随机事件的概率同步练习10新必修3
高中数学 3.1 随机事件的概率同步练习 北师大版必修3
3.1 随机事件的概率一、 选择题1、下列现象是必然现象的是( )A 、 某路口单位时间内发生交通事故的次数B 、 冰水混合物的温度是01CC 、 三角形的内交和为0180D 、 一个射击运动员每次射击都击中2、一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个现象是( )A 、必然现象B 、随机现象C 、不可能发生D 、不能确定是哪种现象3、以下现象是随机现象的是( )A 、 过了冬天就是春天B 、物体只在重力作用下自由下落C 、不共线的三点能确定一个平面D 、2008年北京奥运会中国获得50枚金牌4、在10 件同类产品中,有8个正品、2个次品,从中任意抽出3个检验。
那么,以下三种结果:1)抽到3个正品;2)抽到2个次品;3)抽到1个正品,其中是随机现象的是( )A 、1)2)B 、2)3)C 、1)3)D 、1)2)3)二、填空题5、任意抛掷一枚硬币,那么出现“正面向上”的现象是____________________。
6、在标准大气压下,温度超过00C 时,冰就融化。
那么这个现象是______________。
7、三个球全部放入两个盒子,其中一个盒子有一个以上的球是___________现象。
8、函数(01),-1]xy a a a =>≠∞且在定义域(,上是增函数是__________________现象。
9、圆2r =22(x-a)+(y-b)内的点的坐标可使不等式2r <22(x-a)+(y-b)成立是______现象。
三、判断题(判断下列事件是必然事件,不可能事件还是随机事件)10、“导体通电时,发热”11、“抛一石块,下落”12、“在常温下,焊锡熔化”13、“某人射击一次,中靶”14、“掷一枚硬币,出现正面”15、“在标准大气压下且温度低于0℃时,冰融化”答案:一、选择题1、C ;2、B ;3、D ;4、A二、填空题5、随机现象6、必然现象7、必然现象8、随机现象9、必然现象三、判断题10、必然事件11、必然事件12、不可能事件13、随机事件14、随机事件15、不可能事件。
人教新课标A版 高中数学必修3 第三章概率 3.1.1随机事件的概率 同步测试(II)卷
人教新课标A版高中数学必修3 第三章概率 3.1.1随机事件的概率同步测试(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A . 至少有1个白球,至少有1个红球B . 至少有1个白球,都是红球C . 恰有1个白球,恰有2个白球D . 至少有1个白球,都是白球2. (2分)每道选择题有4个选项,其中只有1个选项是正确的,某次考试共12道选择题,某同学说:“每个选项正确的概率是,若每题都选择第一个选项,则一定有3道题的选择结果正确.”这句话()A . 正确B . 错误C . 有一定道理D . 无法解释3. (2分)已知α,β,γ是不重合的平面,a,b是不同的直线,则下列说法正确的是()A . “若a∥b,a⊥α,则b⊥α”是随机事件B . “若a∥b,a⊂α,则b∥α”是必然事件C . “若α⊥γ,β⊥γ,则α⊥β”是必然事件D . “若a⊥α,a∩b=P,则b⊥α”是不可能事件4. (2分)甲、乙、丙位教师安排在周一至周五中的天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外两位教师前面值班的概率是()A .B .C .D .5. (2分) (2016高二下·海南期末) 在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则X 的最大值是()A . MB . nC . min{M,n}D . max{M,n}6. (2分)将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为3”的概率是()A .B .C .D .7. (2分)下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为()A . ①②B . ③④C . ①④D . ②③8. (2分)下列试验能构成事件的是()A . 掷一次硬币B . 标准大气压下,水烧至100℃C . 从100件产品中任取3件D . 某人投篮5次,恰有3次投中9. (2分)一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为()A .B .C .D .10. (2分)“某点P到点A(﹣2,0)和点B(2,0)的距离之和为3”这一事件是()A . 随机事件B . 不可能事件C . 必然事件D . 以上都不对11. (2分)设事件A,B,已知P(A)=, P(B)=,,则A,B之间的关系一定为()A . 两个任意事件B . 互斥事件C . 非互斥事件D . 对立事件12. (2分)下列说法正确的是()A . 任何事件的概率总是在(0,1]之间B . 频率是客观存在的,与试验次数无关C . 随着试验次数的增加,事件发生的频率一般会稳定于概率D . 概率是随机的,在试验前不能确定13. (2分)有下面的试验:①如果 a,b∈R,那么a•b=b•a;②某人买彩票中奖;③实系数一次方程必有一个实根;④在地球上,苹果抓不住必然往下掉;其中必然现象有()A . ①B . ④C . ①③D . ①④14. (2分) (2016高二下·武汉期中) 袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球的次数为随机变量ξ,则ξ的可能值为()A . 1,2,…,6B . 1,2,…,7C . 1,2,…,11D . 1,2,3…15. (2分)已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A . 0B . 1C . 2D . 3二、填空题 (共5题;共8分)16. (1分)如果天气状况分为阴、小雨、中雨、大雨、晴五种,它们分别用数字1、2、3、4、5来表示,用ξ来表示一天的天气状况.若某天的天气状况是阴天有小雨,则用ξ的表示式可表示为________.17. (1分)判断以下现象是否是随机现象:①某路中单位时间内发生交通事故的次数;________②冰水混合物的温度是0℃;________③三角形的内角和为180°;________④一个射击运动员每次射击的命中环数;________⑤n边形的内角和为(n﹣2)•180°.________18. (1分)在条件S下,可能发生也可能不发生的事件,叫做相对于条件S下的________事件.19. (3分) (2019高二上·保定月考) 从四双不同的袜子中,任取五只,其中至少有两只袜子是一双,这个事件是________ (填“必然”、“不可能”或“随机”)事件.20. (2分)一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的资料,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为________.三、解答题 (共3题;共15分)21. (5分) (2018高二上·宾阳月考) 某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)(x,y,z)产品编号A6A7A8A9A10质量指标(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(x,y,z)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(ⅰ) 用产品编号列出所有可能的结果;(ⅱ) 设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.22. (5分) (2015高二下·东台期中) 甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).23. (5分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)被选中且未被选中的概率.参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1 , A2 , A3 , A4 , A5 , 3名女同学B1 , B2 , B3 .现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共8分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共3题;共15分)21-1、21-2、22-1、22-2、23-1、。
