专题11 以平面向量数量积相关的求值问题为背景的填空题-2017年高考数学培优系列(学生版)
2017学年高考数学年平面向量(基础篇)专题练习答案
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前湖北省黄冈市2017年初中毕业生学业水平和高中阶段学校招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1=3-( )A .13B .13-C .3D .3-2.下列计算正确的是( )A .235x y xy +=B .22(3)9m m ++= C .236()xy xy =D .1055a a a ÷=3.已知:如图,直线,150,23a b ︒∥∠∠∠==,则2∠的度数为 ( ) A .50︒ B .60︒ C .65︒ D .75︒4.已知:如图,是一几何体的三视图,则该几何体的名称为 ( ) A .长方体 B .正三棱柱 C .圆锥 D .圆柱5.某校10则这10名篮球运动员年龄的中位数为( ) A .12 B .13C .13.5D .146.已知:如图,在O 中,,70OA BC AOB ︒⊥∠=,则ADC ∠的度数为( ) A .30︒ B .35︒ C .45︒ D .70︒第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7.16的算术平方根是 . 8.分解因式:22mn mn m -+= . 9.的结果是 .10.自中国提出“一带一路·合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营.该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作 吨.11.化简:23()332x x x x x -+=--- . 12.已知:如图,在正方形ABCD 的外侧,作等边三角形ADE ,则BED =∠ 度.13.已知:如图,圆锥的底面直径是10cm ,高为12cm ,则它的侧面展开图的面积是2cm . 14.已知:如图,在AOB △中,90,3cm,4cm AOB AO BO =︒==∠,将AOB △绕顶点O ,按顺时针方向旋转到11AOB △处,此时线段1OB 与AB 的交点D 恰好为AB 的中点,则线段1B D = cm .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共10小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)解不等式组352,321.2x x x --⎧⎪⎨+⎪⎩<①≥②16.(本小题满分6分)已知:如图,,,BAC DAM AB AN AD AM ===∠∠.求证:B ANM =∠∠.17.(本小题满分6分)已知关于x 的一元二次方程22(21)0x k x k +++= ① 有两个不相等的实数根. (1)求k 的取值范围;(2)设方程①的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.18.(本小题满分6分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?19.(本小题满分7分)黄冈市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动.为了了解学生对这五项活动的喜爱情况,随机调查了m 名学生(每名学生必选且只能选择这五项活动中的一种).根据以上统计图提供的信息,请解答下列问题: (1)m = ,n = ; (2)补全图中的条形统计图;(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球;(4)在抽查的m 名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率. (解答过程中,可将小薇、小燕、小红、小梅分别用字母,,,A B C D 代表)20.(本小题满分7分) 已知:如图,MN 为O 的直径,ME 是O 的弦,MD 垂直于过点E 的直线DE ,垂足为点D ,且ME 平分DMN ∠.求证: (1)DE 是O 的切线; (2)2=ME MD MN .21.(本小题满分7分)已知:如图,一次函数21y x =-+与反比例函数ky x=的图象有两个交点,()1A m -和B ,过点A 作AE x ⊥轴,垂足为点E ;过点B 作BD y ⊥轴,垂足为点D ,且点D的坐标为(0,)2-,连接DE .(1)求k 的值;(2)求四边形AEDB 的面积.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分8分)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD (如图所示).已知标语牌的高5m AB =.在地面的点E 处,测得标语牌点A 的仰角为30︒,在地面的点F 处,测得标语牌点A 的仰角为75︒,且点,,,E F B C 在同一直线上.求点E 与点F之间的距离.(计算结果精确到0.1米,1.41 1.73)23.(本小题满分12分)月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y (万件)与销售价格x (元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.设公司销售这种电子产品的年利润为z (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损记作下一年的成本)(1)请求出y (万件)与x (元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润z (万元)与x (元/件)之间的函数关系式,并求出第一年年利润的最大值;(3)假设公司的这种电子产品第一年恰好按年利润z (万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x (元)定在8元以上(8x >),当第二年的年利润不低于103万元时,请结合年利润z (万元)与销售价格x (元/件)的函数示意图,求销售价格x (元/件)的取值范围.24.(本小题满分14分)已知:如图所示,在平面直角坐标系xOy 中,四边形OABC 是矩形,4,3OA OC ==.动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为()s t . (1)当1s t =时,求经过点,,O P A 三点的抛物线的解析式; (2)当2s t =时,求tan QPA ∠的值; (3)当线段PQ 与线段AB 相交于点M ,且2BMAM =时,求()s t 的值;(4)连接CQ ,当点,P Q 在运动过程中,记CQP △与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2017年高考数学试题分项版—平面向量(解析版)
2017年高考数学试题分项版—平面向量(解析版)一、选择题1.(2017·全国Ⅱ文,4)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |1.【答案】A【解析】方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.方法二 利用向量加法的平行四边形法则. 在▱ABCD 中,设AB →=a ,AD →=b , 由|a +b |=|a -b |知|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.2.(2017·北京文,7)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.【答案】A【解析】方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π,当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.3.(2017·全国Ⅱ理,12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A .-2 B .-32C .-43D .-13.【答案】B【解析】方法一 (解析法)建立坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3), B (-1,0),C (1,0).设P 点的坐标为(x ,y ), 则P A →=(-x ,3-y ),PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2[x 2+⎝⎛⎭⎫y -322-34]≥2×⎝⎛⎭⎫-34=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32. 故选B.方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值. 又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34, ∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B.4.(2017·全国Ⅲ理,12)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2C. 5D .24.【答案】A【解析】建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5, EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0). ∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.5.(2017·北京理,6)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.【答案】A【解析】方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ.若存在负数λ,使得m =λn ,则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件, 故选A. 二、填空题1.(2017·全国Ⅰ文,13)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 1.【答案】7【解析】∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.2.(2017·全国Ⅲ文,13)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. 2.【答案】2【解析】∵a =(-2,3),b =(3,m ),且a ⊥b , ∴a·b =0,即-2×3+3m =0,解得m =2.3.(2017·天津文,14)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 3.【答案】311【解析】由题意,知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →, ∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 4.(2017·山东文,11)已知向量a =(2,6),b =(-1,λ),若a ∥b ,则λ=________. 4.【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,解得λ=-3.5.(2017·浙江,15)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________. 5.【答案】4 2 5【解析】设a ,b 的夹角为θ, ∵|a |=1,|b |=2,∴|a +b |+|a -b |=(a +b )2+(a -b )2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ. 则y 2=10+225-16cos 2θ. ∵θ∈[0,π],∴cos 2θ∈[0,1], ∴y 2∈[16,20],∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].6.(2017·浙江,10)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 36.【答案】C【解析】∵I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →, 又OB →与CA →所成角为钝角, ∴I 1-I 2<0,即I 1<I 2.∵I 1-I 3=OA →·OB →-OC →·OD →=|OA →||OB →|cos ∠AOB -|OC →||OD →|cos ∠COD =cos ∠AOB (|OA →||OB →|-|OC →||OD →|), 又∠AOB 为钝角,OA <OC ,OB <OD , ∴I 1-I 3>0,即I 1>I 3. ∴I 3<I 1<I 2, 故选C.7.(2017·江苏,12)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n=________.7.【答案】3【解析】方法一 因为tan α=7, 所以cos α=210,sin α=7210. 过点C 作CD ∥OB 交OA 的延长线于点D ,则OC →=OD →+DC →,∠OCD =45°. 又因为OC →=mOA →+nOB →, 所以OD →=mOA →,DC →=nOB →, 所以|OD →|=m ,|DC →|=n .在△COD 中,由正弦定理得|DC →|sin α=|OD →|sin ∠OCD =|OC →|sin ∠ODC ,因为sin ∠ODC =sin(180°-α-∠OCD )=sin(α+∠OCD )=45,即n 7210=m 22=245, 所以n =74,m =54,所以m +n =3.方法二 由tan α=7可得cos α=152,sin α=752,则152=OA →·OC →|OA →||OC →|=m +nOA →·OB →2,由cos ∠BOC =22可得22=OB →·OC →|OB →||OC →|=mOA →·OB →+n 2,cos ∠AOB =cos(α+45°)=cos αcos 45°-sin αsin 45° =152×22-752×22=-35,则OA →·OB →=-35,则m -35n =15,-35m +n =1,则25m +25n =65,则m +n =3. 8.(2017·全国Ⅰ理,13)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 8.【答案】2 3 【解析】方法一 |a +2b |=(a +2b )2 =a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12 =12=2 3. 方法二(数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=||.又∠AOB =60°,所以|a +2b |=2 3.9.(2017·天津理,13)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 9.【答案】311【解析】由题意知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311. 10.(2017·山东理,12)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 10.【答案】33【解析】由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12,解得λ=33.。
必修4《平面向量的数量积》专项练习题及参考答案
