2012年河北衡水高考信息卷(金考卷系列)理数(4)

合集下载

2012年河北省高考理综试卷及答案(规范排版)

2012年河北省高考理综试卷及答案(规范排版)

第Ⅰ卷(选择题,共126分)一、选择题。

本题共8小题,每小题6分。

在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。

其原因是参与这两种蛋白质合成的<12012>A. tRNA 种类不同B. mRNA碱基序列不同C.核糖体成分不同D.同一密码子所决定的氨基酸不同2.下列关于细胞癌变的叙述,错误的是<12024>A.癌细胞在条件适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差别C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是<12032>A.血浆渗透压降低B.抗利尿激素分泌增加C.下丘脑渗透压感受器受到的刺激减弱D.肾小管和集合管对水的重吸收作用减弱4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是<12043>A.这一反射过程需要大脑皮层的参与B.这是一种反射活动,其效应器是唾液腺C.酸梅色泽直接刺激神经中枢引起唾液分泌D.这一过程中有“电—化学—电”信号的转化5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组。

将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别接入a、b两组胚芽鞘被切除的位置,得到a′、b′两组胚芽鞘。

然后用单侧光照射,发现a′组胚芽鞘向光弯曲生长,b′组胚芽鞘无弯曲生长,其原因是<12054>A. c组尖端能合成生长素,d组尖端不能C. c组尖端的生长素向胚芽鞘基部运输,d组尖端的生长素不能D. a′组尖端的生长素能向胚芽鞘基部运输,b′组尖端的生长素不能6.某岛屿上生活着一种动物,其种群数量多年维持相对稳定。

2012年河北高考衡水中学

2012年河北高考衡水中学

2012年河北高考(衡水中学)数学(理)试题第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1.若复数iia 21-+是纯虚数,则实数a 的值为( ) A.2 B.21- C.51 D.52-2. 下列四个函数中,在区间(0,1)上是减函数的是( )A .2log y x =B . 1y x =C .1()2x y =- D .13y x =3. 在等差数列{}n a 中,621118+=a a ,则数列{}n a 前9项的和9S 等于( ) A. 24 B. 48 C. 72 D. 108 4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 则y 对x 的线性回归方程为 ( )A 1-=x y . B. 1+=x y C .8821+=x y D.176=y 5. 某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如下表所示:序号 1 2 3 4 5 6 7 8 9 10 数学成绩 95 75 80 94 92 65 67 84 98 71 物理成绩90637287917158829381序号 11 12 13 14 15 16 17 18 19 20 数学成绩 67 93 64 78 77 90 57 83 72 83 物理成绩77824885699161847886某数学成绩90分(含90分)以上为优秀,物理成绩85分(含85分)以上为优秀.父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177有多少的把握认为学生的数学成绩与物理成绩之间有关系( ) A. 99.9% B. 99% C. 97.5% D. 95% 6. 二项式102)2(xx +的展开式中的常数项是( )A.第10项 B .第9项 C .第8项 D :第7项 7. 已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( ) A.332-B. 332±C. 1-D.1±8. 过(2,2)点且与曲线222220x y x y ++--=相交所得弦长为23的直线方程为( )A .3420x y -+=B .3420x y -+=或2x =C .3420x y -+=或2y =D .2x =或2y =9. 已知两点(2,2),(2,1)A B ,O 为坐标原点,若255OA tOB -≤,则实数t 的值为( ) A.56 B. 65 C.1 D.34 10. 把6张座位编号为1,2,3,4,5,6的电影票分发给4个人,每人至少1张,最多分2张,且这两张票具有连续的编号,那么不同的分法种数是( )A.168B.96C.72D.14411. 某几何体的三视图如右图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为( )A .π42616++ 2cmB .π32616++ 2cm C .π42610++ 2cm D .π32610++ 2cm 12.方程|sin |(0)x k k x=>有且仅有两个不同的实数解,()θϕθϕ>,则以下有关两根关系的结论正确的是( )A .sin cos ϕϕθ=B .sin cos ϕϕθ=-C .cos sin ϕθθ=D .sin sin θθϕ=-第Ⅱ卷 非选择题 (共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13. 一个圆锥和一个半球有公共底面,如果圆锥的体积和半球的体积相等,则这个圆锥的母线与轴所成角正弦值为14.在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b=15. 双曲线22221(0,0)x y a b a b -=>>的离心率为2,则ab 312+的最小值为16. 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是__________. 三、解答题(共6个小题,共70分)17. (本题满分12分)为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:分组 频数 频率 60.5~70.5 0.16 70.5~80.5 10 80.5~90.5 18 0.36 90.5~100.5 合计50(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?18.(本题满分12分)如图,三棱柱ABC —A1B 1C 1中,AA 1⊥面ABC ,BC ⊥AC ,BC=AC=2,AA 1=3,D 为AC 的中点. (1)求证:AB 1// 面BDC 1;(2)求二面角C 1—BD —C 的余弦值; (3)在侧棱AA 1上是否存在点P ,使得CP ⊥面BDC 1?并证明你的结论.19.(本题满分12分)如图所示,某市政府决定在以政府大楼O 为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM R = ,45MOP ∠=,OB 与OM 之间的夹角为θ. (1)将图书馆底面矩形ABCD 的面积S 表示成θ的函数.(2)若m R 3=,求当θ为何值时,矩形ABCD 的面积S 有最大值?其最大值是多少?20.(本题满分12分)如图,曲线1C 是以原点O 为中心、12,F F 为焦点的椭圆的一部分,曲线2C 是以O 为顶点、2F 为焦点的抛物线的一部分,A 是曲线1C 和2C 的交点且21AF F ∠为钝角,若172AF =,252AF =.(1)求曲线1C 和2C 的方程;(2)过2F 作一条与x 轴不垂直的直线,分别与曲线12C C 、依次交于B 、C 、D 、E 四点,若G 为CD 中点、H 为BE 中点,问22BE GF CD HF ⋅⋅是否为定值?若是求出定值;若不是说明理由.ACDMOQFBP21.(本题满分12分) 设函数22()f x a x =(0a >),()ln g x b x =.(1) 将函数()y f x =图象向右平移一个单位即可得到函数()y x ϕ=的图象,试写出()y x ϕ=的解析式及值域;(2) 关于x 的不等式2(1)()x f x ->的解集中的整数恰有3个,求实数a 的取值范围; (3) 对于函数()f x 与()g x 定义域上的任意实数x ,若存在常数,k m ,使得()f x kx m ≥+和()g x kx m ≤+都成立,则称直线y kx m =+为函数()f x 与()g x 的“分界线”.设22a =,b e =,试探究()f x 与()g x 是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.本题满分10分。

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x 10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1 11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.2012年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD∴V A=×S△EBD×h=×2×h=﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin (x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M (1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D 的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。

河北省衡水中学2012届高三调研试卷数学理(2)