最新人教版高中数学必修3第三章《随机事件的概率》习题解答
习题解答练习(第105页)1.(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右.由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.说明本题要求学生在家里完成自己的试验,教师在课堂上把结果汇总.这里要注意有的同学可能得到的结果是4个,正正、正反、反正、反反,在这种情况下试验的两个硬币是有区别的.2.略.说明本题要求学生在家里完成,教师在课堂上把结果汇总,在讲概率的基本性质时可以作为例子.3.(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在l~1 000的自然数中任选一个数,选到的数大于1.练习(第111页)1.说明例如,计算机键盘上各键位置的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率.学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2.通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的.而猜拳的方法不太公平,因为出拳有时问差,个人反应也不一样.3.这种说法是错误的.因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生.掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(第114页)1.0.7.2.0.615.3.0.4.4.D .5.B .习题3.1(第116页)A 组1.D .2.(1)0; (2)0.2; (3)1.3.(1)64543≈0.067; (2)64590≈0.140; (3)645701 ≈0.891. 说明 不知道王小慧的任何信息时,只能利用这门课以往的数据;如果知道王小慧的信息,可以考虑用条件概率(这是选修2—3的内容).4.略.说明 本题为学生学习阅读与思考栏目“概率与密码”作铺垫,教师还可以将本题与计算机键盘的设计问题联系起来.一般情况下,按频率大小排序的结论为E>A>O>I>U .5.0.13.6.说明 本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论.最好把全班同学的结果汇总,根据两个事件出现的频率比较接近,猜测在第一种情况下摸到红球的概率为101,在第二种情况下也为101.第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是101. B 组1.D .2.C .3.略.说明 本题是为了让学生根据实际数据作出一些推断.一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生诵讨收集的数据作出初步的推断.。
人教A版高中数学必修3课后习题 3.1.1 随机事件的概率
第三章概率3.1 随机事件的概率3.1.1 随机事件的概率课后篇巩固提升基础巩固①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.A.1个B.2个C.3个D.4个A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.2.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品8件正品2件次品的10件产品中,任意抽取3件, 在A中,3件都是正品是随机事件,故A错误;在B中,至少有1件次品是随机事件,故B错误;在C中,3件都是次品是不可能事件,故C错误;在D中,至少有1件正品是必然事件,故D正确.3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.6是正面朝上的频率不是概率.4.一个家庭前后育有两个小孩儿,则可能的结果为( )A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的结果,故选C.5.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )A.49B.51C.0.49D.0.510.49,所以摸到白球的频率为0.51,从而摸到白球的次数为100×0.51=51.6.我国古代数学有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( )A.6B.7C.8D.9,n≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.2357.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.=0.03.P=6008.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为.4,即4,5的频数为13+22=35.所以频率为35=0.35.100①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若log a(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.恒成立,∴①正确;奇函数y=f(x)只有当x=0有意义时才有f(0)=0,∴②正确;由log a(x-1)>0知,当a>1时,,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2) ,(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”这一事件包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”这一事件包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1);“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax+by=0的斜率k=-ab>-1,即a<b,所以包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).能力提升1.随机事件A的频率mn满足( )A.mn =0 B.mn=1 C.mn>1 D.0≤mn≤1n次试验中,事件A不发生时,频率mn=0;当事件A发生n次时,频率m n =1;当发生次数为m,0<m<n时,频率mn满足0<mn<1,故D正确.2.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡1 2 3456 7 8 9 10则取到号码为奇数的频率是( ) A.0.53 B.0.5 C.0.47 D.0.37=53100=0.53.3.某个地区从某年起n 年内的新生婴儿数及其中男婴数如表所示(单位:个):时间范围 1年内 2年内 3年内 4年内(1)填写表中的男婴出生频率(结果精确到0.01); (2)这一地区男婴出生的概率约是 . 频率f(A)=nA n ,各频率为0.49,0.54,0.50,0.50.(2)可以利用频率来求近似概率.由(1)得概率约为0.50. 0.54 0.50 0.50 (2)0.504.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%,一旦失败,一年后将丧失全部资金的50%,下表是去年200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的平均数是 元.x,如果成功,x 的取值为5×12%,如果失败,x 的取值为-5×50%,一年后公司成功的概率为192200=2425,失败的概率为8200=125,所以一年后公司收益的平均数是(5×12%×2425-5×50%×125)×10000=4760(元).5.