必修4《平面向量的数量积》一、填空题1.已知a =(1,sin 2x ),b =(2,sin2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x = 1 .解:由|a ·b |=|a ||b |知,a ∥b . 故sin2x =2sin 2x ,即2sin x cos x =2sin 2x ,而x ∈(0,π),故sin x =cos x ,即x =π4,故tan x =1. 2.已知两个单位向量e 1,e 2的夹角为120°,若向量a =e 1+2e 2,b =4e 1,则a ·b = 0 .解:a ·b =(e 1+2e 2)·4e 1=4e 1⋅e 2+8 e 1⋅e 2=4×1×1+8×1×1×cos120°=4+8×(-12)=0. 3.在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于16 .解:法一:因为cos A =AC AB ,故AB ·AC =|AB ||AC |cos A =|AC |2=16. 法二:AB 在AC 上的投影为|AB |cos A =|AC |,故AB ·AC =|AC ||AB |cos A =|AC |2=16.4.在锐角△ABC 中,AB =a ,CA =b ,S △ABC =1,且|a |=2,|b |=2,则a·b 等于 -2.解:S △ABC =12|AB ||AC |sin A =12×2×2sin A =1,∴ sin A =22,∵ A 为锐角,∴ A =π4. ∴ a·b =AB ·CA =|a ||b |cos(π-A )=2×2cos 3π4=-2. 5.设向量a =(cos α,sin α),b =(cos β,sin β),其中0 < α < β < π,若|2a +b |=|a -2b |,则β-α= π2. 解:由|2a +b |=|a -2b |得3|a |2-3|b |2+8a·b =0,而|a |=|b |=1,故a·b =0,∴ cos αcos β+sin αsin β=0,即cos(α-β)=0,由于0 < α < β < π,故-π < α-β < 0,∴ α-β=-π2,即β-α=π2. 6.若△ABC 的三个内角A ,B ,C 成等差数列,且(AB +AC )·BC =0,则△ABC 的是等边三角形. 解:由题意可知,在△ABC 中,BC 边上的中线又是BC 边上的高,因此△ABC 是等腰三角形,而三 个内角A ,B ,C 成等差数列,故角B 为60°,所以△ABC 一定是等边三角形.7.力F 的大小为50 N ,与水平方向的夹角为30°(斜向上),使物体沿水平方向运动了20 m ,则力F 所做的功为 5003J .解:设木块的位移为s ,则F·s =|F |·|s |cos30°=50×20×32=5003(J). 8.已知向量a =(2,-1),b =(x ,-2),c =(3,y ),若a ∥b ,(a +b )⊥(b -c ),M (x ,y ),N (y ,x ), 则向量MN 的模为82.解:∵ a //b ,∴ x =4,∴ b =(4,-2),∴ a +b =(6,-3),b -c =(1,-2-y ).∵ (a +b )⊥(b -c ),∴ (a +b )·(b -c )=0,即6-3×(-2-y )=0,∴ y =-4,∴ M (4,-4),N (-4,4).故向量MN = (-8,8),|MN |=8 2.9.给出以下四个命题:①对任意两个向量a ,b 都有|a·b |=|a ||b |;②若a ,b 是两个不共线的向量,且AB =λ1a +b ,AC =a +λ2b (λ1,λ2∈R),则A 、B 、C 共线 ⇔λ1λ2=-1;③若向量a =(cos α,sin α),b =(cos β,sin β),则a +b 与a -b 的夹角为90°.④若向量a 、b 满足|a |=3,|b |=4,|a +b |=13,则a ,b 的夹角为60°. 以上命题中,错误命题的序号是 ①②④. 解:①错,∵ |a·b |=|a ||b |·|cos θ|≤|a ||b |. ②错.∵ A 、B 、C 共线,∴ AB =k AC ,∴⎩⎪⎨⎪⎧ λ1=k ,λ2k =1,∴ λ1λ2 =1. ④错,∵ |a +b |2=13,∴ |a |2+|b |2+2a·b =13,即a·b =|a ||b |·cos θ=-6,∴ cos θ=-12,∴ θ =120°.二、解答题13.如图,在△OAB 中,已知P 为线段AB 上的一点,且|AP |=2|PB |.(1)试用OA ,OB 表示OP ;(2)若| OA |=3,| OB |=2,且∠AOB =60°,求OP ·AB 的值.解:(1)∵ P 为线段AB 上的一点,且|AP |=2|PB |,∴ AP =2PB ,即有OP -OA =2(OB -OP ),∴OP =13OA +23OB . (2)由(1)知OP =13OA +23OB ,∴ OP ·AB =(13OA +23OB )·(OB - OA )=-13OA 2-13OA ·OB +23OB 2=-13×9-13×3×2×cos60°+23×4=-43. 14.设在平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =(-12,32). (1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.解:(1)证明:因为(a +b )·(a -b )=|a |2-|b |2=(cos 2α+sin 2α)-(14+34)=0,故a +b 与a -b 垂直. (2)由|3a +b |=|a -3b |,两边平方得3|a |2+23a·b +|b |2=|a |2-23a·b +3|b |2,所以2(|a |2-|b |2)+43a·b =0,而|a |=|b |,所以a·b =0,则(-12)×cos α+32×sin α=0, 即cos(α+60°)=0,∴ α+60°=k ·180°+90°,即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α= 30°或α=210°.15.。
以平面向量数量积相关的求值问题为背景的填空题-2018年高考数学备考优生百日闯关系列试卷 (word版含答案)
专题二 压轴填空题第三关 以平面向量数量积相关的求值问题为背景的填空题 【名师综述】平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.类型一 平面向量数量积在圆中的应用已知,A B 是单位圆O 上的两点(O 为圆心),120AOB ∠=,点C 是线段AB 上不与A B 、重合的动点.MN 是圆O 的一条直径,则CM CN 的取值范围是( )A .3[,0)4- B .[1,1)- C. 1[,1)2- D .[1,0)- 【答案】A【解析】22()()1,CM CN OM OC ON OC OM ON OC OC =-∙-=∙+=-+ 120AOB ∠= ,点C 是线段AB 上,1|C |[,1),2∴O ∈∴ CM CN ∈ 3[,0)4-,故选A.【名师指点】本题利用分解转化法求数量积.由CM OM OC =- ,CN ON OC =- ,将CM CN分解转化并通过向量运算得21CM CN OC ⋅=-+ ,这样只需求OC 的范围即可.【举一反三】【2018北京大兴联考】已知圆22:1O x y +=的弦AB 长为AP 是圆O 的直径,则AP AB ⋅=____;若点P 为圆O 上的动点,则AP AB ⋅的取值范围是_____.【答案】 2 11⎡+⎣类型二 解析几何中的向量问题典例2【衡水金卷2018年普通高等学校招生全国统一考试】若向量()11,3,,32OA OB ⎛⎫==- ⎪⎝⎭ , M 是椭圆2214x y +=上的动点,则MA MB ⋅ 的最小值为_________. 【答案】334- 【解析】设()M 2cos θsin θ,,则()()()211512cos θ2cos θ3sin θ3sin θ3cos 3cos θ22MA MB θ⎛⎫⋅=--+---=-- ⎪⎝⎭,当1cos θ2=时,取最小值为334-. 故答案为: 334-【名师指点】本题考查坐标法求平面向量数量积,通过设点,将数量积用坐标表示,结合椭圆方程将数量积用一个变量表示,进而转化为函数求最值问题处理.【举一反三】若点O 、F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任一点,则OP PF ⋅ 的最大值为 . 【答案】6【解析】解:设P (x ,y ),则OP PF ⋅ =221x y x y x x y ⋅+=++(,)(,),又点P 在椭圆上,故22143x y +=,所以()22223113322444x x x x x x ++-=++=++(),又-2≤x≤2,所以当x=2时,()21224x ++取得最大值为6,即OP PF ⋅的最大值为6,故答案为:6.类型三 向量中的函数、不等式问题典例3平行四边形ABCD 中,4,2,4AB AD AB AD ===, 点P 在边CD 上,则PA PB 的取值范围是( )A.[]1,8-B.[)1,-+∞C.[]0,8D.[]1,0- 【答案】A【名师指点】本题考查平面向量数量积的求法(定义和坐标法)和函数、不等式思想的运用等.先由平面向量数量积定义求角A 的大小,然后通过建系设点,将平面向量数量积用坐标表示,然后运用函数思想求范围. 【举一反三】【江苏省南通市2018届高三上学期第一次调研测试】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P , Q 分别在边BC , CD 上,且45PAQ ︒∠=,则AP AQ ⋅的最小值为_________.【答案】4【解析】以A 坐标原点,AB,AD 所在直线为x,y 轴建立直角坐标系,设()()2,,1P y Q x ,所以AP AQ ⋅()()2,,12y x x y =⋅=+因为45PAQ ︒∠=,所以()()22222x y xy +=- 因为02,0102x y xy ≤≤≤≤∴≤≤ ,所以22221xx y xy y x-+=-∴=+ 因此()22442222214111x x y x x x x x x-+=+=+-=++-+++44≥= 【精选名校模拟】1.【2018全国名校联考】已知ABC ∆的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且()222c b b =-,则AO BC ⋅的取值范围是__________.【答案】2,23⎛⎫-⎪⎝⎭【解析】如图,延长AO 交ABC ∆的外接圆与点D ,连接,BD CD ,则90ABD ACD ∠∠==︒, 所以()()221111CAD BAD ()2222AO BC AO AC AB AD AC AB AC AD cos AB AD cos b c ∠∠=-=-=-=- ,又()222b 2b 4b 2c b =-=-,把代入得()22132234()2233AO BC b b b =-=-- , 又()22b 2b 0c =->,所以02b <<,把代入得AO BC ⋅ 的取值范围是2,23⎛⎫- ⎪⎝⎭.2.【2018河北衡水武邑中点二调】已知锐角ABC ∆的外接圆的半径为1, 6B π∠=,则BA BC ⋅的取值范围为__________.【答案】33,2⎛+ ⎝ 【解析】如图,设,BA c BC a == , ABC ∆的外接圆的半径为1, 6B π∠=.由正弦定理得2sin sin a c A C==, ∴52sin ,2sin ,6a A c C C A π===-, 由02{5062A A πππ<<<-<,得32A ππ<<。
2017-2019年高考真题数学(文)分项汇编_专题11 平面向量
专题11平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以c o s θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-,故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学运算.5.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是 A1 B C.2 D .2【答案】A 【解析】设,则由得,由b2−4e·b+3=0得因此|a−b|的最小值为圆心到直线1,为选A.的距离2【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算. 6.【2018年高考天津卷文数】在如图的平面图形中,已知BC OM的值为==∠=,2,2,OM ON MON1,2,120==则·BM MA CN NA-B.9-A.15C.6-D.0【答案】C【解析】如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.7.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥bD .>a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.【答案】10-【解析】2826cos ,||||⨯-+⨯⋅===⋅a b a b a b .【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE的斜率为3,其方程为(3y x =-, 直线AE的斜率为3-,其方程为3y x =-.由3y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;【解析】以, AB AD 分别为x 轴、y 轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-, 令(123456y AB BC CD DA AC BD λλλλλλλ=+++++=0.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________.【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.【答案】【解析】,, 由得:,,即.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0. 16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a =b +2,或b =a +2; 且()()1,2,AE a BF b ==-,; ∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________.【答案】2【解析】由题意可得02330,m ⋅=⇒-⨯+=a b 解得2m =. 【名师点睛】(1)向量平行:1221∥x y x y ⇒=a b ,,,∥≠⇒∃∈=λλ0R a b b a b ,111BA AC OA OB OC λλλλ=⇔=+++. (2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量的运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =. 【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100n m +=⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________. 【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b ,+==a b则++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得++-=a b a b能力有一定的要求.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2B D D C=,AE AC λ=-11 ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________. 【答案】311 【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+2123()34934333311A C AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.。
(完整版)平面向量的数量积练习题(含答案)