河北省衡水中学2012届高三调研试卷数学理(2)

2012年衡水中学调研卷理数(2)一、选择题1 .已知集合{}|,nM m m in N ==∈,其中21i =-,则下面属于M的元素是( )A .(1)(1)i i ++-B .(1)(1)i i +--C .(1)(1)i i +-D .11i i+-2 .已知数列{}na 为等差数列,nS 为其前n 项和,且2436aa =-,则9S =( )A .25B .27C .50D .543 .记二项式(12)nx +展开式的各项系数和为na ,其二项式系数和为nb ,则lim nnn n nb a b a →∞-=+ ( )A .1B .1-C .0D .不存在4 .ABC ∆中,60A ∠=︒,A ∠的平分线AD 交边BC 于D ,已知3AB =,且1()3AD AC AB R λλ=+∈,则AD 的长为 ( )A .1 BC.D .35 .关于x 的不等式229|3|xx x kx ++-≥,在[1,3]上恒成立,则实数k 的范围为( )A .(,6]-∞B .(,6)-∞C .(0,6]D .[6,)+∞6.已知约束条件340210380x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,若目标函数(0)z x ay a =+≥恰好仅在点(2,2)处取得最大值,则a 的取值范围为 ( )A .103a << B .13a ≥C .13a >D .102a <<7 .已知球的半径为2,相互垂直的两个平面分别截球面得到两个圆,若两圆的公共弦长为2,则两圆的圆心距等于 ( )A .1B .2 CD 8 .若函数sin (0)y x ωω=>在区间[0,5]上至少有两个最大值,则x 的最小值为 ( )A .1B .2πC .πD .23π9 .某人进行驾驶理论测试,每做完一道题,计算机会自动显示已做题的正确率()f n ,则下列关系中不可能成立的是 ( ) A .(1)(2)(3)(8)f f f f <<<B .(1)(2)(3)(4)(5)f f f f f ==<<C .(4)2(8)f f =D .(6)(7)(8)f f f <=10.将5个转学同学分配到,,A B C 三个班级,每班至少安排一个同学,其中A 班仅分配一个同学,那么不同的分配方案有______种 ( )A .10B .70C .100D .8011.已知M 是曲线21ln (1)2y x xa x =++-上的任一点,若曲线在M点处的切线的倾斜角是均不小于4π的锐角,则实数a 的取值范围是( )A .[2,)+∞B .(,2]-∞C .[0,)+∞D .(,0]-∞12.已知,a b 是实数,则22loglog a b <是22a b <的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题13.已知F 点为正方体1111ABCD A BC D -的棱1CC 上一点,且2CF FC =,则面1AB F与面ABC 所成二面角的正切值为_________.14.若椭圆221(0)x y m n m n+=>>与曲线22||x y m n +=-有公共点,则椭圆的离心率e 的取值范围是_________________.15.在ABC ∆中,已知():():()4:5:6b c a c a b +++=,则下列结论中正确的是_______①ABC ∆可能为锐角三角形; ②sin :sin :sin 7:5:3A B C =;③若边,,a b c 均为整数,则ABC ∆.16.定义在R 上的函数()f x 满足()(2)8f x f x ++=,且当(1,1]x ∈-时,2()2f x xx =+,则当(3,5]x ∈时,()f x 的解析式为__________________ 三、解答题17.已知向量sin 1cos m B B =(,-),且与向量10n =(,)的夹角为3π,其中, , A B C 是ABC ∆的内角.(1)求角B 的大小; (2)求sin sin A C +的取值范围.18.某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答. (1)求某选手第二次抽到的不是科技类题目的概率;(2)求某选手抽到体育类题目数ξ的分布列和数学期望E ξ.19.如图5所示,在正方体1111-ABCD A BC D 中,E 是1DD 的中点(Ⅰ)求直线 BE 和平面11ABB A 所成的角的正弦值,(Ⅱ)在11C D 上是否存在一点 F ,使从1B F //平面1A BE ?证明你的结论。

2012年衡水市高考模拟统一考试试题

2012年衡水市高考模拟统一考试试题

绝密 ★ 启用前2012年衡水市高考模拟统一考试文科数学命题人:褚艳春 张青山 审题人:宋金澎 说明:1.本试卷分第Ⅰ卷(选择题)和II 卷(非选择题)两部分,满分150分,考试时间120分钟. 2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题.3.选择题答案涂在答题卡上,非选择题答案写在答题纸上,在试卷和草稿纸上作答无效,做选择题时,如需改动,请用橡皮将原选涂答案擦干净,再选涂其他答案. 4.考试结束后,将本试题卷、答题卡及答题纸一并交回.第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}1,M x x =<{}0,N x x =>则N M ⋃=A.∅B.{}|11x x -<< C.{}|01x x << D.{}|1x x >-2.若复数21a i z i+=-(,a R i ∈是虚数单位)是实数,则a 的值为A .2B .2-C .0D .2 3.把函数sin(2)6y x π=+的图象向右平移3π个单位得到函数A .sin 2y x =B .sin(2)6y x π=-C .cos 2y x =-D .cos 2y x =4.阅读右侧程序框图,输出的结果s 的值为A.0B.32C.3D.32-5.设P 是△ABC 所在平面内的一点,3BC BA BP +=,则A .0PA PB += B .0PC PA += C .0PB PC +=D .0PA PB PC ++= 6.已知实数x,y 满足约束条件202030y x y x x y -≤⎧⎪-≥⎨⎪+-≤⎩,则z=2x+y 的最大值是A .3B .5C .1D .07.右图是一个空间几何体的三视图,则该几何体的表面积是A .π+16B .π212+C .π216+D .π+128.下表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对应数据,根据表中提供的数据,得出y 关于x 的线性回归方程为ˆy=0.7x+0.35,那么表中m 的值为 A .4 B . 3.15 C .4.5 D .39.函数()f x =2ln x x --的零点个数为A.0B. 1C.2D.3 10.若双曲线2222x y ab-=1(0)a b >>的左、右焦点分别为12,F F ,抛物线24y bx =的焦点F 恰好为线段12F F 的三等分点,则此双曲线的离心率为A .322 B .423 C .223 D .1010311.已知函数f ()1,xx e =-2()43,g x x x =-+-若有()(),f a g b =则b 的取值范围为A .[22,22]-+B .(22,22)-+C .[1,3]D .(1,3)x 3 4 56 y3.2m43.84题图12正视图12 侧视图2 2 俯视图7题图数学(文)试卷第1页(共6页) 数学(文)试卷第2页(共6页)12.函数⎪⎩⎪⎨⎧≤≤+<≤-+=)380(),sin(2)02(,1πϕωx x x kx y 的图像如下图,则 A .1,2k =-2,6πωϕ==B .1,2k =1,23πωϕ==C. 2,k =-2,3πωϕ== D. 1,2k =1,26πωϕ==第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分;第13题~第21题为必考题,每个试题考生都必须做答;第22题~第24题为选考题,考生根据要求做答. 二.填空题:本大题共4小题,每小题5分,共20分13.某人站在60米高的楼顶A 处测量不可到达的电视塔高,测得塔顶C 的仰角为300,塔底B 的俯角为150,已知楼底部D 和电视塔的底部B 在同一水平面上,则电视塔的高为_____米. 14. 如图,过抛物线()022>=p px y 焦点F 的直线l 交抛物线于A 、B 两点,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 .15.在区间[]0,3上任取两个数,,x y 则使得不等式22(1)1x y -+≤成立的概率 .16.在平面几何里,已知SAB Rt ∆的两边SA ,SB 互相垂直,且a SA =,b SB =, 则AB 边上的高22ba ab h +=;现在把结论类比到空间:三棱锥ABC S -的三条侧棱SA ,SB ,SC 两两相互垂直,⊥SH 平面ABC ,且a SA =,b SB =,c SC =,则点S 到平面ABC 的距离='h .三.解答题:本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。

