高二年级第二次月考数学试卷

合集下载

数学-高二年级第二次月考数学试题

数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题【含答案】

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题【含答案】

2022-2023学年内蒙古赤峰市高二下学期第二次月考数学(文)试题一、单选题1.已知i 是实数集,复数z 满足3z z i i +⋅=+,则复数z 的共轭..复数为A .12i +B .12i-C .2i+D .2i-【答案】C【分析】将3z z i i +⋅=+化为31iz i +=+,对其进行化简得到2z i =-,利用共轭复数的性质得到2z i =+.【详解】3z z i i +⋅=+可化为31i z i+=+3(3)(1)42=21(1)(1)2i i i iz i i i i ++--===-++- ∴z 的共轭复数为2z i=+故选C .【点睛】在对复数的除法进行化简时,要采用分子分母同时乘以分母的共轭复数,使分母“实数化”.2.方程22122x y m m-=+-表示双曲线,则m 的取值范围是()A .22m -<<B .0m >C .0m ≥D .2m ≥【答案】A【分析】根据双曲线的定义以及双曲线方程的标准形式可知2m +与2m -同号列不等式即可求解.【详解】因为方程22122x y m m-=+-表示双曲线,所以()()220m m +->,即()()220m m +-<,解得:22m -<<.故选:A.3.已知数据1x ,2x ,3x ,4x ,5x 的方差为5,则数据123x -,223x -,323x -,423x -,523x -的方差为()A .10B .15C .17D .20【答案】D【分析】利用数据线性变换前后方差的关系,求得所求的方差.【详解】因为数据1x ,2x ,3x ,4x ,5x 的方差为5,所以数据123x -,223x -,323x -,423x -,523x -的方差为25220⨯=.故选:D【点睛】本小题主要考查数据线性变换前后方差的关系,属于基础题.4.具有线性相关关系的变量x ,y ,满足一组数据如表所示,y 与x 的回归直线方程为3 1.5y x =-,则m 的值为x123y1-m4m 8A .1B .1.5C .2D .2.5【答案】A【分析】将数据的中心点计算出来,代入回归方程,计算得到答案.【详解】 1.5x =574m y +=中心点为:57(1.5,)4m +代入回归方程4.5157.541m m +=-⇒=故答案选A【点睛】本题考查了回归方程过中心点的知识,意在考查学生的计算能力.5.魏晋时期,数学家刘徽首创割圆术,他在《九章算注》方田章圆田术中指出:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数121211++中的“…”代表无限次重复,设121211x =++ ,则可利用方程121x x =+求得x ,类似地可得正数555 等于()A .3B .5C .7D .9【答案】B【分析】设555x = ,然后解方程5x x =即可得.【详解】设555x = ,则5x x =,解得5x =.故选:B .6.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点F 到渐近线的距离与顶点A 到渐近线的距离之比为3:1,则双曲线C 的渐近线方程为()A .22y x =±B .2y x=±C .22y x =±D .24y x =±【答案】A【分析】根据相似三角形,直接得到3ca=,计算渐近线的斜率.【详解】如图,可知焦点F 到渐近线的距离与顶点A 到渐近线的距离之比为3:1,即3c a =,22122b c a a =-=,所以双曲线的渐近线方程为22y x =±.故选:A.7.阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是()A .5n <B .6n <C .6n ≤D .9n <【答案】C【分析】模拟执行程序框图,依次写出每次循环得到的S ,n 的值,当8n =时,1112S =,此时应该不满足条件,退出循环,输出S 的值,由此得出判断框中填写的内容是什么.【详解】解:模拟执行程序框图,可得0S =,2n =;满足条件,12S =,4n =;满足条件,113244S =+=,6n =;满足条件,1111124612S =++=,8n =;由题意,此时应该不满足条件,退出循环,输出S 的值为1112;故判断框中填写的内容可以是6n ≤.故选:C.【点睛】本题主要考查了程序框图和算法,正确写出每次循环得到的S 值是解题的关键,属于基础题.8.已知直线:40l x y -+=与圆12cos :12sin x C y θθ=+⎧⎨=+⎩,则C 上各点到l 的距离的最小值为A .222-B .2C .22D .25【答案】A【分析】将圆的参数方程化为直角坐标系方程,计算圆心到直线的距离,判断直线与圆的位置关系为相离,最近距离为d r -.【详解】将圆12cos :12sin x C y θθ=+⎧⎨=+⎩化成在平面直角坐标系下的形式,圆22:(1)(1)4C x y -+-=,圆心C为(1,1),半径2r =.已知直线:40l x y -+=,那么,圆心C 到直线l 的距离为22|114|221(1)d r -+==>+-,故直线l 与圆C 相离,所以C 上各点到l 的距离的最小值为222d r -=-.故答案为A.【点睛】本题考查了参数方程,直线与圆的位置关系,综合性较强,是常考题型.9.定义在()0,∞+上的可导函数()f x 满足()()'f x x f x ⋅<,且()20f =,则()0f x x>的解集为()A .()0,2B .()()0,22,+∞U C .()2,∞+D .φ【答案】A【分析】通过构造函数,利用导数判断函数的单调性,利用函数单调性求解不等式,可得结果.【详解】令()()f x F x x =,则()()()2''xf x f x F x x -=由()()'f x x f x ⋅<,即()()'0xf x f x -<所以当()0,x ∈+∞时,()F'0x <可知函数()F x 在()0,x ∈+∞单调递减又()20f =若()()0f x F x x=>,则02x <<则()0f x x>的解集为()0,2故选:A【点睛】本题主要通过构造函数,利用函数的单调性求解不等式,属中档题.10.如图过抛物线24y x =焦点的直线依次交抛物线与圆()2211x y -+=于A 、B 、C 、D ,则AB CD ⋅=A .4B .2C .1D .12【答案】C【分析】根据抛物线的几何意义转化1=A AB AF x =-,1D CD DF x =-=,再通过直线过焦点可知24A D p x x ⋅=,即可得到答案.【详解】抛物线焦点为()1,0F ,1=A AB AF x =-,1D CD DF x =-=,,于是214A D p AB CD x x ⋅=⋅==,故选C.【点睛】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力.11.四张卡片的正面分别写上cos y x =,tan 2sin y x x =+,sin sin y x x =+,sin cos sin cos y x x x x =++-,现将这四张卡片反过来,小明从中任意抽取两张,则所抽到的两张卡片所书写函数周期相同的概率为()A .23B .16C .13D .12【答案】B【分析】确定各个函数的周期,cos y x =的周期为π,tan 2sin y x x =+的周期为2π,sin sin y x x =+不是周期函数,sin cos sin cos y x x x x =++-周期为2π,再计算概率得到答案.【详解】cos y x =的图像是由cos y x =的图像x 轴下方的部分向上翻折形成,故周期为π;tan y x =的周期为π,2sin y x =的周期为2π,故tan 2sin y x x =+的周期为2π;sin y x =不是周期函数,故sin sin y x x =+不是周期函数,2sin ,sin cos sin cos sin cos 2cos ,sin cos x x xy x x x x x x x≥⎧=++-=⎨<⎩,画出函数图像,如图所示:根据图像知函数周期为2π.设四张卡片分别为1,2,3,4,则共有()()()()()()1,2,1,3,1,4,2,3,2,4,3,46种选择,满足条件的只有1种,故所抽到的两张卡片所书写函数周期相同的概率为16.故选:B12.若0,2x π⎡⎤∀∈⎢⎥⎣⎦,不等式sin cos x x mx x +≥恒成立,则正实数m 的取值范围是()A .(0,1]B .(0,2]C .3,22⎡⎤⎢⎥⎣⎦D .(3,+∞)【答案】B【分析】当0x =和2x π=时结论显然成立,当0,2x π⎛⎫∈ ⎪⎝⎭,分离参数m ,sin cos x x mx x +≥恒成立等价于sin cos x x m x x +≤,令函数sin ()cos x x f x x x +=,0,2x π⎛⎫∈ ⎪⎝⎭,利用导数研究函数()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上的单调性,进而求出函数()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上的最小值,即可求出m .【详解】当0x =时,显然不等式sin cos x x mx x +≥恒成立,当2x π=时,显然不等式sin cos x x mx x +≥恒成立当0,2x π⎛⎫∈ ⎪⎝⎭,由不等式sin cos x x mx x +≥恒成立,有sin cos x x m x x +≤,0,2x π⎛⎫∈ ⎪⎝⎭在恒成立,令sin ()cos x x f x x x +=,0,2x π⎛⎫∈ ⎪⎝⎭,则22sin sin cos ()(cos )x x x x x f x x x '+-=,令2sin sin c )s (o x x x x g x x +-=,0,2x π⎛⎫∈ ⎪⎝⎭,则22sin cos cos )120(x x x x x g x ++-'>=,∴()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上单调递增,∴()(0)0g x g >=,即()0f x '>,∴()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上单调递增,∵当0x →时,()2f x →,∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()2f x >恒成立,∵sin cos x x m x x +≤,在0,2x π⎛⎫∈ ⎪⎝⎭恒成立,∴2m ≤,因此正实数m 的取值范围为(]0,2.故选B .【点睛】本题主要考查利用导数研究不等式恒成立的问题,解题的关键是分离参数,得到新函数,利用导数研究函数的单调性以及最值,有一定综合性,属于基础题.二、填空题13.已知复数21iz i=-,则复数z 的实部和虚部之和为______.【答案】0【分析】先化简求得z 再计算实部和虚部的和即可.【详解】()()()2121111i i iz i i i i +===-+--+,故实部和虚部之和为110-=.故答案为:0【点睛】本题主要考查复数的基本运算与实部虚部的概念,属于基础题型.14.对某同学的7次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:①中位数为84;②众数为83;③平均数为85;④极差为16;其中,正确说法的序号是__________.【答案】②④【分析】先根据茎叶图将各数据从小到大排列,再利用中位数、众数、平均数与极差的定义求解即可.【详解】将各数据按从小到大排列为:76,78,83,83,85,91,92.易得中位数是83,故①错误;众数是83,故②正确;平均数为76788383859192847++++++=,故③错误.极差是927616-=,故④正确.故答案为:②④.15.已知双曲线22214x y b -=的左、右焦点分别为1F 、2F ,过2F 且与x 轴垂直的直线l 与双曲线的两条渐近线分别交于A 、B 两点,||35AB =,1(4)M ,,动点()P x y ,在双曲线上,则2PM PF +的最小值为__________.【答案】524-【分析】设出双曲线的焦点和渐近线方程,令x c =,解得y ,可得AB ,由双曲线的基本量的关系,解得,,a b c ,可得双曲线的方程,讨论P 在左支和右支上,运用双曲线的定义,结合三点共线的性质,结合两点的距离公式,即可得到所求最小值.【详解】由题意知:双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,渐近线方程为:by x a=±令x c =,解得:bc y a =±,可得:235bcAB a==由2a =,222c a b =+,解得:5b =,3c =则双曲线的方程为:22145x y -=,则()13,0F -,()23,0F 若P 在左支上,由双曲线的定义可得:212PF a PF =+221124(43)14524PM PF PM PF a MF +=++≥+=+++=+当且仅当1M P F ,,共线时,取得最小值452+若P 在右支上,由双曲线的定义可得:212PF PF a =-21124524PM PF PM PF a MF +=+-≥-=-当且仅当1M P F ,,共线时,取得最小值524-综上可得,所求最小值为:524-本题正确结果:524-【点睛】本题考查双曲线的定义、方程和性质,主要是渐近线方程的运用,以及定义法,考查转化思想和三点共线取得最小值的性质,考查运算能力,属于中档题.16.若函数2ln (),()1,(0,),x a xf xg x e x x+==-∃∈+∞使得()()f x g x ≥成立,则实数a 的最小值是_____.【答案】12【分析】根据题意,(0,)x ∃∈+∞使得()()f x g x ≥成立,分类参数a ,可转化为(0,)x ∃∈+∞,使得ln x a xe x x ≥--成立,构造函数()ln ,0xh x xe x x x =-->,利用导数法求得()min h x ,即可求解.【详解】由题意,函数2ln (),()1,(0,),x a xf xg x e x x+==-∃∈+∞使得()()f x g x ≥成立,即(0,)x ∃∈+∞,使得2ln 1x a xe x+≥-成立,即(0,)x ∃∈+∞,使得2ln x a xe x x ≥--成立,令()ln ,0xh x xe x x x =-->,则()min a h x ≥,因为()1(1)1,0x h x x e x x '=+-->,则()21(2)0xh x x e x''=++>,所以()1(1)1xh x x e x'=+--在(0,)+∞上单调递增,又由1314()40,(1)22033h e h e ''=-<=->,所以01(,1)3x ∃∈使得()0h x '=,此时()ln xh x xe x x =--取得极小值,也是最小值,令()0h x '=,则0001(1)10x x e x +--=,即001x e x =,所以()0000000ln 1ln 1x xh x x e x x x e -=--=--=,即()min 1h x =,所以21a ≥,即实数a 的最小值为12.【点睛】本题主要考查了利用导数研究函数的极值与最值,其中解答中合理利用分离参数,结合函数的单调性与最值求解是解答的关键,着重考查转化思想,以及推理与运算能力,属于中档试题.三、解答题17.已知函数2()ln f x a x x =-(0a ≥).(Ⅰ)当1a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若对任意(0,)x ∈+∞,()0f x <恒成立,求实数a 的取值范围.【答案】(Ⅰ)0x y +=(Ⅱ)[0,2e)【分析】(Ⅰ)对函数进行求导,然后求出1x =处的切线的斜率,再利用直线的点斜式方程求出切线方程,最后化为一般式方程;(Ⅱ)先证明当0a =时,对任意(0,)x ∈+∞,()0f x <恒成立,然后再证明当0a >时,对任意(0,)x ∈+∞,()0f x <恒成立时,实数a 的取值范围.法一:对函数求导,然后判断出单调性,求出函数的最大值,只要最大值小于零即可,这样可以求出实数a 的取值范围;法二:原不等式恒成立可以转化为21ln xa x>恒成立问题.2ln ()x g x x =,求导,判断出函数的单调性,求出函数的最大值,只要1a大于最大值即可,解出不等式,最后求出实数a 的取值范围.【详解】解:(Ⅰ)当1a =时,2()ln f x x x =-,1()2f x x x∴'=-,(1)1f ∴'=-,(1)1f =-∴曲线()y f x =在点1x =处的切线方程为1(1)y x +=--,即0x y +=(Ⅱ)当0a =时,2()f x x =-(0x >),对任意(0,)x ∈+∞,()0f x <恒成立,符合题意法一:当0a >时,22()2a a x f x x x x-'=-=,()002a f x x '>⇔<<;()02a f x x '<⇔>()f x ∴在(0,)2a上单调递增,在(,)2a +∞上单调递减∴只需max (())()ln 02222a a a a f x f ==-<即可,解得02ea <<故实数a 的取值范围是[0,2e)法二:当0a >时,()0f x <恒成立⇔21ln xa x >恒成立,令2ln ()x g x x =,则312ln ()xg x x -'=,()00e g x x '>⇔<<;()0e g x x '<⇔>,()g x ∴在(0,e)上单调递增,在(e,)+∞上单调递减∴只需max 11(())(e)2eg x g a >==即可,解得02ea <<故实数a的取值范围是[0,2e)【点睛】本题考查了求曲线的切线方程,考查了不等式恒成立时,求参数问题,利用导数求出函数的最值是解题的关键.18.每天锻炼一小时,健康生活一辈子,现在很多年轻人由于诸多原因身体都是处于“亚·健康”状态,为了了解现在的年轻人运动锻炼的状况,某社会机构做了一次调查,随机采访了100位年轻人,并对其完成的调查结果进行了统计,将他们分为男生组、女生组,把每周锻炼的时间不低于5小时的年轻人归为“健康生活”,低于5小时的年轻人归为“亚健康生活”,并绘制了如下2×2列联表.健康生活亚健康生活合计男304575女151025合计4555100附:()()()()()22n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828(1)能否有95%的把握认为是否为“健康生活”与年轻人的性别有关?(运算结果保留三位小数)(2)用分层抽样的方法在健康生活的45名受采访的年轻人中选取6人参加一次公益活动,需要在这6名年轻人中随机选取两人作为这次活动的联络员,求两名联络员均为男性的概率.【答案】(1)没有95%的把握认为是否为“健康生活”与年轻人的性别有关(2)2 5【分析】(1)计算2K,并与表中3.841比较大小得出结果;(2)列出6名年轻人中随机选取两人的所有基本事件,再找到两名均为男性的事件个数,求其概率即可.【详解】(1)由()22100301015453.03045557525K⨯⨯-⨯=≈⨯⨯⨯,∵3.030<3.841,∴没有95%的把握认为是否为“健康生活”与年轻人的性别有关;(2)易得选取参加公益活动的6人为4男2女,用a ,b ,c ,d ,1,2表示此4男2女,则基本事件:(),a b ,(),a c ,(),a d ,(),1a ,(),2a ,(),b c ,(),b d ,(),1b ,(),2b ,(),c d ,(),1c ,(),2c ,(),1d ,(),2d ,()1,2共15个基本事件,记两名联络员均为男性为事件A ,事件A 包含6个基本事件,()62155P A ==,∴两名联络员均为男性的概率为25.19.2023年,国家不断加大对科技创新的支持力度,极大鼓舞了企业投入研发的信心,增强了企业的创新动能.某企业在国家一系列优惠政策的大力扶持下,通过技术革新和能力提升,极大提升了企业的影响力和市场知名度,订单数量节节攀升,右表为该企业今年1~4月份接到的订单数量.月份t 1234订单数量y (万件) 5.2 5.3 5.7 5.8附:相关系数,12211()()()()n i i i nn i i i i x x y y r x x y y ===--=--∑∑∑回归方程ˆˆy abx =+中斜率和截距的最小二乘法估计公式分别为121()()ˆ()n i i i ni i x x yy b x x ==--=-∑∑,ˆay bx =- , 1.3 1.14≈.(1)试根据样本相关系数r 的值判断订单数量y 与月份t 的线性相关性强弱(0.75||1r ≤≤,则认为y 与t 的线性相关性较强,||0.75r <,则认为y 与t 的线性相关性较弱).(结果保留两位小数)(2)建立y 关于t 的线性回归方程,并预测该企业5月份接到的订单数量.【答案】(1)0.96,订单数量y 与月份t 的线性相关性较强(2) 0.22 4.95y t =+,6.05万件【分析】(1)根据公式求出r ,即可得出结论;(2)利用最小二乘法求出回归方程,再令5t =,即可得解.【详解】(1)1234 2.54t +++==,1(5.2 5.3 5.7 5.8) 5.54y =+++=,41()()(1.5)(0.3)(0.5)(0.2)0.50.2 1.50.3 1.1i i i tt y y =--=-⨯-+-⨯-+⨯+⨯=∑,4222221()(1.5)(0.5)0.5 1.55i i t t =-=-+-++=∑,4222221()(0.3)(0.2)0.20.30.26i i y y =-=-+-++=∑,∴41442211()()1.1 1.10.960.751.141.3()()i i i i i i i t t y y r tt yy ===--==≈≈>--∑∑∑,∴订单数量y 与月份t 的线性相关性较强;(2) 41421()()1.1ˆ0.225()i i i i i t t y y b t t ==--===-∑∑,∴ˆˆ 5.50.22 2.5 4.95a y bt=-=-⨯=,∴线性回归方程为 0.22 4.95y t =+,令5t =, 0.225 4.95 6.05y =⨯+=(万件),即该企业5月份接到的订单数量预计为6.05万件.20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线22:2E x y -=的离心率互为倒数,且椭圆C 的焦距、双曲线E 的实轴长、双曲线E 的焦距依次构成等比数列.(1)求椭圆C 的标准方程;(2)若双曲线E 的虚轴的上端点为2B ,问是否存在过点2B 的直线l 交椭圆C 于,M N 两点,使得以MN 为直径的圆过原点?若存在,求出此时直线l 的方程;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在,22y x =+或22y x =-+.【分析】(1)将已知双曲线的方程化为标准形式求得离心率,结合椭圆中的基本量关系和已知条件,求得椭圆的半长轴和半短轴,得到椭圆的标准方程;(2)先排除直线l 斜率不存在的情形,然后设出直线的斜率,写出方程,联立直线与椭圆方程,利用判别式求得k 的取值范围,利用韦达定理和向量的垂直的条件得到关于k 的方程,求解并验证是否满足上面求出的范围即可.【详解】解:(1)双曲线22:2E x y -=,即为22122x y -=,其离心率为2222+=,则椭圆2222:1(0)x y C a b a b+=>>的离心率为12e =.因为双曲线E 的实轴长为22、焦距为4,设椭圆C 的焦距为2c ,则2,22,4c 成等比数列,所以2(22)8c =,解得1c =.又12c e a ==,及222a b c =+,解得2,1a b ==.所以椭圆C 的标准方程为2212x y +=;(2)双曲线E 的虚轴上端点为2(0,2)B .当直线l 的斜率不存在时,:0l x =,点,M N 为椭圆的上、下两顶点,显然不符合题意;故直线l 的斜率存在,设斜率为k ,则直线l 的方程为2y kx =+,联立方程组221,22,x y y kx ⎧+=⎪⎨⎪=+⎩消去y ,得()22124220k x kx +++=.显然()22(42)41220k k ∆=-+⨯>,解得22k >或22k <-()*.设点()()1122,,,M x y N x y ,则121222422,1212k x x x x k k+=-=++,所以()()()2121212122222y y kx kx k x x k x x =++=+++222222222228282422212121212k k k k k k k k k k -++-=-+==++++,若以MN 为直径的圆过原点,则OM ON ⊥ ,所以0OM ON ⋅= ,所以12120x x y y +=,即22222201212k k k -+=++,所以2242012k k-=+,解得2k =±,符合()*式,所以直线l 的方程为22y x =+或22y x =-+.21.已知函数f (x )=()1xx a x be e -+(a ≠0).(1)当a =-1,b =0时,求函数f (x )的极值;(2)当b =1时,若函数f (x )没有零点,求实数a 的取值范围.【答案】(1)极小值为21e-,无极大值;(2)2(,0)e -.【分析】(1)当1,0a b =-=时,求得函数的导数,利用导数求得函数的单调性,结合函数极值的定义,即可求解;(2)把函数()f x 没有零点,转化为方程ax -a +ex =0无实根,令()x h x ax a e =-+,利用导数求得函数()h x 的单调性与最值,列出不等式,即可求解.【详解】(1)当1,0a b =-=时,函数()1x x f x e -+=,则()2x x f x e -'=,当(,2)x ∈-∞时,()()0,f x f x '<单调递减;当(2,)x ∈+∞时,()()0,f x f x '>单调递增.所以()f x 的极小值为()212f e =-,无极大值.(2)当1b =时,函数()xxax a e f x e -+=,因为函数()f x 没有零点,即方程0x x ax a e e-+=无实根,即ax -a +ex =0无实根,令()x h x ax a e =-+,则()x h x a e '=+,若0a >时,则()()0,h x h x '>在R 上单调递增,()(),;,;x h x x h x →+∞→+∞→-∞→-∞此时存在0x ,使得0()0h x =,不合题意;若a<0时,令()0h x '>,即0x a e +>,得ln()x a >-;令()0h x '<,得ln()x a <-,所以当ln()x a =-,函数()h x 取得最小值,最小值为()min (ln())ln()2h x h a a a a =-=--,()(),;,;x h x x h x →+∞→+∞→-∞→+∞要使得函数()f x 没有零点,则满足()min 0h x >,即ln()20a a a -->,解得20e a -<<,综上所述,实数的取值范围为()2,0e -.【点睛】本题主要考查了利用导数求解函数的极值,以及利用导数研究函数的零点问题,其中解答中把函数的零点问题转化为方程根的个数,应用导数求得函数的单调性与最值,列出不等式是解答的关键,着重考查了转化思想,以及推理与计算能力.22.在平面直角坐标系xOy 中,直线l 的参数方程为12x t y t =-+⎧⎨=-⎩(t 为参数),以原点O 为极点、x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为243cos 2ρθ=-.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点(1,2)P -,直线l 与曲线C 相交于AB 两点,求||||PA PB +的值.【答案】(1)22:12x C y +=,:10l x y +-=;(2)102||||3PA PB +=【解析】(1)消去参数t 求解直线l 的普通方程,再利用极坐标与直角坐标的对应关系与二倍角公式求解曲线C 的直角坐标方程.(2)利用参数t 的几何意义,联立直线与圆C 的方程,利用韦达定理求解即可.【详解】(1)由12x t y t =-+⎧⎨=-⎩,两式相加可得:1l x y +=,即:10l x y +-=.又22443cos 222sin ρθθ==-+,即22222+22sin 4244x y ρρθ=⇒+=即22:12x C y +=.(2)将:10l x y +-=化简成关于点(1,2)P -的参数方程有:212222x t y t ⎧=--⎪⎪⎨⎪=+⎪⎩,(t 为参数),代入22:12x C y +=有222221222310214022t t t t ⎛⎫⎛⎫+++=⇒++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12102||||3PA PB t t +=+=.【点睛】本题主要考查了参数方程与极坐标化成直角坐标的方法,同时也考查了直线参数方程的几何意义.属于中等题型.。