平面向量的数量积A 组 专项根底训练一、选择题(每题5分,共20分)1. (2021·辽宁)向量a =(1,-1),b =(2,x ),假设a ·b =1,那么x 等于( )A .-1B .-12 C.12 D .1 2. (2021·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,那么|a+b |等于( ) A. 5 B.10 C .2 5 D .103. 向量a =(1,2),b =(2,-3).假设向量c 满足(c +a )∥b ,c ⊥(a +b ),那么c 等于( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,那么AB →·AC→等于 ( ) A .-32 B .-23 C.23 D.32二、填空题(每题5分,共15分)5.向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,那么|b |=________.6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,那么AB →·AC→=________. 7. a =(2,-1),b =(λ,3),假设a 与b 的夹角为钝角,那么λ的取值范围是__________.三、解答题(共22分)8. (10分)a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)假设c 与b 同向,且a 与c -a 垂直,求c .9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,假设向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.B 组 专项能力提升一、选择题(每题5分,共15分)1.在△ABC 中,AB =2,AC =3,AB →·BC→=1,那么BC 等于 ( ) A. 3 B.7 C .2 2 D.23 2. |a |=6,|b |=3,a·b =-12,那么向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .23.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,那么|P A |2+|PB |2|PC |2等于( )A .2B .4C .5D .10二、填空题(每题5分,共15分)4.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).假设(a +c )⊥b ,那么|a |=________.5.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,假设AB →·AF →=2,那么AE →·BF→的值是________.6.在矩形ABCD 中,边AB 、AD 的长分别为2、1,假设M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC →|=|CN →||CD →|,那么AM →·AN →的取值范围是________. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝ ⎛⎭⎪⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.平面向量的数量积参考答案A 组 专项根底训练1.答案 D 解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. 答案 B解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+(-1)2=10. 3.答案 D解析 设c =(x ,y ),那么c +a =(x +1,y +2),又(c +a )∥b ,∴2(y +2)+3(x +1)=0.①又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.②联立①②解得x =-79,y =-73.4.答案 D解析 由于AB →·AC →=|AB →|·|AC →|·cos ∠BAC =12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32.二、填空题(每题5分,共15分)5.答案 32解析 ∵a ,b 的夹角为45°,|a |=1,∴a ·b =|a |·|b |cos 45°=22|b |,|2a -b |2=4-4×22|b |+|b |2=10,∴|b |=3 2.6. 答案 -16解析 如下图,AB→=AM →+MB →, AC →=AM →+MC →=AM →-MB →,∴AB →·AC →=(AM →+MB →)·(AM→-MB →) =AM→2-MB →2=|AM →|2-|MB →|2=9-25=-16. 7. 答案 (-∞,-6)∪⎝ ⎛⎭⎪⎫-6,32解析 由a·b <0,即2λ-3<0,解得λ<32,由a ∥b 得: 6=-λ,即λλ<32,且λ≠-6.三、解答题(共22分)8.解 (1)a·b =2n -2,|a |=5,|b |=n 2+4, ∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0,∴n =6或n =-23(舍),∴b =(-2,6). (2)由(1)知,a·b =10,|a |2c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0,∴λb·a -|a |2=0,∴λ=|a |2b·a =510=12,∴c =12b =(-1,3). 9.解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7. 由得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时,设2t e 1+7e 2=λ(e 1+t e 2),λ<0,那么⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍). 故t 的取值范围为(-7,-142)∪(-142,-12).B 组 专项能力提升一、选择题(每题5分,共15分)1.答案 A解析 ∵AB →·BC→=1,且AB =2,∴1=|AB →||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B ,即9=4+|BC |2-2×(-1). ∴|BC |= 3.2.答案 A解析 a·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉,∴|a |·cos 〈a ,b 〉=-4.3. 答案 D解析 ∵P A →=CA →-CP →,∴|P A →|2=CA →2-2CP →·CA→+CP →2. ∵PB →=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2.∴|P A →|2+|PB→|2 =(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD→+2CP →2. 又AB→2=16CP →2,CD →=2CP →, 代入上式整理得|P A →|2+|PB→|2=10|CP →|2,故所求值为10. 二、填空题(每题5分,共15分)4.答案 2解析 利用向量数量积的坐标运算求解. a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0,∴m =-12.∴a =(1,-1),∴|a |= 2.5.答案 2解析 方法一 坐标法. 以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,那么A (0,0),B (2,0),E (2,1),F (x,2).故AB→=(2,0),AF →=(x,2),AE →=(2,1),BF →=(x -2,2), ∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF→=2,∴x =1.∴BF →=(1-2,2). ∴AE →·BF →=(2,1)·(1-2,2)=2-2+2= 2.方法二 用AB→,BC →表示AE →,BF →是关键. 设DF →=xAB →,那么CF →=(x -1)AB →.AB →·AF →=AB →·(AD →+DF →)=AB →·(AD →+xAB →)=xAB →2=2x ,又∵AB →·AF→=2,∴2x =2, ∴x =22.∴BF →=BC →+CF →=BC →+⎝ ⎛⎭⎪⎫22-1AB →.∴AE →·BF →=(AB →+BE →)·⎣⎢⎡⎦⎥⎤BC →+⎝ ⎛⎭⎪⎫22-1AB → =⎝ ⎛⎭⎪⎫AB →+12BC →⎣⎢⎡⎦⎥⎤BC →+⎝ ⎛⎭⎪⎫22-1AB → =⎝ ⎛⎭⎪⎫22-1AB →2+12BC →2=⎝ ⎛⎭⎪⎫22-1×2+12×4= 2. 6.答案 [1,4]解析 利用基向量法,把AM→,AN →都用AB →,AD →表示,再求数量积. 如下图,设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),那么BM→=λBC →, CN→=λCD →,DN →=CN →-CD →=(λ-1)CD →, ∴AM →·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →]=(λ-1)AB →·CD →+λBC →·AD→ =4(1-λ)+λ=4-3λ,∴当λ=0时,AM →·AN →取得最大值4;当λ=1时,AM →·AN→取得最小值1.∴AM →·AN→∈[1,4]. 三、解答题7.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝ ⎛⎭⎪⎫14+34=0, 故向量a +b 与a -b 垂直.(2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a·b +|b |2=|a |2-23a·b +3|b |2,所以2(|a |2-|b |2)+43a·b =0,而|a |=|b |,所以a·b =0,即⎝ ⎛⎭⎪⎫-12·cos α+32·sin α=0, 即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,那么α=30°或α=210°.。
(完整版)平面向量数量积运算专题(附答案解析)
平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,PA ,PB 为该圆的两条切线,A ,B 为切点,那么PA →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2D.-3+2 2变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2D.32a 22.(2014·浙江)记max{x ,y }=⎩⎨⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎨⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A.(0,52] B.(52,72] C.(52,2]D.(72,2]6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC中,AC=10,过顶点C作AB的垂线,垂足为D,AD=5,且满足AD→=511DB→.(1)求|AB→-AC→|;(2)存在实数t≥1,使得向量x=AB→+tAC→,y=tAB→+AC→,令k=x·y,求k的最小值.平面向量数量积运算题型一平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF.若AE→·AF→=1,则λ的值为________.(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么PA→·PB→的最小值为( )A.-4+ 2B.-3+ 2C.-4+2 2D.-3+2 2答案(1)2 (2)D解析(1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|PA →|=|PB →|=x ,∠APB =θ,则tan θ2=1x,从而cos θ=1-tan2θ21+tan2θ2=x 2-1x 2+1.PA →·PB →=|PA →|·|PB →|·cos θ =x 2·x 2-1x 2+1=x 4-x 2x 2+1=x 2+12-3x 2+1+2x 2+1=x 2+1+2x 2+1-3≥22-3, 当且仅当x 2+1=2,即x 2=2-1时取等号,故PA →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|PA →|=|PB →|=1tan θ2.PA →·PB →=|PA →||PB →|cos θ=(1tan θ2)2cos θ=cos2θ2sin 2θ2·(1-2sin 2θ2)=1-sin 2θ21-2sin2θ2sin2θ2.令x =sin 2θ2,0<x ≤1, 则PA →·PB →=1-x1-2xx=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故PA →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则PA →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥PA ⇒OA →·PA →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而PA →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故PA →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4.(2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1, 故cos θ=2a -b ·a +2b |2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=2a2+b 2+2×|2a |×|b |cos 120°=22×12+22+2×2×1×2×⎝ ⎛⎭⎪⎫-12=2.(2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ),PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ), |PA →+3PB →|2=25+(3a -4x )2≥25, ∴|PA →+3PB →|的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →,PA →=DA →-DP →=DA →-xDC →,PB →=PC →+CB →=(1-x )DC →+12DA →,∴PA →+3PB →=52DA →+(3-4x )DC →,|PA →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|PA →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案 233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2D.32a 2答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2,∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎨⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎨⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D. 3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.9答案 B解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系,则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A.(0,52]B.(52,72]C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2, 当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB→=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ. 易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0,所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B,所以sin A =a sin Bb=3×632=22.所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12.所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt△ADC 中,CD 2=AC 2-AD 2=75, 在Rt△BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →)=t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2 =256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。
【山东省】2017年高考数学(理科)-平面向量-专题练习-答案