2012年河北高考衡水中学

2012年河北高考衡水中学

2012年河北高考(衡水中学)数学(文)试题第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合,则满足的集合B 的个数是( )A .1B .3C .4D .82.复数11ii+-(i 是虚数单位)的共轭复数的虚部为( ) A .-1 B.0 C.1 D.23. 函数f (x )=e x +3x 的零点个数是A . 0B 。

1C 。

2D 。

34. 若等比数列}{n a 满足nn n a a 161=⋅+,则,该数列的公比为( ) A .2 B .4 C . 8 D .165. 若双曲线122=-x y 上支上一点),(b a P 到直线 x y =的距离是2,则b a +的值是( )A. 21±B.21- C. 21 D.2 6. 已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( ) A.332-B. 332±C. 1-D.1± 7.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R AB AC AD ∈+=λλ,则AD 的长为( )A .1B .3C .32D .38.定义在R 上的函数)(x f y =满足)()5(x f x f -=+,0)()25(/>-x f x ,已知21x x <,则)()(21x f x f >是521<+x x 的( )条件.A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要9.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.36 cm3B。

48 cm3C.60 cm3D。

72 cm310. 已知双曲线()0,012222>>=-babyax的右焦点为F,若过点F且倾斜角为060的直线与双曲线右支有且仅有一个交点,则此双曲线的离心率的取值范围是()A.()2,1B.(]2,1C.[)+∞,2D.()+∞,211. 设两圆21,CC都和两坐标轴相切,且都过点(4,1),则两圆心的距离||21CC=( ) A.4 B.4 2 C.8 D.8 212.设⎩⎨⎧-=-)1(3)(xfxfx(0)(0)xx≤>,若axxf+=)(有且仅有三个解,则实数a的取值范围是()A. )1,(-∞ B. ]1,(-∞ C.]2,(-∞ D.)2,(-∞第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13.已知数列{na}的前n项和29nS n n=-,若它的第k项满足58ka<<,则k=14. 过抛物线xy22=的焦点F做直线l交抛物线于A、B两点.若1||1||1=-BFAF,则直线l的倾斜角等于_____15.已知实数cba、、(0>c)满足⎪⎩⎪⎨⎧≤≤≥+-≥+cacbaba33,则cba-2的最大值为16. 设()22f x x=-,若0a b<<,且()()f a f b=,则ab的取值范围是_________242 222正视图(第9题)侧视图俯视图三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

河北省衡水中学2012届高三调研试卷数学理(3)

河北省衡水中学2012届高三调研试卷数学理(3)

2012年衡水中学调研卷理数(3)一、选择题1 .i 是虚数单位,若复数z 满足(1)1z i i +=-,则复数z 的实部与虚部的和是 ( )A .0B .1C .1-D .22 .设集合{}{}21,2,M N a ==,则“a =N M⊂”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3 .设双曲线2221(0)9y x a a-=>的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .924 .有5名毕业生站成一排照相,若甲乙两人之间至多有2人,且甲乙不相邻,则不同的站法有 ( )A .36种B .12种C .48种D .60种5 .在ABC ∆中,角,,A B C 所对的边长分别为,,a b c ,若120,2C a ∠=︒=,则 ( )A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定6 .正方体1111ABCD A BC D -中,M 为1BB 的中点,则面1ACD 与面11AC M 所成二面角的正切值为 ( )A B C D 7 .各项均为正数的等比数列{}na 中,123789100a a a a a a=,则34567a a a a a=( )A .10B .3510C .5310D .65108 .已知圆22:(2)(3)2,C x y P -+-=为圆外一点,PM 为圆的切线,O 为坐标原点,若总有||||PO PM =,则点P 的轨迹为( )A .一条线段B .圆C .一条直线D .一个点9 .若2012220120122012(12)x a a x a x a x -=++++,则01122320112012()()()()a a a a a a a a ++++++++=()A .1B .20122C .201222-D .201212-10.设直线x t =与函数2()f x x =,()ln g x x =的图象分别交于点,M N ,则当||MN 达到最小时t 的值为 ( )A .1B .12C D .211.已知函数()(0)f x x k kπ=>图象上相邻的一个最大值点与一个最小值点恰好在222x y k +=上,则函数()f x 的最小正周期为( )A .1B .2C .4D .8 12.已知关于x 的不等式x a b x+≥的解集为[2,0)-,则2a b += ( )A .1B .2C .1-D .2-二、填空题13.已知双曲线22221x y a b -=的离心率为2,焦点与椭圆221169x y +=的焦点相同,那么双曲线的渐近线方程为____________________。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。

2012年全国高考理科数学试题及答案

2012年全国高考理科数学试题及答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)注意事项:1.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给同的四个选项中,只有一项是符合题目要求的。

1、复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -2、已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或33、椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 4、已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )15、已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100 6、ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 7、已知α为第二象限角,sin cos 3αα+=,则cos2α= (A)- (B)- (C(D8、已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )459、已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<10、已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或111、将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种12、正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