2022-2023学年高二下学期第二次月考数学试题(解析版)

2022-2023学年高二下学期第二次月考数学试题(解析版)

2024届高二年级下学期第二次月考数学试卷一、单选题(共40分)1. 已知复数满足,( )z ()()31i 1i z --=+z=A.B.C.D.【答案】D 【解析】【分析】先求出复数的代数形式,再求模即可. z 【详解】由得()()31i 1i z --=+,()()()()1i 1i 1i333i 1i 1i 1i z +++=+=+=+--+.z ∴==故选:D.2. 某地政府调查育龄妇女生育意愿与家庭年收入高低的关系时,随机调查了当地3000名育龄妇女,用独立性检验的方法处理数据,并计算得,则根据这一数据以及临界值表,判断育龄妇女生育意27.326χ=愿与家庭年收入高低有关系的可信度( )参考数据如下:,()()()22210.8280.001,7.8790.005, 6.6350.01P P P χχχ≥≈≥≈≥≈.()()223.8410.05, 2.7060.1P P χχ≥≈≥≈A. 低于 B. 低于 C. 高于 D. 高于1%0.5%99%99.5%【答案】C 【解析】【分析】根据临界值表求得正确答案.【详解】由于,()27.326 6.635,7.879χ=∈而,()()227.8790.005, 6.6350.01P P χχ≥≈≥≈所以可信度高于. 99%故选:C3. 已知向量满足,且,则在上的投影向量为( ),a b 10a b ⋅= ()3,4b =- a b A. B.C.D. ()6,8-()6,8-68,55⎛⎫- ⎪⎝⎭68,55⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】向量在向量上的投影向量的定义计算即可.a b【详解】解:因为向量,且,那么,()3,4b =- 10a b ⋅=5b == 所以向量在向量上的投影向量为, a b ()3468cos ,555b a b a a b b b-⋅⎛⎫⋅=⋅=- ⎪⎝⎭ ,,故选:C.4. 已知等比数列的前n 项和为,若,则( ){}n a n S 153n n S t -=⨯+t =A. B. 5C.D.5-53-53【答案】C 【解析】【分析】根据条件得到,,,从而求出,,,再由数列是等比数列得到,1S 2S 3S 1a 2a 3a {}n a 3212a a a a =即可得到.t 【详解】由题意得:,,, 115S a t ==+21215S a a t =+=+312345S a a a t =++=+即,,, 15a t =+210a =330a =因为数列是等比数列,所以, {}n a 3212a a a a =即,解得:,1030510t =+53t =-故选:C .5. 如图,八面体的每一个面都是正三角形,并且四个顶点在同一平面内,下列结论:①,,,A B C D AE平面;②平面平面;③;④平面平面,正确命题的个数//CDF ABE //CDF AB AD ⊥ACE ⊥BDF 为( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】根据题意,以正八面体的中心为原点,分别为轴,建立如图所示空间直O ,,OB OC OE ,,x y z 角坐标系,由空间向量的坐标运算以及法向量,对选项逐一判断,即可得到结果.【详解】以正八面体的中心为原点,分别为轴,建立如图所示空间直角坐标系, O ,,OB OC OE ,,x y z 设正八面体的边长为,则2()(()()(0,,,,,0,0,A E C D F 所以,,(()(,,0,AE CD CF ===设面的法向量为,则,解得,取,即CDF (),,n x y z =CD n CF n ⎧⋅==⎪⎨⋅==⎪⎩x z x y =⎧⎨=-⎩1x =()1,1,1n =-又,所以,面,即面,①正确;0AE n ⋅== AE n ⊥AE ⊄CDF AE //CDF 因为,所以,AE CF =- AE //CF 又,面,面,则面,//AB CD AB ⊄CDF CD ⊂CDF //AB CDF 由,平面,所以平面平面,②正确; AB AE A = ,AE AB ⊂ABE AEB //CDF 因为,则,所以,③正确;))(),,BAB AD ==0AB AD ⋅=u u u r u u u rAB AD ⊥易知平面的一个法向量为,平面的一个法向量为,ACE ()11,0,0n =u r BDF ()20,1,0n =u u r因为,所以平面平面,④正确;120n n ⋅=ACE ⊥BDF 故选:D6. 如图,在正三角形的12个点中任取三个点构成三角形,能构成三角形的数量为( )A. 220B. 200C. 190D. 170【答案】C 【解析】【分析】利用间接法,用总数减去不能构成三角形的情况即可.【详解】任取三个点有种,其中三点共线的有种,故能构成三角形个, 312C 353C 33125C 3C 190-=故选:C .7. 已知,分别是双曲线的左、右焦点,过的直线分别交双曲线左、1F 2F ()2222:10,0x y a b a bΓ-=>>1F 右两支于A ,B 两点,点C 在x 轴上,,平分,则双曲线的离心率为( )23CB F A =2BF 1F BC ∠ΓA.B.C.D.【答案】A 【解析】【分析】根据可知,再根据角平分线定理得到的关系,再根据双曲线定23CB F A =2//CB F A 1,BF BC 义分别把图中所有线段用表示出来,根据边的关系利用余弦定理即可解出离心率.,,a b c 【详解】因为,所以∽,23CB F A =12F AF 1F BC △设,则,设,则,. 122FF c =24F C c =1AF t =13BF t =2AB t =因为平分,由角平分线定理可知,, 2BF 1F BC ∠11222142BF F F c BC F C c ===所以,所以, 126BC BF t ==2123AF BC t ==由双曲线定义知,即,,① 212AF AF a -=22t t a -=2t a =又由得,122B F B F a -=2322BF t a t =-=所以,即是等边三角形, 222BF AB AF t ===2ABF △所以.2260F BC ABF ∠=∠=︒在中,由余弦定理知,12F BF 22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅即,化简得, 22214942223t t ct t+-=⋅⋅2274t c =把①代入上式得. ce a==故选:A .8. 高斯是德国著名的数学家,近代数学奠基者之一;享有“数学王子“的称号.用他名字定义的函数称为高斯函数,其中表示不超过x 的最大整数,已知数列满足,,()[]f x x =[]x {}n a 12a =26a =,若,为数列的前n 项和,则( )2156n n n a a a +++=[]51log n n b a +=n S 11000n n b b +⎧⎫⎨⎬⋅⎩⎭[]2023S =A. 999 B. 749 C. 499 D. 249【答案】A 【解析】【分析】根据递推关系可得为等比数列,进而可得,由累加法可求解{}1n n a a +-1145n n n a a -+=⨯-,进而根据对数的运算性质可得,根据裂项求和即可求解.151n n a +=+[]51log n n b a n +==【详解】由得,因此数列为公比为5,2156n n n a a a +++=()2115n n n n a a a a +++-=-{}1n n a a +-首项为的等比数列,故,进而根据累加法214a a -=1145n n n a a -+=⨯-得,()()()()1111112024555251n n n n n n n n a a a a a a a a ++---=+++=++-+-++=+- 由于,又,()515log log 51nn a +=+()()()5555log 5log 51log 55log 511nnnnn n <+<⨯⇒<+<+因此,则,故[]51log n n b a n +==()11000100011100011n n n c b b n n n n +⎛⎫===- ⎪⋅⋅++⎝⎭,12110001n n S c c c n ⎛⎫=+++=- ⎪⎝⎭所以, []20231100010001100099920232023S ⎡⎤⎛⎫⎡⎤=-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦故选:A【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于n n n c a b =+{}n a {}n b ()11n a n n =+,其中为等差数列,为等比数列等. n n n c a b =⋅{}n a {}n b 二、多选题(共20分)9. 已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A. m 的取值范围为 B. 若该椭圆的焦点在y 轴上,则 ()4,12()8,12m∈C. 若,则该椭圆的焦距为4 D. 若,则该椭圆经过点6m =10m =(【答案】BC 【解析】【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D错误. ((故选:BC.10. 设等差数列的前项和为,,公差为,,,则下列结论正确的是{}n a n n S 10a >d 890a a +>90a <( ) A.0d <B. 当时,取得最大值 8n =n S C.45180a a a ++<D. 使得成立的最大自然数是15 0n S >n 【答案】ABC 【解析】【分析】根据已知可判断,,然后可判断AB ;利用通项公式将转化为可判80a >90a <4518a a a ++9a 断C ;利用下标和性质表示出可判断D.1617,S S 【详解】解:因为等差数列中,,, {}n a 890a a +>90a <所以,,,A 正确; 80a >90a <980d a a =-<当时,取得最大值,B 正确;8n =n S ,C 正确; ()45181193243830a a a a d a d a ++=+=+=<,,()()1611689880S a a a a =+=+>11717917()1702a a S a +==<故成立的最大自然数,D 错误. 0n S >16n =故选:ABC .11. 已知的展开式中第3项与第7项的二项式系数相等,则( ) ()1nx +A.8n =B. 的展开式中项的系数为56 ()1nx +2x C. 奇数项的二项式系数和为128 D. 的展开式中项的系数为56()21nx y +-2xy 【答案】AC 【解析】【分析】利用二项式定理求得的展开通项公式,从而得到关于的方程,解出的值判断AB ,()1nx +n n 利用所有奇数项的二项式系数和为判断C ,根据二项式定理判断D.12n -【详解】因为的展开式通项为,()1nx +1C C k k k kr n n T x x +==所以的展开式的第项的二项式系数为,()1nx +1k +C kn 所以,解得,A 正确; 26C C n n =8n =的系数为,B 错误;2x 28C 28=奇数项的二项式系数和为,C 正确; 1722128n -==根据二项式定理,表示8个相乘,()821x y +-()21x y+-所以中有1个选择,1个选择,6个选择,()21x y+-x 2y-1所以的展开式中项的系数为,D 错误;()21nx y +-2xy ()71187C C 156-=-故选:AC12. 已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为13,p .记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路X 口遇到红灯个数之和为,则( ) Y A. ()54243P X ==B. ()109D X =C. 当时,小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为25p =216625D. 当时, 25p =()443E Y =【答案】BC 【解析】【分析】对于AB ,确定,即可求出和,对于C ,表示一天至少遇到红灯15,3X B ⎛⎫ ⎪⎝⎭()4P X =()D X 的概率为,可求出星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的表达式,再将1233p +代入即可求得结果,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则25p =ξ()5,B p ξ~,,即可求出.Y X ξ=+()E Y 【详解】对于AB ,小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,且他X 在甲路口遇到红灯的概率为, 13则,15,3X B ⎛⎫ ⎪⎝⎭所以,, ()44511104C 133243P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭()111051339D X ⎛⎫=⨯⨯-= ⎪⎝⎭所以A 错误,B 正确,对于C ,由题意可知一天至少遇到一次红灯的概率为, ()112111333p p ⎛⎫---=+ ⎪⎝⎭则小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率为, 32351212C 13333p p ⎛⎫⎛⎫+--⎪ ⎪⎝⎭⎝⎭当时,, 25p =323233551212122122216C 1C 13333335335625p p ⎛⎫⎛⎫⎛⎫⎛⎫+--=+⨯--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以C 正确,对于D ,记为周一到周五这五天在乙路口遇到红灯的个数,则,, ξ()5,B p ξ~Y X ξ=+所以, ()()()()1553E Y E X E X E p ξξ=+=+=⨯+当时,,所以D 错误, 25p =()121155353E Y =⨯+⨯=故选:BC三、填空题(共20分)13. 圆心在直线上,且与直线相切于点的圆的方程为______. 2x =-20x +-=(-【答案】 ()2224x y ++=【解析】【分析】设圆心为,记点为,由已知直线与直线垂直,由此可()2,C t -(-A AC 20x -=求,再求可得圆的半径,由此可得圆的方程. t AC【详解】记圆心为点,点为点,C (-A 因为圆心在直线上,故可设圆心的坐标为, C 2x =-C ()2,t -因为圆与直线相切于点, C 20x -=(A -所以直线与直线垂直, CA 20x +-=直线的斜率为 CA 20x +-=, 1⎛=- ⎝所以,0=t 所以圆心为, ()2,0C -圆的半径为,2CA r ===所以圆的方程为. ()2224x y ++=故答案为:.()2224x y ++=14. 已知随机变量,且,若,则的最小()21N ξσ ,()()0P P a ξξ≤=≥()00x y a x y +=>>,12x y+值为_________.【答案】 32+【解析】【分析】先根据正态曲线的对称性可求,结合基本不等式可求答案. 2a =【详解】,可得正态分布曲线的对称轴为,()21,N ξσ1x =又,,即. ()()0P P a ξξ≤=≥12a∴=2a =则()(121121213332222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当,即时,等号成立.y=2,4x y ==-故答案为:. 32+15. 已知数列是等差数列,并且,,若将,,,去掉一项后,剩{}n a 1476a a a ++=60a =2a 3a 4a 5a 下三项依次为等比数列的前三项,则为__________. {}n b 4b 【答案】## 120.5【解析】【分析】先求得,进而求得,,,,根据等比数列的知识求得. n a 2a 3a 4a 5a 4b 【详解】设等差数列的公差为,{}n a d 依题意,则,147660a a a a ++=⎧⎨=⎩1139650a d a d +=⎧⎨+=⎩解得,所以,151a d =⎧⎨=-⎩6n a n =-+所以, 23454,3,2,1a a a a ====通过观察可知,去掉后,3a 成等比数列,2454,2,1a a a ===所以等比数列的首项为,公比为,{}n b 412所以.3411422b ⎛⎫=⨯= ⎪⎝⎭故答案为:1216. 