山东省2017年高考数学(理科)专题练习平面向量 答 案【真题回访】回访一 平面向量的线性运算 1.A 2.12回访二 平面向量的数量积 3.D 4.16热点题型1 平面向量的运算 【例1】 (1)B (2)B【变式训练一】 (1)32(2)-2热点题型2 三角与向量的综合问题 【例2】 (1)85(2)122⎤--⎢⎥⎣⎦ 【变式训练二】 (1)6π(2)6x π=,()gx 的最大值为32.专题限时集训(三) 平面向量 【A 组 高考达标】一、选择题 1.B 2.A 3.D 4.C 5.C 二、填空题 6.65 7.712 8.16三、解答题 9.(1)∵23m n ==,()1,2AB =,()2,1AC =,∴()()()221,22,12,233OP =+=, ∴22OP ==.(2)∵()()()1,22,12,2OP m n m n m n =+=++, ∴2,2,x m n y m n =+⎧⎨=+⎩两式相减,得m n y x -=-.令y x t -=,由图知,当直线y x t =+ 过点()2,3B时,t 取得最大值1,故m n -的最大值为1.10.(1)由2BA BC =得cacosB 2=. 因为1cosB 3=,所以6ac =. 余弦定理,得2222accosB a c b +=+. 又3b =,所以2292213a c +⨯=+=. 解226,13,ac a c =⎧⎨+=⎩得2a =,=3c 或3a =,2c =.因为ac >,所以3a =,2c =.(2)在ABC △中,sinB 3===,由正弦定理,得2sin C sin B 339c b ==⨯=.因为a b c =>,所以C为锐角,因此7cos C 9===.于是1723cos cosBcosC sinBs ()inC 393927B C -+=⨯+==.【B 组 名校冲刺】 一、选择题 1.B 2.A 3.B 4.A 二、填空题 5.2 6.-3 三、解答题7.(1)因为向量22sin ,03a x πω⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,()()2cos ,30b x ωω=>,所以函数())22134sin cos 4sin cos cos 23cos 322sin cos 1cos 2sin 2x 2cos 26a b x x x x x x x x x xf x πωωωωωωπωωωωω⎛⎫⎛⎫⎛⎫==+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫=+-=+ ⎪⎝⎭由题意可知f (x )的最小正周期为πT =,所以2π=π2ω,即1ω=. (2)已知()2co =s 26f x x π⎛⎫++ ⎪⎝⎭[]0,2x π∈时,2,4666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 故[π2π6],2πx +∈或[π23π],4π6x +∈时,函数()f x 单调递增, 所以函数f (x )的单调递增区间为5π11π,1212⎡⎤⎢⎥⎣⎦和17π23π,1212⎡⎤⎢⎥⎣⎦.8.设BC ,CA ,AB 依次为a ,b ,c ,则6a b c ++=,2b ac =.在ABC △中,22222212cosB 222a c b a c ac ac a ac ac c ac +-+-==-≥=,故有03B π≤<,又622a c bb +-≤==,从而02b <≤. (1)22111πsin sin 2sin 32223S ac B b B ==≤=当且仅当a c =,且π3B =,即ABC△为等边三角形时面积最大,即max S =.(2)()()()22222222263cos 327.222a c acb b b ac b BA BC ac B b +----+-=====-++∵02b <≤,∴821BA <≤,即BA BC 的取值范围是[)2,18.山东省2017年高考数学(理科)专题练习平面向量 解 析【真题回访】回访一 平面向量的线性运算1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3 AD →,∴AD →=-13AB →+43AC →.]2.12[∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ), 即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.]回访二 平面向量的数量积3.D[由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D.]4.16[已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.] 热点题型1 平面向量的运算 【例1】(1)B [(1)法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B.法二:因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ⎝⎛⎭⎪⎫AB →+12AD →+μ(-AB →+AD →)=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B. ](2)B [如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.]【变式训练一】(1)32 [如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2,又OA =OB =1,可以求得AP =BP = 3.∠APB =60°,故P A →·PB →=3×3×cos 60°=32.](2)-2 [∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得mn =-2.]热点题型2 三角与向量的综合问题 【例2】[解] (1)∵a ∥b ,∴34cos x +sin x =0,∴tan x =-34,4分∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32, 由正弦定理得a sin A =bsin B ,可得sin A =22.9分 ∵b >a , ∴A =π4,10分y =f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12.11分 ∵x ∈⎣⎡⎦⎤0,π3, ∴2x +π4∈⎣⎡⎦⎤π4,11π12, ∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎡⎦⎤32-1,2-12.12分【变式训练一】[解] (1)|a |2=(sin x )2+(3sin x )2=4sin 2x ,|b |2=(sin x )2+(cos x )2=1. 由|a |=|b |,得4sin 2x =1,2分 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,3分 所以x =π6,.4分(2)f (x )=a·b =sin 2x +3sin x ·cos x 5分 =32sin2x +12-12cos 2x 7分 =sin ⎝⎛⎭⎫2x -π6+12.8分 将f (x )图象向左平移π6个单位得到函数g (x )=sin ⎝⎛⎭⎫2x +π6+12.10分 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 从而当2x +π6=π2即x =π6时,sin ⎝⎛⎭⎫2x +π6取最大值1,11分 所以x =π6时,g (x )的最大值为32.12分专题限时集训(三) 平面向量 【A 组 高考达标】 一、选择题1.B [因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD→+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.]2.A [由题意可得OB →的横坐标x =2cos(60°+45°)=2⎝⎛⎭⎫24-64=1-32,纵坐标y =2sin(60°+45°)=2⎝⎛⎭⎫64+24=1+32,则OB →=⎝ ⎛⎭⎪⎫1-32,1+32,故选A.] 3.D [∵向量a =(3,1),b =(x ,-3),且a ⊥b ,∴3x -3=0,∴x =3, ∴b =(3,-3),a -b =(0,4),设向量b 与a -b 的夹角为θ, 则cos θ=b ·(a -b )|b |·|(a -b )|=-1223×4=-32,∴θ=150°.]4.C [∵M 是BC 边的中点, ∴AM →=12(AB →+AC →).∵O 是△ABC 的外接圆的圆心,∴AO →·AB →=|AB →||AO →|cos ∠BAO =12|AB →|2=12×(23)2=6.同理可得AO →·AC →=12|AC →|2=12×(22)2=4,∴AM →·AO →=12(AB →+AC →)·AO →=12AB →·AO →+12AC →·AO →=12×(6+4)=5.] 5.C [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC→|.又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C.]二、填空题6.65 [设e 1,e 2为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与xa +yb 共线,得c =λ(x a +y b ),∴e 1-2e 2=2λ(x -y )e 1+λ(x-2y )e 2,∴⎩⎪⎨⎪⎧λ(2x -2y )=1,λ(x -2y )=-2,∴⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.] 7.712 [∵AP →⊥BC →,∴AP →·BC →=0, ∴(λAB →+AC →)·BC →=0,即(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AC →·AB →=0. ∵向量AB →与AC →的夹角为120°,|AB →|=3,|AC →|=2, ∴(λ-1)×3×2×cos 120°-9λ+4=0,解得λ=712.]8.-16 [∵△ABC 是正三角形,O 是其中心,其边长AB =BC =AC =1,∴AO 是∠BAC 的平分线,且AO =33,∴OB →·OC →=(AB →-AO →)·(AC →-AO →)=AB →·AC →-AO →·AC →-AO →·AB →+AO →2=1×1×cos 60°-33×1×cos 30°-33×1×cos 30°+⎝⎛⎭⎫332=-16.] 三、解答题9.[解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.4分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.[解] (1)由BA →·BC →=2得ca cos B =2.1分 因为cos B =13,所以ac =6.2分由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.4分 因为a >c ,所以a =3,c =2.6分 (2)在△ABC 中,sin B =1-cos 2 B =1-⎝⎛⎭⎫132=223,7分由正弦定理,得sin C =c b sin B =23×223=429.8分因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2 C =1-⎝⎛⎭⎫4292=79.10分 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.12分【B 组 名校冲刺】 一、选择题1.B [由题意可得OD →=k OC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k >1,即λ+μ的取值范围是(1,+∞),故选B.]2.A [因为(a +b )⊥⎝⎛⎭⎫a -52b ,所以a 2-52b 2-32a·b =0. 又因为|a |=2,|b |=1,所以a 2=4,b 2=1,所以4-52-32a ·b =0,所以a·b =1.所以a·b =|a |·|b |cos〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角范围为[0,π],所以a 与b 的夹角为π3.]3. B [∵BF →=2FO →,圆O 的半径为1, ∴|FO →|=13,∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝⎛⎭⎫132+0-1=-89.] 4.A [因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0⇒(x ,y )=⎝⎛⎭⎫12x 0+π6,4cos x 0⇒⎩⎪⎨⎪⎧ x =12x 0+π6,y =4cos x 0,即⎩⎪⎨⎪⎧x 0=2⎝⎛⎭⎫x -π6,y =4cos x 0⇒y =4cos ⎝⎛⎭⎫2x -π3, 即f (x )=4cos ⎝⎛⎭⎫2x -π3, 当x ∈⎣⎡⎦⎤π6,π3时,由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎝⎛⎭⎫2x -π3≤1⇒2≤4cos ⎝⎛⎭⎫2x -π3≤4, 所以函数y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是4,故选A.]二、填空题5.2 [由题意得|a |=12+(3)2=2,则|a -2b |2=|a |2-4|a||b|cos 〈a ,b 〉+4|b |2=22-4×2cos π3|b |+4|b |2=12,解得|b |=2(负舍).]6.-3 [由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0得BC →与∠A 的角平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=-BA →·BD →=-|BD →|2=-3.]三、解答题 7.[解] (1)因为向量a =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +2π3,0,b =(2cos ωx,3)(ω>0),所以函数f (x )=a·b =4sin ⎝⎛⎭⎫ωx +2π3cos ωx =4⎝⎛⎭⎫sin ωx ·⎝⎛⎭⎫-12+cos ωx ·32cos ωx =23·cos 2ωx -2sin ωx cos ωx =3(1+cos 2ωx )-sin 2ωx =2cos ⎝⎛⎭⎫2ωx +π6+3, 由题意可知f (x )的最小正周期为T =π,所以2π2ω=π,即ω=1. (2)已知f (x )=2cos ⎝⎛⎭⎫2x +π6+3,当x ∈[0,2π]时,2x +π6∈⎣⎡⎦⎤π6,4π+π6,故2x +π6∈[π,2π]或2x +π6∈[3π,4π]时,函数f (x )单调递增, 所以函数f (x )的单调递增区间为⎣⎡⎦⎤5π12,11π12和⎣⎡⎦⎤17π12,23π12.8.[解] 设|BC →|,|CA →|,|AB →|依次为a ,b ,c ,则a +b +c =6,b 2=ac .在△ABC 中,cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,故有0<B ≤π3, 又b =ac ≤a +c 2=6-b 2,从而0<b ≤2. (1)S =12ac sin B =12b 2sin B ≤12·22·sin π3=3,当且仅当a =c ,且B =π3,即△ABC 为等边三角形时面积最大,即S max = 3.(2)BA →·BC →=ac cos B =a 2+c 2-b 22=(a +c )2-2ac -b 22=(6-b )2-3b 22=-(b +3)2+27. ∵0<b ≤2,∴2≤BA →·BC →<18,即BA →·BC →的取值范围是[2,18).。
2017年新课标全国理数高考试题汇编:平面向量—老师专用(最新整理)
2017年新课标全国理数高考试题汇编:平面向量1.【2017全国高考新课标II 卷理数·12T 】已知是边长为2的等边三角形,为平面内一点,ABC △P ABC 则的最小是( )()PA PB PC ⋅+ A .B .C . D .2-32-43-1-【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决.2.【2017全国高考新课标III 卷理数·12T 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD相切的圆上。
若= +,则+的最大值为AP λAB μAD λμA .3B .CD .2【答案】A试题解析:如图所示,建立平面直角坐标系设 ,()()()()()0,1,0,0,2,0,2,1,,A B C D P x y 根据等面积公式可得圆的半径,即圆C 的方程是 ,r =()22425x y -+=【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算。
(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决。
3.【2017全国高考新课标I 卷理数·13T 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】试题解析:,所以222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+= a b a a b b.|2|+==a b 秒杀解析:利用如下图形,可以判断出的模长是以2为边长,一夹角为60°的菱形的对角线的2+a b长度,则为【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.(4.【2017全国高考天津卷理数·13T 】在中,,,.若,ABC △60A =︒∠3AB =2AC =2BD DC = ,且,则的值为___________.()AE AC AB λλ∈=-R 4AD AE ⋅=- λ【答案】 3115.【2017全国高考浙江卷理数·15T 】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.【答案】4,【解析】试题解析:设向量,a b 的夹角为θ,由余弦定理有:a b -== ,a b +== ,则:a b a b ++-=+ ,令y =,则[]21016,20y =+,据此可得:())max min 4a b a b b a b ++-==++-== ,即a b a b ++- 的最小值是4,最大值是.【考点】平面向量模长运算【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式, 可得a b a b ++-= ,再利用三角函数的有界性求出最大、最小值,属中档题,对学生的转化能力和最值处理能力有一定的要求.6.【2017全国高考江苏卷理数·12T 】如图,在同一个平面内,向量,,,的模分别为1,1OA OB O C与的夹角为,且tan =7,与的夹角为45°。
