(2008山东临沂)下列各式计算正确的是( )A . 53232a a a =+B . ()()xy xy xy 332=÷C . ()53282b b = D . 65632x x x =∙ 45、(2008四川凉山州)下列计算正确的是( )A .325a b ab +=B .325()a a =C .32()()a a a -÷-=-D .3253(2)6x x x -=-46、(2008江苏镇江)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b -47、(2008上海市)计算23a a 的结果是( )A .5aB .6aC .25aD .26a48、(2008年镇江)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b - 49、(2008年金华市)化简a+b+(a-b )的最后结果是( )A 、2a+2bB 、2bC 、2aD 、050、(2008年宁波市)下列运算正确的是( )A .336x x x +=B .23236x x x =C .33(2)6x x =D .2(2)2x x x x +÷=51、(2008黑龙江哈尔滨)下列运算中,正确的是( )A.x 2+x 2=x 4B.x 2÷x =x 2C.x 3-x 2=xD.x·x 2=x 352、(08滨州)下列计算结果正确的是( )A 、y x xy x 222253-=-B 、33332222y x xy y x =-- C 、28xy y x y x 47324=+ D 、77149122+=-+-m m m m m53、(08大连)下列各式运算正确的是( ) A .m n mn =-33 B .y y y =÷33 C .623)(x x = D .632a a a =⋅54、(08大连)若b a y b a x +=-=,,则xy 的值为( )A .a 2B .b 2C .b a +D .b a -55、(08赤峰)把23x x c ++分解因式得:23(1)(2)x x c x x ++=++,则c 的值为( )A .2B .3C .2-D .3-56、(08福建南平)计算:53x x ÷=( )A .2xB .53x C .8x D .157、(2008镇江)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b -58、(2008金华)化简a+b+(a-b )的最后结果是( )A 、2a+2bB 、2bC 、2aD 、059、(2008宁波)下列运算正确的是( )A .336x x x +=B .23236x x x =C .33(2)6x x =D .2(2)2x x x x +÷=60、(2008江苏镇江)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b -61、(2008上海)计算23a a 的结果是( )A .5aB .6aC .25aD .26a62、(2008福建龙岩) 下列计算中正确的是( )A .3232a a a =+B .428a a a =÷C .623·a a a =D .623)(a a = 63、(2008青海)下列计算中正确的是( )A .336x x x +=B .339x x x =C .235()x x =D .32(3)()3x x x -÷-=64、(2008青海西宁)计算:23m m - 的结果有( )A .6m -B .5mC .6mD .5m - 65、(2008 山东临沂)下列各式计算正确的是( )A . 53232a a a =+B . ()()xy xy xy 332=÷C . ()53282b b = D . 65632x x x =∙66、(2008 四川凉山州)下列计算正确的是( )A .325a b ab +=B .325()a a =C .32()()a a a -÷-=-D .3253(2)6x x x -=-67、(08东营)下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a68、(08东营)下列各运算中,错误的个数是( )①01333-+=--=③235(2)8a a = ④844a a a -÷=- A .1 B .2 C .3 D .469、(08海南)下列运算,正确的是( )A.22a a a =⋅B. 2a a a =+C. 236a a a =÷D. 623)(a a =70、(2008黑龙江)下列各运算中,错误的个数是( )①01333-+=--=③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .471、(2008湖北天门)设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( )A 、(4π+8)cm 2B 、(4π+16)cm 2C 、(3π+8)cm 2D 、(3π+16)cm 272、(2008年•南宁市)下列运算中,结果正确的是( )A.a a a =÷33B.422a a a =+C.523)(a a =D.2a a a =⋅73、(2008年福建省福州市)下列计算正确的是( )A .246x x x +=B .235x y xy +=C .326()x x =D .632x x x ÷= 74、(2008年广东茂名市)下列运算正确的是( )A.-22=4 B.22-=-4 C. a ·a 2 = a 2 D.a +2a =3a75、(2008山东潍坊)下列运算正确的是( )A.x 5-x 3=x 2B.x 4(x 3)2=x 10C.(-x 12)÷(-x 3)=x 9D.(-2x )2x -3=876、(2008安徽芜湖)下列运算正确的是( )A .222()a b a b +=+B .523a a a =⋅C .632a a a ÷=D .235a b ab += 77、(2008徐州)下列运算中,正确的是( )A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1二、填空题1、(2008广东深圳)分解因式:=-a ax 42 ;2、(2008山西太原)分解因式x (x+4)+4的结果是 。