设奇函数在上为单调递减函数,且,则不等式的解集()f x (0,)+∞()20f =3()2()05f x f x x--≤为___________【答案】 [)(]2,00,2-U 【解析】【分析】分析函数的奇偶性、单调性和取值范围,即可得到不等式的解集. 【详解】由题意,,x ∈R 在中,为奇函数且在上单调递减,()y f x =()f x ()0,∞+()20f =∴,,函数在和上单调递减,()()f x f x =--()()220f f -==(),0∞-()0,∞+∴当和时,;当和时,. (),2-∞-()0,2()0f x >()2,0-()2,+∞()0f x >∵,3()2()05f x f x x--≤∴,即,3()2()3()2()()055f x f x f x f x f x x x x ----==-≤()0f x x≥当时,解得:;当时,解得:, 0x <20x -≤<0x >02x <≤∴不等式解集为:,3()2()05f x fx x--≤[)(]2,00,2-U 故答案为:.[)(]2,00,2-U 四、解答题(共70分)17. 已知向量,,且函数.()cos ,1m x =)2,cos n x x =()f x m n =⋅(1)求函数的单调增区间;()f x (2)若中,分别为角对的边,,求的取值范围. ABC ,,a b c ,,A B C ()2cos cos -=a c B b C π26A f ⎛⎫+ ⎪⎝⎭【答案】(1)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(2) 30,2⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题知,再根据三角函数性质求解即可; ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭(2)由正弦定理边角互化,结合恒等变换得,进而得,,再根据三角函数1cos 2B =π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭的性质求解即可. 【小问1详解】因为向量,,且函数()cos ,1m x =)2,cos n x x =()f x m n =⋅所以 ()211π1cos cos cos2sin 22262f x m n x x x x x x ⎛⎫=⋅=+=++=++ ⎪⎝⎭ 令,解得, πππ2π22π262k x k -+≤+≤+ππππ,Z 36k x k k -+≤≤+∈所以,函数的单调增区间为.()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦【小问2详解】因为,()2cos cos -=a c B b C由正弦定理可得:, 2sin cos sin cos sin cos A B C B B C -=即,2sin cos sin cos sin cos A B C B B C =+因为, ()sin cos sin cos sin sin C B B C B C A +=+=所以,2sin cos sin A B A =因为,所以, ()0,π,sin 0A A ∈≠1cos 2B =因为,所以,所以, ()0,πB ∈π3B =2π0,3A ⎛⎫∈ ⎪⎝⎭所以, πππ11sin cos 263622A f A A ⎛⎫⎛⎫+=+++=+ ⎪ ⎪⎝⎭⎝⎭所以;π13cos 0,2622A f A ⎛⎫⎛⎫+=+∈⎪ ⎪⎝⎭⎝⎭所以,的取值范围为.π26A f ⎛⎫+⎪⎝⎭30,2⎛⎫⎪⎝⎭18. 已知正项数列中,.{}n a 2113,223(2)n n n a S S a n -=+=-≥(1)求的通项公式; {}n a (2)若,求的前n 项和. 2nn na b ={}n b n T 【答案】(1) 21n a n =+(2) 2552n nn T +=-【解析】【分析】(1)根据计算即可得解;11,1,2n n n S n a S S n -=⎧=⎨-≥⎩(2)利用错位相减法求解即可.【小问1详解】当时,,2n =2212212222324212,0S S a a a a a +=-=+=+>解得,25a =由当时,, 2n ≥21223n n n S S a -+=-得当时,,3n ≥2121223n n n S S a ---+=-两式相减得,即,()22112n n n n a a a a --+=-()()()1112n n n n n n a a a a a a ---++-=又,所以,0n a >()123n n a a n --=≥又适合上式,212a a -=所以数列是以为首项,为公差的等差数列, {}n a 32所以; 21n a n =+【小问2详解】, 2122n n n n a n b +==则, 1223521222n n n n T b b b +=+++=+++ , 231135212122222n n n n n T +-+=++++ 两式相减得 2311322221222222n n n n T ++=++++- 211111121122222n n n -++⎛⎫=+++++- ⎪⎝⎭111121212212n n n +-+=+--, 152522n n ++=-所以. 2552n nn T +=-19. 如图,在四棱锥中,侧面底面,,底面是平行四边形,S ABCD -SCD ⊥ABCD SC SD =ABCD ,,,分别为线段的中点. π3BAD ∠=2AB =1AD =,MN ,CD AB(1)证明:平面;BD ⊥SMN (2)若直线与平面所成角的大小为,求二面角的余弦值. SA ABCD π6C SBD --【答案】(1)证明见解析(2)【解析】【分析】(1)利用勾股定理、面面垂直和线面垂直的性质可证得,,由线面垂直BD MN ⊥SM BD ⊥的判定可证得结论;(2)根据线面角的定义可知,设,取中点,根据垂直关系可以为π6SAM ∠=MN BD O = SN F O 坐标原点建立空间直角坐标系,利用二面角的向量求法可求得结果. 【小问1详解】,,,, 2AB = 1AD =π3BAD ∠=2222cos 3BD AB AD AB AD BAD ∴=+-⋅∠=即,,,BD =222AD BD AB ∴+=AD BD ∴⊥分别为中点,四边形为平行四边形,,;,M N ,CD AB ABCD //MN AD ∴BD MN ∴⊥,为中点,,SC SD = M CD SM CD ∴⊥平面平面,平面平面,平面,SCD ⊥ABCD SCD ABCD CD =SM ⊂SCD 平面,又平面,;SM ∴⊥ABCD BD ⊂ABCD SM BD ∴⊥,平面,平面.SM MN M = ,SM MN ⊂SMN BD ∴⊥SMN 【小问2详解】 连接,AM 由(1)知:平面,则与平面所成角为,即, SM ⊥ABCD SA ABCD SAM ∠π6SAM ∠=在中,,, ADM △1AD DM ==2ππ3ADC BAD ∠=-∠=,解得:2222cos 3AM AD DM AD DM ADC ∴=+-⋅∠=AM =,; 2πcos 6AMSA ∴==πtan 16SM AM ==设,取中点,连接,MN BD O = SN F OF 分别为中点,,又平面,,O F ,MN SN //OF SM ∴SM ⊥ABCD 平面,又,OF ∴⊥ABCD MN BD ⊥则以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,O ,,OM OB OF,,x y z则,,,,C ⎛⎫- ⎪⎝⎭1,0,12S ⎛⎫- ⎪⎝⎭B ⎛⎫ ⎪ ⎪⎝⎭0,D ⎛⎫ ⎪ ⎪⎝⎭,,,112SB ⎛⎫∴=- ⎪ ⎪⎝⎭()1,0,0CB =()DB = 设平面的法向量,SBC (),,n x y z =则,令,解得:,,;1020SB n x y z CB n x ⎧⋅=+-=⎪⎨⎪⋅==⎩2y =0x=z=(0,n ∴= 设平面的法向量,SBD (),,m a b c =则,令,解得:,,;1020SB m a c DB m ⎧⋅=+-=⎪⎨⎪⋅==⎩2a =0b =1c =()2,0,1m ∴= ,cos m n m n m n⋅∴<⋅>===⋅ 二面角为钝二面角,二面角的余弦值为C SBD --∴C SB D --20. 2023年1月26日,世界乒乓球职业大联盟(WTT )支线赛多哈站结束,中国队包揽了五个单项冠军,乒乓球单打规则是首先由发球员发球2次,再由接发球员发球2次,两者交替,胜者得1分.在一局比赛中,先得11分的一方为胜方(胜方至少比对方多2分),10平后,先多得2分的一方为胜方,甲、乙两位同学进行乒乓球单打比赛,甲在一次发球中,得1分的概率为,乙在一次发球中,得1分35的概率为,如果在一局比赛中,由乙队员先发球.12(1)甲、乙的比分暂时为8:8,求最终甲以11:9赢得比赛的概率; (2)求发球3次后,甲的累计得分的分布列及数学期望. 【答案】(1)625(2)分布列见详解, 85【解析】【分析】(1)根据题意可得甲以11:9赢得比赛,则甲再得到3分,乙得到1分,且甲得到最后一分,再根据独立事件的乘法公式求概率即可;(2)根据题意可得X 的可能取值为0,1,2,3,求出相应的概率列出分布列,再求其数学期望即可. 【小问1详解】甲以11:9赢得比赛,共计20次发球,在后4次发球中,需甲在最后一次获胜,最终甲以11:9赢得比赛的概率为:. 22212131236C 2525525P ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【小问2详解】设甲累计得分为随机变量X ,X 的可能取值为0,1,2,3.,()212102510P X ⎛⎫==⨯= ⎪⎝⎭, ()2212121371C 252520P X ⎛⎫⎛⎫==⨯⨯+⨯=⎪ ⎪⎝⎭⎝⎭,()2212131222C 25255P X ⎛⎫⎛⎫==⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()213332520P X ⎛⎫==⨯=⎪⎝⎭∴随机变量X 的分布列为: X 0123P110 720 25 320∴. ()17238012310205205E X =⨯+⨯+⨯+⨯=21. 已知某种商品的价格(单位:元)和需求量(单位:件)之间存在线性关系,下表是试营业期间记录的数据(对应的需求量因污损缺失): 24x =价格x16 17 18 192024需求量y 5549424036经计算得,,,由前组数据计算出的关于的线性回归5211630i ix==∑52110086ii y ==∑513949i i i x y ==∑5y x 方程为. 4710y x a=-+(1)估计对应的需求量y (结果保留整数);24x =(2)若对应的需求量恰为(1)中的估计值,求组数据的相关系数(结果保留三位小数).24x =6r 附:相关系数. r ==328.8769≈【答案】(1)16(2) 0.575-【解析】【分析】(1)计算前五组数据价格、需求量,,代入回归直线方程求出值,再代入18x =2225y =a 即可;24x =(2)求出六组数据价格、需求量的平均值,,以及与相关系数有关的数值,代入计算即可. x 'y '【小问1详解】记前五组数据价格、需求量的平均值分别为,,x y 由题设知,. 511185i i x x ===∑51122255i i y y ===∑因为回归直线经过样本中心,所以,解得. (),x y 2224718510a =-⨯+129a =即, 4712910x y -+=所以时对应的需求量(件). 24x =47241291610y =-⨯+≈【小问2详解】设六组数据价格、需求量的平均值分别为,,则,,x 'y '611196i i x x ===∑61111963i i y y ===∑,,.6212206ii x==∑62110342i i y ==∑514333i i i xy ==∑所以相关系数. 0.575r ==≈-22. 已知点,经过轴右侧一动点作轴的垂线,垂足为,且.记动点的(1,0)F y A y M ||||1AF AM -=A 轨迹为曲线.C (1)求曲线的方程;C (2)设经过点的直线与曲线相交于,两点,经过点,且为常数)的直(1,0)B -C P Q (1,)((0,2)D t t ∈t 线与曲线的另一个交点为,求证:直线恒过定点. PD C N QN 【答案】(1)()240y x x =>(2)证明见解析 【解析】【分析】(1)设,根据距离公式得到方程,整理即可;()(),0A x y x >(2)设、、,表示出直线的方程,由点在直线上,代()11,P x y ()22,Q x y ()33,N x y PQ ()1,0B -PQ 入可得,同理可得,再表示出直线,代入可得124y y =()13231y y ty y y ++=QN ,即可得到直线过定点坐标.()()()131441y y ty y x +-=-QN 【小问1详解】解:设,则, ()(),0A x y x >()0,M y 因为,||||1AF AM -=又,整理得.0x >1x =+()240y x x =>【小问2详解】证明:设、、,()11,P x y ()22,Q x y ()33,N x y 所以, 121222121212444PQ y y y y k y y x x y y --===-+-所以直线的方程为,PQ ()11124y y x x y y -=-+因为点在直线上,()1,0B -PQ 所以,即,解得①, ()111241y x y y -=--+21112414y y y y ⎛⎫-=-- ⎪+⎝⎭124y y =同理可得直线的方程为,PN ()11134y y x x y y -=-+又在直线上,所以,易得, ()1,D t PN ()111341t y x y y -=-+1y t ≠解得②,()13231y y ty y y ++=所以直线的方程为,即③,QN ()22234y y x x y y -=-+()23234y y y x y y +=+将②式代入③式化简得,又, ()1311234y y ty y x y y y +=+124y y =即, ()131344y y ty y x y +=+即, ()()()131441y y ty y x +-=-所以直线恒过定点.QN 41,t ⎛⎫ ⎪⎝⎭。

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷(含答案)

2024-2025学年河北省保定市安国中学高二(上)第二次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设点A(2,3,−4)在xOy平面上的射影为B,则|OB|等于( )A. 29B. 5C. 25D. 132.若直线l:x+my+1=0的倾斜角为5π6,则实数m值为( )A. 3B. −3C. 33D. −333.若双曲线x29−y211=1的右支上一点P到右焦点的距离为9,则P到左焦点的距离为( )A. 3B. 12C. 15D. 3或154.点P(x,y)是直线2x+y+4=0上的动点,PA,PB是圆C:x2+(y−1)2=1的两条切线,A,B是切点,则三角形PAB周长的最小值为( )A. 4+5B. 5+5C. 4+455D. 4+255.如图,在直三棱柱ABC−AB1C1中,AC=2,BC=3,CC1=4,∠ACB=90°,则BC1与A1C所成的角的余弦值为( )A. 3210B. 8210C. 30525D. 85256.“a=3”是“直线l1:(a−1)x+2y+1=0与直线l2:3x+ay−1=0平行”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.在平面直角坐标系xOy中,圆C的方程为x2+y2−4y+3=0,若直线y=kx−1上存在点P,使以P点为圆心,1为半径的圆与圆C有公共点,则实数k的取值范围是( )A. (−∞,−14]∪[14,+∞)B. (−∞,− 52]∪[ 52,+∞)C. (−∞,− 52)∪( 52,+∞)D. (−∞,−12]∪[12,+∞)8.已知曲线C :(x 2+y 2)2=9(x 2−y 2)是双纽线,则下列结论正确的是( )A. 曲线C 的图象不关于原点对称B. 曲线C 经过4个整点(横、纵坐标均为整数的点)C. 若直线y =kx 与曲线C 只有一个交点,则实数k 的取值范围为(−∞,−1]D. 曲线C 上任意一点到坐标原点O 的距离都不超过3二、多选题:本题共3小题,共18分。