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.n,假定每只天鹅被捕到的可能性是相等的,从保护区中任捕一只,设事件A={带有记号的天鹅},则P(A)=200n, ①第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=20150, ②由①②两式,得200n =20150,解得n=1500,所以该自然保护区中天鹅的数量约为1500只.6.李老师在某大学连续3年主讲经济学院的《高等数学》,下表是李老师统计的这门课3年来的学生考试成绩分布:经济学院一年级的学生王小慧下学期将选修李老师的《高等数学》,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.43+182+260+90+62+8=645,根据公式可计算出选修李老师的《高等数学》的人的考试成绩在各个段上的频率依次为:43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012.用已有的信息,可以估计出王小慧下学期选修李老师的《高等数学》得分的概率如下:(1)将“90分以上”记为事件A,则P(A)≈0.067.(2)将“60分~69分”记为事件B,则P(B)≈0.140.(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.。
数学:新人教A版必修三 3.1随机事件的概率(同步练习)
3. 1.1 随机事件的概率一、选择题1、 以下现象是随机现象的是 ( )A 、标准大气压下,水加热到0100C ,必会沸腾B 、走到十字路口,遇到红灯C 、长和宽分别为a,b 的矩形,其面积为a b ⨯D 、实系数一次方程必有一实根。
2、有下面的试验1)如果,a b R ∈,那么a b b a ⨯=⨯;2)某人买彩票中奖;3)3+5〉10;4)在地球上,苹果不抓住必然往下掉。
其中是必然现象的有 ( )A 、1)B 、4)C 、1)3)D 、1)4)3、有下面的试验:1)连续两次至一枚硬币,两次都出现反面朝上;2)异性电荷,互相吸引;3)在标准大气压下,水在00C 结冰。
其中是随机现象的是 ( )A 、1)B 、2)C 、3)D 、1)3)4、下列事件中,随机事件的个数为( )(1)物体在重力作用下会自由下落、(2)方程x 2+2x+3=0有两个不相等的实根、(3)某传呼台每天的某一时段内收到的传呼要求次数不超过10次、(4)下周日会下雨、A 、1B 、2C 、3D 、45、给出下列命题:①“当x ∈R 时,sinx+cosx≤1”是必然事件;②“当x ∈R 时,sinx+cosx≤1”是不可能事件;③“当x ∈R 时,s inx+cosx <2”是随机事件;④“当x ∈R 时,sinx+cosx <2”是必然事件其中正确命题的个数是( )A 、0B 、1C 、2D 、36、下列试验能构成事件的是( )A 、掷一次硬币B 、射击一次C 、标准大气压下,水烧至100℃D 、摸彩票中头奖7、下列说法不正确的是( )A、不可能事件的概率是0,必然事件的概率是1B、某人射击10次,击中靶心8次,则他击中靶心的概率是0,8C、“直线y=k(x+1)过点(-1,0)”是必然事件1D、先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是3二、判断以下现象是否是随机现象8、新生婴儿是男孩或女孩9、从一幅牌中抽到红桃A10、种下一粒种子发芽11、导体通电时发热12、某人射击一次中靶13、从100件产品中抽出3件全部是正品14、投掷一颗骰子,出现6点100C沸腾15、在珠穆朗玛峰上,水加热到0参考答案一、选择题1、B;2、D;3、A;4、A ;5、B;6、D;7、D二、填空题8、必然现象9、随机现象10、随机现象11、必然现象12、随机现象13、随机现象14、随机现象15、不可能现象。
新人教A版高中数学【必修3】 3.1.1随机事件的概率课时作业练习含答案解析
第三章 概 率 3.1.1 随机事件的概率课时目标 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.1.事件的概念及分类2.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中______________为事件A 出现的频数,称______________________为事件A 出现的频率. 3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A ,事件A 发生的频率f n (A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).一、选择题 1.有下列事件:①连续掷一枚硬币两次,两次都出现正面朝上; ②异性电荷相互吸引;③在标准大气压下,水在1℃结冰; ④买了一注彩票就得了特等奖. 其中是随机事件的有( )A .①②B .①④C .①③④D .②④ 2.下列事件中,不可能事件是( ) A .三角形的内角和为180°B .三角形中大角对大边,小角对小边C .锐角三角形中两内角和小于90°D .三角形中任两边之和大于第三边 3.有下列现象:①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b ,则b<a.其中是随机现象的是( ) A .② B .① C .③ D .②③4.先后抛掷一枚均匀硬币三次,至多有一次正面向上是( ) A .必然事件 B .不可能事件 C .确定事件 D .随机事件 5.下列说法正确的是( )A .某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品.B .气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨.C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈.D .掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%.6.在进行n 次重复试验中,事件A 发生的频率为m n ,当n 很大时,事件A 发生的概率P(A)与mn 的关系是( )A .P(A)≈m nB .P(A)<mn C .P(A)>m n D .P(A)=mn7.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是________事件. 8.在200件产品中,有192件一级品,8件二级品,则下列事件: ①“在这200件产品中任意选9件,全部是一级品”; ②“在这200件产品中任意选9件,全部都是二级品”; ③“在这200件产品中任意选9件,不全是一级品”.其中________是随机事件;________是不可能事件.(填上事件的编号)9.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e ”共使用了900次,则字母“e ”在这篇短文中的使用的频率为________. 三、解答题10.判断下列事件是否是随机事件.①在标准大气压下水加热到100℃,沸腾;②在两个标准大气压下水加热到100℃,沸腾;③水加热到100℃,沸腾.11.某射手在同一条件下进行射击,结果如下表所示:(1)(2)这个射手射击一次击中靶心的概率约是多少?能力提升12.将一骰子抛掷1 200次,估计点数是6的次数大约是______次;估计点数大于3的次数大约是______次.13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100(1)事件A(6.92<d ≤6.94)的频率; (2)事件B(6.90<d ≤6.96)的频率; (3)事件C(d>6.96)的频率; (4)事件D(d ≤6.89)的频率.1.随机试验如果一个试验满足以下条件:(1)试验可以在相同的条件下重复进行; (2)试验的所有结果是明确可知的,但不止一个;(3)每次试验总是出现这些结果中的一个,但在试验之前却不能确定会出现哪一个结果. 