河北省衡水市高考数学信息卷(金考卷系列)理

河北省衡水市高考数学信息卷(金考卷系列)理

2012年春季期河北衡水高考信息卷(金考卷系列)理数(5)一、选择题 1 .已知复数iiz --=12(i 为虚数单位),则复数z 的共轭复数为 ( ) A .i +1B .i +-1C .i -1D .i --12 .设{}{}1|,0|,2>=>==x x B x x A R U ,则=⋂)(B C A U( )A .{}10|<≤x xB .{}10|≤<x xC .{}0|<x xD .{}1|>x x3 .2011年全国有24个省份提高了最低工资标准,为了了解城市居民的消费水平,某社会研究所对全国十大城市进行职工工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程562.166.0ˆ+=x y.某城市居民人均消费水平为675.7(千元),估计该城市人均消费额占人均工资收入的百分比约为 ( )A .83%B .72%C .67%D .66%4 .已知数列{}n a 满足⎩⎨⎧-=+1221n n n a a a )121()210(<≤<≤nn a a ,若761=a ,则=18a ( )A .76 B .75 C .73 D .71 5 .已知命题:p 函数)0(12)(2≠--=a x ax x f 在)1,0(内恰有一个零点;命题:q 函数a x y -=2在),0(+∞上是减函数,若p 且q ⌝为真命题,则实数a 的取值范围是 ( )A .1>aB .2≤aC .21≤<aD .1≤a 或2>a6 .已知钝角α的终边过点)4sin ,2(sin θθ,且21cos =θ,则αtan 的值为 ( ) A .1-B .21-C .21 D .17.函数sin()4()sin cos |sin cos x f x x x x xπ-=⋅⋅-是 ( )A .周期为2π的偶函数 B .周期为π的非奇非偶函数C .周期为π的偶函数D .周期为2π的非奇非偶函数8 .若二项式)()23(*32N n xx n ∈-展开式中含有常数项,则n 的最小取值是( )A .5B .6C .7D .89 .若直线l 被圆422=+y x 所截得的弦长为32,l 与曲线1322=+y x 的公共点个数为( )A .1个B .2个C .1个或2个D .1个或0个10.函数)(x f 的图象在定义域R 上连续,若0)(<'x f x ,则下列表达式正确的为 ( )A .0)1()1(=+-f fB .)0()1()1(f f f <+-C .)0()1()1(f f f <--D .)0(2)1()1(f f f <+-11.已知函数⎩⎨⎧+--=1)1(12)(x f x f x )0()0(>≤x x ,把方程x x f =)(的根据按从小到大的顺序排列成一个数列,则该数列的通项公式为 ( )A .2)1(-=n n a n B .)1(-=n n a n C .1-=n a n D .22-=nn a 12.平面向量的集合A 到A 的映射f 由()2()f x x x a a =-⋅r r r r r确定,其中a r 为常向量.若映射f 满足()()f x f y x y ⋅=⋅r u r r u r 对,x y A ∈r u r恒成立,则a r 的坐标不可能...是 ( )A .(0,0)B .44C .(22D .1(,)22- 二、填空题13.某学校组织乒乓球比赛,甲班有5名男同学,3名女同学报名;乙班有6名男同学,2名女同学报名.若从甲、乙两班中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有___________种. 14.已知抛物线)0(42>=p px y ,弦AB 过焦点F ,设m AB =||,三角形AOB 的面积为S ,则=2S ______________(用含有p m ,的式子表示).15.已知点)0,3(),0,3(N M -,圆)0()()1(:222>=-+-a a a y x C ,过N M ,与圆C 相切的两直线相交于点P ,则点P 的轨迹方程为____________.16.空间一条直线1l 与一个正四棱柱的各个面所成的角都为α,则另一条直线2l 与这个正四棱柱的各条棱所成的角都为β,则下列说法正确的是_________________.①此四棱柱必为正方体;②1l 与四棱柱的各边所成的角也相等;③若四棱标语为正四棱柱,1l 与这个正四棱柱的各条棱所成的角都为β,则1sin sin 22=+βα. 三、解答题17.在ABC ∆中,角,,A B C 所对的边分别为,,.a b c 已知sin sin sin (),A C p B p R +=∈且214ac b =.(1)当5,14p b ==时,求,a c 的值;(2)若角B 为锐角,求p 的取值范围.18.设数列{}n a 的前n 项和为n S ,且(1)(0,1)n n S a λλλ=+-≠-.(1)求{}n a 的通项公式;(2)若lim n n S →∞的值存在,求λ的取值范围.19.某地工商局对本地流通的某品牌牛奶进行质量监督抽查,结果显示,刚刚销售的一批牛奶合格率为80%.(1)若甲从超市购得2瓶,恰都为合格品的概率;(2)若甲每天喝2瓶牛奶,求三天中喝到不合格牛奶的天数的期望. 20.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,//,4,2AB CD AB BC CD ===,112,,,AA E E F =分别为棱1,,AD AA AB 的中点。(1) 证明:直线1//EE 平面1FCC ; (2) 求二面角1B FC C --的余弦值。EA BCFE 1A 1B 1C 1D 1D21.已知圆C 的圆心为(,0)(3)C m m <,半径为5,圆C 与椭圆E :)0(12222>>=+b a by a x 有一个公共点(3,1)A ,21F F 、分别是椭圆的左、右焦点. (Ⅰ)求圆C 的标准方程;(Ⅱ)若点P 的坐标为(4,4),试探究斜率为k 的直线1PF 与圆C 能否相切,若能,求出椭圆E 和直线1PF 的方程,若不能,请说明理由.22.已知函数()()2,mxf x m n R x n=∈+在1x =处取得极值2 。

河北省衡水中学2012届高三下学期二调考试(数学理)

河北省衡水中学2012届高三下学期二调考试(数学理)

2011—2012学年度下学期二调考试高三理科数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题 目要求的。

1.已知U =R ,{}|0A x x =>, {}|1B x x =≤-,则()()u u A C B B C A = ( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x >≤-或x 2.已知x 为实数,条件p :x 2<x ,条件q :x1≥1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知等差数列1,,a b ,等比数列3,2,5a b ++,则该等差数列的公差为 ( )A .3或3-B .3或1-C .3D .3-4.定义在R 上的偶函数)(x f 满足),()1(x f x f -=+且在]4,5[--上是减函数, βα、是锐角三角形的两个内角,则( )A.)(cos )(sin βαf f >B.)(sin )(sin βαf f >C.)(cos )(sin βαf f <D.)(cos )(cos βαf f >5.如右框图,当x 1=6,x 2=9,p=8.5时,x 3等于( ) A .11 B .10 C .8 D .76. 观察下列数:1,3,2,6,5,15,14,x,y ,z,122,…中x,y ,z 的值依次是 ( )A.13,39,123B. 42,41,123C.24,23,123D.28,27,1237.从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如右图,则该几何体的体积为 ( ) A.87 B.85 C.65 D.438. 已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的图象与直线y = b (0<b<A)的三个相邻交点的横坐标分别是2,4,8,则)(x f 的单调递增区间是( )A. []Z k k k ∈+,36,6ππB. []Z k k k ∈-,6,36C. []Z k k k ∈+,36,6D. 无法确定9.投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为α,又n (A)表示集合的元素个数,A={x |x 2+αx +3=1,x ∈R},则n (A)=4的概率为( )A.61 B .21 c .32 D .3110. 设∠POQ=60°在OP 、OQ 上分别有动点A ,B ,若OA ·OB =6, △OAB 的重心是G ,则|OG | 的最小值是( )A.1 B .2 C .3 D .4 11.设点P 是椭圆)0(12222>>=+b a by ax 上一点,21,F F 分别是椭圆的左、右焦点,I 为21F PF ∆的内心,若21212F IF IPF IPF S S S ∆∆∆=+,则该椭圆的离心率是 ( )(A)21 (B)22 (C)23 (D)4112. 已知函数⎩⎨⎧>+-≤-=)0(1)1()0(12)(x x f x x x f ,把函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,则该数列的前n 项的和n S ,则10S =( )A .1210-B .129-C .45D .55第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