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

龙岩一中2022-2023学年第一学期高二第二次月考数学试题(考试时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1()320y m m --=∈R 的倾斜角为A .120B .60C .30D .1502.已知n S 是等差数列{}n a 的前n 项和,若378a a +=,则9S = A .24B .36C .48D .723.直线250x y ++=与直线20kx y +=互相垂直,则它们的交点坐标为 A .(1,3)--B .(2,1)--C .1,12⎛⎫-- ⎪⎝⎭D .(1,2)--4.数列1,12+,2122++,⋯ ,23112222n -+++++,的前n 项和为A .21n n --B .122n n +--C .2nD .12n n +-5.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22420x y x +++=,则PAB △面积的取值范围是A .B .C .[2,6]D .[4,12]6.数列122022n ⎧⎫⎨⎬-⎩⎭A .既有最大项,又有最小项B .有最大项,无最小项C .无最大项,有最小项D .既无最大项,又无最小项7.几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 A .1B .-7C .1或-1D .2或-78.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-).则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .2018B .2019C .2020D .2021二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若两平行线分别经过点A (5,0),B (0,12),则它们之间的距离d 可能等于 A .14B .5C .12D .1310.等差数列{}n a 中,10a >,公差0d <,n S 为其前n 项和,对任意正整数n ,若点(),n n S 在以下4条曲线中的某一条上,则这条曲线不可能是A .B .C .D .11.下列说法正确的是A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=C .圆的一般方程为D .直线()24y k x =-+与曲线1y =k 的取值范围12220x y Dx Ey F ++++=53,124⎛⎤⎥⎝⎦.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的70%.从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的18%变成绿地,同时,前一年绿地的2%又被侵蚀变成沙漠.则下列说法正确的是A .2021年底,该县的绿地面积占全县总面积的74%B .2023年底,该县的绿地面积将超过全县总面积的80%C .在这种政策之下,将来的任意一年,全县绿地面积都不能超过90%D .在这种政策之下,将来的某一年,绿地面积将达到100%全覆盖三、填空题:本题共4小题,每小题5分,共20分.13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设是公差为的等差数列,是公比为的等比数列.已知数列的前项和,则的值是_______.15.在直角坐标系xOy 中,已知直线:cos sin 1l x y θθ⋅+⋅=,当θ变化时,动直线始终没有经过点P ,定点Q 的坐标()2,0-,则PQ 的取值范围为 . 16.已知动点(,)P m n 在圆22 1O x y +=:上,则31n m --的取值范围是____________,若点1,02A ⎛⎫- ⎪⎝⎭,点,则2||||PA PB +的最小值为____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等比数列 的首项,公比,数列. (1)证明:数列 为等差数列;(2)设数列{}n b 前n 项和为n S ,求使 的所有正整数 的值的和. 18. (12分)已知圆C 的方程为:2224690()x y mx y m m R +--+-=∈. (1)试求m 的值,使圆C 的周长最小;{}n a d {}n b q {}n n a b +n 2*21()nn S n n n N =-+-∈d q +()1,1B 181a =19q =3log n n b a ={}n a {}n b n 36n S >-(2)求与满足(1)中条件的圆C 相切,且过点()1,2-的直线方程. 19.(12分)记为数列的前项和,已知是公差为的等差数列.(1)求的通项公式;(2)记,试判断与2的大小并证明. 20. (12分)已知圆()22:15C x y +-=,直线:10l mx y m -+-=. (1)求证:对m R ∈ ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于,A B 两点,当AB =l 的倾斜角. 21.(12分)已知数列{}n a 满足11a =,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,称数列{}n b 是数列{}n a 的“中程数数列”.(i )求“中程数数列”{}n b 的前n 项和n S ; (ii )若m k b a =(*,m k N ∈且m k >),求所有满足条件的实数对(),m k .22.(12分)平面直角坐标系中,圆M 经过点A ,(0,4)B ,(2,2)C -. (1)求圆M 的标准方程;(2)设(0,1)D ,过点D 作直线1l ,交圆M 于PQ 两点,PQ 不在y 轴上.(i )过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(ii )设直线OP ,BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.n S {}n a n 11,n n S a a ⎧⎫=⎨⎬⎩⎭13{}n a n T 12111n nT a a a =+++龙岩一中2022-2023学年第一学期高二第二次月考数学试题参考答案13.121n - 14.4 15.()1,3 16.4,3⎡⎫+∞⎪⎢⎣⎭17.(1)证明:因为等比数列{}n a 的首项181a =,公比19q =, 所以1162118139n n n n a a q---⎛⎫==⨯= ⎪⎝⎭,...................2分所以6233log log 362n n n n b a -==-=,............................3分 所以()()1621622n n n b n b +--+-=-=-,14b =,所以{}n b 是首项为4,公差为2-的等差数列;.................5分 (2)解:由(1)可得62n b n =-,所以()()46252n n nn n S +-==-,....................6分令36nS >-,解得49n -<<,........................8分又N*n ∈,所以1n =、2、3、4、5、6、7、8,.........................9分 ∴1+2+3+4+5+6+7+8=36∴所有正整数n 的值的和为36..............................10分 18.(1)2224690x y mx y m +--+-=,配方得:222()(2)(3)4x m y m -+-=-+,................2分 当3m =时,圆C 的半径有最小值2,此时圆的周长最小...................4分 (2)由(1)得,3m =,圆的方程为:22(3)(2)4x y -+-=.当直线与x 轴垂直时,1x =,此时直线与圆相切,符合条件;..............6分 当直线与x 轴不垂直时,设()12y k x =--,............7分2=,解得34k =,..............10分 所以切线方程为31144y x =-,即34110x y --=..................................11分 综上,直线方程为1x =或34110x y --=......................12分19.(1)∵ ,∴ ,∴,又∵是公差为的等差数列,∴,∴,...............3分∴当 时,,........................4分∴,......................5分整理得: , 即,..........................6分∴,显然对于 也成立, ∴ 的通项公式;...........................8分(2)....................10分∴∴...................12分20.(1)证明:直线 的方程可化为,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩.∴直线l 恒过定点()1,1P ...............3分∵||1PC =<3451(1)1123212n n n n n n ++=⨯⨯⨯⨯⋅⋅⋅⨯⨯=--2n T <l ()11y m x -=-∴点P 在圆C 内,∴直线l 与圆C 总有两个不同的交点. ...............6分(2)由()2215,10,x y mx y m ⎧+-=⎪⎨-+-=⎪⎩消去y 整理得()22221250mx m x m +-+-=,显然()22222(2)41(5)4(45)0m m m m ∆=--+-=+>. ....................8分 设()()1122,,,A x y B x y ,12,x x 则是一元二次方程的两个实根,∴2212122225,11m m x x x x m m -+==++,....................9分∵12AB x =-=....................10分=,解得23,m =∴m =l的斜率为分∴直线l 的倾斜角为3π或23π....................12分21.解:(1)证明:依题意,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭,即11111122n n n n a a a n n ++⎛⎫==+⋅⎪⎝⎭, 故1112n n a a n n +=⋅+,故数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,首项为111a =,公比为12的等比数列, 故1112n n a n -⎛⎫=⨯ ⎪⎝⎭,即112n n a n -⎛⎫=⋅ ⎪⎝⎭;....................4分(2)因为11112n n a a n +⎛⎫=+ ⎪⎝⎭,即11112n n n a a +⎛=⎫+ ⎪⎝⎭, 故1n =时11n na a +=,即12a a =,1n >时,11n n aa +<,即1n n a a +<, 故1234...a a a a =>>>,故11n M a ==,112n n n m a n -⎛⎫=⋅ ⎪⎝⎭=,所以1111122222n nn n n n M m b n -⎛⎫+⋅ ⎪+⎛⎫⎝⎭===+⋅ ⎪⎝⎭.......................6分①设数列12n n ⎧⎫⎪⎪⎛⎫⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和为n T ,则1231111123...2222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,234111111123...22222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式作差得,1231111111...222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即01211111111122...21222222212nn n nn n n T n n -⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-⋅=-⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,故123112 (2222)n n n n n b b b b T n S n +=++++=+=+-;....................8分 ②因为1122mm b m ⎛⎫=+⋅ ⎪⎝⎭,1102k k a k -⎛⎫=⋅> ⎪⎝⎭,m k b a =,所以1111111222222m m m k b m a a -⎛⎫=+⋅=+=> ⎪⎝⎭,即1122k m a a -=, 又因为3411422a ⎛⎫=⨯= ⎪⎝⎭,2313324a ⎛⎫=⨯= ⎪⎝⎭,121a a ==,且1234...a a a a =>>>,可知4k <且k *∈N ,即1,2,3k =,由1122k m a a -=知,1k =时,11111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故2m =符合题意;2k =时,21111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故无解; 3k =时,313112422m m a a a -=-=,故12m a =,即4m =,又m k >,故4m =符合题意;综上,所有满足条件的实数对(),m k 有()()2,1,4,3....................12分 22.(1)解:设圆M 的方程为()()222x a y b r -+-=,则)()()()()()22222222210422a b r a b r a b r ⎧+-=⎪⎪-+-=⎨⎪--+-=⎪⎩,解得2024a b r =⎧⎪=⎨⎪=⎩, 所以圆M 的标准方程为()2224x y +-=;....................4分 (2)解:设直线1l 的方程为1y kx =+,即10kx y -+=, 则圆心()0,2到直线1l的距离1d ==所以PQ == (i )若0k =,则直线2l 斜率不存在,则PQ =4EF =,则12S EF PQ =⋅= 若0k ≠,则直线2l 得方程为11y x k =-+,即0x ky k +-=,则圆心()0,2到直线1l的距离2d =所以EF = 则12S EF PQ =⋅=7===, 当且仅当221k k =,即1k =±时,取等号,综上所述,因为7 所以S 的最大值为7;.................8分 (ii )设()()1122,,,P x y Q x y ,10 联立()22241x y y kx ⎧+-=⎪⎨=+⎪⎩,消y 得()221230k x kx +--=, 则12122223,11k x x x x k k -+==++, 直线OP 的方程为11y y x x =, 直线BQ 的方程为2244y y x x -=+, 联立112244y y x x y y x x ⎧=⎪⎪⎨-⎪=+⎪⎩,解得121243x x x x x =+, 则()121121211212124144333kx x y x x y x y x x x x x x x +=⋅==+++ 1221212124462233kx x x x x x x x x +--===-++, 所以12124,23x x N x x ⎛⎫- ⎪+⎝⎭, 所以点N 在定直线2y =-上...................12分。

高二下学期数学第二次月考试卷

高二下学期数学第二次月考试卷

高二下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)经过A(2,0),B(5,3)两点的直线的倾斜角()A . 45°B . 135°C . 90°D . 60°2. (2分) (2016高二上·金华期中) 用斜二测画法画水平放置的边长为2的正三角形的直观图,所得图形的面积为()A .B .C .D .3. (2分)若a和b异面,b和c异面,则()A . a∥cB . a和c异面C . a和c相交D . a与c或平行或相交或异面4. (2分) (2018高二上·成都月考) 如图,水平放置的三棱柱的侧棱长为,且侧棱垂直于底面,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图面积为()A .B .C .D .5. (2分)直线过点(-1,2)且与直线垂直,则的方程是()A .B .C .D .6. (2分)如图,AB是圆O的直径,C是圆周上不同于AB的任意一点,平面ABC,则四面体P-ABC 的四个面中,直角三角形的个数有()A . 4个B . 3个C . 2个D . 1个7. (2分)已知圆的方程为x2+y2=1,则圆心到直线x+y+2=0的距离为()A . 1B . 2C . 2D .8. (2分)△ABC的顶点B在平面α内,A、C在α同侧,A′、C′是A、C的在平面α内的射影,且A′、C′、B三点共线,则平面ABC与平面α()A . 平行B . 垂直C . 相交但不垂直D . 重合9. (2分)空间四边形ABCD中,E、F分别为AC、BD中点,若,EF⊥AB,则EF与CD所成的角为()A . 30°B . 45°C . 60°D . 90°10. (2分)在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 不能确定二、填空题 (共6题;共6分)11. (1分) (2019高三上·朝阳月考) 某四棱锥的三视图如图所示,该四棱锥的体积为________,最长棱长为________.12. (1分) (2018高一下·北京期中) 圆锥的底面半径是3,高是4,则圆锥的侧面积是________.13. (1分)直线5x+12y+3=0与直线10x+24y+5=0的距离是________.14. (1分) (2019高一上·蒙山月考) 在正方体中,与所成的角等于________.15. (1分) (2018高一下·黑龙江期末) 在平行四边形中,∠ABD=90° ,且,若将其沿折起使平面平面,则三棱锥的外接球的表面积为________.16. (1分) (2020高三上·青浦期末) 如图,一矩形的一边在轴上,另两个顶点、在函数,的图像上,则此矩形绕轴旋转而成的几何体的体积的最大值是________三、解答题 (共5题;共55分)17. (10分) (2019高一下·江门月考)(1)求经过点,倾斜角为的直线方程.(2)求过点,并且在两轴上的截距相等的直线方程.18. (10分)(2019·奉贤模拟) 如图,三棱柱中,底面,,是的中点.(1)求证:平面;(2)若,,三棱柱的体积是,求异面直线与所成角的大小.19. (10分)如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)求直线MD与平面ABCD所成角的余弦值.20. (15分)(2017·成都模拟) 如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且=λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.(I)若λ=2,求证:GR⊥平面PEF;(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为?若存在,求出λ的值;若不存在,请说明理由.21. (10分) (2016高三上·金山期中) 在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点,F是CE的中点.(1)证明:BF∥平面ACD;(2)求平面BCE与平面ACD所成锐二面角的大小;(3)求点G到平面BCE的距离.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、第11 页共11 页。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

重庆市第八中学校2022-2023学年高二下学期第二次月考数学试题

重庆市第八中学校2022-2023学年高二下学期第二次月考数学试题

重庆市第八中学校2022-2023学年高二下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,在1980年庚申年,我国正式设立经济特区,请问:在100年后的2080年为()A.戊戌年B.辛丑年C.己亥年D.庚子年5.用红、黄、蓝、绿四种颜色给下图着色,要求有公共边的两块不着同色.在所有着色方案中,①③⑤着相同色的方案有()种A.96B.24C.48D.1086.随机变量x满足分布列如下:三、填空题13.已知函数()f x是定义在R上的奇函数,且在定义域内有且只有三个零点,则()f x可能是______.(本题答案不唯一)14.袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出2个球,记被取出的球的最大号码数为x,则()E x等于________.15.学校高三大理班周三上午四节、下午三节有六门科目可供安排,其中语文和数学各自都必须上两节而且两节连上,而英语、物理、化学、生物最多上一节,则不同的功课安排有________种情况.修费1500元;方案二:交纳延保金7740元,在延保的两年内可免费维修4次,超过4次每次收取维修费a元.某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:【点睛】开放性试题,可以从常用函数14.4【分析】由题意x的可能取值为2,【详解】Q袋中装有5个同样大小的现从该袋内随机取出2个球,记被取出的或存在性问题.也可考虑利用函数的单调性直接分析求解等.。

福建省龙岩第一中学2022-2023学年高二下学期第二次月考数学试题

福建省龙岩第一中学2022-2023学年高二下学期第二次月考数学试题

福建省龙岩第一中学2022-2023学年高二下学期第二次月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.总和生育率有时也简称生育率,是指一个人口群体的各年龄别妇女生育率的总和.
为了了解中国人均GDP x (单位:万元)和总和生育率y 以及女性平均受教育年限z
(单位:年)的关系,采用2012~2022近十年来的数据(),,(1,2,,10)i i i
x y z i =L 绘制了
散点图,并得到回归方程ˆ7.540.33z x =+,ˆ 2.880.41y x =-,对应的相关系数分别为1
r ,2r ,则( )
A .人均
GDP 和女性平均受教育年限正相关
B .女性平均受教育年限和总和生育率负相关
C .22
12
r r <D .未来三年总和生育率将继续降低
10.现有来自两个社区的核酸检验报告表,分装2袋,第一袋有5名男士和5名女士的报告表,第二袋有6名男士和4名女士的报告表.随机选一袋,然后从中随机抽取2
四、解答题
17.某新能源汽车公司对其产品研发投资额x(单位:百万元)与其月销售量y(单位:千辆)的数据进行统计,得到如下统计表和散点图.
征后,计划用()
ln
=+作为月销售量y关于产品研发投资额
y bx a
根据统计表和参考数据,求出y关于x的回归方程;
(2)根据回归方程和参考数据,当投资额为11百万元时,预测。

数学高二月考试卷

数学高二月考试卷

数学高二月考试卷一、选择题(每题5分,共60分)1. 椭圆frac{x^2}{25}+frac{y^2}{16}=1的长轴长为()A. 5B. 4C. 10D. 8.2. 双曲线x^2-frac{y^2}{3}=1的渐近线方程为()A. y = ±√(3)xB. y=±(√(3))/(3)xC. y = ± 3xD. y=±(1)/(3)x3. 抛物线y^2=2px(p>0)的焦点坐标为()A. ((p)/(2),0)B. (-(p)/(2),0)C. (0,(p)/(2))D. (0,-(p)/(2))4. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. - 2B. 2C. -(1)/(2)D. (1)/(2)5. 若直线y = kx + 1与圆x^2+y^2=1相切,则k=()A. ±√(3)B. ±1C. ±2D. ±√(2)6. 在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点为()A. (1,2,- 3)B. (-1,2,3)C. (1,-2,3)D. (-1,-2,-3)7. 设等差数列{a_n}的首项a_1=2,公差d = 3,则a_5=()A. 14B. 17C. 20D. 23.8. 等比数列{b_n}中,b_1=1,公比q = 2,则b_4=()A. 8B. 16C. 32D. 64.9. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)10. 已知函数f(x)=x^3-3x^2+1,则函数f(x)的单调递增区间为()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(3,+∞)D. (1,3)11. 若∫_0^a(2x + 1)dx=6,则a=()A. 2B. 3C. 4D. 5.12. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法共有()A. 46种B. 56种C. 70种D. 80种。

2022-2023学年高二下学期第二次月考数学试题(解析版)

2022-2023学年高二下学期第二次月考数学试题(解析版)