则这样的试验叫做随机试验. 2.频数、频率和概率之间的关系:(1)频数是指在n 次重复试验中事件A 出现的次数,频率是频数与试验总次数的比值,而概率是随机事件发生的可能性的规律体现.(2)随机事件的频率在每次试验中都可能会有不同的结果,但它具有一定的稳定性,概率是频率的稳定值,是频率的科学抽象,不会随试验次数的变化而变化.3.辩证地看待“确定事件”、“随机事件”和“概率”.一个随机事件的发生,既有随机性(对一次试验来说),又存在着统计规律性(对大量重复试验来说),这是偶然性和必然性的统一.就概率的统计定义而言,必然事件U 的概率为1,P(U)=1;不可能事件V 的概率为0,P(V)=0;而随机事件A 的概率满足0≤P(A)≤1.从这个意义上讲,必然事件和不可能事件可以看作随机事件的两个极端情况. 答案:3.1.1 随机事件的概率知识梳理1.一定不会发生 一定会发生 可能发生也可能不发生 2.事件A 出现的次数n A 事件A 出现的比例f n (A)=n An 3.(1)可能性 (2)概率P(A) 频率f n (A)作业设计1.B [①、④是随机事件,②为必然事件,③为不可能事件.] 2.C [锐角三角形中两内角和大于90°.] 3.B [①是随机现象;②③是必然现象.] 4.D 5.D 6.A 7.随机 8.①③ ②解析 因为二级品只有8件,故9件产品不可能全是二级品,所以②是不可能事件. 9.0.15解析 频率=9006 000=0.15.10.解 在①、②、③中“沸腾”是试验的结果,称为事件,但在①的条件下是必然事件,在②的条件下是不可能事件,在③的条件下则是随机事件.11.解 (1)由公式可算得表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91.(2)由(1)可知,射手在同一条件下击中靶心的频率虽然各不相同,但都在常数0.9左右摆动,所以射手射击一次,击中靶心的概率约是0.9. 12.200 600解析 一粒骰子上的6个点数在每次掷出时出现的可能性(即概率)都是16,而掷出点数大于3包括点数为4,5,6三种.故掷出点数大于3的可能性为36=12,故N 1=16×1 200=200,N 2=12×1 200=600. 13.解 (1)事件A 的频率f(A)=17+26100=0.43. (2)事件B 的频率f(B)=10+17+17+26+15+8100=0.93. (3)事件C 的频率f(C)=2+2100=0.04. (4)事件D 的频率f(D)=1100=0.01.。
高中数学人教A版必修三3.1.1【同步练习】《随机事件的概率》
《随机事件的概率》同步练习1.下列现象中,是随机现象的有( )①在一条公路上,交警记录某一小时通过的汽车超过300辆。
②若a 为整数,则a +1为整数。
③发射一颗炮弹,命中目标。
④检查流水线上一件产品是合格品还是次品。
A.1个B.2个C.3个D.4个2.下列事件中,不可能事件为( )A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 3.气象台预测“本市明天降雨的概率是90%”,对预测的正确理解是( )A.本市明天将有90%的地区降雨B.本市明天将有90%的时间降雨C.明天出行不带雨具肯定会淋雨D.明天出行不带雨具可能会淋雨 4.下列说法中,正确的是 ( ) ①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件A 的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值。
A.①②④B.①③④C.①②③D.②③④ 5.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品; ②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =37;③随机事件发生的频率就是这个随机事件发生的概率。
其中正确说法的个数是( )A.0B.1C.2D.36.设某厂产品的次品率为2%,则该厂8 000件产品中合格品的件数约为________。
7.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:8.给出下列四个命题:①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若loga(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.其中正确命题是W。
北师大版高中数学必修三随机事件的概率同步练习(1).docx
高中数学学习材料唐玲出品随机事件的概率同步练习一、选择题1.下列事件中,必然事件是( )A.掷一枚硬币出现正面B.掷一枚硬币出现反面C.掷一枚硬币,或者出现正面,或者出现反面D.掷一枚硬币,出现正面和反面答案:C2.下列事件中,随机事件的个数为( )①物体在重力作用下会自由下落②方程x2+2x-3=0有两个不相等的实根③异性电荷,相互吸引④下周日会下雨A.1B.2C.3D.4答案:A3.下面说法正确的是( )A.任一事件的概率总在(0,1)之内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对答案:C4.以下现象中,随机事件的个数为( )①某路口单位时间内发生交通事故的次数②冰水碳合物的温度是0℃③三角形的内角和为180°④一个射击运动员每次射击的命中环数A.1B.2C.3D.4答案:B5.气象台预报“本市明天降雨概率是70%”,以下理解正确的是( )A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨C.明天出行不带雨具肯定要淋雨D.明天出行不带雨具淋雨的可能性很大答案:D二、填空题6.指出下列事件哪些是必然事件、不可能事件或随机事件.①三个小球全部放入两个盒中,其中一个盒子有一个以上的球;②若a 、b ∈R ,则a +b ≥2ab ;③若x ∈R ,则cos x +1<0成立;④直线Ax +By +C =0左侧区域内的点的坐标可使不等式Ax +By +C >0成立.上述事件中,必然事件是 ,不可能事件是 ,随机事件是 .答案:① ③ ②④7.从一副扑克牌中的52张花色牌中(即除去两张王牌)任意抽出一张,这张牌是红心的概率为 .答案:0.258.某彩票的中奖概率为10001,是否意味着买1000张彩票就一定能中奖? . 答案:不一定三、解答题9.抛掷一枚普通的正方体骰子一次,请判断下列结果是不可能发生,还是必然会发生.(1)掷得的这个数是一个偶数;(2)掷得的这个数比7小;(3)掷得的这个数比6大;(4)掷得的这个数是2;(5)掷得的这个数是6;(6)掷得的这个数不是6.答案:(1)、(4)、(5)、(6)可能会发生,(2)必然会发生,(3)不可能发生.10.将一枚均匀硬币抛两次,写出基本事件空间及下列事件中的基本事件.A.第一次出现正面;B.两次出现同一面;C.至少有一次出现正面.答案:Ω={(正,正),(正,反),(反,正),(反,反)}. A ={第一次出现正面}={(正,正),(正,反)}.B ={两次出现同一面}={(正,正),(反,反)}.C ={(至少有一次出现正面)}={(正,正),(正,反),(反,正)}.。
高中数学(人教版)必修三 同步提升分层训练 第三章 概率 3.1.1 随机事件的概率 3.1.2 概率的意义