2017年高考数学(理科)-平面向量-专题练习-答案
山东省2017年高考数学(理科)专题练习平面向量 答 案【真题回访】回访一 平面向量的线性运算 1.A 2.12回访二 平面向量的数量积 3.D 4.16热点题型1 平面向量的运算 【例1】 (1)B (2)B【变式训练一】 (1)32(2)-2热点题型2 三角与向量的综合问题 【例2】 (1)85(2)122⎤-⎢⎥⎣⎦【变式训练二】 (1)6π(2)6x π=,()g x 的最大值为32. 专题限时集训(三) 平面向量 【A 组 高考达标】一、选择题 1.B 2.A 3.D 4.C 5.C 二、填空题 6.65 7.712 8.16三、解答题9.(1)∵23m n ==,()1,2AB =u u u r ,()2,1AC =u u u r ,∴()()()221,22,12,233OP =+=u u u r ,∴OP ==u u u r(2)∵()()()1,22,12,2OP m n m n m n =+=++u u u r,∴2,2,x m n y m n =+⎧⎨=+⎩两式相减,得m n y x -=-.令y x t -=,由图知,当直线y x t =+ 过点()2,3B 时,t 取得最大值1,故m n -的最大值为1.10.(1)由2BA BC =u u u r u u u rg 得cacosB 2=. 因为1cosB 3=,所以6ac =. 余弦定理,得2222accosB a c b +=+. 又3b =,所以2292213a c +⨯=+=. 解226,13,ac a c =⎧⎨+=⎩得2a =,=3c 或3a =,2c =.因为ac >,所以3a =,2c =.(2)在ABC △中,sinB 3===,由正弦定理,得2sin C sin B 339c b ==⨯=. 因为a b c =>,所以C为锐角,因此7cos C 9===.于是1723cos cosBcosC sinBs ()inC 393927B C -+=⨯+⨯==. 【B 组 名校冲刺】 一、选择题 1.B 2.A 3.B 4.A 二、填空题 5.2 6.-3 三、解答题7.(1)因为向量22sin ,03a x πω⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,()()2cos ,30b x ωω=>,所以函数())2214sin cos 4sin cos cos cos 3222sin cos 1cos 2sin 2x 2cos 26a b x x x x x x x x x x f x πωωωωωωπωωωωω⎛⎛⎫⎛⎫==+=-+=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎛⎫=+-=+ ⎪⎝⎭g g g 由题意可知f (x )的最小正周期为πT =, 所以2π=π2ω,即1ω=. (2)已知()2co =s 26f x x π⎛⎫+ ⎪⎝⎭[]0,2x π∈时,2,4666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 故[π2π6],2πx +∈或[π23π],4π6x +∈时,函数()f x 单调递增, 所以函数f (x )的单调递增区间为5π11π,1212⎡⎤⎢⎥⎣⎦和17π23π,1212⎡⎤⎢⎥⎣⎦.8.设BC u u u r ,CA u u u r ,AB u u u r依次为a ,b ,c ,则6a b c ++=,2b ac =.在ABC △中,22222212cosB 222a c b a c ac ac a ac ac c ac +-+-==-≥=,故有03B π≤<,又622a c bb +-≤==,从而02b <≤.(1)22111πsin sin 2sin 2223S ac B b B ==≤=g g 当且仅当a c =,且π3B =,即ABC△为等边三角形时面积最大,即max S .(2)()()()22222222263cos 327.222a c acb b b ac b BA BC ac B b +----+-=====-++u u u r u u u r g ∵02b <≤,∴821BA <≤u u u rg , 即BA BC u u u r u u u rg 的取值范围是[)2,18.山东省2017年高考数学(理科)专题练习平面向量 解 析【真题回访】回访一 平面向量的线性运算1.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3 AD →,∴AD →=-13AB →+43AC →.]2.12[∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ), 即λa +b =ta +2tb ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎨⎧λ=12,t =12.]回访二 平面向量的数量积3.D[由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D.]4.16[已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.] 热点题型1 平面向量的运算 【例1】(1)B [(1)法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B.法二:因为AC →=λAM →+μBD →=λ(AB →+BM → )+μ(BA →+AD → )=λ⎝⎛⎭⎪⎫AB →+12AD →+μ(-AB →+AD → )=(λ-μ)AB →+⎝⎛⎭⎫12λ+μAD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B. ](2)B [如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.]【变式训练一】(1)32 [如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2,又OA =OB =1,可以求得AP =BP = 3.∠APB =60°,故P A →·PB →=3×3×cos 60°=32.](2)-2 [∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得mn =-2.]热点题型2 三角与向量的综合问题 【例2】[解] (1)∵a ∥b ,∴34cos x +sin x =0,∴tan x =-34,4分∴cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32, 由正弦定理得a sin A =bsin B ,可得sin A =22.9分 ∵b >a , ∴A =π4,10分y =f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12.11分 ∵x ∈⎣⎡⎦⎤0,π3, ∴2x +π4∈⎣⎡⎦⎤π4,11π12, ∴32-1≤y ≤2-12, 即y 的取值范围是⎣⎡⎦⎤32-1,2-12.12分【变式训练一】[解] (1)|a |2=(sin x )2+(3sin x )2=4sin 2x ,|b |2=(sin x )2+(cos x )2=1. 由|a |=|b |,得4sin 2x =1,2分 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,3分 所以x =π6,.4分(2)f (x )=a·b =sin 2x +3sin x ·cos x 5分 =32sin2x +12-12cos 2x 7分 =sin ⎝⎛⎭⎫2x -π6+12.8分 将f (x )图象向左平移π6个单位得到函数g (x )=sin ⎝⎛⎭⎫2x +π6+12.10分 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 从而当2x +π6=π2即x =π6时,sin ⎝⎛⎭⎫2x +π6取最大值1,11分 所以x =π6时,g (x )的最大值为32.12分专题限时集训(三) 平面向量 【A 组 高考达标】 一、选择题1.B [因为AB →=-2CD →,所以AB →=2DC →.又M 是BC 的中点,所以AM →=12(AB →+AC →)=12(AB →+AD →+DC →)=12(AB →+AD →+12AB →)=34AB →+12AD →,故选B.]2.A [由题意可得OB →的横坐标x =2cos(60°+45°)=2⎝⎛⎭⎫24-64=1-32,纵坐标y =2sin(60°+45°)=2⎝⎛⎭⎫64+24=1+32,则OB →=⎝ ⎛⎭⎪⎫1-32,1+32,故选A.] 3.D [∵向量a =(3,1),b =(x ,-3),且a ⊥b ,∴3x -3=0,∴x =3, ∴b =(3,-3),a -b =(0,4),设向量b 与a -b 的夹角为θ, 则cos θ=b ·(a -b )|b |·|(a -b )|=-1223×4=-32,∴θ=150°.]4.C [∵M 是BC 边的中点, ∴AM →=12(AB →+AC →).∵O 是△ABC 的外接圆的圆心,∴AO →·AB →=|AB →||AO →|cos ∠BAO =12|AB →|2=12×(23)2=6.同理可得AO →·AC →=12|AC →|2=12×(22)2=4,∴AM →·AO →=12(AB →+AC →)·AO →=12AB →·AO →+12AC →·AO →=12×(6+4)=5.] 5.C [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC →|.又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C.] 二、填空题6.65 [设e 1,e 2为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与xa +yb 共线,得c =λ(x a +y b ),∴e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,∴⎩⎪⎨⎪⎧λ(2x -2y )=1,λ(x -2y )=-2,∴⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.] 7.712 [∵AP →⊥BC →,∴AP →·BC →=0, ∴(λAB →+AC →)·BC →=0,即(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AC →·AB →=0. ∵向量AB →与AC →的夹角为120°,|AB →|=3,|AC →|=2, ∴(λ-1)×3×2×cos 120°-9λ+4=0,解得λ=712.]8.-16 [∵△ABC 是正三角形,O 是其中心,其边长AB =BC =AC =1,∴AO 是∠BAC 的平分线,且AO =33,∴OB → ·OC →=(AB →-AO → )·(AC →-AO → )=AB → ·AC →-AO → ·AC →-AO → ·AB →+AO →2=1×1×cos 60°-33×1×cos 30°-33×1×cos 30°+⎝⎛⎭⎫332=-16.] 三、解答题9.[解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.4分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x . 令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.[解] (1)由BA →·BC →=2得ca cos B =2.1分 因为cos B =13,所以ac =6.2分由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.4分 因为a >c ,所以a =3,c =2.6分 (2)在△ABC 中,sin B =1-cos 2 B =1-⎝⎛⎭⎫132=223,7分由正弦定理,得sin C =c b sin B =23×223=429.8分因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2 C =1-⎝⎛⎭⎫4292=79.10分 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.12分【B 组 名校冲刺】 一、选择题1.B [由题意可得OD →=k OC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k >1,即λ+μ的取值范围是(1,+∞),故选B.]2.A [因为(a +b )⊥⎝⎛⎭⎫a -52b ,所以a 2-52b 2-32a·b =0. 又因为|a |=2,|b |=1,所以a 2=4,b 2=1,所以4-52-32a ·b =0,所以a·b =1.所以a·b =|a |·|b |cos〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角范围为[0,π],所以a 与b 的夹角为π3.]3. B [∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13, ∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝⎛⎭⎫132+0-1=-89.] 4.A [因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0⇒(x ,y )=⎝⎛⎭⎫12x 0+π6,4cos x 0⇒⎩⎪⎨⎪⎧ x =12x 0+π6,y =4cos x 0,即⎩⎪⎨⎪⎧x 0=2⎝⎛⎭⎫x -π6,y =4cos x 0⇒y =4cos ⎝⎛⎭⎫2x -π3, 即f (x )=4cos ⎝⎛⎭⎫2x -π3, 当x ∈⎣⎡⎦⎤π6,π3时,由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎝⎛⎭⎫2x -π3≤1⇒2≤4cos ⎝⎛⎭⎫2x -π3≤4, 所以函数y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是4,故选A.]二、填空题5.2 [由题意得|a |=12+(3)2=2,则|a -2b |2=|a |2-4|a||b|cos 〈a ,b 〉+4|b |2=22-4×2cos π3|b |+4|b |2=12,解得|b |=2(负舍).]6.-3 [由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0得BC →与∠A 的角平分线所在的向量垂直,所以AB =AC ,BC →⊥AD →.又|AB →-AC →|=23,所以|CB →|=23,所以|BD →|=3,AB →·BD →=-BA →·BD →=-|BD →|2=-3.]三、解答题 7.[解] (1)因为向量a =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +2π3,0,b =(2cos ωx,3)(ω>0),所以函数f (x )=a·b =4sin ⎝⎛⎭⎫ωx +2π3cos ωx =4⎝⎛⎭⎫sin ωx ·⎝⎛⎭⎫-12+cos ωx ·32cos ωx =23·cos 2ωx -2sin ωx cos ωx =3(1+cos 2ωx )-sin 2ωx =2cos ⎝⎛⎭⎫2ωx +π6+3, 由题意可知f (x )的最小正周期为T =π,所以2π2ω=π,即ω=1. (2)已知f (x )=2cos ⎝⎛⎭⎫2x +π6+3,当x ∈[0,2π]时,2x +π6∈⎣⎡⎦⎤π6,4π+π6,故2x +π6∈[π,2π]或2x +π6∈[3π,4π]时,函数f (x )单调递增, 所以函数f (x )的单调递增区间为⎣⎡⎦⎤5π12,11π12和⎣⎡⎦⎤17π12,23π12.8.[解] 设|BC →|,|CA →|,|AB →|依次为a ,b ,c ,则a +b +c =6,b 2=ac .在△ABC 中,cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,故有0<B ≤π3, 又b =ac ≤a +c 2=6-b 2,从而0<b ≤2. (1)S =12ac sin B =12b 2sin B ≤12·22·sin π3=3,当且仅当a =c ,且B =π3,即△ABC 为等边三角形时面积最大,即S max = 3.(2)BA →·BC →=ac cos B =a 2+c 2-b 22=(a +c )2-2ac -b 22=(6-b )2-3b 22=-(b +3)2+27. ∵0<b ≤2,∴2≤BA →·BC →<18,即BA →·BC →的取值范围是[2,18).。
专题2.3 以平面向量数量积相关的求值问题为背景的填空题——新高考数学专项练习题附解析
准方程为________.