泗县二中2022~2023学年度第二学期高二第二次联考数学全卷满分150分,考试时间120分钟.注意事项:1.答卷前考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.4.本卷主要考查内容:选择性必修第三册第六章~第七章.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了方便广大市民接种新冠疫苗,提高新冠疫苗接种率,某区卫健委在城区设立了12个接种点,在乡镇设立了29个接种点.某市民为了在同一接种点顺利完成新冠疫苗接种,则不同接种点的选法共有( ) A. 31种 B. 358种C. 41种D. 348种【答案】C 【解析】【分析】根据题意该市民可选择的接种点为两类,一类为乡镇接种点,另一类为城区接种点,由加法原理计算可得答案.【详解】该市民可选择的接种点为两类,一类为乡镇接种点,另一类为城区接种点,所以共有种不同接种点的选法.29+12=41故选:C .2. 已知随机变量服从两点分布,,则其成功概率为( ) X ()0.6E X =A. 0.3 B. 0.4C. 0.5D. 0.6【答案】D 【解析】【分析】根据两点分布的期望即可求解.【详解】随机变量服从两点分布,设成功的概率为,X p.()()0110.6E X p p p ∴=⨯-+⨯==故选:D .3. 若随机变量的分布列如表,则的值为( )(|2|1)P X -=X 1 2 3 4P 1414a 13A.B.C. D.5121271223【答案】A 【解析】【分析】根据概率分布列的性质求出a 的值,由求得结果.(|2|1)(1)(3)P X P X P X -===+=【详解】根据题意可得, 111114436a =---=所以. 115(|2|1)(1)(3)6412P X P X P X -===+==+=故选:A.4. 如图,杨辉三角出现于我国南宋数学家杨辉1261年所著的《详解九章算法》中,它揭示了(n ()n a b +为非负整数)展开式的项数及各项系数的有关规律.由此可得图中第10行排在偶数位置的所有数字之和为( )A. 256B. 512C. 1024D. 1023【答案】B 【解析】【分析】由图形以及二项式系数和的有关性质可得. 【详解】由图知,第10行的所有数字之和为,0123456789101010101010101010101010102C C C C C C C C C C C ++++++++++=由二项式系数和的性质知,第10行排在偶数位置的所有数字之和为. 10125122⨯=故选:B 5. 的展开式中,的系数与常数项之差为( )()()22122x xx --+2x A. -3 B. -1C. 5D. 7【答案】C 【解析】【分析】取即可得常数项,将多项式化为,根据二项式定理,分别求出0x =()()4211x x +--()41x -,中的项数,再求和,即可求得的系数,即可得出结果. ()21x -2x 2x 【详解】解:因为,()()()()()()22222412211111x xx x x x x ⎡⎤++⎣--+=--=--⎦取可得常数项为:,0x =()()24121--+=在中,含的项为, ()41x -2x ()2222341C 6T x x -==在中,含的项为,()21x -2x ()0202121C T x x -==所以的展开式中,的系数为,()()22122x xx --+2x 617+=所以的系数与常数项之差为. 2x 72=5-故选:C6. 已知随机变量,且,又()21,,6,,,3X Y X B Y N μσ⎛⎫~~ ⎪⎝⎭()()E X E Y =()()23P Y m P Y m ≤-=≥,则实数的值为( ) m A. 或4 B.C. 4或1D. 51-1-【答案】A 【解析】【分析】根据二项分布的期望公式可得,进而由正态分布的对称性即可求解. 2μ=【详解】由题意可知, ()()()()162,,3E X E Y E X E Y μ=⨯===得,当时,,解得或4,2μ=()()23P Y m P Y m ≤-=≥234mm -=1m =-故选:.A7. 某校从高一、高二、高三中各选派名同学参加“党的光辉史”系列报告会,其中三个年级参会同学中8女生人数分别为,,,学习后,学校随机选取一名同学汇报学习心得,结果选出一名女同学,则该456名女同学来自高三年级的概率为( ) A.B.C.D.253581513【答案】A 【解析】【分析】设事件为“24人中抽出一名女同学”,事件为“24人中抽出一名高三同学”,分别求得A B ,,代入条件概率公式即可求解.()P A ()P AB 【详解】设事件为“24人中抽出一名女同学”,事件为“24人中抽出一名高三同学”,A B 则,,. ()45615524248P A ++===()61244P AB ==()()()25P AB P B A P A |==故选:A. 8. 已知,则()()()()()7292012921111x x a a x a x a x --=+-+-++-…() ()()1357924682a a a a a a a a a ++++++++=A. 8 B. 5C. 2D. 4【答案】D 【解析】【分析】取代入等式可得,分别取,代入等式,组成方程组,联立即可得1x =0a 2x =0x =,代入即可求得结果.135792468,a a a a a a a a a +++++++【详解】解:因为,()()()()()7292012921111x x a a x a x a x --=+-+-++-…取代入可得:,1x =00a =取代入可得:①, 2x =23456780192a a a a a a a a a a ++++++++=+取代入可得:②, 0x =23456780192a a a a a a a a a a -+-++-+-=-①+②再除以2可得:,所以, 246802a a a a a +++=+24682a a a a ++=+①-②再除以2可得:,135790a a a a a ++++=所以.()()1357924682224a a a a a a a a a ++++++++=⨯=故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知随机变量满足,则下列选项正确的是( ) X ()()5,2E X D X ==A. B. ()2111E X +=()2110E X +=C. D.()219D X +=()218D X +=【答案】AD 【解析】【分析】利用数学期望以及方差的运算性质,求解即可.【详解】,.()()212125111E X E X +=+=⨯+=()()()22124428D X D X D X +=⋅==⨯=故选:AD .10. 对于的展开式,下列说法正确的是( )81x x ⎛⎫- ⎪⎝⎭A. 展开式共有8项 B. 展开式中的常数项是70 C. 展开式中各项系数之和为0 D. 展开式中的二项式系数之和为64 【答案】BC 【解析】【分析】利用二项式定理和二项式系数的性质判断各选项.【详解】的展开式共有9项,故A 错误;81x x ⎛⎫- ⎪⎝⎭展开式中的常数项为,故B 正确;44481C 70x x ⎛⎫⨯⨯-= ⎪⎝⎭令,则展开式中各项系数之和为,故C 正确; 1x =()8110-=展开式中的二项式系数之和为,故D 错误. 82256=故选:BC11. 下列说法正确的是( ) A. 可表示为10111220⨯⨯⨯⨯ 1020AB. 6个朋友聚会,见面后每两人握手一次,一共握手15次C. 若把英义“”的字母顺序写错,则可能出现的错误共有59种sorry D. 将4名医护人员安排到呼吸、感染两个科室,要求每个科室至少有1人,则共有8种不同的安排方法 【答案】BC 【解析】【分析】根据排列数的计算公式可判断A ;两两握手,即随便选出两人握手的所有可能结果数,通过计算即可判断B ;先对进行排列,再将放入位置中即可,列出式子计算即可判断C ;按3,1分,,s o y r 组,和2,2分组两种情况,分别求出对应的安排方法,相加即可判断D.【详解】对于A 选项,,故A 错误;1020A 11121320=⨯⨯⨯⨯ 对于B 选项,6人两两握手,共握(次),故B 正确;2615C =对于C 选项,在5个位置中选出3个位置,对s ,o ,y 进行排列,剩下两个位置将r 放入即可,排列共有(种),正确的有1种,则可能出现的错误共有(种),故C 正确; 3353C A 60=60159-=对于D 选项,将4人按3,1分组,共(种)分法,再分到科室有(种)分法;14C 4=22A 2=将4人按2,2分组,共有(种)分法,再分到科室有(种)分法.24C 32=22A 2=故每个科室至少有1人,共有(种)安排方法,故D 错误. 423214⨯+⨯=故选:BC.12. 某商场举办一项抽奖活动,规则如下:每人将一枚质地均匀的骰子连续投掷3次,记第i 次正面朝上的点数为,若“”,则算作中奖,现甲、乙、丙、丁四人参加抽奖活动,记中奖人数()1,2,3i a i =123a a a <<为,下列说法正确的是( )X A. 若甲第1次投掷正面朝上的点数为3,则甲中奖的可能情况有4种 B. 若甲第3次投掷正面朝上的点数为5,则甲中奖的可能情况有6种 C. 甲中奖的概率为 554P =D. ()1027E X =【答案】BCD 【解析】【分析】求得甲第1次投掷正面朝上的点数为3时甲中奖的可能情况判断选项A ;求得甲第3次投掷正面朝上的点数为5时甲中奖的可能情况判断选项B ;求得甲中奖的概率判断选项C ;求得的值判()E X断选项D.【详解】当时,甲中奖情况有种,故错误; 13a =231A 32=A 当时,甲中奖情况有种,故B 正确; 35a =241A 62=甲中奖情况如下:当时,共有1种;33a =当时,共有种;当时,中奖情况有种, 34a =231A 32=35a =241A 62=当时,共有种;36a =251A 102=记“”的事件为A ,则中奖的可能情况共有种,∴123a a a <<1361020+++=所有可能情况有种,,故C 正确; 111666C C C 216=()20521654P A ∴==四人参加抽奖,每人中奖的概率均为, 554中奖人数,所以,故D 正确. 54,54X B ⎛⎫~ ⎪⎝⎭()51045427E X =⨯=故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13. 从甲地去乙地有4班火车,从乙地去丙地有3班轮船,若从甲地去丙地必须经过乙地中转,则从甲地去丙地可选择的出行方式有______________种. 【答案】12 【解析】【分析】由分步乘法计数原理可得答案.【详解】由分步乘法计数原理知从甲地去丙地可选择的出行方式有(种). 3412⨯=故答案为:12.14. 设随机变量,则__________.13,3X B ⎛⎫⎪⎝⎭ ()1P X ≥=【答案】1927【解析】【分析】根据二项分布的概率计算公式即可求解.【详解】随机变量服从. ()()0303111193,,1101C 133327X B P X P X ⎛⎫⎛⎫⎛⎫~∴≥=-==-⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:192715. 有3台车床加工同一类型的零件,第1台加工的次品率为4%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床加工的零件数分别占总数的20%,30%,50%,现从加工出来的零件中任取一个零件,则取到的零件是次品,且是第2台车床加工的概率为______. 【答案】## 5160.3125【解析】【分析】根据题意可知,次品是由3台机床共同造成的,利用全概率公式和条件概率公式即可求得结果. 【详解】记为事件“零件为第台车床加工”,为事件“任取一个零件为次品”, i A ()1,2,3i i =B 则,, ()10.2P A =()()230.3,0.4P A P A ==所以由全概率公式可得()()()()()()112233()P B P A P B A P A P B A P A P B A =++∣∣∣;0.20.040.30.050.50.050.048=⨯+⨯+⨯=由条件概率公式可得.()()()2220.30.055()0.04816P A P B A P A B P B ⨯===∣∣故答案为:51616. 已知两个不透明的盒中各有形状、大小都相同的红球、白球若干个,盒中有个红,A B A (08)m m <<球与个白球,盒中有个红球与个白球,若从两盒中各取1个球,表示所取的2个8m -B 8m -m ,A B ξ球中红球的个数,则的最大值为__________. ()D ξ【答案】##0.5 12【解析】【分析】由可能的取值,计算相应的概率,得到期望和方差,根据方差的算式,利用基本不等式求最ξ大值.【详解】的可能取值为,ξ0,1,2, ()()8808864m m m m P ξ--==⋅=, ()22288(8)832188886432m m m m m m m m P ξ---+-+==⋅+⋅==, ()()8828864m m m m P ξ--==⋅=所以的分布列为ξ ξ01 2P()864m m -283232m m -+()864m m -,()()()2888320121643264m m m m m m E ξ---+=⨯+⨯+⨯= ()()()222288832(01)(11)(21)643264m m m m m m D ξ---+=-⨯+-⨯+-⨯,当且仅当时,等号成立, ()28181323222m m m m -+-⎛⎫=≤⨯= ⎪⎝⎭4m =所以的最大值为. ()D ξ12故答案为:12四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17. 已知二项式的展开式中共有10项.(2n(1)求展开式的第5项的二项式系数; (2)求展开式中含的项. 4x 【答案】(1)126 (2)418x 【解析】【分析】(1)根据项数可求得,根据二项式系数与项数之间关系列出等式,解出即可; 9n =(2)由(1)中的,求出通项,使的幂次为4,求出含的项即可. 9n =x 4x 【小问1详解】解:因为二项式的展开式中共有10项,所以, 9n =所以第5项的二项式系数为; 49C 126=【小问2详解】由(1)知,记含的项为第项,9n =4x 1r +所以,(()992199C 2C 21r rrr rr rr Tx --+==-取,解得,所以,42r =8r =()88814299C 2118T x x =-=故展开式中含的项为.4x 418x 18. 为迎接年美国数学竞赛,选手们正在刻苦磨练,积极备战,假设模拟考试成绩从低到2023()AMC 高分为、、三个等级,某选手一次模拟考试所得成绩等级的分布列如下:123XX 1 23P 0.30.50.2现进行两次模拟考试,且两次互不影响,该选手两次模拟考试中成绩的最高等级记为. ξ(1)求此选手两次成绩的等级不相同的概率; (2)求的分布列和数学期望. ξ【答案】(1)0.62(2)分布列见解析, () 2.27E ξ=【解析】【分析】(1)计算出该选手连续两次成绩的等级相同的概率,利用对立事件的概率公式可求得所求事件的概率;(2)分析可知,随机变量的可能取值有、、,求出随机变量的可能取值,可得出随机变量的ξ123ξξ分布列,进而可求得的值. ()E ξ【小问1详解】解:此选手连续两次成绩的等级相同的概率为, 2220.30.50.20.38++=此选手两次成绩的等级不相同的概率为.∴10.380.62-=【小问2详解】解:由题意可知,的所有可能取值为、、,ξ123,()10.30.30.09P ξ==⨯= , ()20.50.30.30.50.50.50.55P ξ==⨯+⨯+⨯=.()()30.20.30.520.20.20.36P ξ==⨯+⨯+⨯=的分布列为ξ∴ξ 1 2 3P 0.090.550.36则数学期望. ()10.0920.5530.36 2.27E ξ=⨯+⨯+⨯=19. 现有4名男生、3名女生站成一排照相.(用数字作答) (1)两端是男生,有多少种不同的站法? (2)任意两名男生不相邻,有多少种不同的站法?(3)男生甲要在女生乙的右边(可以不相邻),有多少种不同的站法? 【答案】(1)1440(2)144 (3)2520【解析】【分析】(1)特殊位置特殊考虑,先取两位男生放置在两端,另5位全排列,列出等式,计算即可; (2)不相邻问题插空,先将另3名女生全排列,空出4个位置,让男生插空站入, 列出等式,计算即可;(3)排序问题,先在7个位置中找到5个位置,让除甲乙外的另5人排列,后将甲乙站入, 列出等式,计算即可. 【小问1详解】解:先选2名男生排两端有种方法,再排其余学生有种方法,24A 55A 所以两端是男生的不同站法有(种);2545A A 1440=【小问2详解】先排3名女生有种方法,再将4名男生插入4个空隙中有种方法,33A 44A 所以任意两名男生不相邻的不同站法有(种); 4343A A 144=【小问3详解】先在7个位置中找到5个位置,让除甲乙外的另5人排列共有:种方法, 57A 再将甲乙按照甲在乙右边的顺序,放置另两个位置中共1种,所以男生甲要在女生乙的右边的不同站法有(种).57A 2520=20. 设甲袋中有4个白球和4个红球,乙袋中有1个白球和2个红球(每个球除颜色以外均相同).(1)从甲袋中取4个球,求这4个球中恰好有3个红球的概率;(2)先从乙袋中取2个球放人甲袋,再从甲袋中取2个球,求从甲袋中取出的是2个红球的概率. 【答案】(1) 835(2)727【解析】【分析】(1)利用组合数求出从8个球中取4个球,4个球中恰好有3个红球、1个白球的取法数,进而求概率;(2)应用全概率公式求从甲袋中取出的是2个红球的概率即可. 【小问1详解】依题意,从8个球中取4个球有种取法,48C 其中4个球中恰好有3个红球,即恰好有3个红球、1个白球,有种取法,3144C C 所以4个球中恰好有3个红球的概率; 314448C C 8C 35P ==【小问2详解】记为从乙袋中取出1个红球、1个白球,为从乙袋中取出2个红球,为从甲袋中取出2个红球,1A 2A B 则,,()()1222122233C C 21,C 3C 3P A P A ====()()225612221010C C 21|,|C 9C 3P B A P B A ====所以. ()()()()()112222117||393327P B P B A P A P B A P A =⋅+⋅=⨯+⨯=21. 每年的4月23日是联合国教科文组织确定的“世界读书日”,又称“世界图书和版权日”,为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了1000名高一学生进行在线调查,得到了这1000名学生的日平均阅读时间(单位:小时),并将样本数据分成,,,,,[]0,2(]2,4(]4,6(]6,8(]8,10,,,九组,绘制成如图所示的频率分布直方图.(]10,12(]12,14(]14,16(]16,18(1)求的值:a (2)为进一步了解这1000名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在,两组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3(]8,10(]10,12人,记日平均阅读时间在内的学生人数为,求的分布列和数学期望. (]10,12X X 【答案】(1)0.10a =(2)分布列见解析, ()65E X =【解析】【分析】(1)根据所以频率和为1进行计算;(2)根据分层抽样可得相应组抽取的人数,则服从超几何分布,根据X 进行计算求解. ()310346C C ,0,1,2,3C k kP X k k -===【小问1详解】由频率分布直方图得:.解得; ()20.020.030.050.050.150.050.040.011a ++++++++=0.10a =【小问2详解】 由频率分布直方图得:这1000名学生中日平均阅读时间在,两组内的学生人数之比为, (]8,10(]10,120.15:0.13:2=若采用分层抽样的方法抽取了10人,则从日平均阅读时间在内的学生中抽取(人) (]8,1031065⨯=在日平均阅读时间在内的学生中抽取4人,(]10,12现从这10人中随机拍取3人,则服从超几何分布,其可能取值为0,1,2,3,X ,,()36310C 2010C 1206P X ====()1246310C C 6011C 1202P X ====,,()2146310C C 3632C 12010P X ====()34310C 413C 12030P X ====∴的分布列为:XX 0 123P 1612310 130. ()1131601236210305E X =⨯+⨯+⨯+⨯=22. 企业的产品正常生产时,产品尺寸服从正态分布,从当前生产线上随机抽取W D p p (80,0.25)N 400件产品进行检测,产品尺寸汇总如下表. 产品尺寸/mm [76,78.5](78.5,79](79,79.5](79.5,80.5](80.5,81](81,81.5](81.5,83]件数 85151160 724012根据产品质量标准和生产线的实际情况,产品尺寸在以外视为小概率事件.一旦小概率(3,3]μσμσ-+事件发生视为生产线出现异常,产品尺寸在以内为正品,以外为次品.(3,3]μσμσ-+ ()0.6827,(22)0.9545,P x P X μσμσμσμσ-<≤+≈-<≤+≈.(33)0.9973P X μσμσ-<≤+≈(1)判断生产线是否正常工作,并说明理由;(2)用频率表示概率,若再随机从生产线上取3件产品复检,正品检测费20元/件,次品检测费30元/件,记这3件产品检测费为随机变量,求的数学期望及方差. X X 【答案】(1)生产线没有正常工作,理由见解析(2)数学期望是,方差是1232574【解析】【分析】(1)求出正常产品尺寸范围,再由超出正常范围以外的零件数即可判断生产线有没有正常工作.(2)记这3件产品中次品件数为,则服从二项分布,求出,因为Y Y 13,20B ⎛⎫⎪⎝⎭()(),E Y D Y ,由均值和方差的性质即可求出.1060X Y =+()(),E X D X【小问1详解】依题意,有, 80,0.5μσ==所以正常产品尺寸范围为.(78.5,81.5]生产线正常工作,次品不能多于(件), 400(10.9973) 1.08⨯-=而实际上,超出正常范围以外的零件数为20,故生产线没有正常工作; 【小问2详解】依题意尺寸在以外的就是次品,故次品率为. (78.5,81.5]20140020=记这3件产品中次品件数为,则服从二项分布, Y Y 13,20B ⎛⎫ ⎪⎝⎭则, 1311957()3,()320202020400E Y D Y =⨯==⨯⨯=,20(3)301060X Y Y Y =-+=+所以的数学期望(元), X 123()10()602E X E Y =+=方差.5757()100()1004004D X D Y ==⨯=。

高二下学期第二次月考(6月)数学(理)试题(解析版)

高二下学期第二次月考(6月)数学(理)试题(解析版)