数学(人教版)必修三同步提升分层训练第三章概率 3.1.1 随机事件的概率 3.1.2 概率的意义A组基础练(建议用时20分钟)1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( B )A.必然事件B.随机事件C.不可能事件D.无法确定2.下列事件中,不可能事件为( C )A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边3.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( C )A.64个B.640个C.16个D.160个4.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是=;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是 ( A )A.0B.1C.2D.35.一个家庭有两个小孩儿,则可能的结果为( C )A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( B )A.49B.51C.0.49D.0.517.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A出现的频数为52,事件A出现的频率为0.52.8.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了500次试验.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为0.3510.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是0.03.11.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果. 【解析】(1)试验所有结果:a1,a2;a1,b1;a2,b1;a2,a1;b1,a1;b1,a2.共6种.(2)事件A对应的结果为:a1,b1;a2,b1;b1,a1;b1,a2.12.对一批U盘进行抽检,结果如下表:抽取件数a 50 100 200 300 400 500次品件数b 3 4 5 5 8 9次品频率(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?【解析】(1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任抽一个是次品的概率是0.02.(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,所以x≥2 041,即至少需进货2 041个U 盘.B组提升练(建议用时20分钟)13.已知集合A是集合B的真子集,则下列关于非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确的命题有( C )A.1个B.2个C.3个D.4个14.甲、乙两人做游戏,下列游戏中不公平的是( B )A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D.甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜15.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498497 501 502 504 496497 503 506 508 507492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g~501.5 g之间的概率约为0.25.16.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次,有9个白球,估计袋中数量多的是白球.17.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.【解析】(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,1-10=-9,10-1=9,3-6=-3,6-3=3,3-10=-7,10-3=7,6-10=-4,10-6=4.即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.18.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.【解析】设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕的频率(代替概率)为,由=,得n=25 000.所以水库中约有25 000尾.C组培优练(建议用时15分钟)19.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( B )A.正确B.错误C.不一定D.无法解释20.如图所示,有两个可以自由转动的均匀转盘A、B.转盘A被平均分成3等份,分别标上1,2,3三个数字;转盘B被平均分成4等份,分别标上3,4,5,6四个数字.有人为甲、乙两人设计了一个游戏规则:自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则乙获胜.你认为这样的游戏规则公平吗?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?【解析】列表如下:由表可知,等可能的结果有12种,和为6的结果只有3种.所以甲、乙获胜的概率不相等.所以游戏规则不公平.游戏规则可改为:如果和小于等于6,那么甲获胜,否则乙获胜.。
高中数学必修3同步练习《概率》含答案
高中数学必修3同步练习《概率》含答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--这两变量具有该函数关系线性相关:线性相关的判断---求回归方程---回归方程的应用线性相关的判断:若n 个观测值对应的点大致分布在某一条直线的附近,我们就用直线来刻画这两个变量之间的关系,我们称这直线方程bx a y+=ˆ为回归直线方程。
其中1221nii i n ii xy n x yb xn x==-=-∑∑,x b y a -=(回归直线过(,)x y )。
回归直线方程反应的是总体两个变量间的关系,利用回归直线方程可以对总体取值进行预测。
概 率一.相关概念1.事件(实验的某种结果):分确定(必然事件与不可能事件)与不确定(随机事件) 基本事件 (和)并交(积) ;互斥事件 对立事件 事件的关系:⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ⊆;⑵事件A 与事件B 相等:若A B B A ⊆⊆,,则事件A 与B 相等,记作A=B ;⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ⋃(或B A +);⑷交(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ⋂(或AB ) ;⑸事件A 与B 互斥:若B A ⋂为不可能事件(φ=⋂B A ),则事件A 与B 互斥。
在一次试验中A 与B 不同时发生。
﹙6﹚A 与B 对立:B A ⋂为不可能事件,B A ⋃为必然事件,则A 与B 对立。
在一次试验中A 与B 不同时发生但必有一个发生。
2.频率A (A)=An 事件发生的次数n f 实验的总次数n二.概率的理解①概率:随机事件发生的随机性(某次试验)与规律性(大量重复),故概率是描述随机事件发生可能性大小的度量。
②概率与频率的关系:对于一个事件而言,概率是一个客观存在的常数,而频率则随试验次数变化而变化,试验次数越多,频率越接近概率,频率是样本概念,概率是总体概念,因此可用样本的频率估计总体的概率。
高中数学必修3(北师版)第三章3.1 随机事件的概率(与最新教材完全匹配)知识点总结含同步练习题及答案
)
3 . 5
某地气象局预报说,明天本市降雨的概率是 80% ,则下列解释: ①明天本地有 80% 的区域降雨,20% 的区域不降雨; ②明天本地有 80% 的时间降雨,20% 的时间不降雨; ③明天本地降雨的机率是 80% . 其中正确的是______.(填序号) 解:③ ①②不正确,因为 80% 的概率是说降雨的概率,而不是说 80% 的区域降雨或 80% 的时间降雨.
nA 为事件 A 出现 n3 Biblioteka C.频率为 6A.概率为
B.频率为
D.概率接近于频率 解:B C 选项明显错误,应该是频数为 6 .选项 D 错误,应该是“频率接近于概率”.试验的次数确定是 10 次,因此仅凭 10 次试验不能确定事件 A 发生的概率大小,由频率的定义知事件 A 发生的频率 为
3 5
不可能事件 在条件 S 下,一定不会发生的事件,叫做相对于条件 S 的不可能事件(impossible event),简称不可能事件.