河北省衡水中学2012届高三数学调研试卷理(4)新人教A版

河北省衡水中学2012届高三数学调研试卷理(4)新人教A版
.在正方体 中,下列命题中正确的是___________.
①点 在线段 上运动时,三棱锥 的体积不变;
②点 在线段 上运动时,直线 与平面 所成角的大小不变;
③点 在线段 上运动时,二面角 的大小不变;
④点 在线段 上运动时, 恒成立.
.直线 与抛物线 交于 两点, 为原点,如果 ,那么直线 恒经过定点 的坐标为__________________
A. B. C. D.
.数列 满足 ,则 ( )
A. B. C. D.
.已知向量 ,实数 满足 ,则 的最小值为( )
A. B.1C. D.
二、填空题
.6名同学3名男生、3名女生分配到育才、育人、育红3所学校,育才学校只接收一名男生,另两所学校每所至少接收一名,则共有分配方案_________种.
.不等式 的解集是_________________.
(Ⅱ)设 ,求数列 的前 项和 ;
.已知椭圆 的中心在坐标原点,焦点在 轴上,离心率为 ,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆 的方程;
(Ⅱ)若过点 的直线 与椭圆 相交于 两点( 不是左右顶点),且以 为直径的圆过椭圆 的右顶点,求直线 的方程。
.设函数 ,其中 。
(1)当 时, 在 时取得极值,求 ;
2012年衡水中学调研卷理数(4)
一、选择题
.已知复数 ,则 ( )
A.0B. C. D.
.若 ,则 ( )
A. B. C. D.
.函数 ,则函数 ( )
A. B. C. D.
.某中学将参加北京科技馆学习的300名学生编号为:001,002,,300.为了了解学习效果,拟采用系统抽样方法抽取一个容量为20的样本,且随机抽得的号码为003.这300名学生分住在三个营区,从001到200在( )

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

绝密*启用前2012年普通高等学校招生全国统一考试(全国卷)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

衡水市2012届高考质量提升试卷开始征订

衡水市2012届高考质量提升试卷开始征订
地理
必修1;
必修2(第一单元)
满分100分
时间90分钟
卷客观题,计60分;II卷主观题,计40分
物理
必修1;
必修2(平抛运动部分)
满分120分
时间90分钟
选择题12个,计48分;填空、实验题3个,计16分;综合题3—4个,约56分
化学
必修1;
满分100分
时间90分钟
I卷选择题,计42分; 卷非选择题(填空、简答、推断计算等),计58分
满分120分
时间90分钟
选择题12个,计48分;填空、实验题3个,计16分;综合题3—4个,约56分
化学
选修4;必修1;必修2
满分100分
时间90分钟
I卷选择题,计42分;II卷非选择题(填空、简答、推断计算等),计58分
生物
必修3;
满分100分
时间90分钟
卷选择题,计55分;II卷非选择题,计45分
附件1:
衡水市高中2011—2012学年高考质量提升试卷同步考试时间安排
高一二年级
日期
时间
高一
高二
2012年1月11日(腊月十八)
7:40-10:10
语文
语文
10:30-12:00
物理
政治(物理)
14:00—16:00
数学
数学
16:20—17:50
化学
地理(化学)
2012年1月12日(腊月十九)
8:10—10:10
生物
必修1;
满分100分
时间90分钟
卷选择题,计55分; 卷非选择题,计45分
附件3:
衡水市高中2011—2012学年高中二年级质量提升试卷考试范围及试题结构说明

河北省衡水市2012年高考信息卷(金考卷系列)理数(2)

河北省衡水市2012年高考信息卷(金考卷系列)理数(2)

2012年春季期河北衡水高考信息卷(金考卷系列)理数(2)一、选择题1 .复数ii z -+=1)1(2(i 是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2 .若集合{}{}4,2,,12==B m A ,则“2=m ”是“{}4=⋂B A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3 .令n a 为1)1(++n x 的展开式中含1-n x项的系数,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为 ( ) A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n4 .已知三条不重合的直线l n m ,,,两个不重合的平面βα,,有下列命题①若α⊂n n m ,//,则α//m ;②若βα⊥⊥m l ,且m l //,则βα//;③若ββαα//,//,,n m n m ⊂⊂,则βα//;④若m n n m ⊥⊂=⋂⊥,,,ββαβα,则α⊥n .其中正确的命题的个数是( )A .1B .2C .3D .45 .将函数xy 2=的图象按向量)1,0(-=平移得到图象1C ,再作出关于x y =对称的图象2C ,则2C 的解析式为( )A .)1(log 2-=x yB .1log 2-=x yC .1log 2+=x yD .)1(log 2+=x y6 .2011年4月28日,世界园艺博览会(以下简称世园会)在西安顺利开幕,吸引了海内外的大批游客,游客甲、游客乙暑假去西安看世园会的概率分别为41,31,假定他们两人的行动相互不受影响,则暑假期间游客甲、游客乙两人都不去西安看世园会的概率为 ( ) A .21B .127 C .1211 D .32 7 .已知⎩⎨⎧++=11)(2x x x f ]1,0[)0,1[∈-∈x x ,则下列函数的图象对应函数正确的个数为( )A .1B .2C .3D .48 .已知函数)2,0)(sin(πϕπωϕω<<->+=x y为偶函数,在函数的一个周期内,点BA ,分别为函数的最低点和最高点,且5||=AB ,则ϕω,的值分别为 ( )A .π2,0B .π,2πC .55π,0 D .π,09 .如图,非零向量b OB a OA ==,且C OA BC ,⊥为垂足,若λ=,则=λ( )A 2||a B ||||b a C 2D ba ⋅10.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于B A ,两点,若ABE ∆是直角三角形,则该双曲线的离心率e 为 ( )A .2B .2C .3D .21+11.已知等差数列{}n a 的前n 项和为0,0,76<>a a S n ,则下列结论不一定成立的是( )A .76S S >B .013<SC .012>SD .1312S S >12.春节假期期间,从正月初一休息到正月初七,共七天,某科室共有五人,每天安排一人值班,每人最多值两天,若值两天均要连续值班,且五人均值班,初一这一天由科长值班,则共有( )种值班的方法. ( )A .144B .96C .240D .600二、填空题 13.若α为锐角,且53)6cos(=+πα,则=-αsin 1034___________.14.如图,过抛物线x y 42=的焦点任作一条直线交抛物线于DA ,两点,若存在一定圆与直线交于CB ,两点,使1||||=⋅CD AB ,则定圆方程为_____________.15.某学校共有青年、中年、老年教师630人,为了调查各年龄段老师的身体状况,现抽取一个容量为n 的样本,若样本中青年、中年、老年三年龄段老师的人数成等差数列,已知青年教师共240人,那么老年教师的人数为____________.16.已知1,0,0=+>>b a b a ,则bb a a 11+++的最小值为______________. 三、解答题17.已知ABC ∆中,角C B A ,,对应的边为c b a ,,,B A B 2,33sin ==. (1)求C sin 的值;(2)若角A 的平分线AD 的长为2,求b 的值. 18.甲乙丙丁戊五人做游戏,每人发一张写有一个号码的的卡片(每人不知自己的卡片号码),然后去坐写有同样号码的五个凳子.(1)求恰有一人坐的凳子与自己手中号码一致的概率;(2)若坐凳子与自己手中号码一致,则获得奖金10元,记五人获得奖金数为ξ,求ξ的分布列及数学期望.19.如图,在四棱锥A B C E D -'中,底面为直角梯形,222===CE BC AB ,且CE AB BC AB //,⊥,平面⊥'AE D 平面ABCE .(1)求证:EB D A ⊥';(2)若E D A D E D A D '=''⊥',,求直线AC 与平面D AB '所成角的正弦值.20.已知数列}{n a 满足:)(1*N n a S n n ∈-=,其中n S 为数列}{n a 的前n 项和.(Ⅰ)试求}{n a 的通项公式; (Ⅱ)若数列}{n b 满足:)(*N n a nb nn ∈=,试求}{n b 的前n 项和公式n T ; (III )设11111n n n c a a +=++-,数列}{n c 的前n 项和为n P ,求证:212->n P n . 21.已知椭圆C 的中心为坐标原点O ,一个长轴端点为)2,0(,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点),0(m P ,与椭圆C 交于相异两点A 、B ,且2=. (Ⅰ)求椭圆方程;(Ⅱ)求m 的取值范围。