高二年级下学期第二次月考数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题. 3.选择题答案涂在答题卡上,非选择题答案写在答题卡上相应位置,在试卷和草稿纸上作答无效.第Ⅰ卷 选择题(共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上.1.已知集合{}2|3100A x x x =-++≥,{|121}B x m x m =+≤≤-,若A B ⋂≠∅,则m 的取值范围是( ) A. 1,42⎡⎤⎢⎥⎣⎦B. 1,(4,)2⎛⎫-∞+∞ ⎪⎝⎭U C. [2,4] D. (2,4)【答案】C 【解析】 【分析】化简出集合[]2,5A =-,由题意先说明B 不是空集,再解A B ⋂≠∅. 【详解】解:∵集合{}[]2|31002,5A x x x =-++≥=-,又∵{|121}B x m x m =+≤≤-,A B ⋂≠∅, 则121m m +≤-,即2m ≥; 此时,15m +≤,解得,4m ≤; 故m 的取值范围为[2,4]. 故选:C.【点睛】本题考查了集合的交集的应用,注意A B ⋂≠∅的前提是,A B 都不是空集,属于基础题. 2.在复平面内,复数12iz i+=,则z 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】化简复数,求出共轭复数,可得对应的点的坐标,即可得出结论. 【详解】解:复数122iz i i+==-, 共轭复数2z i =+, 对应的点()2,1位于第一象限. 故选:A.【点睛】本题考查复数的几何意义,考查复数的运算,正确化简复数是关键. 3.下列命题中,真命题的是( ) A. 00,0x x R e∃∈≤B. 2,2x x R x ∀∈>C. 0a b +=的充要条件是1ab=- D. 若,x y R ∈,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】利用全称命题和特称命题的定义判断A ,B.利用充要条件和必要条件的定义判断C.利用反证法证明D . 【详解】解:A ,根据指数函数的性质可知x e 0>恒成立,所以A 错误. B.当x 1=-时,1212(1)12-=<-=,所以B 错误. C.若a b 0==时,ab无意义0,即充分性不成立,所以C 错误. D.假设x ,y 都小于1,则x 1<,y 1<,所以x y 2+<与x y 2+>矛盾,所以假设不成立,所以D 正确. 故选D .【点睛】本题主要考查命题的真假判断,考查充分、必要条件的判断,属于基础题.4.若函数22,1,()log ,1,x x f x x x ⎧<=⎨-≥⎩ 则函数()f x 的值域是( )A. (,2)-∞B. (,2]-∞C. [0,)+∞D. (,0)(0,2)-∞U【答案】A 【解析】 【分析】画出函数的图像,由此确定函数的值域.【详解】画出函数的图像如下图所示,由图可知,函数的值域为(),2-∞,故选 A.【点睛】本小题主要考查指数函数和对数函数的图像,考查分段函数的值域,考查数形结合的数学思想方法,属于基础题.5.已知定义在R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( )A .1-B. 2-C. 1D. 2【答案】D 【解析】 【分析】根据()f x 为定义在R 上的奇函数,先求出()7f ,进而可求出()()7ff .【详解】因为()f x 为定义在R 上的奇函数,当0x <时,()()2log 1f x x =-,所以()()()277log 173f f =--=-+=-;所以()()()()273log 132ff f =-=+=.故选D【点睛】本题主要考查函数的奇偶性,根据函数的奇偶性求函数的值,熟记奇函数的定义即可求解,属于基础题型.6.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A. 0.7 B. 0.6C. 0.4D. 0.3【答案】B 【解析】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =-Qp 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p Q ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题. 7.用数学归纳法证明:()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--时第一步需要证明( ) A. 11221<-- B. 21112221n+<-- C. 22111122321++<-- D. 222211*********+++<-- 【答案】C 【解析】 【分析】直接利用数学归纳法写出2n =时左边的表达式即可,不等式的左边需要从1加到()22121-,不要漏掉项.【详解】解:用数学归纳法证明()()*222111112(2)232121n n n n N +++⋅⋅⋅+<-≥∈--,第一步应验证不等式为:222111122321++<--. 故选:C.【点睛】在利用数学归纳法证明问题中,第一步一定要分析不等式左边的项的特点,不能多写也不能少写,否则会引起答案的错误.8.若极坐标方程()ρρθ=满足()()ρθρπθ=-,则()ρρθ=表示的图形关于( )对称. A. 极轴 B. 极点C. 射线2πθ=D. 不确定【答案】C 【解析】 【分析】由()()ρρθρπθ==-,可得22θπθπ+-=,即可判断出结论.【详解】解:∵()()ρρθρπθ==-, ∴22θπθπ+-=,因此方程()ρρθ=表示的图形关于射线2πθ=对称.故选:C.【点睛】本题考查了极坐标方程的意义,考查了推理能力,属于基础题. 9.函数||4cos x y x e =-的图象可能是( )A. B.C. D.【答案】A 【解析】 【分析】求导,判断导函数函数值的正负,从而判断函数的单调性,通过单调性判断选项. 【详解】解:当0x >时,4cos xy x e =-,则'4sin x y x e =--,若0,2x π⎛⎫∈ ⎪⎝⎭,sin 0,0x x e >>,'4sin 0x y x e =--<,若,2x π⎡⎫∈+∞⎪⎢⎣⎭,44sin 4x -≤≤,()3222.74x e e π≥>>,则'4sin 0xy x e =--<恒成立, 即当0x >时,'4sin 0xy x e =--<恒成立, 则4cos x y x e =-在()0,∞+上单调递减,故选:A.【点睛】本题主要考查函数的图象,可以通过函数的性质进行排除,属于中档题.10.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1B.1C.1D.2【答案】A 【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,双曲线的焦点坐标为(),0c , 2p c ∴=,Q 点A 是两曲线的一个交点,且AF x ⊥轴,将x c =代入双曲线方程得到2,b A c a ⎛⎫⎪⎝⎭,将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+,即4224440a a b b +-=,解得ba= 222222b c a a a -∴==+)22231c a=+=解得1ce a==,故选A .【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----=-=-=', 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法:(1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为( ) A. 1(,)4+∞ B. 1(,)2+∞C. (1,)+∞D. (2,)+∞【答案】C 【解析】 【分析】由()()f x f x '>,构造函数()()exf xg x =,对其求导可知()()()0e xf x f xg x -''=>,所以函数()()exf xg x =是R 的单调递增函数,不等式()()121x ef x f x -<-可化为()()2121eexx f x f x --<,由()g x 的单调性可知21x x <-,解不等式即可得到答案. 【详解】构造函数()()e xf xg x =,则()()()()()2e e 0e e x x xxf x f x f x f xg x ''--='=>,则函数()()exf xg x =是R 的单调递增函数,对不等式()()1e21x f x f x -<-的两端同时除以21e x -得()()2121e e xx f x f x --<,则21x x <-,解得1x >. 故答案为C.【点睛】由()()f x f x '>,构造增函数()()exf xg x =,是本题的一个难点,需要学生在平常的学习中多积累这样的方法.第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置.13.设1x ≥,则函数()()231x x y x ++=+的最小值是______.【答案】6 【解析】【分析】根据题意,令1t x =+,则函数(1)(2)2=3t t y t t t ++=++(2t ≥),进行求导可得出函数2=3y t t++的单调性,进而即可求出最小值. 【详解】令1t x =+,则函数(1)(2)2=3t t y t t t++=++(2t ≥),因为2t ≥,所以2210y t'=->, 即函数23y t t=++为增函数, 所以23y t t=++在2t =时取到最小值, 代入可得最小值为6. 故答案为:6.【点睛】本题考查了换元法以及用导数求函数单调性,考查了转化思想,属于中档题. 14.若0sin a xdx π=⎰,则9a x ⎛- ⎝的展开式中常数项为______.【答案】672 【解析】 【分析】先由微积分基本定理求出a ,再由二项展开式的通项公式,即可求出结果. 【详解】因为()sin 020a xdx cosx cos cos πππ==-=-+=⎰;所以92x ⎛ ⎝的展开式的通项公式为:()()39999221992121k k kkkkk k kk T C xx C x----+=-=-,令3902k -=,则6k =,所以常数项为()6637921672T C =-=. 故答案为672【点睛】本题主要考查微积分基本定理和二项式定理,熟记公式即可求解,属于基础题型.15.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260. 【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数. 详解:若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 16.已知矩形ABCD 中,AB =1,BC =,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________. 【答案】10【解析】 【分析】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.再求出=++,平方即得||=.【详解】过B ,D 分别向AC 作垂线,垂足分别为M ,N .则可求得AM =,BM =,CN =,DN =,MN =1.由于=++, ∴||2=(++)2=||2+||2+||2+2(·+·+·)=()2+12+()2+2(0+0+0)=, ∴||=. 故答案为【点睛】(1)本题主要考查空间向量的线性运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)空间向量a r的模2||a a =rr 三、解答题:大本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.在平面直角坐标系中,以原点为极点.以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 4sin 4ρρθρθ=-+,直线1l 的极坐标方程为()cos sin 3ρθθ-=.(1)写出曲线C 和直线1l 的直角坐标方程;(2)设直线2l 过点()10P -,与曲线C 交于不同两点A B ,,AB 的中点为M ,1l 与2l 的交点为N ,求PM PN ⋅.【答案】(Ⅰ)C: ()()22129x y -++= ;直线1l 的直角坐标方程30x y --= (Ⅱ)8【解析】【分析】(Ⅰ)由极坐标方程与直角坐标方程的互化公式可直接得出结果;(Ⅱ)先写出直线2l 的参数方程,代入曲线C 的普通方程,得到PM ,再由直线2l 的参数方程代入30x y --=,得到PN ,进而可得出结果.【详解】(Ⅰ)曲线2:2cos 4sin 4C ρρθρθ=-+的直角坐标方程为:22244x y x y +=-+; 即()()22129x y -++= ()1:cos sin 3l ρθθ-=的直角坐标方程为:30x y --=(Ⅱ)直线2l 的参数方程1x tcos y tsin αα=-+⎧⎨=⎩(t 为参数), 将其代入曲线C 的普通方程并整理得()24cos sin 10t t αα---=,设,A B 两点的参数分别为12,t t ,则()124cos sin t t αα+=-因为M 为AB 的中点,故点M 的参数为()122cos sin 2t t αα+=-, 设N 点的参数分别为3t ,把1x tcos y tsin αα=-+⎧⎨=⎩代入30x y --=整理得34cos sin t αα=- 所以12342cos sin 82cos sin t t PM PN t αααα+⋅=⋅=-⋅=-. 【点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可;本题也考查了参数的方法求弦长的问题,熟记参数方程即可求解,属于常考题型.18.已知函数()||f x x a =-.(1)若不等式()3f x ≤的解集为{|15}x x -≤≤,求实数a 的值;(2)在(1)的条件下,若()(5)f x f x m ++≥对一切实数x 恒成立,求实数m 的取值范围.【答案】(1) 2a =;(2) m 的取值范围(5]-∞,. 【解析】【详解】(1)∵|x-a|≤3 ,∴a-3≤x≤a+3,∵f (x )≤3的解集为[-1,5] ,∴,∴a=2.(2)∵f (x )+f (x+5)=|x-2|+|x+3|≥|(x-2)-(x+3)|=5又f (x )+f (x+5)≥m 恒成立 ,∴m≤5.19.每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:(Ⅰ)求这100人睡眠时间的平均数x (同一组数据用该组区间的中点值代替,结果精确到个位);(Ⅱ)由直方图可以认为,人的睡眠时间t 近似服从正态分布()2N μσ,,其中μ近似地等于样本平均数x ,2σ近似地等于样本方差2s ,233.6s ≈.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数. 33.6 5.8≈.若随机变量Z 服从正态分布()2N μσ,,则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.【答案】(1)45; (2)6826人.【解析】【分析】(I)结合题表,计算期望,得到平均数,即可.(II)结合题意,得到该区间位于距离平均数一个标准差之内,计算概率,计算人数,即可.【详解】(Ⅰ)0.06340.18380.20420.28460.16500.10540.025844.7245 x=⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈;(Ⅱ)由题意得,39.250.8,μσμσ-≈+≈,()39.250.80.6826P t<<=,所以估计该人群中一周睡眠时间在区间()39.250.8,的人数约为100000.68266826⨯=(人);【点睛】本道题考查了正态分布曲线,考查了期望计算公式,难度中等.20.如图,在正三棱柱111ABC A B C-中,11AB BC⊥,P是1AA的中点.(1)求平面1PBC将三棱柱分成的两部分的体积之比;(2)求平面1PBC与平面ABC所成二面角的正切值.【答案】(1)1:1;(22【解析】【分析】(1)设1,AB a AA b==,分别求出111ABC A B CV-,1B ACC PV-,即可得体积比;(2)取BC的中点M,连接1,AM B M,通过11AB BC⊥及11AB BC⊥,可得1BC⊥面1AMB,根据计算可得222a b=,不妨设2b=,则22a=由题可得1PBCV在面ABC上的投影为ABCV,设平面1PBC与平面ABC所成二面角的大小为θ,求出1BPCSV,ABCSV,可得1cos ABCBPCSSθ=VV,进而可得正切值.【详解】解:(1)设1,AB a AA b==,则1112213sin 6024ABC AB C V a b a b -=⋅⋅=o , 12113332228B ACC P b V b a a a b -⎛⎫=⋅⋅+⋅⋅= ⎪⎝⎭, 则平面1PBC 将三棱柱分成的两部分的体积之比为1:1;(2)如图:取BC 的中点M ,连接1,AM B M , 由已知得面ABC ⊥面11BCC B ,又AM BC ⊥,则AM ⊥面11BCC B ,又1BC ⊂面11BCC B ,1AM BC ∴⊥,又11AB BC ⊥,且1AM A AB =I ,则1BC ⊥面1AMB ,11BC B M ∴⊥,则111BMB B BC V :V ,1111BB BM BB B C ∴=, 2ab b a ∴=,222a b ∴=, 不妨设2b =,则22a = 则()212213BP PC ==+=,()2212223BC =+=, 则1212333322BPC S =⨯-=V (2132322ABC S =⨯⨯=V由题可得1PBC V 在面ABC 上的投影为ABC V ,设平面1PBC 与平面ABC 所成二面角的大小为θ,则1cos 3ABC BPC S S θ===V V ,sin tan cos 2θθθ∴=== 所以平面1PBC 与平面ABC. 【点睛】本题考查棱柱,棱锥体积的求解,考查利用面积的射影法求二面角的大小,是中档题. 21.已知椭圆222:2(0)C x y a a +=>,过原点O 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (1)若(1,0)F 为椭圆C 的一个焦点,求椭圆C 的标准方程;(2)若经过椭圆C 的右焦点的直线l 与椭圆C 交于A ,B 两点,四边形OAPB 能否为平行四边形?若能,求此时直线OP 的方程,若不能,说明理由.【答案】(1)2212x y +=;(2)0x = 【解析】【分析】(1)变形2222:12x y C a a+=,根据,,a b c 的关系求解即可; (2)设直线l 的方程为2x my a =+,代入椭圆方程,根据韦达定理及向量的坐标运算,求得P 点坐标,代入椭圆方程,即可求得m 的值,进而可得直线OP 的方程.【详解】解:(1)由已知得2222:12x y C a a +=,则2212a a -=,解得22a =, 所以椭圆C 的标准方程为2212x y +=; (2)设()()()112200,,,,,A x y B x y P x y ,椭圆C 的右焦点,02F a ⎛⎫ ⎪⎪⎝⎭,当直线l 的斜率为0时,,,O A B 三点共线,不符合题意,所以可设直线l的方程为x my =, 联立2222x y a +=,可得()222202a m y ++-=, 显然,>0∆,则1222y y m +=-+, 若四边形OAPB 为平行四边形,则OP OA OB =+u u u r u u u r u u u r ,所以,01222y y y m =+=-+, ()0121222x x x m y y m =+=++=+, 因为P 在椭圆上,所以222002x y a +=,即()()222222228422a a m a m m +=++,解得m =,所以四边形OAPB能为平行四边行,此时002OP y m k x ==-=, 直线OP的方程为y x =即0x ±=. 【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,计算能力,属于中档题.22.设函数()ln f x x x =-,() 21xg x xe x =--. (1) 关于x 的方程()2103f x x x m =-+在区间[1,3]上有解,求m 的取值范围; (2) 当0x >时,()()g x a f x -≥恒成立,求实数a 的取值范围.【答案】(1) m 的取值范围为35[ln 32,ln]24-+;(2) a 的取值范围为0a ≤. 【解析】试题分析:(1)方程()2103f x x m =-+等价于()27ln 3h x x x x m =-+=,利用导数研究函数的单调性,结合函数图象可得m 的取值范围;(2)()()g x a f x -≥恒成立等价于()()()ln 1x F x g x f x x e x x a =-=⋅---≥恒成立,两次求导,求得()F x 的最小值为零,从而可得实数a 的取值范围.试题解析:(1)方程()2103f x x x m =-+即为27ln 3x x x m -+=,令()()27ln 03h x x x x x =-+>,则()()()312317'233x x h x x x x+-=-+=-,∴当[]1,3x ∈时,()()',h x h x 随x 变化情况如表:()()443351,3ln 32,ln 33224h h h ⎛⎫==-<=+ ⎪⎝⎭Q ,∴当[]1,3x ∈时,()35ln 32,ln 24h x ⎡⎤∈-+⎢⎥⎣⎦,m ∴的取值范围是35ln 32,ln24⎡⎤-+⎢⎥⎣⎦. (2)依题意,当0x >时,()()g x f x a -≥恒成立,令()()()()ln 10x F x g x f x x e x x x =-=⋅--->,则()()()()11'111x x x F x x e x e x x +=+⋅--=⋅⋅-,令()1x G x x e =⋅-,则当0x >时,()()'10x G x x e =+⋅>,∴函数()G x 在()0,∞+上递增,()()010,110G G e =-<=->Q ,()G x ∴存在唯一的零点()0,1c ∈,且当()0,x c ∈时,()0G x <,当(),x c ∈+∞时,()0G x >,则当()0,x c ∈时,()'0E x <,当(),x c ∈+∞时,()'0F x >,()F x ∴在()0,c 上递减,在(),c +∞上递增,从而()()2ln 1F x F c ce c c ≥=---,由()0G c =得10,1c c ce ce -==,两边取对数得ln 0c c +=,()()()0,0,0F c F x F c a ∴=∴≥=∴≤,即实数a 的取值范围是0a ≤.。

2021-2022学年河北省邢台市卓越联盟高二下学期第二次月考数学试题(解析版)

2021-2022学年河北省邢台市卓越联盟高二下学期第二次月考数学试题(解析版)