确定事件 必然事件与不可能事件统称为相对于条件 S 的确定事件,简称确定事件. 随机事件 在条件 S 下可能发生也可能不发生的事件,叫做相对于条件 S 的随机事件(random event),简称随机事件. 基本事件与基本事件空间 通常用大写英文字母 A 、B 、C 、⋯ 来表示随机事件,随机事件可以简称为事件.在一次试验中,所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述, 这样的事件称为基本事件 (elementary event) ,所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母 Ω 表示. 例题: 下列事件中哪些是必然事件?哪些是不可能事件?哪些是随机事件? ①如果 x,y 均为实数,那么 x ⋅ y = y ⋅ x ; ②三张奖券只有一张中奖,任取一张奖券能中奖; ③掷骰子出现 7 点; ④某高速公路收费站 3 分钟内至少经过 8 辆车; ⑤声音在真空中传播; ⑥地球绕太阳旋转. 解:①⑥是必然事件,③⑤是不可能事件,②④是随机事件. 由实数的运算性质知①恒成立,是必然事件;⑥是自然常识,是必然事件,所以①⑥为必然事件;掷骰子不可能出现 7 点,声音不能在真空中传播,所以③⑤为不可能事件;三张奖券只有一张中奖,任 取一张可能中奖也可能不中奖,收费站 3 分钟内经过的车辆还可能少于8 辆,因此②④为随机事件. 从 a ,b ,c ,d 中任取两个字母,求该试验的基本事件空间. 解:含 a 的有 ab 、ac 、ad;不含 a ,含 b 的有 bc,bd ;不含 a 、b ,含 c 的有 cd . 所以该试验的基本事件空间 Ω = {ab, ac, ad, bc, bd, cd}. 从 A 、B 、C 、D 、E、F 这 6 名学生中选出 4 人参加数学竞赛. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出事件 “A 没被选中”所包含的基本事件. 解:(1)这个试验的基本事件空间是
人教A版高中数学必修三 第三章3.1-3.1.1随机事件的概率 同步训练A卷
人教A版高中数学必修三第三章3.1-3.1.1随机事件的概率同步训练A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是()A .B .C .D .2. (2分)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是()A . A⊆DB . B∩D=∅C . A∪C=DD . A∪B=B∪D3. (2分)下列说法正确的是()A . 任何事件的概率总是在(0,1]之间B . 频率是客观存在的,与试验次数无关C . 随着试验次数的增加,事件发生的频率一般会稳定于概率D . 概率是随机的,在试验前不能确定4. (2分)某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色.该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理()A . 甲公司B . 乙公司C . 甲与乙公司D . 以上都对5. (2分)若,则事件A,B的关系是()A . 互斥不对立B . 对立不互斥C . 互斥且对立D . 以上答案都不对6. (2分) (2018高一下·贺州期末) 下列说法正确的是()A . 一枚骰子掷一次得到2点的概率为,这说明一枚骰子掷6次会出现一次2点B . 某地气象台预报说,明天本地降水的概率为70%,这说明明天本地有70%的区域下雨,30%的区域不下雨C . 某中学高二年级有12个班,要从中选2个班参加活动,由于某种原因,一班必须参加,另外再从二至十二班中选一个班,有人提议用如下方法:掷两枚骰子得到的点数是几,就选几班,这是很公平的方法D . 在一场乒乓球赛前,裁判一般用掷硬币猜正反面来决定谁先打球,这应该说是公平的7. (2分)已知α,β,γ是不重合的平面,a,b是不同的直线,则下列说法正确的是()A . “若a∥b,a⊥α,则b⊥α”是随机事件B . “若a∥b,a⊂α,则b∥α”是必然事件C . “若α⊥γ,β⊥γ,则α⊥β”是必然事件D . “若a⊥α,a∩b=P,则b⊥α”是不可能事件8. (2分)从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A .B .C .D . 无法确定9. (2分)每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是,我每题都选择第一个选项,则一定有3道题选择结果正确”这句话()A . 正确B . 错误C . 不一定D . 无法解释10. (2分)从标有数字1,2,6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次试验中,标有1的号签被抽中4次,那么结果“12”出现的频率为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)抛掷两枚相同的骰子,用随机模拟方法估计向上面的点数和是6的倍数的概率时,用1,2,3,4,5,6分别表示向上的面的点数,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)12. (1分)已知某厂的产品合格率为90%,抽出20件产品检查,其中的合格产品最可能有________件.13. (1分)利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为________.(保留两位小数)14. (1分)管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条. 根据以上收据可以估计该池塘有________条鱼.15. (1分)已知随机事件A发生的频率是0.02,事件A出现了10次,那么可能共进行了________次试验.三、解答题 (共4题;共35分)16. (10分)下列随机事件中,一次试验各指什么?它们各有几次试验?试验的可能结果有哪几种?(1)一天中,从北京站开往合肥站的3列列车,全部正点到达;(2)某人射击两次,一次中靶,一次未中靶.17. (10分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.18. (10分)某种心脏手术,成功率为,现准备进行例此种手术,试估计:(1)恰好成功例的概率.(2)恰好成功例的概率.19. (5分)为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共4题;共35分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、。
高中数学必修三同步练习题库:随机事件的概率(填空题:一般30,较难35)
随机事件的概率(填空题:一般30,较难35)1、袋中有大小相同的个红球,个白球,从中不放回地依次摸取球,在已知第一次取出白球的前提下,第二次取得红球的概率是2、在随机抛掷一颗骰子一次的试验中,事件A表示“出现不大于4的偶数点”,事件B表示“出现小于6的点数”,则事件发生的概率为________.3、在某超市收银台排队付款的人数及其频率如下表:视频率为概率,则至少有2人排队付款的概率为__________.(用数字作答)4、甲、乙、丙三名大学生同时到一个用人单位应聘,他们能被选聘中的概率分别为且各自能否被选聘中是无关的,则恰好有两人被选聘中的概率为______5、甲射击命中目标的概率是,乙射击命中目标的概率是,丙射击命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为____________.6、如图, A, B, C表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作,那么该系统正常工作的概率是____________7、口袋中有若干红球、黄球与蓝球,摸出红球的概率为0.45,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为___.8、一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未完全击毁的概率为__________.9、从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是______.(填序号)①“至少有一个黑球”与“都是黑球”;②“至少有一个黑球”与“至少有一个红球”;③“恰有一个黑球”与“恰有两个黑球”;④“至少有一个黑球”与“都是红球”.10、生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为和,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是,则_______.11、如图:三个元件正常工作的概率分别为,将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是____________.12、为了解高中生上学使用手机情况,调查者进行了如下的随机调查:调查者向被调查者提出两个问题:(1)你的学号是奇数吗?