类型二 解析几何中的向量问题
典例
2【衡水金卷
2018
年普通高等学校招生全国统一考试】若向量
OA
1,
3
,
OB
1 2
,
3
,
M 是椭圆
x2 4
y2
1 上的动点,则
MA MB
的最小值为_________.
【名师指点】本题考查坐标法求平面向量数量积,通过设点,将数量积用坐标表示, 结合椭圆方程将数量 积用一个变量表示,进而转化为函数求最值问题处理.
分解转
化
并通过向量运算得 CM CN
1
OC
2
,这样只需求
OC
的范围即可.
【举一反三】(2020·山东高三期末)在平面直角坐标系 xOy 中, A 为直线 l : y 3x 上在第三象限内的点,
B 10, 0 ,以线段 AB 为直径的圆 C ( C 为圆心)与直线 l 相交于另一个点 D , AB CD ,则圆 C 的标
积用一个变量表示,进而转化为函数求最值问题处理.
【举一反三】(2020·山东高三期末)已知抛物线 C : y2 8x 的焦点为 F ,准线 l , P 是 l 上一点, Q 是直
线 PF 与 C 的一个交点,若 PF 3QF ,则 | QF | __________.
【答案】 8 3
【解析】
整理得: x 72 y 62 45 .
故答案为: x 72 y 62 45 .
类型二 解析几何中的向量问题
典例
2【衡水金卷
2018
年普通高等学校招生全国统一考试】若向量
OA
1,
3
,
OB
以平面向量数量积相关的求值问题为背景的填空题
以平面向量数量积相关的求值问题为背景的填空题【名师综述】平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.类型一 平面向量数量积在圆中的应用【湖南省郴州市2017届高三上学期第一次教学质量监测数学(理)试题】已知,A B 是单位圆O 上的两点(O 为圆心),120AOB ∠=,点C 是线段AB 上不与A B 、重合的动点.MN 是圆O 的一条直径,则CM CN 的取值范围是( )A .3[,0)4-B .[1,1)- C. 1[,1)2- D .[1,0)- 【举一反三】【河北省冀州中学2017届高三(复习班)上学期第二次阶段考试数学(理)试题】如图,ABC ∆是边长为P 是以C 为圆心,半径为1的圆上任意一点,则AP BP 的取值范围是_________.类型二 解析几何中的向量问题典例2【2017湖南长沙长郡中学】已知点(1,0)M ,,A B 是椭圆2214x y +=上的动点,且0MA MB ∙=,则MA BA ∙的取值范围是( )A .2[,1]3 B .[1,9] C .2[,9]3 D .3【举一反三】若点O 、F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任一点,则OP PF ⋅的最大值为 .类型三 向量中的函数、不等式问题典例3 【2017福建福州市高三期末】 平行四边形ABCD 中,4,2,4AB AD AB AD ===, 点P 在边CD 上,则PA PB 的取值范围是( )A.[]1,8-B.[)1,-+∞C.[]0,8D.[]1,0-【举一反三】【四川省2016年普通高考适应性测试,15】已知()()()1 0 1 1 OA OB x y OA OB λμ===+uu r uu u r uu r uu u r ,,,,,.若012λμ≤≤≤≤时,()0 0x y z m n m n=+>>,的最大值为2,则m n +的最小值为 .【精选名校模拟】1.【2017四川成都高三理一诊】已知,A B 是圆22:4O x y +=上的两个动点,522,,33AB OC OA OB ==-.若M 是线段AB 的中点,则OM ⋅的值为( ).A .3B ..2 D .-32.【2017江西抚州市期中联考】已知点O 为ABC ∆内一点,0120,1,2AOB OA OB ∠===,过O 作OD 垂直AB 于点D ,点E 为线段OD 的中点,则OE EA 的值为( ) A .514 B .27C .314D .328 3.【2017辽宁庄河市高级中学月考】已知矩形ABCD 中,N M BC AB ,,1,3==分别为包含端点的边CD BC ,=,则AM ∙的最小值是( )A.-7B.-10C.-8D.-94.[2017浙江温州中学月考]在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB 上的点,且,||||CACBCP x y xy CA CB =⋅+⋅则的最大值为( )A.1B.2C.3D.45.【2017江西鹰潭一中高三月考】如图,在直角梯形ABCD 中,CD AB //,2AB =,1AD DC ==,P 是线段BC 上一动点,Q 是线段DC 上一动点,DQ DC λ=,()1CP CB λ=-,则AP AQ 的取值范围是_________.6.【2017江苏南京盐城高三一模】在ABC ∆中,已知AB =3C π=,则C A C B ⋅u u r u u r的最大值为 . 7.【2017江苏徐州丰县名族中学调考三】在平行四边形ABCD 中,1AD =,60BAD ∠=︒,E 为CD 的中点,若3332AC BE ⋅=,则AB 的长为 . 8.【2917江苏泰州中学期中考试】在平面内,定点,,,A B C D 满足,DA DB DC DA DB DB DC ===4DC DA ==-动点,P M 满足2,AP PM MC ==,则BM 的最大值是__________.9.【2017河北衡水中学四调考试】在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 10.【2017江苏徐州沛县中学质检三】如图,点O 为△ABC 的重心,且OA OB ⊥,4AB =,则AC BC ⋅的值为 .11.已知正方形ABCD 的边长为1,直线MN 过正方形的中心O 交边,AD BC 于,M N 两点,若点P 满足2(1)OP OA OB λλ=+-(R λ∈),则PM PN ⋅的最小值为 . 12.【2017辽宁抚顺重点高中协作体一模】在AOB Rt ∆中, 0=⋅OB OA ,5||=,52||=,AB边上的高线为OD ,点E 位于线段OD 上,若43=⋅,则向量在向量上的投影为 . 13.【2017湖北荆州襄宜四地七校联考】在ABC ∆中,16AB AC ⋅=,sin sin cos A B C =,D 线段AB 上的动点(含端点),则DA DC ⋅的取值范围是 .14.设非零向量与的夹角是65π,且||||+=)(R t ∈的最小值是 . 15.设O 是的三边中垂线的交点,分别为角对应的边,已知,则BC AO ⋅的范围是_______________.。
第三关 以平面向量数量积相关的求值问题为背景的填空题(原卷版)
压轴填空题第三关 以平面向量数量积相关的求值问题为背景的填空题【名师综述】平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.类型一 平面向量数量积在圆中的应用典例1.已知平面向量,,a b c 满足||||,,||1()1a b c a b c a b a b c λμ==+=+⋅=+⋅=,则|||1|a c μλ-+-的最小值是________.【来源】浙江省温州中学2020-2021学年高三上学期第一次模拟考试数学试题【举一反三】已知平面向量a ,b ,c 满足3a b ⋅=-,4a b -=,c a -与c b -的夹角为3π,则c a b --的最大值为___________.典例2.在平面直角坐标系xOy 中,已知MN 在圆C :()2224x y -+=上运动,且23MN =若直线l :30kx y -+=上的任意一点P 都满足2214PM PN ≥+,则实数k 的取值范围是__________.【举一反三】在Rt ABC △中,90,3C AB ︒∠==.以C 为圆心,2为半径作圆,线段PQ 为该圆的一条直径,则AP BQ ⋅的最小值为_________.类型二 解析几何中的向量问题典例3.在直角坐标系xOy 中,椭圆22221x y a b +=(0a b >>)的离心率63e >,直线a y x b =±与圆()2224x y +-=交x 轴上方于A ,B 两点,有下列三个结论:①OA OB OA OB -<+∣∣∣∣; ②OA OB -∣∣存在最大值; ③6OA OB +>∣∣.正确结论有___________.(填序号)【来源】湖南省邵阳市2020届高三下学期第三次联考数学(文)试题【举一反三】在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-= 交x 轴上方于A B ,两点,有下列三个结论: ①||||OA OB OA OB →→→→-<+ ; ②||OA OB →→-存在最大值; ③ ||6OA OB →→+>.则正确结论的序号为_______.类型三 向量中的函数、不等式问题典例4.在面积为2的ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则2PC PB BC ⋅+的最小值是______.【来源】福建省罗源第一中学2021届高三10月月考数学试题【举一反三】如图,在△ABC 中,已知AB =2,AC =4,A =60°.若D 为BC 边上的任意一点,M 为线段AD 的中点,则()MB MC AD +⋅的最大值是_____.典例5.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且5c =,点O 为其外接圆的圆心,已知12BO AC ⋅=,则当角C 取到最大值时△ABC 的面积为___________.【来源】江西省宜春市2022届高三上学期期末质量检测数学(理)试题【举一反三】在ABC 中,6AB AC ⋅=,G 为其重心,直线DE 经过点G ,且与射线AB 、AC 分别交于D 、E 两点,记ADG 和CEG 的面积分别为12,S S ,则当12S S 取得最小值时,AD AE ⋅的值为______.【精选名校模拟】1.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.【来源】全国“星云”大联考2022届高三第三次线上联考数学试题2.已知,,a b c 是平面向量,a 与c 是单位向量,且,2a c π=,若28150b b c -+=,则a b -的最小值为_____________.【来源】湖南省郴州市2022届高三上学期第二次教学质量监测数学试题3.已知平面向量,,a b c 满足:12,0,12a b a b c a ==⋅=+=,当-a c 与b c -所成角θ最大时,则sin θ=______4.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为F 1,F 2,直线l 过F 1与C 的左支和右支分别交于A ,B两点,2ABF 是等边三角形,若x 轴上存在点Q 且满足23BQ AF =,则C 的离心率为___________.5.椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,过点1F 的直线l 交椭圆C 于A ,B 两点,已知2121()0AF F F AF +⋅=,1143AF F B =,则椭圆C 的离心率为___________. 【来源】黑龙江省哈尔滨德强学校2021-2022学年高三上学期期末考试数学(文)试题(清北班)6.已知向量,a b 的夹角为锐角,且满足5||7a =、3||7b =,若对任意的(,){(,)||1,0}x y x y xa ybxy ∈+=>∣,都有|x +y |≤1成立,则a b ⋅的最小值为___________.7.在ABC ∆中,2,3,AB AC ==2BE EC =,点O 是ABC ∆的外心,则AO AE ⋅=____. 【来源】浙江省绍兴市上虞区2020届高三下学期第二次教学质量调测数学试题8.设O 为坐标原点,平面向量,,OA OB OC →→→满足24OA OB →→==,20OC OA OC OB →→→→⎛⎫⎛⎫-⋅-= ⎪ ⎪⎝⎭⎝⎭,0OA OB →→⋅=,则对任意[]0,2θπ∈和任意满足条件的向量OC →,cos 2sin OC OA OB θθ→→→-⋅-⋅的最大值为______.