2021-2022学年河北省邢台市卓越联盟高二下学期第二次月考数学试题一、单选题1.202220212020819811980⨯⨯⨯⨯等于( ) A .19802022A B .412022A C .422022A D .432022A【答案】D【分析】根据排列数公式判断即可;【详解】解:因为19802022一共有20221980143-+=个数,所以4320220A 20222021202081981198⨯⨯⨯⨯=,故选:D2.从2名男生和4名女生中选3人参加校庆汇报演出,其中至少要有一男一女,则不同的选法共有( ) A .16种 B .32种 C .95种 D .192种【答案】A【分析】依题意分选出的3人为1男2女和选出的3人为2男1女两类,按分类计数原理求解即可【详解】若选出的3人为1男2女的情况有1224C C 种.若选出的3人为2男1女的情况有2124C C 种.所以至少要有一男一女的选法有21122424C C C C 16+=,故选:A3.下面几种概率是条件概率的是( )A .甲、乙二人投篮命中率分别为0.6、0.7,各投篮一次都投中的概率B .有10件产品,其中3件次品,抽2件产品进行检验,恰好抽到一件次品的概率C .甲、乙二人投篮命中率分别为0.6,0.7,在甲投中的条件下乙投篮一次命中的概率D .小明上学路上要过四个路口,每个路口遇到红灯的概率都是25,小明在一次上学途中遇到红灯的概率 【答案】C【分析】根据条件概率的定义一次对选项进行判断即可.【详解】由条件概率的定义:某一事件已发生的情况下,另一事件发生的概率. 选项A :甲乙各投篮一次投中的概率,不是条件概率;选项B :抽2件产品恰好抽到一件次品,不是条件概率; 选项C :甲投中的条件下乙投篮一次命中的概率,是条件概率; 选项D :一次上学途中遇到红灯的概率,不是条件概率. 故选:C4.下列结论正确的是( )A .若()2sin f x x x =+,则()cos 2f x x x '=-+B .若()f x ()f x '=C .若()2f x =,则()2f x '=D .若()()321f x x =-,则()()2321f x x ='- 【答案】B【分析】根据导数运算法则,结合基本函数的导数公式依次讨论各选项即可得答案.【详解】解:对于A 选项,()2sin f x x x =+,()cos 2f x x x ='+,故A 错误;对于B 选项,()12f x x =,()1212f x x -'=⋅=B 正确;对于C 选项,()2f x π=,()0f x '=,故C 错误;对于D 选项,()()321f x x =-,()()()23'3212621f x x x =-⋅=-,故D 错误. 故选:B 5.函数31226y x x =-+的极小值点是( ) A .2 B .23-C .2-D .143【答案】A【分析】利用极值点的定义求解. 【详解】解:由题意得:∵31226y x x =-+, ∴2122y x '=-, 令0y '=,则2x =±,当(),2x ∞∈--时,0y '>,函数31226y x x =-+单调递增 当[]2,2x ∈-时,0y '≤,函数31226y x x =-+单调递减 当()2,x ∈+∞时,0y '>,函数31226y x x =-+单调递增 故2x =是函数的极小值点.故选:A6.将三颗骰子各掷一次,设事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P B A 的值是( ) A .6091B .12C .518D .91216【答案】B【分析】根据题意,计算()P AB ,()P A ,进而结合条件概率公式求解即可.【详解】根据条件概率的含义,()P B A 其含义为在A 发生的情况下,B 发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个6点”的概率,因为()23533C A 5618P AB ==,()363A 569P A ==,所以()()()5118529P AB P B A P A ===. 故选:B7.()()52x y x y +-的展开式中的33x y 系数为( ) A .30 B .10 C .30- D .10-【答案】B【分析】求得()5x y -的通项,令3r =和2r =,即可求出答案.【详解】因为()()()()55522x y x y x x y y x y +-=-+-,()5x y -的通项为:()515C rr rr T x y -+=-令3r =,则()33245=C T x y -,令2r =,则()22335=C T x y -,所以33x y 的系数为()()32325512C 110C 2010-+-=-+=.故选:B.8.回文联是我国对联中的一种,用回文形式写成的对联,既可顺读,也可倒读,不仅意思不变,而且颇具趣味,相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成3位“回文数”的个数为( ) A .30 B .36C .360D .1296【答案】B【分析】根据题意,第一步选择第一位数,第二步选择第二位数,结合分步计数原理,即可求解.【详解】由题意,第一步选择第一位数,有6种方法,第二步选择第二位数,有6种方法,利用分步计数原理,共有6636⨯=种. 故选:B. 二、多选题9.若随机变量X 的分布列如下,则( )A .10t =B .()10.8P X >=C .11t =D .()30.6P X ≥=【答案】AD【分析】由分布列的性质对选项一一判断即可得出答案. 【详解】因为()112341t+++=,解得10t =,故A 正确,C 错误. 由分布列可知:()()11110.10.9P X P X >=-==-=,故B 错误;()30.40.20.6P X ≥=+=,故D 正确.故选:AD.10.已知2nx⎛⎝的二项展开式中二项式系数之和为64,下列结论正确的是( )A .二项展开式中各项系数之和为63B .二项展开式中二项式系数最大的项为32160xC .二项展开式中有常数项D .二项展开式中系数最大的项为390x【答案】ABC【分析】根据二项式系数和得6n =,进而根据二项式展开式,二项式系数的性质等依次讨论各选项即可得答案.【详解】解:因为2nx⎛⎝的二项展开式中二项式系数之和为64,所以264n =,得6n =,所以题中二项式为62x ⎛⎝,二项式展开式的通式公式为:()3666216622rr rrr r r T C x C x ---+==, 对于选项A ,令1x =,可得二项展开式中各项系数之和为63,所以选项A 正确; 对于选项B ,第4项的二项式系数最大,此时3r =,则二项展开式中二项式系数最大的项为336336322462160T C xx -⨯-==,所以选项B 正确;对于选项C ,令3602r -=,则4r =,所以二项展开式中的常数项为36446426260C x -⨯-=,所以选项C 正确;对于选项D ,令第1r +项的系数最大,则()()6161666161662222r r r r r r r r C C C C -----+-+⎧≥⎪⎨≥⎪⎩,解得5733r ≤≤, 因为*r N ∈,所以2r =时,二项展开式中系数最大,则二项展开式中系数最大的项为 2433362240T C x x ==,所以选项D 错误.故选:ABC11.在新高考方案中,选择性考试科目有:物理、化学、生物、政治、历史、地理6门.学生根据高校的要求,结合自身特长兴趣,首先在物理、历史2门科目中选择1门,再从政治、地理、化学、生物4门科目中选择2门,考试成绩计入考生总分,作为统一高考招生录取的依据.某学生想在物理、化学、生物、政治、历史、地理这6门课程中选三门作为选考科目,下列说法正确的是( ) A .若任意选科,选法总数为1224C C B .若化学必选,选法总数为1123C CC .若政治和地理至多选一门,选法总数为11112222C C C C +D .若物理必选,化学、生物至少选一门,选法总数为111222C C C + 【答案】ABC【分析】根据题意,结合分类计数原理和分步计数原理,利用组合数的计算公式,逐项计算,即可求解.【详解】对于A 中,先从物理和历史中,任选1科,再从剩余的四科中任选2科, 根据分步计数原理,可得选法总数为1224C C 种,所以A 正确; 对于B 中,先从物理、历史中选1门,有12C 种选法,若化学必选,再从生物、政治、地理中再选1门,有13C 种选法, 由分步计数原理,可得选法共有1123C C 种,所以B 正确; 对于C 中,先从物理和历史中选1门,有12C 种选法,若从政治和地理中只选1门,再从化学和生物中选1门,有1122C C 种选法, 若政治和地理都不选,则从化学和生物中选2门,只有1中选法, 由分类计数原理,可得共有111222(1)C C C +,所以C 正确; 对于D 中,若物理必选,只有1种选法,若化学、生物只选1门,则在政治、地理中选1门,有1122C C 种选法, 若化学、生物都选,则只有1种选法,由分类计数原理,可得选法总数为11221C C +,所以D 错误. 故选:ABC.12.过点(),0P a 作曲线x y xe =的切线,若切线有且仅有两条,则实数a 的值可以是( ) A .2 B .0 C .4- D .6-【答案】AD【分析】设切点为000(,)xx x e ,求得切线方程为:()()000001x x y x e x e x x -=+-,将切线过点(,0)P a ,代入切线方程,得到2000x ax a --=有两个解,结合0∆>,即可求解.【详解】由题意,函数x y xe =,可得(1)x y x e '=+设切点为000(,)xx x e ,则000|(1)x x x y x e ='=+, 所以切线方程为:()()000001x xy x e x e x x -=+-,切线过点(,0)P a ,代入得()()000001x x x e x e a x -=+-,即方程2000x ax a --=有两个不同解,则有240a a ∆=+>,解得0a >或4a .故选:AD. 三、填空题13.已知X 是一个离散型随机变量,分布列如表,则常数c 的值为__________.【答案】13【分析】根据离散型随机变量分布列的性质,列出方程组,即可求解.【详解】由离散型随机变量分布列的性质,可得22903809381c c c c c c ⎧-≥⎪-≥⎨⎪-+-=⎩,解得13c =.故答案为:13.14.118除以9的余数是__________. 【答案】8【分析】结合二项式展开式的通项公式求得正确答案.【详解】()1111819=-+,展开式的通项公式为()111119kkk C -⋅-⋅,当0k =时,为()11011191C ⋅-⋅=-. 所以118除以9的余数是198-+=. 故答案为:815.已知一个盒子装有4只产品,其中有3只一等品,1只二等品,从中取产品两次,每次任取一只,作不放回抽样,则事件“第二次取到一等品”的概率为__________.【答案】340.75【分析】分析可得所求事件可分为第一次取到的是一等品,第二次取到的是一等品,和第一次取到的是二等品,第二次取到的是一等品,即可求得答案.【详解】设事件“第二次取到一等品”为事件A ,可分为第一次取到的是一等品,第二次取到的是一等品,和第一次取到的是二等品,第二次取到的是一等品,所以()3213343434P A =⨯+⨯=.故答案为:3416.()5231x x ++的展开式中2x 的系数为__________.【答案】95【分析】将2x ,3x ,1看作三个不同的对象,把问题可转化为将5个相同元素分给甲、乙、丙三个对象的问题求解.【详解】解:将2x 看作对象甲,3x 看作对象乙,1看作对象丙, 则题设可转化为将5个相同元素分给甲、乙、丙三个对象的问题,则要得到2x ,则给甲1个元素,给乙0个元素,给丙4个元素, 或给甲0个元素,给乙2个元素,给丙3个元素,即2x 的系数为1422551395C C ⨯+⨯=.故答案为:95 四、解答题17.已知()727012712x a a x a x a x -=++++.求:(1)1237a a a a ++++;(2)1357a a a a +++. 【答案】(1)2-; (2)1094-.【分析】(1)(2)根据给定的二项式的展开式,利用赋值法计算作答.【详解】(1)依题意,令()7()12f x x =-,当0x =时,0(0)1a f ==,当1x =时,()701234567(1)1211a a a a a a a a f =+++++++=-⨯=-, 所以,1237(1)(0)2a f a a f a =-++++=-.(2)由(1)知,当1x =-时,7012345673218(71)a a a a a a a a f ++==-+---=-, 因此,1357(1)(1)12187109422f f a a a a ----+++===-. 18.某种产品的加工需要经过5道工序.(1)如果其中某道工序不能放在最后,那么有多少种加工顺序?(2)如果其中某2道工序既不能放在最前,也不能放在最后,那么有多少种加工顺序? (3)如果其中某2道工序必须相邻,那么有多少种加工顺序? (4)如果其中某2道工序不能相邻,那么有多少种加工顺序? 【答案】(1)96,(2)36,(3)48,(4)72【分析】(1)先从另外4道工序中任选1道工序放在最后,再将剩余的4道工序全排列即可;(2)先从另外3道工序中任选2道工序放在最前和最后,再将剩余的3道工序全排列;(3)先排这2道工序,再将它们看做一个整体,与剩余的工序全排列;(4)先排其余的3道工序,出现4个空位,再将这2道工序插空【详解】解:(1)先从另外4道工序中任选1道工序放在最后,有14C 4=种不同的排法,再将剩余的4道工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有42496⨯=种加工顺序;(2)先从另外3道工序中任选2道工序放在最前和最后,有236A =种不同的排法,再将剩余的3道工序全排列,有336A =种不同的排法,故由分步乘法原理可得,共有6636⨯=种加工顺序;(3)先排这2道工序,有222A =种不同的排法,再将它们看做一个整体,与剩余的工序全排列,有4424A =种不同的排法,故由分步乘法原理可得,共有22448⨯=种加工顺序;(4)先排其余的3道工序,有336A =种不同的排法,出现4个空位,再将这2道工序插空,有2412A =种不同的排法,所以由分步乘法原理可得,共有61272⨯=种加工顺序,19.已知等差数列{}n a 中11a =,公差为()0d d ≠,n S 为其前n 项和,且1S ,3S ,9S 成等比数列.(1)求数列{}n a 的通项公式; (2)设11n n n c a a +=,求数列{}n c 的前2022项的和2022T . 【答案】(1)21n a n =- (2)202220224045T =【分析】(1)利用基本量法求解即可;(2)由(1)有21n a n =-,再利用裂项求和求解即可【详解】(1)等差数列{}n a 中11a =,公差为d (0d ≠),n S 为其前n 项和,且1S ,3S ,9S 成等比数列.所以111S a ==,333S d =+,9936S d =+.1S ,3S ,9S 成等比数列.所以()233936d d +=+,又因为0d ≠, 解得2d =.所以21n a n =-. (2)因为21n a n =-,故()()111111212122121n n n c a a n n n n +⎛⎫===- ⎪-+-+⎝⎭. 11111111112335212122121n n T n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 所以21n n T n =+.所以202220224045T =.20.某工厂生产一种航天仪器零件,每件零件生产成型后,得到合格零件的概率为0.6,得到的不合格零件可以进行一次技术处理,技术处理费用为100元/件,技术处理后得到合格零件的概率为0.5,得到的不合格零件成为废品. (1)求得到一件合格零件的概率;(2)合格零件以1500元/件的价格销售,废品以100元/件的价格被回收.零件的生产成本为800元/件,假如每件产品是否合格相互独立,记X 为生产一件零件获得的利润,求X 的分布列. 【答案】(1)0.8 (2)答案见解析【分析】(1)设事件A :“一次性成型即合格”,设事件B :“经过技术处理后合格”,求得(),()P A P B 的值,结合互斥事件的概率公式,即可求解;(2)根据题意,得到随机变量X 可取700,600,800-,求得相应的概率,即可得出X 的分布列.【详解】(1)解:设事件A :“一次性成型即合格”,设事件B :“经过技术处理后合格”, 则()0.6P A =,()()10.60.50.2P B =-⨯=.所以得到一件合格零件的概率为()()0.8P P A P B =+=. (2)解:若一件零件一次成型即合格,则1500800700X =-=. 若一件零件经过技术处理后合格,则1500800100600X =--=. 若一件零件成为废品,则800100100800X =-+=--. 所以X 可取700,600,800-,则()7000.6P X ==,()()60010.60.50.2P X ==-⨯=,()()()80010.610.50.2P X =-=-⨯-=,所以随机变量X 的分布列为21.如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,P A ⊥平面ABCD ,P A =AB ,E 为线段PB 的中点,F 为线段BC 上的动点.(1)求证:AE ⊥平面PBC ;(2)试确定点F 的位置,使平面AEF 与平面PCD 所成的锐二面角为30°. 【答案】(1)见解析(2)当点F 为BC 中点时,平面AEF 与平面PCD 所成的锐二面角为30°【分析】(1)证明PA BC ⊥.AB BC ⊥,推出BC ⊥平面PAB .得到AE BC ⊥.证明AE PB ⊥,得到AE ⊥平面PBC .然后证明平面AEF ⊥平面PBC .(2)分别以,,AB AD AP 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -,设正方形ABCD 的边长为2,求出为平面AEF 的法向量,平面PCD 的法向量,利用空间向量的数量积求解即可.【详解】解:(1)∵P A ⊥平面ABCD ,BC ⊂平面ABCD ∴P A ⊥BC ∵ABCD 为正方形 ∴AB ⊥BC又 P A ∩AB =A ,P A ,AB ⊂平面P AB ∴BC ⊥平面P AB ∴AE ⊂平面P AB ∴AE ⊥BC∵P A =AB ,E 为线段PB 的中点 ∴AE ⊥PB又 PB ∩BC =B ,PB ,BC ⊂平面PBC ∴AE ⊥平面PBC(2)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,设正方形ABCD 的边长为2,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0)P (0,0,2)E (1,0,1)∴(1,0,1)AE =,(2,2,2)PC =-,(0,2,2)PD =- 设F (2,λ,0)(0≤λ≤2), ∴(2,,0)AF λ=设平面AEF 的一个法向量为()111,,n x y z =则·0·0n AE n AF ⎧=⎨=⎩∴1111020x z x y λ+=⎧⎨+=⎩ 令y 1=2,则11x z λλ=-⎧⎨=⎩ ∴(,2,)n λλ=-设平面PCD 的一个法向量为()222,,m x y z =则·0·0m PC m PD ⎧=⎨=⎩∴2222200x y z y z +-=⎧⎨-=⎩ 令y 2=1,则2201x z =⎧⎨=⎩ ∴()0,1,1m =∵平面AEF 与平面PCD 所成的锐二面角为30°,∴2cos302m n m n︒===⨯ 解得λ=1,∴当点F 为BC 中点时,平面AEF 与平面PCD 所成的锐二面角为30°【点睛】本题考查空间直线和直线、直线和平面、平面和平面的垂直的证明,二面角等基础知识,考查学生的逻辑推理能力,化归与转化能力和空间想象能力.考查的核心素养是直观想象、逻辑推理与数学运算.22.已知抛物线C :22x py =的焦点为F ,抛物线上一点()(),20A m m >到F 的距离为3. (1)求抛物线C 的方程:(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线3y =-上,证明:直线l 恒过定点. 【答案】(1)24x y = (2)证明见解析【分析】(1)由抛物线的定义即可求解;(2)设直线l 的方程并与抛物线方程联立,写出韦达定理和两条切线方程,将两切线方程联立可得交点坐标,根据交点在直线3y =-上,即可得到所求定点. 【详解】(1)由抛物线C :22x py =上一点(),2A m 到F 的距离为3, 可得232p+=,解得2p =,所以抛物线C 的方程为24x y =. (2)证明:设211,4x D x ⎛⎫ ⎪⎝⎭,222,4x E x ⎛⎫⎪⎝⎭,由题意知直线l 的斜率存在,设直线l 的方程为y kx n =+,联立方程24y kx nx y=+⎧⎨=⎩,整理得2440x kx n --=,所以216160k n ∆=+>,且124x x k +=,124x x n =-, 又由24x y =,可得=2x y ',所以抛物线C 在点D 处的切线1l 的方程为()211124x x y x x =-+,即21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得122x x x +=,124x x y =,又因为直线1l 与2l 的交点恰好在直线y =-3上, 所以,1234x x =-即1212x x =-,所以12412x x n =-=-,解得3n =, 故直线l 的方程为3y kx =+,所以直线l 恒过定点()0,3.。

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知随机变量X的分布列为二、多选题9.关于()7-的展开式,下列判断正确的是()7xA.展开式共有8项B.展开式的各二项式系数的和为128C.展开式的第7项的二项式系数为49D.展开式的各项系数的和为76三、填空题中点,将ADEV沿AE翻折,使点D与点P重合,如图2.(1)证明:PB⊥AE;(2)当二面角P AE B--等于90°时,求P A与平面PEC所成角的正弦值.20.2023年春节期间,电影院有多部新片上映,某传媒公司调查了消费者的购票途径,数据显示超八成用户选择线上购买电影票,已知有A,B,C,D,E,F,G,H这8个线上购票平台,现随机抽取了200名线上消费者并统计他们在这8个平台上购买春节档电影票的人数(假设每个消费者只选用一个购票平台购买春节档电影票)以及曾经使用过这8个平台购买电影票的人数(每个消费者可用多个平台购买电影票),得到如下表格:当1a =时,()010f a =-=,函数()f x 有一个零点.(2)由(1)知:当1a <时,()010f a =-<,则函数()f x 无零点,当1a =时,()010f a =-=,函数()f x 有一个零点.当1a >时,()010f a =->, ()e 0a f a --=-<,()2e a f a a =-,()2e a f a ¢=-,当ln 2a <时,()0f a ¢>,()f a 在 (),ln 2-¥上递增;当 ln 2a >时,()0f a ¢<,()f a 在()ln 2,+¥上递减;所以()()maxln 22ln 220f a f ==-<,则 ()0f a <,所以()f x 在(),0¥-, ()0,¥+上各有一个零点;则1a >,且120a x x a -<<<<,要证1220x x +<,则证212x x <-,因为()f x 在(),0¥-上递减,所以只需证()()212f x f x >-,又()()210f x f x ==,只需证()()112f x f x >-,令()()()2g x x f x f =--,则()()()22e 2e 3e e x x x x g x x x x a a --=-+---+=-+,则()23e -2e x x g x -=-¢,设()23e -2e x x h x -=-,则()()20e +4e 0x x h x h -¢=->¢=,。