(2)你上学时是否经常带手机?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有被调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有260人回答了“是”.由此可以估计这800人中经常带手机上学的人数是_________.13、口袋内装有一些大小相同的红球、白球和黑球,从中摸出个球,摸出红球的概率是,摸出白球的概率是,那么摸出黑球的概率是__________14、如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.15、下列事件:①在空间内取三个点,可以确定一个平面;②13个人中,至少有2个人的生日在同一个月份;③某电影院某天的上座率会超过50%;④函数y=log a x(0<a<1)在定义域内为增函数;⑤从一个装有100只红球和1只白球的袋中摸球,摸到白球.其中,________是随机事件,________是必然事件,________是不可能事件.(填写序号)16、一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.17、经统计某储蓄所一个窗口等候的人数及相应的概率如下表:(1)t=________;(2)至少3人排队等候的概率是________.18、从一箱苹果中任取一个,如果其重量小于200克的概率为,重量在内的概率为,那么重量超过300克的概率为______________.19、某人有4把钥匙, 其中2把能打开门, 现随机地取1把钥匙试着开门, 不能开门就把钥匙放在旁边, 他第二次才能打开门的概率是 .20、一批10件产品,其中3件次品,不放回抽取3次,已知第一次抽到是次品,则第三次抽到次品的概率 .21、下列说法:①随机事件的概率是频率的稳定值,频率是概率的近似值;②一次试验中不同的基本事件不可能同时发生;③任意事件发生的概率总满足;其中正确的是;(写出所有正确说法的序号)22、一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.23、抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,则两颗骰子的点数之和大于8的概率为________.24、[2013·课标全国卷Ⅱ]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.25、有20个零件,其中16个一等品,4个二等品,若从这20个零件中任意取3个,那么至少有1个一等品的概率是________.26、一袋中装有4个白球,2个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现3次停止,则___________.27、一只不透明的袋子中装有1个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,则两次摸出的球颜色相同的概率是;28、(理)袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求摸出2个或3个白球的概率29、(文)袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求至少摸出1个黑球的概率 .30、一项“过关游戏”规则规定:在第关要抛掷一颗骰子次,如果这次抛掷所出现的点数之和大于,则算过关,那么,连过前二关的概率是________.31、将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.32、将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.33、将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.34、设随机变量,且DX=2,则事件“X=1”的概率为(用数学作答).35、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示)。
必修3同步练习题3.1随机事件的概率(含答案)
必修3同步练习题3.1随机事件的概率(含答案)----2fdbef18-6eb2-11ec-b27f-7cb59b590d7d3.1随机事件的概率一、多项选择题1.下列说法中一定正确的是()a、一个被称为“100投100中”的篮球运动员,如果他投了三次罚球,就不会错过三次投篮。
1.b.一粒骰子掷一次得到“2点”的概率是6,则掷6次一定会出现一次“2点”c.若买彩票中奖的概率为万分之一,则买一万元的彩票一定会中奖一元d.随机事件发生的概率与试验次数无关[答案]d[解析]一个错误,将出现“三次射击失败”;B错误,“2分”可能不会出现6次;C错误,概率为预测值,随机事件可能不会发生。
2.以下陈述是正确的()a.任何事件的概率总是在(0,1)之间b.频率是客观存在的,与试验次数无关c.随着试验次数的增加,频率一般会越来越接近概率d.概率是随机的,在试验前不能确定[答案]c[分析]频率是n次测试中事件a的数量m与测试总数n的比率。
随着测试次数的增加,频率将更接近概率。
3.给出以下四个命题:①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若loga(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.其中正确命题的个数是()a、 4b。
1C。
2[答]d[解析]∵|x|≥0恒成立,∴①正确;只有当x=0有意义时,奇数函数y=f(x)才有f(0)=0,并且② 是正确的;由loga(x-1)>0知,当a>1时,x-1>1即x>2;当04.如果在相同条件下进行n次重复试验后,事件a的频率为f(n),则存在()a.f(n)与某个常数相等b.f(n)与某个常数的差逐渐减小d、三,c.f(n)与某个常数的差的绝对值逐渐减小d.f(n)在某个常数的附近摆动并趋于稳定[答案]d【分析】对于一个事件,概率是一个常数,而频率随测试次数而变化。
北师大版高中数学必修三随机事件的概率频率与概率同步练习(3).docx
高中数学学习材料马鸣风萧萧*整理制作随机事件的概率 频率与概率 同步练习1.现有5幅不同的国画,2幅不同的油画,7幅不同的水粉画,从这些画中任选1幅布置房间,求所选的不是国画的概率.2.任取一个三位正整数N ,求对数N 2log 是一个正整数的概率.3.有四个阄,其中一个代表奖品,四个人按顺序依次抓,最后一个抓到奖品的概率是多少?4.掷两颗均匀的骰子,出现“点数和为3”的概率是( )A 、61B 、361C 、31D 、181 5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上”;事件N :“至少一次正面朝上”,则下列结果正确的是( )A 、31)(=M p ,21)(=N P B 、21)(=M p ,21)(=N P C 、31)(=M p ,43)(=N P D 、21)(=M p ,43)(=N P 6.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )A 、0.5B 、0.25C 、0.125D 、0.3757.一个均匀的正方体玩具,各个面上分别标以数1、2、3、4、5、6,求:(1)将这个玩具先后抛掷两次,朝上的一面数之和是6的概率;(2)将这个玩具先后抛掷两次,朝上的一面数之和小于5的概率。
利用图表等,结合列举法解某些概率问题直观、明了。
请解决第8题。
8.一个均匀的正方体玩具的各个面上分别标有数1、2、3、4、5、6,将空上玩具先后抛掷两次,计算。
(1)一共有多少种不同的结果?(2)其中向上的数之和是5的结果有多少种?(3)向上的数之和是5的概率是多少?9.随意安排甲、乙、丙、丁四人在四天值班,甲在乙之前值班的概率是多少?10.随机事件A 发生的概率的范围是( )A 、P (A )>0B 、P (A )<1C 、0<P (A )<1D 、1)(0≤≤A P11.盒中装有4只白球,5只黑球,从中任意取出一只球。
求:(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?12.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},在平面直角坐标系中,点(x ,y )的坐标满足y x A y A x ≠∈∈且,,,计算:(1)点(x ,y )不在x 轴上的概率;(2)点(x ,y )正好在第二象限的概率。
北师大版高中数学必修三随机事件的概率同步练习(2).docx