八年级上册数学第十一章试卷
第十一章 全等三角形11.1 全等三角形1.(2008年仙桃、潜江)△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 .2.(2007年泰安)如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180形成的,若150BAC ∠=,则θ∠的度数是 .11.2 三角形全等的条件(1)1.(2008年宜宾市)已知:如图,AD =BC,AC =BD.求证:∠C =∠DD C OAB11.2 三角形全等的条件(2)1.(2008年遵义市)如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于( )A .60°B .50°C .45°D .30°OEA B DCCDAEBθ2.(2008常州市) 已知:如图,AB =AD ,AC =AE ,∠BAD =∠CAE. 求证:AC =DE.3.(2007年南昌市)如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,AE =CE ,AB 与CF 有什么位置关系?证明你的结论.4.(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BE .5.(2008年北京)已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .11.2 三角形全等的条件(3)1.(2008年苏州)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO =DO .2.(2007年随州市)如图,△ABC 中,点D 在BC 上,点E 在AB 上,BD =BE ,要使△ADB ≌△CEB ,还需添加一个条件. (1)给出下列四个条件: ①AD CE =②AE CD =③BAC BCA ∠=∠ ④ADB CEB ∠=∠图1图2ADBCFEABDCE请你从中选出一个能使ADB CEB △≌△的条件,并给出证明; 你选出的条件是.证明:(2)在(1)中所给出的条件中,能使ADB CEB △≌△的还有哪些? 直接在题后横线上写出满足题意的条件序号:.3.(2008年西宁市)如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).11.2 三角形全等的条件(4)1.(2007年通辽市)如图,在Rt △AEB 和Rt △AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠E =∠F =90°,∠EAC =∠FAB ,AE =AF .给出下列结论:①∠B =∠C ;②CD =DN ;③BE =CF ;④△CAN ≌△ABM .其中正确的结论是( ) A .①③④B .②③④C .①②③D .①②④ABCEMFDN2.(2008年南宁市)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE=CF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双柏县2008年初中毕业考试数 学 试 卷(全卷三个大题,共25个小题;考试时间120分钟;满分:120分)注意:考生可将《2008年云南省高中(中专)招生考试说明与复习指导·数学手册》及科学计算器(品牌和型号不限)带入考场使用. 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.-2的倒数是( )A .12-B .12C . 2D .-22.下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 3.下图中所示的几何体的主视图是( )4.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3 5.下列事件是必然事件的是( )A .B .C .D .A .今年6月20日双柏的天气一定是晴天B .2008年奥运会刘翔一定能夺得110米跨栏冠军C .在学校操场上抛出的篮球会下落D .打开电视,正在播广告6.圆锥侧面展开图可能是下列图中的( )7.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )8.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点DA .B .C .D .A .B .C . .二、填空题(本大题共7个小题,每小题3分,满分21分)9.分解因式:21x -= . 10.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °.11.双柏鄂加老虎山电站年发电量约为156亿千瓦时,用科学记数法表示156亿千瓦时= 千瓦时. 12.函数13y x =-中,自变量x 的取值范围是 . 13.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.14.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .15.如图,点P 在AOB ∠的平分线上,若使AOPBOP △≌△, 则需添加的一个条件是 . (只写一个即可,不添加辅助线)12c a b兴趣爱好图1图2输入x(2)⨯- 4+ 输出ABPO三、解答题(本大题共10个小题,满分75分)16.(本小题6分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.17.(本小题6分)解分式方程:233x x=-.18.(本小题6分)AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.AP19.(本小题8分)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. 猜想: 证明:20.(本小题6分)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形; (2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.21.