安徽省泗县第一中学2022-2023学年高二下学期第二次月考数学试卷

安徽省泗县第一中学2022-2023学年高二下学期第二次月考数学试卷

安徽省泗县第一中学2022-2023学年高二下学期第二次月考数学试卷学校:___________姓名:___________班级:___________考号:___________【分析】令()()2,3x x f x x g x x =+=+,结合题意可知01b a <<<,进而有b b a a b b >>,再利用对数函数的单调性和运算性质即可求解【详解】令()()2,3x x f x x g x x =+=+,则当0x >时,()()g x f x >,当0x <时,()()g x f x <;由22,32a b a b +=+=,得()()2,2f a g b ==考虑到()()2f a g b ==得01b a <<<,b b aa b b \>>由b a a b >,得()()lg lg b a a b >,即lg lg b a a b >故选:C 7.B【分析】结合导数和二次函数的性质可求出()f x 和()g x 的值域,结合已知条件可得[0e 4[]a Í-,,]a ,从而可求出实数a 的取值范围.【详解】解:()2e x g x x =的导函数为()()22e e 2e x x x g x x x x x ¢=+=+,由[)1,0x Î-时,()0g x ¢<,(]0,1x Î时,()0g x ¢>,可得g (x )在[–1,0]上单调递减,在(0,1]上单调递增,故g (x )在[–1,1]上的最小值为g (0)=0,最大值为g (1)=e ,所以对于任意的2[1,1]x Î-,()[]20,e g x Î.因为2y x a =-+开口向下,对称轴为y 轴,所以当0x =时,max ()f x a =,当2x =时,min ()4f x a =-,所以1a £,C 正确.故选:BCD.【点睛】关键点点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.13.(0,1)(1,]e È【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ì>ï-³íï-¹î,解得0x e <£且1x ¹.故答案为:(0,1)(1,]e È.14.(]2,2-【详解】当20a -=,2a =时不等式即为4<0- ,对一切x R Î恒成立 ①当2a ¹时,则须()()220{421620a a a -<-+-<V = ,∴22a -<<②由①②得实数a 的取值范围是(]2,2-,故答案为(]2,2-.15.2e【解析】先利用换元法求出()f x 的解析式,再对函数求导,从而可求出()1f ¢的值【详解】令ln t x =,()t f t te =,所以()x f x xe =,()()1x f x x e ¢=+,()12f e ¢=.故答案:2e ,。

高二年级第二次月考数学试卷

高二年级第二次月考数学试卷

高二年级第二次月考数学试卷一、选择题(共12题,每题5分,共60分)1.下列语句中是命题的是( B )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( A )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( A )A .0个B .1个C .2个D .3个 4.一次函数nx n m y 1+-=的图象同时经过第一、三、四象限的必要但不充分条件是( B ) A .1,1m n ><且 B .0mn < C .0,0m n ><且 D .0,0m n <<且5.方程||||||1x y xy +=+表示的曲线是(D )A .一条直线B .一个正方形C .一个圆D .四条直线6.已知点(0,0),(1,2)O A -,动点P 满足||3||PA PO =,则点P 的轨迹方程是(C )A .22882450x y x y ++--=B .22882450x y x y +---=C .22882450x y x y +-+-=D .22882450x y x y +++-= 7.椭圆2211625x y +=的焦点坐标为(A ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)8.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是(D)(A )椭圆 (B )直线 (C )圆 (D )线段9.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是(C)(A )2211015x y += (B )221510x y += (C )2211510x y += (D )2212510x y += 10.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为(C) (A )54 (B )45 (C ) 747 (D )41711.椭圆2244x y +=上一点P 到两焦点距离之和与该点到两准线的距离之和的比是(B) (A )3 (B )23 (C )21 (D )随P 点位置不同而有变化12.如图,已知椭圆中心在原点,F 是焦点,A 为顶点,准线l 交x 轴于点B ,点P , Q 在椭圆上,且PD ⊥l 于D ,QF ⊥AO , 则椭圆的离心率是① ||||PF PD ;② ||||QF BF ;③ ||||AO BO ;④ ||||AF AB ;⑤ ||||FO AO ,其中正确的个数是 (D) (A )1个 (B )3个 (C )4个 (D )5个 二、填空题(共4题,每题5分,共20分)13.已知方程22240x y x ++-=的曲线经过点(,1)P m ,那么m 的值为 31-或 。

高二数学第二次月考数学试题

高二数学第二次月考数学试题

冠县教育培训中心月考数学试题 .12一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x 是实数,则“x >0”是“|x |>0”的 ( )A.充分而不必要条件 B.必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( )A .5B .4C .3D .23.一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体对角线的长为( ) A .23 B .32 C .6 D .64.若011<<b a ,则下列不等式 ①ab b a <+;②|;|||b a >③b a <;④2>+ba ab 中,正确的不等式有 ( )A .0个B .1个C .2个D .3个5.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( ) A .310 B .13 C .18 D .19 6.两相同的正四棱锥组成如图所示的几何体,可 放棱长 为1的正方体内,使正四棱锥的底面ABCD 与正 方体的某一个平面平行,且各顶点...均在正方体的面上, 则这样的几何体体积的可能值有( )A .1个B .2个C .3个D .无穷多个7. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10πC .11πD .12π 8.(理)已知y x c c y c c x c ,,1,1,1则且--=-+=>之间的大小关系是( ) A .y x > B .y x = C .y x < D .y x ,的关系随c 而定(文科)一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( ) A .321- B .5 C .4 D .269.(理)高为5,底面边长为43的正三棱柱形容器(下有底),可放置最大球的半径是( )俯视图 正(主)视图 侧(左)视图 2 32 2A .23 B .2 C .223 D .2 (文)三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶ 2∶3,PO=214,则P 到这三个平面的距离分别是( ) A .1,2,3 B .2,4,6 C .1,4,6 D .3,6,910.设数列{}n a 的前n 项和为n S ,令12n n S S S T n +++=,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2019,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2019B .2019C .2019D .201911.条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条件甲是条件乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(理科)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定(文科)设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于1,则圆半径r 的取值范围是 ( )A .35r <<B .4r >C .46r <<D .5r >二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.(文)b 克盐水中,有a 克盐(0>>a b ),若再添加m 克盐(m >0)则盐水就变咸了,试根据这一事实提炼一个不等式 .(理)已知三个不等式①ab >0 ② a c > bd ③bc >ad 以其中两个作条件余下一个作结论,则可组 个正确命题.14.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .15.若一条直线与一个正四棱柱各个面所成的角都为α,则cos α=______.16.(文科)已知圆M :(x +cos θ)2+(y -sin θ)2=1,直线l :y =kx ,下面四个命题:(A )对任意实数k 与θ,直线l 和圆M 相切;CA B C D A 1 B 1 C 1 D 1 第16题图 (B )对任意实数k 与θ,直线l 和圆M 有公共点;(C )对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切;(D )对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切.其中真命题的代号是______________(写出所有真命题的代号).(理科)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶 点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其 余四个顶点中的一个,则P 到平面α的距离可能 是: ( ) ①3; ②4; ③5; ④6; ⑤7 以上结论正确的为______________.(写出所有正 确结论的编号..) 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(文科做)比较下列两个数的大小:(1);与3212--(2)5632--与;(3)从以上两小项的结论中,你否得出更一般的结论?并加以证明(理科做)已知:[]1,0...∈d c b a()()()()d c b a N d c b a M ----=----=1,1111,试比较M ,N 的大小:你能得出一个一般结论吗?18.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n19.(本小题满分12分)(文科做)关于x 的不等式组⎪⎩⎪⎨⎧<+++>--05)52(20222k x k x x x 的整数解的集合为{-2},求实数k 的取值范围. (理科做)若)(x f 是定义在),0(+∞上的增函数,且对一切0>x 满足()()()x f f x f y y=-. (1)求)1(f 的值;(2)若,1)6(=f 解不等式2)1()3(<--xf x f .20.(本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,p 是侧棱1CC上的一点,m CP =.(1)试确定m ,使得直线AP 与平面11B BDD 所成角的正切值为23; (2)在线段11C A 上是否存在一个定点Q ,使得对任意的m ,Q D 1在平面1APD 上的射影垂直于AP .并证明你的结论.21.(本小题满分12分)(文科做)设(),1433221+++⨯+⨯+⨯=n n s求证:()()221121+<<+n n s n n (理科做)设1,,131211>∈++++=n N n n A(1)证明A>n ;(2)n A n 2212<<-+22.(文科)(本小题满分14分)设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段弧,其弧长之比为3:1;③圆心到直线:20l x y -=的距离为55,求该圆的方程. (理科)(本小题满分14分)如图,在长方体ABCD ─A 1B 1C 1D 1中,E 、P 分别是BC 、A 1D 1的中点,M 、N 分别是AE 、CD 1的中点,AD=AA 1=a ,AB =2a .(1)求证:MN ∥面ADD 1A 1;(2)求二面角P ─AE ─D 的余弦值;(3)求三棱锥P ─DEN 的体积.。

数学丨湖北省沙市中学2022-2023学年高二上学期第二次月考数学试卷及答案

数学丨湖北省沙市中学2022-2023学年高二上学期第二次月考数学试卷及答案

1 2022—2023学年度上学期2021级第二次月考数学试卷考试时间:2022年11月5日一、单选题1.已知直线l 与x 轴相交于点()1,0,且直线l 向上的方向与x 轴负半轴的夹角为120︒,则直线l 的斜率是( )A .22B .33-C .3D .3-2.已知直线l :20x y -+=,点()0,0A ,()1,1B ,点C 为直线l 上一动点,则ABC 的面积为( ) A .1 B .2 C .2 D .223.已知点P (1,2),经过点P 作直线l ,若直线l 与连接()91A ,,()58B ,两点的线段总有公共点,则直线l 的斜率k 的取值范围为( )A .1382⎡⎤⎢⎥⎣⎦,B .18⎛⎫-∞- ⎪⎝⎭,C .1382⎡⎤-⎢⎥⎣⎦,D .][1382⎛⎫-∞-⋃+∞ ⎪⎝⎭,, 4.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( )A .4B .10C .5D .105.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO 1,OO 2,OO 3,OO 4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB 所在直线的倾斜角约为( )A .0°B .1°C .2°D .3° 6.已知圆C :()2221x y r ++=(0r >),直线l :3420x y +-=.若圆C 上恰有三个点到直线的距离为1,则r 的值为( )A .2B .3C .4D .6 7.已知圆()()22135x y -+-=关于直线20ax by +-=对称,0,0a b >>,则12a b+的最小值为( )2 ABCD8.已知点P 为直线x −y −1=0上的动点,点E 是圆2214x y +=上的动点,点F 是圆229(3)(1)4x y -++=上的动点,则PF PE -的最大值为 A .2B .52C .3D .4二、多选题 9.使方程2222210x y ax ay a a +-+++-=表示圆的实数a 的可能取值为( ) A .2- B .0 C .1- D .34 10.若1l 与2l 为两条不重合的直线,则下列说法中正确的有( ) A .若12//l l ,则它们的斜率相等B .若1l 与2l 的斜率相等,则12//l lC .若12//l l ,则它们的倾斜角相等D .若1l 与2l 的倾斜角相等,则12//l l 11.已知直线:20l kx y k -+=和圆22:16O x y +=,则( ) A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为412.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有( )A .存在P 使得122F PF π∠= B .12cos F PF ∠的最小值为725- C .12PF PF ⊥,则12F PF △的面积为9D .直线PA 与直线PB 斜率乘积为定值925 三、填空题 13.已知圆221x y +=与圆222(2)(0)x y a a -+=>内切,则=a ______.14.已知椭圆22127x y k +=+的一个焦点坐标为()0,2,则k =______. 15.已知函数y =√1−x 2与直线y =k(x −2)有两个不同的交点,则常数k 的取值范围是________. 16.已知P 为直线:3120l x y +-=上一点,过P 作圆()22:21C x y -+=3 的切线,则切线长最短时的切线方程为__________.四、解答题17.已知直线1l :20mx y m ++=,2l :3x +y +7=0(1)若12l l ⊥,求实数m 的值;(2)若12l l ∥,求实数m 的值及此时两平行直线间的距离.18.已知圆222x y +=,直线y x b =+,当b 为何值时,(1)圆与直线有两个公共点;(2)圆与直线只有一个公共点;(3)圆与直线没有公共点.19.求适合下列条件的椭圆的标准方程:(1)经过点()23,,且与椭圆229436x y +=有共同的焦点; (2)经过())23132P Q --,,, 两点.420.已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.21.在ABC ∆中,(1,2)A -,边AC 上的高BE 所在的直线方程为74460x y +-=,边AB 上中线CM 所在的直线方程为211540x y -+=.(1)求点C 坐标;(2)求直线BC 的方程.22.已知直线方程为()()221340m x m y m -++++=.(1)证明:直线恒过定点M,并求出M 的坐标;(2)m 为何值时,点()3,4Q 到直线的距离最大,最大值为多少? (3)设P,Q 为圆x 2+y 2=25上的动点,若PM ⊥QM ,求PQ 中点R 的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级第二次月考数学试卷一、选择题(共12题,每题5分,共60分) 1.下列语句中是命题的是( B )A .周期函数的和是周期函数吗?B .0sin 451= C .2210x x +-> D .梯形是不是平面图形呢?2.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( A )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( A ) A .0个B .1个C .2个D .3个4.一次函数nx n m y 1+-=的图象同时经过第一、三、四象限的必要但不充分条件是( B ) A .1,1m n ><且 B .0mn < C .0,0m n ><且 D .0,0m n <<且 5.方程||||||1x y xy +=+表示的曲线是(D )A .一条直线B .一个正方形C .一个圆D .四条直线6.已知点(0,0),(1,2)O A -,动点P 满足||3||PA PO =,则点P 的轨迹方程是(C ) A .22882450x y x y ++--= B .22882450x y x y +---= C .22882450x y x y +-+-= D .22882450x y x y +++-=7.椭圆2211625x y +=的焦点坐标为(A ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)8.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是(D) (A )椭圆 (B )直线 (C )圆 (D )线段9.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是(C)(A )2211015x y += (B )221510x y += (C )2211510x y += (D )2212510x y +=10.已知P 为椭圆221916x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为(C) (A )54 (B )45 (C ) 747 (D )41711.椭圆2244x y +=上一点P 到两焦点距离之和与该点到两准线的距离之和的比是(B) (A )3 (B )23(C )21 (D )随P 点位置不同而有变化12.如图,已知椭圆中心在原点,F 是焦点,A 为顶点,准线l 交x 轴于点B ,点P , Q 在椭圆上,且PD ⊥l 于D ,QF ⊥AO , 则椭圆的离心率是①||||PF PD ;② ||||QF BF ;③||||AO BO ;④ ||||AF AB ;⑤ ||||FO AO ,其中正确的个数是 (D) (A )1个 (B )3个 (C )4个 (D )5个 二、填空题(共4题,每题5分,共20分)13.已知方程22240x y x ++-=的曲线经过点(,1)P m ,那么m 的值为 31-或 。

14、.已知A (4, 2.4)为椭圆2212516x y +=上一点,则点A 到该椭圆的左焦点的距离是_____13/5_________.15、P 为椭圆22110064x y +=上的一点,F1和F2是其焦点,若∠F1PF2=60°,则△F1PF2的面积为 _________ . 16、有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题; ④、命题“若A B B = ,则A B ⊆”的逆否命题。

其中是真命题的是 ①,②,③ (填上你认为正确的命题的序号)。

三、解答题(共六题,共70分) 17、(12分)已知1:123x p --≤;)0(012:22>≤-+-m m x x q 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。

{}1:12,2,10,|2,103x p x x A x x x -⌝-><->=<->或或 {}22:210,1,1,|1,1q x x m x m x m B x x m x m ⌝-+-><->+=<->+或或p ⌝ 是q ⌝的必要非充分条件,B∴A ,即129,9110m m m m -<-⎧⇒>∴>⎨+>⎩。

18、(12分)椭圆的焦点在y 轴上,一个焦点到长轴的两端点的距离之比是1∶4, 短轴长为8, 求椭圆的标准方程由144a c a cb -⎧=⎪+⎨⎪=⎩解得a =5,又椭圆焦点在y 轴上,∴椭圆方程为x 216 + y 225 = 1 . 19、(12分)求过点P (3, 0)且与圆x 2+6x +y 2-91=0相内切的动圆圆心的轨迹方程。

20、(12分)设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o,2AF FB =.(I) 求椭圆C 的离心率;(II) 如果|AB|=154,求椭圆C 的方程. 解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为 3()y x c -,其中22c a b =-联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-=解得22122222(2)(2),33c a c a y y a b a b +-==++ 因为2AF FB =,所以122y y -=.即222222(2)(2)233c a c a a b a b+-=∙++ 得离心率 23c e a ==. ……6分 (Ⅱ)因为21AB y y =-154=.由23c a =得3b a =.所以51544a =,得a=3,b =椭圆C 的方程为22195x y +=.21、(12分)已知关于x 的方程 (1-a )x 2+(a +2)x -4=0 a ∈R 求:1) 方程有两个正根的充要条件;2) 方程至少有一个正根的充要条件。

解:1) 方程(1-a )x 2+(a +2)x -4=0有两个实根的充要条件是:100a -≠⎧⎨∆≥⎩即:21(2)16(10a a a ≠⎧⎨++-≥⎩)⇔12,10a a ora ≠⎧⎨≤≥⎩ 即: a ≥10或a ≤2且a ≠1设此时方程两根为x 1,x 2 ∴有两正根的充要条件是:121212,1000a a ora x x x x ≠⎧⎪≤≥⎪⎨+>⎪⎪>⎩ ⇔ 12,10201401a a ora a a a ≠⎧⎪≤≥⎪⎪+⎨>-⎪⎪>⎪-⎩⇒ 1<a ≤2或a ≥10 即为所求。

2) 从1)知1<a ≤2或a ≥10方程有两个正根 当a =1时, 方程化为 3x -4=0有一个正根x =43方程有一正、一负根的充要条件是:121000a x x -≠⎧⎪∆≥⎨⎪<⎩⇔ 12,10401a a ora a ⎧⎪≠⎪≤≥⎨⎪⎪<-⎩ ⇔ a <1综上:方程(1-a )x 2+(a +2)x -4=0至少有一正根的充要条件是a ≤2或a ≥10。

22、(12分)设F 1、F 2分别为椭圆C :x 2a 2+y2b2=1(a>b>0)的左、右两个焦点.(1)若椭圆C 上的点A(1,32)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点K 是(1)中所得椭圆上的动点,求线段F 1K 的中点的轨迹方程;(3)若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时.求证:k PM ²k PN 是与点P 位置无关的定值.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,因此122+⎝ ⎛⎭⎪⎫322b 2=1得b 2=3,于是c 2=1.所以椭圆C 的方程为x 24+y23=1,焦点F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点为K(x 1,y 1),线段F 1K 的中点Q(x ,y)满足: x =-1+x 12,y =y 12,即x 1=2x +1,y 1=2y.因此(2x +1)24+(2y)23=1.即⎝ ⎛⎭⎪⎫x +122+4y23=1为所求的轨迹方程. (3)设点M(m ,n)是椭圆x 2a 2+y2b2=1①上的任一点,N(-m ,-n)是M 关于原点的中心对称点,则m 2a 2+n2b2=1②又设P(x ,y)是椭圆上任一点,且k PM ²k PN 存在. 则k PM =y -n x -m ,k PN =y +nx +m ,∴k PM ²k PN =y -n x -m ²y +n x +m =y 2-n2x 2-m2.①-②得x 2-m 2a 2+y 2-n 2b 2=0,y 2-n 2x 2-m 2=-b2a 2,∴k PM ²k PN =-b2a2.故k PM ²k PN 与P 的取值无关.。

相关文档
最新文档