【来源】湖南省怀化市2020届高三下学期6月第三次模拟考试理科数学试题9.如图,已知圆22:16,,O x y A B +=是圆O 上两个动点,点(2,0)P ,满足0PA PB ⋅=,若存在点C 使PC PA PB =+,则OC OP ⋅的取值范围是___________.【来源】2020年浙江省新高考名校联考信息卷(四)10.已知正ABC 的边长为2,PQ 为ABC 内切圆O 的一条直径,M 为ABC 边上的动点,则MP MQ ⋅的取值范围为______________.【来源】重庆市第八中学2020届高三下学期第五次月考数学(理)试题11.已知O 为锐角三角形ABC 的外心,若7cos 9BOC ∠=-,()1212,AO AB AC R λλλλ=+∈,则124λλ+的最大值______.【来源】江苏省南通市如皋中学2020届高三创新班下学期高考冲刺模拟(三)数学试题12.设非零向量a ,b ,c ,满足2a b a ⋅=,2c a b =+,则⋅⋅b c b c的最小值是________.13.已知平面向量,,a b c ,1||||1,,22a b a b a c ==⋅=⋅=,若对于任意的向量d 均有||d c -的最小值为2|d a -,则||||d a d b -+-的取值范围是________.【来源】2020届浙江省名校协作体高三下学期联考数学试题14.已知双曲线22:12y C x -=的左,右焦点分别为1F 、2F ,点G 位于第一象限的双曲线上,若点H 满足1212(0)||||GF GF OH OG GF GF λλ⎛⎫=++≠ ⎪⎝⎭,且直线GH 与x 轴的交点为3P ⎫⎪⎪⎝⎭,则G 点的坐标为___________.【来源】2020届湖北省宜昌市高三下学期4月线上统一调研测试数学(理)试题15.已知函数()1a f x x =-(0a >),()()31g x x =-,若()f x 与()g x 的图像交于A 、B 两个不同的点,点P 在圆C :()2211x y +-=上运动,则PA PB +的取值范围是______.16.已知抛物线2:8C y x =的焦点为F ,直线12,l l ,过点F 且与抛物线C 分别交于点,M N 和点,P Q ,弦MN 和PQ 的中点分别为,D E ,若12l l ⊥,则下列结论正确的是 (______________)①||||MN PQ +的最小值为32②以,,,M N P Q 四点为顶点的四边形的面积的最小值为128 ③直线DE 过定点(6,0)④焦点F 可以同时为弦MN 和PQ 的三等分点【来源】2020届湖北省武汉市汉阳一中、江夏一中高三下学期4月联考数学(理)试题17.在OAB ∆中,已知2OB =,1AB =,45AOB ∠=︒,点P 满足OP OA OB λμ=+,其中23λμ+=,OP 的最小值为______.18.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为4,()0,1E ,点F 是正方形边OC 上的一个动点,点O 关于直线EF 的对称点为G 点,当3GA GB +取得最小值时,直线GF 的方程为______.【来源】2020届江苏省淮安市淮阴中学、姜堰中学高三上学期期中联考数学试题。
《精品》2017-2019三年高考真题专题11平面向量-数学(文)分项汇编(解析版)
专题11平面向量1.【2019年高考全国I卷文数】已知非零向量a,b满足|a |2|b|,且(a b)b,则a与b的夹角为A.C.π62π3B.D.π35π6【答案】B【解析】因为(a b)b ,所以(a b)b ab b2=0,所以a b b2,所以cos=a b|b|21a b2|b|22,所以a与b的夹角为π3,故选B.【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,].2.【2019年高考全国II A.2卷文数】已知向量a=(2,3),b=(3,2),则|a-b|=B.2C.52D.50【答案】A【解析】由已知,a b (2,3)(3,2)(1,1),所以|a b |(1)2122,故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I卷文数】在△ABC中,AD为BC边上的中线,E为AD的中点,则EBA.C.31AB AC4431AB AC44B.D.13AB AC4413AB AC44【答案】A1【解析】根据向量的运算法则,可得BE1 111 1 1BA BDBA BC BA BA AC 2 2 2 4 2 4 1 1 1 3 1 3 1 BA BA AC BA AC ,所以 EB AB AC2 4 4 4 4 44,故选 A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.4.【2018 年高考全国 II 卷文数】已知向量 a, b 满足 | a | 1, ab1,则 a (2a b )A .4 C .2【答案】B【解析】因为 B .3D .0a2a b 2a 2a b 2|a |2 1213所以选 B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学 运算.5.【2018 年高考浙江卷】已知 a ,b ,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 满足 b −4e · b +3=0,则|a −b |的最小值是π,向量 b3A . 3 −1B . 3 +1C .2【答案】AD .2−3【解析】设,则由 ,得由 b−4e · b +3=0 得因此|a −b |的最小值为圆心到直线222的距离2 32= 3 减去半径 1,为选 A.【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的 选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算.6 .【 2018 年 高 考 天 津 卷 文 数 】 在 如 图 的 平 面 图 形 中 , 已 知OM1,O N 2, MON 120,BM 2M A , CN2 N A ,则BC ·OM的值为A .15B .9C .6D .0【答案】C【解析】如图所示,连结 MN ,由可知点分别为线段上靠近点 的三等分点,则由题意可知:,,,结合数量积的运算法则可得: 本题选择 C 选项..【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意 义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.7.【2017 年高考全国 II卷文数】设非零向量 a , b满足a +b = ab,则A . a ⊥bB .a = b3C.a∥b D.a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a,b的模长为边长的平行四边形是矩形,从而可得a⊥b.故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m,n为非零向量,则“存在负数,使得m n”是“m n<0”的A.充分而不必要条件C.充分必要条件【答案】A B.必要而不充分条件D.既不充分也不必要条件【解析】若0,使mn,则两向量m,n反向,夹角是180,那么m n m n cos180 m n 0;若m n0,那么两向量的夹角为90,180,并不一定反向,即不一定存在负数,使得mn,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a=(–4,3),b=(6,m),且a b,则m=__________.【答案】8【解析】向量a (4,3),b (6,m),a b,则a b0,463m 0,m 8.【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III卷文数】已知向量2【答案】10a (2,2),b (8,6),则c os a,b ___________.【解析】cos a,b a b|a|b|22282622(8)262210.【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD中,AD∥BC,AB 23,AD 5,A 30,点E在线段CB的延长线上,且AE BE,则BD AE _____________.4【答案】1【解析】建立如图所示的直角坐标系,∠DAB=30°,AB 23,AD 5,则B(23,0)535,D(,).22因为AD∥BC,BAD 30,所以ABE30,因为AE BE,所以BAE 30,33所以直线BE的斜率为,其方程为y (x 23),33直线AE的斜率为33,其方程为y x.333y (x 23),3由y x3得x 3,y1,所以E( 3,1).35所以BD AE (,) ( 3,1)1.22【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若AB AC 6A O EC ,则ABAC的值是_____.53【答案】 3 .【解析】如图,过点 D 作 DF//CE ,交 AB 于点 F ,由 BE=2EA ,D 为 BC 的中点,知 BF =FE =EA ,AO =OD .6 AO EC 3 A DAC AEAB AC2AC AE,32AB AC AC AB32AB AC AB AC AB AC3 3AB AC AB ACAB AC ABACAB AC 2 3 32 2,得13 AB ABAC , 即 AB 3 AC , 故22 AC3 【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019 年高考浙江卷】已知正方形 ABCD 的边长为 1,当每个i(i 1,2,3, 4,5,6)取遍时,|ABBCCDDAACBD | 123456的最小值是________;最大值是_______.【答案】0; 2 5 .【解析】以 AB , AD分别为 x 轴、y 轴建立平面直角坐标系,如图.3 1 312213 2 1221 2 32226则AB (1,0),BC (0,1),CD (1,0),DA (0,1),AC (1,1),BD (1,1)令, y AB BC CD DA AC BD12345613562245620.又因为i (i 1,2,3,4,5,6)可取遍1,所以当1,1345612时,有最小值ymin0.因为135和245的取值不相关,61或61,所以当135和245分别取得最大值时,y有最大值,所以当1,1125634时,有最大值ymax22422025.故答案为0;25.【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III卷文数】已知向量a=1,2,b=2,2,c =1,λ.若c∥2a+b,则________.【答案】1 2【解析】由题可得2a b 4,2,c∥2a+b ,c=1,λ,42 0,即11,故答案为.22【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a=(1,0),b=(−1,m),若7a (m a b),则m=_________.【答案】【解析】,,由得:,,即.【名师点睛】如果a=(x,y),b=(x,y)(b≠0),则a b的充要条件是x x+y y=0.16.【2018年高考上海卷】在平面直角坐标系中,已知点A 1,0B2,,、是轴上的两个动点,且|E F|2,则的最小值为___________.【答案】-3【解析】根据题意,设E(0,a),F(0,b);∴EF a b 2;∴a=b+2,或b=a+2;且AE 1,a,BF2,b;∴AE BF 2ab;当a=b+2时,AE BF2b 2b b 22b2;∵b+2b﹣2的最小值为8443;∴AE BF的最小值为﹣3,同理求出b=a+2 时,AE BF的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy中,A为直线l:y 2x上在第一象限内的点,B5,0,以AB为直径的圆C 与直线l交于另一点D.