河北省衡水市2012年高考信息卷(金考卷系列)理数(3)

河北省衡水市2012年高考信息卷(金考卷系列)理数(3)

2012年春季期河北衡水高考信息卷(金考卷系列)理数(3)一、选择题1 .设集合{}B B B A A ∈=⋂=2,6,5,4,3,2,1,则满足条件的集合B 的个数共有 ( )A .64个B .32个C .31个D .63个2 .在203)32(y x +的展开式中,有理项共有( )A .3项B .4项C .6项D .7项3 .已知点G 是ABC ∆的重心,AC AB AG μλ+=,)、(R ∈μλ若0120=∠A ,2-=⋅AC AB ,则AG的最小值是( )A .33 B .22C .32D .434 .在复平面上正方形的顶点对应的复数中有三个是i i i 21,2,21--+-+,那么第四个复数是 ( )A .i 22-B .i +-1C .i -2D .i --15 .要得到函数x y 3sin -=的图象,需把函数)3sin 3(cos 22x x y -=按______的变化得到.( )A .沿x 轴方向向右平移4π个单位B .沿x 轴方向向左平移4π个单位C .沿x 轴方向向右平移12π个单位D .沿x 轴方向向左平移12π个单位 6 .已知)(x f 是R上最小正周期为2的周期函数,且20≤<x 时,22)(23+--=x x x x f ,则函数)(x f y =的图象在区间]6,0[上与x 轴交点的个数为 ( )A .6B .7C .8D .97 .函数()()mn f x axx =⋅1-在区间[]0,1,m n 的值可能是A .1,1m n ==B .1,m n ==C .2,1m n ==D .3,m n ==8 .两根相距m 3的木杆上系一根拉直的绳子,并在绳子上挂一伦敦奥运会吉祥物“温洛克”,则“温洛克”与两端距离都大于m 1的概率为 ( )A .21B .31C .41D .329 .在一个正方体1111ABCD A BC D -中,P 为正方形1111A B C D 四边上的动点,O为底面正方形ABCD 的中心,,M N 分别为,AB BC 中点,点Q 为底面ABCD 内一点,线段1D Q 与OP 互相平分,则点Q 的轨迹为 ( )A .圆B .两条线段C .正方形D .椭圆10.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点",如果函数()g x x=,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .γβα<<B .βγα<<C .βαγ<<D .γαβ<<11.有公共左顶点和公共左焦点F 的椭圆Ⅰ与Ⅱ的长半轴的长分别为21,a a ,半焦距分别为21,c c ,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心。