随机事件的概率 同步练习1.下列试验能够构成事件的是A.掷一次硬币B.射击一次C.标准大气压下,水烧至100℃D.摸彩票中头奖答案:D解析:每一次试验连同它产生的结果叫做事件,A 、B 、C 只是试验,没有结果,故不叫事件,D 既有试验又有结果,它是事件.2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是A.必然事件B.不可能事件C.随机事件D.以上选项均不正确答案:C解析:“三个数字的和大于6”可能发生也可能不发生,故是随机事件.3.随机事件A 的频率n m 满足 A. n m =0 B. nm =1 C.0<n m <1 D.0≤n m ≤1 答案:D解析:随机事件的结果是不确定的,在n 次试验中,发生的次数0≤m ≤n (注意等号可能成立),故其频率0≤nm ≤1. 4.下面事件是必然事件的有①如果a 、b ∈R ,那么a ·b =b ·a ②某人买彩票中奖 ③3+5>10A.①B.②C.③D.①②答案:A解析:由必然事件定义知选A.5.下面事件是随机事件的有①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③答案:C解析:由随机事件定义知选C.6.某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效数字):时间范围 1年内 2年内 3年内 4年内新生婴儿数 5544 9013 13520 17191男婴数 2716 4899 6812 8590男婴出生频率(1)填写表中的男婴出生频率;(2)这一地区男婴出生的概率约是_______.答案:(1)0.49 0.54 0.50 0.50 (2)0.50解析:由f n (A )=nm 可求出各男婴出生频率,由频率可估计概率. 7.从一批准备出厂的电视机中,随机抽取10台进行质量检查,其中有一台是次品,能否说这批电视机的次品的概率为0.10?解:这种说法是错误的.概率是在大量试验的基础上得到的,更是多次试验的结果,它是各次试验频率的抽象,题中所说的0.10,只是一次试验的频率,它不能称为概率. 8.某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n 8 10 15 20 30 40 50进球次数m 6 8 12 17 25 32 38进球频率nm (1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约是多少?解:(1)进球的频率从左向右依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)这位运动员投篮一次,进球的概率约是0.8.9.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:直径 6.88<d ≤6.89 6.89<d ≤6.90 6.90<d ≤6.91 6.91<d ≤6.92 6.92<d ≤6.93 6.93<d ≤6.94 6.94<d ≤6.95 6.95<d ≤6.96 6.96<d ≤6.97 6.97<d ≤6.98 个数12101717261582 2从这100个螺母中,任意抽取1个,求事件A (6.92<d ≤6.94)事件B (6.90<d ≤6.96)、事件C (d >6.96)、事件D (d ≤6.89)的频率.解:事件A 的频率P (A )=1002617+=0.43,事件B 的频率P (B )=10081526171710+++++=0.93,事件C 的频率P (C )=10022+=0.04,事件D 的频率P (D )=1001=0.01.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率 测试
一、选择题
1 下列叙述错误的是( )
A . 频率是随机的,在试验前不能确定,随着试验次数的增加,
频率一般会越来越接近概率
B . 若随机事件A 发生的概率为()A p ,则()10≤≤A p
C . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件
D 5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同 2 从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )
A 41
B 2
1 C 81 D 无法确定 3 有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,
则所取3条线段能构成一个三角形的概率为( )
A
101 B 103 C 21 D 10
7 4 从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )
A. 3个都是正品 B 至少有1个是次品
C 3个都是次品
D 至少有1个是正品
5 某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( )
A 09.0
B 98.0
C 97.0
D 96.0 6 从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( )
A 0.62
B 0.38
C 0.02
D 0.68 二、填空题
1 有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是
2 一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为___
3 同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是
4 从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,
一件次品的概率是
5 在5张卡片上分别写有数字,5,4,3,2,1然后将它们混合,再任意排列成一行,则得到的数能被2或5 整除的概率是
三、解答题
1 从甲、乙、丙、丁四个人中选两名代表,求:
(1)甲被选中的概率
(2)丁没被选中的概率
2 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率
3 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间
少于3分钟的概率(假定车到来后每人都能上)
4 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为
40秒,当你到达路口时看见下列三种情况的概率各是多少?
(1) 红灯(2) 黄灯(3) 不是红灯
参考答案
一、选择题
1 A 频率所稳定在某个常数上,这个常数叫做概率,
2 B 23241()2
C A P A C ===包含的基本事件的个数基本事件的总数 3 B 能构成三角形的边长为(3,5,7),(3,7,9),(5,7,9),三种,
3533()10
A P A C ===包含的基本事件的个数基本事件的总数 4 D 至少有一件正品 5 D ()1()10.040.96P A P A =-=-=
6 C 0.320.30.02-=
二、填空题
1 0.008 ()1()
10.9920.008P A P A =-=-= 2 110
1()10A P A ==包含的基本事件的个数基本事件的总数 3 14 4 13 1526151()153
C P A C ⨯=== 5 35 44445523()5
A A P A A +==,或者:个位总的来说有5种情况,符合条件的有3种 三、解答题
1 解:(1)记甲被选中为事件A ,则132431()62
C P A C === (2)记丁被选中为事件B ,则11()1()122
P B P B =-=-= 2 解:(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以试验结果有3
10101010⨯⨯=种;设事件A 为“连续3次都取正品”,则包含的基本事件共有3
8888⨯⨯=种,因此,3
38()0.51210P A == (2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为1098720⨯⨯=种 设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为876⨯⨯, 所以 336()720
P B =
3 解:可以认为人在任何时刻到站是等可能的 设上一班车离站时刻为a ,则该人到站的时刻的一切可能为(,5)a a Ω=+,若在该车站等车时间少于3分钟,则到站的时刻为(2,5)g a a =++,3()5
P A ==Ωg 的长度的长度 4 解:总的时间长度为3054075++=秒,设红灯为事件A ,黄灯为事件B ,
(1)出现红灯的概率302()755
P A ===构成事件A 的时间长度总的时间长度 (2)出现黄灯的概率51()7515P B =
==构成事件B 的时间长度总的时间长度 (3)不是红灯的概率23()1()155P A P A =-=-=。