若AB CD 0【答案】3,则点A的横坐标为___________.【解析】设A a,2a (a0),则由圆心为AB中点得a 52,a,易得C:x 5xay y 2a 0,与y 2x联立解得点D的横坐标x 1,所以DD1,2.所以11221212、E F yAE BF2CCa 5,AB 5a,2a,C D 1,2a28由AB CD 0得5a 1a 522a 2a0,a22a 30,a 3或a1,因为a 0,所以a 3.【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III卷文数】已知向量a (2,3),b (3,m)【答案】2,且a b,则m=________.【解析】由题意可得a b0233m 0,解得m 2.【名师点睛】(1)向量平行:a∥b x y x y,a∥b,b 0R,a b1221,1BA AC OA OB OC11.(2)向量垂直:a b a b0x x y y 01212.(3)向量的运算:a b (x x,y y),a12122|a|2,a b|a||b|cos a,b.19.【2017年高考全国I卷文数】已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=________.【答案】7【解析】由题得a b (m 1,3),因为(a b)a0,所以(m 1)230,解得m 7.【名师点睛】如果a=(x,y),b=(x,y)(b≠0),则a b的充要条件是x x+y y=0.1122121220.【2017年高考江苏卷】如图,在同一个平面内,向量O A,O B,O C的模分别为1,1,2,O A与OC的夹角为,且at n =7,OB与OC的夹角为45°.若O C mOAnOB(m,n R),则m n ___________.【答案】3【解析】由tan 7可得sin 7210,c os2,根据向量的分解,109易得n c os 45mcos 2,即n s in 45msin 022n m 2210272n m 02105n m10,即5n 7m 0,即得57m ,n44,所以m n 3.【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法.(3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a,b满足是___________.25【答案】4,a 1,b 2,则a b a b的最小值是________,最大值【解析】设向量a,b的夹角为,则a b 1222212cos 54cos ,a b 1222212cos 54cos ,则a b a b 54cos 54cos ,令y 54cos 54cos ,则y21022516cos216,20,据此可得:a b a b 2025,a b a b 164,max min即a b a b的最小值是4,最大值是25.【名师点睛】本题通过设向量a,b的夹角为,结合模长公式,可得a b a b 54cos54cos ,再利用三角函数的有界性求出最大、最小值,属中档题,对学生的转化能力和最值处理能力有一定的要求.22.【2017年高考天津卷文数】在△ABC中,∠A 60,AB 3,AC 2.若B D D2C,AE AC AB(R),且AD AE 4,则的值为________.【答案】31110【解析】由题可得AB AC 32cos603,A D 1212AB AC,则AD AE (AB AC) 3333(2123 AC A B)34934.333311【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中AB,AC已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a=(2,6),b=(1,),若a∥b,则________.【答案】3【解析】由a∥b可得162 3.【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a=(x,y),b=(x,y),1122则a∥b的充要条件是x y=x y”解题比较方便.1221(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(3)三点共线问题.A,B,C三点共线等价于A B与A C共线.11→→。
平面向量的数量积与模(小题)-2017年高考数学(理)高频考点穿透卷含解析
高频考点穿透卷一、选择题1.已知非零向量,a b 满足23,2a b a b a b=-=+,则与b 的夹角的余弦值为( )A .23B .34C .13D .14【答案】C 【解析】22212(2)()2a b a b a b a b a b b -=+⇒-=+⇒⋅=22112cos ,332ba b a b a b b ⋅⇒<>===, 故选C.考点:向量的基本运算. 【题型】选择题 【难度】较易2.已知点O 为ABC △内一点,120AOB ∠=︒,1OA =,2OB =,过O 作OD 垂直AB 于点D ,点E 为线段OD 的中点,则OE EA ⋅的值为( )A .328 B .314C .27D .514【答案】A考点:解三角形,向量的基本运算. 【题型】选择题 【难度】较易3.已知向量,满足1a =,a b ⊥,则向量2a b -在向量a -方向上的投影为( ) A .0 B .1 C 。
2D .1- 【答案】D 【解析】2a b-在a-方向上的投影为()22221011a b a a b a aa -⋅-⋅--=-=-=-,故选D 。
考点:向量的投影。
【题型】选择题 【难度】较易4.已知,a b 为单位向量,且a b ⊥,向量满足2c a b --=,则c的取值范围为( ) A .1,12⎡⎤+⎣⎦B .22,22⎡⎣C.2,22⎡⎣D .322,322⎡-+⎣【答案】B【解析】如图,,()OA a b OB c AB c a b =+=⇒=-+,又||||222||22OA a b c =+=⇒-≤≤+故选B 。
考点:向量及其运算性质。
【题型】选择题【难度】一般5.向量()cos25,sin25a=︒︒,()sin20,cos20b=︒︒,若是实数,且u a tb=+,则u 的最小值为( )A.2B.C.22D.12【答案】C考点:平面向量的坐标表示、模、夹角,三角函数的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 压轴填空题
第四关 以平面向量数量积相关的求值问题为背景的填空题
【名师综述】
平面向量是高中数学的重要知识,是高中数学中数形结合思想的典型体现.近年来,高考
对向量知识的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与三角函数或平面解析几何相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显平面向量的交汇价值.
类型一 平面向量数量积在圆中的应用
【湖南省郴州市2017届高三上学期第一次教学质量监测数学(理)试题】已知,A B 是单位圆O 上的两点(O 为圆心),120AOB ∠=,点C 是线段AB 上不与A B 、重合的动点.MN 是圆O 的一条直径,则CM CN 的取值范围是( )
A .3
[,0)4- B .[1,1)- C. 1[,1)2
- D .[1,0)- 【举一反三】【河北省冀州中学2017届高三(复习班)上学期第二次阶段考试数学(理)试题】如图,ABC ∆
是边长为P 是以C 为圆心,半径为1的圆上任意一点,则AP BP 的取值范围是_________.
类型二 解析几何中的向量问题
典例2【2017湖南长沙长郡中学】已知点(1,0)M ,,A B 是椭圆2
214
x y +=上的动点,且0MA MB ∙=,则MA BA ∙的取值范围是( )
A .2
[,1]3 B .[1,9] C .2[,9]3 D .[3
【举一反三】若点O 、F 分别为椭圆22
143
x y +=的中心和左焦点,点P 为椭圆上的任一点,则OP PF ⋅的最大值为 .
类型三 向量中的函数、不等式问题
典例3 【2017福建福州市高三期末】 平行四边形ABCD 中,4,2,4AB AD AB AD ===, 点P 在边CD 上,则PA PB 的取值范围是( )
A.[]1,8-
B.[)1,-+∞
C.[]0,8
D.[]1,0-
【举一反三】【四川省2016年普通高考适应性测试,15】已知
()()()1 0 1 1 OA OB x y OA OB λμ===+u u r u u u r u u r u u u r ,,,,,.若012λμ≤≤≤≤时,()0 0x y z m n m n
=+>>,的最大值为2,则m n +的最小值为 .
【精选名校模拟】
1.【2017四川成都高三理一诊】已知,A B 是圆22:4O x y +=上的两个动点,522,,33AB OC OA OB ==-.若M 是线段AB 的中点,则⋅的值为( ).
A .3
B ..2 D .-3
2.【2017江西抚州市期中联考】已知点O 为ABC ∆内一点,0
120,1,2AOB OA OB ∠===,过O 作OD 垂直AB 于点D ,点E 为线段OD 的中点,则OE EA 的值为( ) A .
514 B .27
C .314
D .328 3.【2017辽宁庄河市高级中学月考】已知矩形ABCD 中,N M BC AB ,,1,3==分别为包含端点的边
CD BC ,=,则∙的最小值是( )
A.-7
B.-10
C.-8
D.-9
4.[2017浙江温州中学月考]在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB
上的点,且,||||CA
CB
CP x y xy CA CB =⋅+⋅则的最大值为( )
A.1
B.2
C.3
D.4
5.【2017江西鹰潭一中高三月考】如图,在直角梯形ABCD 中,CD AB //,2AB =,1AD DC ==,P 是线段BC 上一动点,Q 是线段DC 上一动点,DQ DC λ=,()1CP CB λ=-,则AP AQ 的取值范围是_________.
6.【2017江苏南京盐城高三一模】在ABC ∆中,已知AB =3
C π=,则C A C B ⋅u u r u u r 的最大值为 . 7.【2017江苏徐州丰县名族中学调考三】在平行四边形ABC
D 中,1AD =,60BAD ∠=︒,
E 为CD 的中点,若3332
AC BE ⋅=,则AB 的长为 . 8.【2917江苏泰州中学期中考试】在平面内,定点,,,A B C D 满足
,DA DB DC DA DB DB DC ===4DC DA ==-动点,P M 满足2,AP PM MC ==,则
BM 的最大值是__________.
9.【2017河北衡水中学四调考试】在ABC △中, 3 5AB AC ==,
,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 10.【2017江苏徐州沛县中学质检三】如图,点O 为△ABC 的重心,且OA OB ⊥,4AB =,则AC BC ⋅的值为 .
11.已知正方形ABCD 的边长为1,直线MN 过正方形的中心O 交边,AD BC 于,M N 两点,若点P 满足
2(1)OP OA OB λλ=+-(R λ∈)
,则PM PN ⋅的最小值为 . 12.【2017辽宁抚顺重点高中协作体一模】在AOB Rt ∆中, 0=⋅OB OA ,5||=,52||=,AB
边上的高线为OD ,点E 位于线段OD 上,若4
3=⋅,则向量在向量上的投影为 . 13.【2017湖北荆州襄宜四地七校联考】在ABC ∆中,16AB AC ⋅=,sin sin cos A B C =,D 线段AB 上的动点(含端点),则DA DC ⋅的取值范围是 .
14.设非零向量与的夹角是65π,且||||b a a +=)(R t ∈的最小值是 . 15.设O 是的三边中垂线的交点,分别为角对应的边,已知,则BC AO ⋅的范围是_______________.。