河北省衡水市高考数学信息卷(金考卷系列)(1) 理

河北省衡水市高考数学信息卷(金考卷系列)(1) 理

2012年河北衡水信息卷(金考卷系列)理数(1)一、选择题1 .满足条件{}A ⊂2,1≠⊂{}5,4,3,2,1的集合A 共有 ( )A .8个B .7个C .6个D .31个2 .定义运算bc ad db ca -=,则符合条件i zi z=12的复数z 的虚部为 ( )A .51 B .51-C .52D .52-3 .已知1||=a ,若非零向量满足0)(=-⋅a b b ,则||b 的取值范围为 ( )A .]1,0[B .)1,0(C .]1,0(D .),0(+∞4 .甲乙丙三人喝酒,规定由丙连掷三次硬币决定谁喝,若掷得的结果正面向上的频率大于等于21(掷一次决定一次),则甲喝一杯,否则由乙丙二人一人一杯轮流喝,那么首先甲连喝三杯的概率为 ( )A .83 B .81 C .21 D .41 5 .如下面左图,在正方体1111ABCD A B C D -的侧面1AB 内有一动点P 到11B A 与BC 的距离之比为定值,则动点P 所在的曲线可能为 ( )A .BC . D6 .已知nxx x x )1)(321(22+++的展开式中没有常数项,*N n ∈且82≤≤n ,则n 的值共有( )A .1个B .2个C .4个D .0个7 .已知正项等比数列{}n a 满足:1232a a a +=,若存在两项n m a a ,,使得14a a a n m =,则n m 41+的最小值为 ( )A .23B .35C .625D .不存在B BA A A AB 1111A 18 .已知椭圆方程F y x ,1121622=+是椭圆的左焦点,直线l 为对应的准线,直线l 与x 轴交于P 点,MN 为椭圆的长轴,过P 点任作一条割线AB (如图),则AFM ∠与BFN ∠的大小关系为( )A .BFN AFM ∠>∠B .BFN AFM ∠<∠C .BFN AFM ∠=∠D .无法判断9 .函数)1(-=x f y 的图象与函数)(x g y =的图象关于直线x y =对称,若)(x g y =过点)0,2(,则函数)(x f y =必过点( )A .)0,2(B .)2,0(C .)2,1(D .)2,1(-10.设1>a ,若存在常数c 使得对于任意的]2,[a a x ∈,都有],[2a a y ∈满足ca xy =,则a的取值范围为 ( )A .{}2B .]2,1(C .),2[+∞D .]3,2[11.二面角βα--MN 等于︒45,α∈∈P MN A ,,若︒=∠45PAN ,则AP 与β所成的角是( )A .︒30B .︒45C .︒60D .︒9012.已知函数),)(()(2R b a b ax x x f ∈+=在2=x 处有极小值,则函数)(x f 的单调递减区间为 ( )A .)0,(-∞B .)2,0(C .),2(+∞D .无法判断二、填空题13.三位老师和三名学生排成一排照相,学生甲必须排在三位老师的左边,共有______种排法. 14.已知52)4sin(=+πx ,那么=x 2sin ___________. 15.已知)1(+x f 是偶函数,则函数)2(x f y =的图象的对称轴为__________.16.半径为4的球面上有D C B A ,,,四个点且满足AB AD AD AC AC AB ⊥⊥⊥,,,则ADB ACD ABC S S S ∆∆∆++的最大值为___________三、解答题17.如图,在ABC ∆中,已知角C B A ,,所对的边为c b a ,,,且︒=30A ,54cos =B .(1)求C cos 的值;(2)若5=a ,求ABC ∆的面积.18.设有3个投球手,其中一人命中率为q ,剩下的两人水平相当且命中率均为p ()(),0,1p q ∈,每位投球手均独立投球一次,记投球命中的总次数为随机变量为X .(Ⅰ)当12p q ==时,求E (X )及D (X ); (Ⅱ)当13p =,23q =时,求X 的分布列和E (X ).19.如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC,112AA A C AC ===,AB BC=,且,AB BC O ⊥为AC 中点.(I)证明:1A O ⊥平面ABC;(II)求直线1A C 与平面1A AB 所成角的正弦值;(III)在1BC 上是否存在一点E,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确 定点E 的位置.20.设数列{}n a 的首项154a =, 且⎪⎪⎩⎪⎪⎨⎧+=+.,41,,211为奇数为偶数n a n a a n nn ,记.,3,2,1,4112⋅⋅⋅=-=-n a b n n(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)若设数列{}n c 的前n 项和为,n n n S c nb =,求n S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年河北衡水高考信息卷(金考卷系列)理数(4)一、选择题 1 .复数i i+-11(i 为虚数单位)的共轭复数的虚部为( )A .1-B .0C .1D .i2 .已知函数)62cos(2)(π-=x x f ,下面四个结论中正确的是( )A .函数)(x f 的最小正周期为π2B .函数)(x f 的图象关于直线3π=x 对称C .函数)(x f 的图象是由x y 2cos 2=的图象向右平移6π个单位得到D .函数)6(π-x f 是奇函数3 .等比数列{}n a 的前n 项和为n S ,若)(4,4123122-+++==n n a a a S S ,则=5a ( )A .27B .81C .243D .729边界),4 .如图,目标函数y axz-=的可行域为四边形OACB(含若)5432(,是该目标函数的最优解,则a 的取值范围是A .)125310(--,B .)103512(--,C .)512103(,D .)103512(,- 5 .设定义域为R 函数()f x 满足()(4),f x f x -=-+且当2x >时,()f x 单调递增,如果124x x +<且12(2)(2)4x x --<,则12()()f x f x +的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负6 .函数)ln(x x y -=与x x y ln =的图象关于( )A .直线x y =对称B .x 轴对称C .y 轴对称D .原点对称7 .已知函数xx x f sin )(=,判断下列三个命题的真假:①1)(<x f ;②0=x 为)(x f 的一个极大值点;③当)2,0(π∈x 时,)(x f 没有极值点.其中真命题的个数是 ( )A .0个B .1个C .2个D .3个8 .设函数2()(,,)f x ax bx c a b c R =++∈,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能...为()y f x =的图象是DBA9 .已知椭圆1422=+myx的离心率21<e ,则m 的取值范围为 ( )A .43<<mB .83<<mC .43<<m 或3164<<m D .8>m 或43<<m10.某市要对2500名教师的年龄进行调查,现从中随机抽出100名教师,已知抽到的教师年龄都在)45,20[岁之间,根据调查结果得出教师的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市在)30,25[的人数是( )A .500B .750C .250D .60011.已知P 是ABC ∆所在平面内任意一点,G 是ABC ∆所在平面内一定点,且PG PC PB PA 3=++,则G 是ABC ∆的 ( )A .内心B .外心C .垂心D .重心12.过抛物线x y42=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距离之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在二、填空题 13.过双曲线)0,0(12222>>=-b a by ax 的左焦点且垂直于x 轴的直线与双曲线相交于N M ,两点,以MN 为直径的圆恰好过双曲线的右焦点,则双曲线的离心率等于___________.14.在正方体1111D C B A ABCD -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,则面EBFD 1与底面1111D C B A 所成的二面角的最大值为_____________.15.已知直线0=++c by ax 与圆1:22=+y x O 相交于B A ,两点,且3||=AB ,以B A ,为切点的两条切线的夹角为____________.16.设)(1x f-是函数)1ln()(2++=x x x f 的反函数,则使1)(1>-x f成立的x 的取值范围为________________.三、解答题17.已知向量)sin ,(sin B A m =,)cos ,(cos A B n =,C n m 2sin =⋅,且A 、B 、C 分别为ABC ∆的三边a 、b 、c 所对的角. (Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求c 边的长.18.甲、乙两人各射击一次,击中目标的概率分别是32和43.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.(1)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后;被中止射击的概率是多少; (2)若共有三个目标靶,甲先对一目标射击,若甲没有射中,则乙再对目标补射,若乙射中,则二人对第二目标射击,若乙也没有射中,则停止射击.问:共射中两个目标的概率,并求射中目标靶的期望.19.已知等差数列{}n a 满足:{}n a a a a ,26,7753=+=的前n 项和为n S 。

(1)求n a 及n S ; (2)令)(11*2N n a b n n∈-=,求数列{}n b 的前n 项和n T 。

20.已知四棱锥ABCD P -的底面为直角梯形,⊥︒=∠PA DAB DC AB ,90,//底面A B C D ,且M ,1=是PB 的中点.(1)判断在PD 上是否存在一点E ,使面⊥ABE 面PCD ,并说明理由; (2)求面AMC 与面BMC 所成的二面角的大小; (3)求点D 到面MAC 的距离.21.已知点()0,1A 、()0,1B -,P 是一个动点,且直线P A 、P B 的斜率之积为12-。

(1)求动点P 的轨迹C 的方程;(2)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,若对满足条件的任意直线l ,不等式Q M Q N λ⋅≤恒成立,求λ的最小值。