(本小题6分)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度. (o o o sin68≈0.93,cos68≈0.37,tan68≈2.48A O BABCDE F22.(本题8分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.23.(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.24.(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),当2500≤x ≤4000时,请写出y 关于x 的函数关系式; (3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求△ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.双柏县2008年初中毕业考试数学试卷参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.A 2.B 3. D 4.D 5.C 6.D 7.C 8.B 二、填空题(本大题共7个小题,每小题3分,满分21分)9.(x +1)(x -1) 10.60 11.1.56×109 12.x ≠3 13.到5 14.0 15.OA=OB 或∠OAP=∠OBP 或∠OPA=∠OPB 三、解答题(本大题共10个小题,满分75分)16.(本小题6分)解:解:原式22222()a ab b a b =---- 22222a ab b a b =---+ 2ab =-将112a b ==-,代入上式得 原式12(1)2=-⨯⨯-1=17.(本小题6分)解:去分母,得23(3)x x =-去括号,移项,合并,得9x = 检验,得9x =是原方程的根. 18.(本小题6分)PA 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=.30P ∠=,∴60AOP ∠=. ∴1302B AOP ∠=∠=. 19.(本小题8分)A白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始猜想:BE DF∥,BE DF=证明:证法一:如图19-1四边形ABCD是平行四边形.BC AD∴=12∠=∠又CE AF=BCE DAF∴△≌△BE DF∴=34∠=∠BE DF∴∥证法二:如图19-2连结BD,交AC于点O,连结DE,BF.四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥20.(本小题6分)如图.三步各计2分,共6分.21.(本小题6分)解:解:在BACRt∆中,68=∠ACB,∴24848.210068tan=⨯≈⋅=ACAB(米)答:所测之处河的宽度AB约为248米22.(本题8分)解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163P==.23.(本小题8分)AB CDEF图19-2OAOB解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元。
因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车。
24.(本小题9分)解:(1)该工人3月的收入2 400元中,应纳税的部分是400元,按纳税的税率表,他应交纳税款400520⨯=%(元);(2)当25004000≤≤x 时,其中2 000元不用纳税,应纳税的部分在500元至2 000元之间,其中500元按5%交纳,剩余部分按10%交纳, 于是,有[](2000)500105005(2500)1025%%%=--⨯+⨯=-⨯+y x x ; 即y 关于x 的函数关系式为(2500)10250.1225(25004000)y x x x =-⨯+=-%≤≤.(3)根据(2)可知,当收入为2 500元至4 000元之间时,纳税额在25元至175元之间,于是,由该职员纳税款120元,可知他的收入肯定在2 500元至4 000元之间; 设他的收入为z 元,由(2)可得:(z 2500)1025120-⨯+=%,解得:z =3450; 故该职员2008年4月的收入为3450元.25.(本小题12分)解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC∴点B 的坐标为(2,0),点C 的坐标为(0,8)又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2∴由抛物线的对称性可得点A 的坐标为(-6,0)∴A 、B 、C 三点的坐标分别是A (-6,0)、B (2,0)、C (0,8)(2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上∴c =8,将A (-6,0)、B (2,0)代入表达式y =ax 2+bx +8,得⎩⎪⎨⎪⎧ 0=36a -6b +80=4a +2b +8 解得⎩⎨⎧ a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8 (3)∵AB =8,OC =8∴S △ABC =12×8×8=32 (4)依题意,AE =m ,则BE =8-m ,∵OA =6,OC =8, ∴AC =10∵EF ∥AC ∴△BEF ∽△BAC∴EF AC =BE AB 即EF 10=8-m 8 ∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m ) =12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8(5)存在. 理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0, ∴当m =4时,S 有最大值,S 最大值=8∵m =4,∴点E 的坐标为(-2,0)∴△BCE 为等腰三角形.。