_ A_P_ D_C_ M_ D22.已知函数1()lnsing x xxθ=+在[)1,+∞上为增函数,且(0,)θπ∈,θ为常数,1()ln()mf x m x x m Rx-=--∈.(1)求θ的值;(2)若()()y f x g x=-在[)1,+∞上为单调函数,求m的取值范围;(3)设2()eh xx=,若在[]1,e上至少存在一个x,使得000()()()f xg xh x->成立,求m的取值范围.2012年春季期河北衡水高考信息卷(金考卷系列)理数(4)参考答案一、选择题1. C2. D3. B4. B5. A6. D7. B8. 【答案】D【解析】设x e x f x F )()(=,∴)2()()()(2c bx ax b ax e x f e x f e x F x x x ++++=+'=', 又∴1-=x 为x e x f )(的一个极值点, ∴0)()1(2=+-=-'c a e F ,即c a =, ∴22244a b ac b -=-=∆,当0=∆时,a b 2±=,即对称轴所在直线方程为1±=x ; 当0>∆时,1|2|>ab ,即对称轴所在直线方程应大于1或小于-1.9. C 10. A 11. D 12. D 二、填空题 13.12+ 14.4π15.3π16. )),12(ln(+∞+三、解答题 17.解:(1))sin(cos sin cos sin B A A B B A n m +=⋅+⋅=⋅对于C B A C C B A ABC sin )sin(0,,=+∴<<-=+∆ππ,.sin C n m =⋅∴又C n m 2sin =⋅ ,.3,21cos ,sin 2sin π===∴C C C C(2)由B A C B C A sin sin sin 2,sin ,sin ,sin +=得成等差比数列,由正弦定理得.2b a c +=18,18)(=⋅∴=-⋅CB CA AC AB CA ,即.36,18cos ==ab C ab由余弦弦定理ab b a C ab b a c 3)(cos 22222-+=-+=,36,3634222=⨯-=∴cc c,.6=∴c18.解:(1)记“乙恰好射击4次后,被中止射击”为事件2A ,由于各事件相互独立故2113111333()4444444464P A =⨯⨯⨯+⨯⨯⨯=所以乙恰好射击4次后,被中止射击的概率是364.(2)甲乙二人射中目标靶的概率为111113412-⨯=,共射中两个目标的概率为111111211212121728⨯⨯=.甲乙二人射中目标靶的个数可能为0,1,2,311111111121(0),(1),(2)341212121441728p p p ξξξ==⨯===⨯===3111331(3)()121728p ξ===故分布列为ξ123p1121114412117281331172811112113314367012312144172817281728E ξ∴=⨯+⨯+⨯+⨯=19. 【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列基础知识是解答好本类题目的关键.【解析】(Ⅰ)设等差数列{}n a 的公差为d,因为37a =,5726a a +=,所以有 112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n .(Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211na -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223nn+1⋅-=11(1-)=4n+1⋅n 4(n+1),即数列{}n b 的前n 项和n T =n 4(n+1).20.解:(1)证明: PA ⊥ 底面ABCD C D A D ⊥由三垂线定理得C D PD ⊥因面,C D 与面PAD 内两条相交直线,AD PD 都垂直,C D ∴⊥面PAD ,在PAD ∆中,取P D 的中点为E ,则,,AE PD AE CD AE ⊥⊥⊂面A B E∴存在P D 的中点E 使得面⊥ABE 面PCD (2)作A N C M ⊥,垂足为N ,连接B N在Rt PAB ∆中,AM M B =又A C C B =,A M C B M C ∴∆≅∆ B N C M ∴⊥,故A N B ∠为所求二面角的平面角C B A C ⊥ ,由三垂线定理,得C B P C ⊥ 在R t P C B ∆中,C M M B =,所以C M A M =在等腰三角形A M C 中,AN M C AC ⋅=2A N∴==又2A B=2222cos23AN BN ABANBAN BN+-∴∠==-⨯故所求的二面角的大小为2arccos()3-.(3)12221111332246 M AC D D AC M AC D AC mV V S h S h h--=⇒⋅=⋅⇒⋅=⇒=故点D到面MAC的距离为6.21.解:(1)设动点P的坐标为(),x y,则直线,PA PB的斜率分别是11,y yx x-+,由条件得1112y yx x-+?-,-------------------------------------------------------2’即()22102xy x+=动点P的轨迹C的方程为()22102xy x+=-----------------------------------6’(注:无0x¹扣1分)(2)设点,M N的坐标分别是()()1122,,,x y x y,ⅰ)当直线l垂直于x轴时,21212111,,2x x y y y==-=-=()()()1213,,3,3,QM y QN y y\=-=-=--()2211732Q M Q N y\?--=-----------------------------------------------------10’ⅱ)当直线l不垂直于x轴时,设直线l的方程为()1y k x=+,由221,2(1)xyy k xìïï+=ïíïï=+ïî得()2222124220k x k x k+++-=----------------------11’22121222422,1212k kx x x xk k-∴+=-=++--------------------------------------------12’()()()2224QM QN x x y y x x x x y y\?--+=-+++又()()11221,1y k x y k x =+=+,()()()2221212124QM QNk x x k x x k \?++-+++-----------------13’()217131722212k =-<+------------------------------------------14’综上所述QN QM ⋅的最大值是217---------------------------------------------------15’λ∴的最小值为172------------------------------------------------------------------------16’22. (共15分)解:(1)由题意:211g (x )0x sin xθ'=-+≥在[)1,+∞上恒成立,即2sin 1sin x x θθ-,(0,),sin 0,xsin 10θπθθ∈∴>≥ 故-在[)1,+∞上恒成立只需sin 110,sin 1sin 102πθθθθπθ⋅-≥≥∈即,只有=,结合(,),得=(2) 由(1),得f(x)-g(x)=mx-m 2ln x x-,22mx 2x m(f(x)-g(x))=x-+',由于f(x)-g(x)在其定义域内为单调函数,则22mx 2x m 0mx 2x m 0-+≥-+≤或者在[)1,+∞上恒成立,即m )1,+∞上恒成立,故m 1m 0≥≤或者,综上,m 的取值范围是(][),01,-∞+∞(3)构造函数F(x)=f(x)-g(x)-h(x),m 2e F(x )m x 2ln x xx=---,当m 0≤时,由[]x 1,e ∈得,m 2e m x 0,2ln x 0xx-≤--<,所以在[]1,e 上不存在一个0x ,使得000f (x )g (x )h (x )->; 当m>0时,2222m 22e mx 2x m 2e(F(x ))m xxxx-++'=+-+=,因为[]x 1,e ∈,所以22e 2x 0,m x m 0,F x ))>0'-≥+>所以((在[)1,+∞上恒成立,故F(x)在[]x 1,e ∈上单调递增,m ax 2mm 4e F(x )m e 4,m e 4>0,m >eee 1=-----只要解得,故m 的取值范围是()24e e 1,-+∞ 另法:(3)222ln ,1e x x m x +>- 令222ln (),1e x x F x x +=-[]22'22(22)ln (242)()0()1,,(1)x x x ex F x F x e x --+--=<∴-在上递减44().e e F x m =∴>。

相关文档
最新文档