圆的基本性质单元测试

合集下载

《圆的基本性质》单元测试题s-shuc302

《圆的基本性质》单元测试题s-shuc302

《圆的基本性质》单元测试题王立根一、选择题:(28分)1、三角形外接圆的圆心是()(A)三内角平分线的交点,(B)三边中垂线的交点,(C)三中线的交点,(D)三高线的交点,2、在①平行四边形,②菱形,③等腰梯形,④矩形,⑤正方形中,一定有外接圆的是()(A)①②③(B)②③④(C)③④⑤(D)②④⑤3、一条弦把半径为r的圆分成1:2的两条弧,则弦长为()(A )(B)(C)(D)4、⊙O的直径为10cm,P是⊙O内一点,OP=3,则过点P的最短弦长为()(A)4 (B)6 (C)8 (D)105、等腰三角形ABC中,AB=AC,∠A=30°,BC=6,则△ABC的外接圆直径为()(A)(B)6 (C)(D)126、如图,⊙O中,AB=AD=CD,∠A=138°,则∠E=()(A)48°(B)52°(C)58°(D)63°7、已知扇形的圆心角为120°,弧长等于半径为5cm的圆周长,则扇形的面积为()(A)75cm2 (B)75πcm2 (c)150cm2 (D)150πcm2二、填空题:(21分)1、在⊙O中,直径为10cm,一条弦长为6cm,则这条弦的弦心距为---------cm.2、△ABC内接于以BC为直径的圆,且AB=8,AC=6,则△ABC的外接圆半径为--------。

3、已知四边形ABCD内接于⊙O,∠A:∠B:∠C=2:3:4,则∠D=---------。

4、如图,△ABC中,AB=AC,∠C=68°,以AB为直径的⊙O交AC于D,交BC于E,则∠DOE=--------度。

5、已知扇形面积为15πcm2,弧长为6πcm,则扇形半径为------- cm.6、弓形的半径为10cm,弦长为12cm,则弓高为---------cm.7、已知扇形面积为12cm2,半径为6cm,则扇形周长为--------cm三、如图,△ABC的外接圆直径AB交CD于E,已知∠C=65°,∠D=47°,求∠CEB的度数。

圆的认识单元测试题及答案

圆的认识单元测试题及答案

圆的认识单元测试题及答案一、选择题:1. 圆的周长公式是()。

A. C = πrB. C = 2πrC. C = πdD. C = 2πd2. 半径为2厘米的圆的面积是()平方厘米。

A. 12.56B. 3.14C. 4D. 6.283. 圆的直径是半径的()倍。

A. 1B. 2C. 3D. 4二、填空题:4. 圆的半径为3厘米,其周长是________厘米。

5. 一个圆的直径是8厘米,那么它的半径是________厘米。

三、判断题:6. 圆的直径是圆内最长的线段。

()7. 圆心决定圆的位置,半径决定圆的大小。

()四、简答题:8. 请简述圆的基本概念。

五、计算题:9. 已知一个圆的半径为5厘米,求这个圆的周长和面积。

六、应用题:10. 一个圆形花坛的直径是20米,如果绕着花坛走一圈,需要走多少米?如果花坛的面积是1256平方米,那么它的半径是多少米?答案:一、选择题:1. B2. A3. B二、填空题:4. 18.845. 4三、判断题:6. 正确7. 正确四、简答题:圆是一个平面上所有与定点(圆心)距离相等的点的集合。

这个定点称为圆心,距离称为半径。

圆的边界称为圆周。

五、计算题:9. 周长:C = 2πr = 2 × 3.14 × 5 = 31.4厘米面积:A = πr² = 3.14 × 5² = 3.14 × 25 = 78.5平方厘米六、应用题:10. 周长:C = πd = 3.14 × 20 = 62.8米半径:A = πr²,所以 r² = A / π,r = √(A / π) =√(1256 / 3.14) ≈ 20米结束语:通过本单元测试题,同学们应该能够更好地理解和掌握圆的基本性质和计算方法。

希望同学们能够通过练习,加深对圆的认识,提高解题能力。

圆的基本性质 单元能力测试(含答案)

圆的基本性质 单元能力测试(含答案)

第7题第8题第三章 圆的基本性质能力提升测试卷一、选择题(共10小题,每小题3分,共30分)1. 如图,在⊙O 中,弦AB ∥CD ,若︒=∠40ABC ,则=∠BOD ( ) A. ︒20 B. ︒40 C. ︒50 D. ︒802.如图,点A 、B 、C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( ) A . B .C .D .3.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( ) A .cm B .3cm C .4cm D .4cm4.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点,2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点。

2、连接AB ,BC ,CA .△ABC 即为所求的三角形。

对于甲、乙两人的作法,可判断( )A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确第4题 第5题 5.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,⌒AB =⌒BC,∠AOB =60°,则∠BDC 的 度数是( )A.20°B.25°C.30°D. 40°6.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD =12,则⊙O 的直径为( ) A. 8 B. 10 C.16 D.20第1题 第2题 第3题DCB AO第9题7.如图所示,扇形AOB的圆心角为120︒,半径为2,则图中阴影部分的面积为( )334.-πA2334.-πB3234.-πC34.πD8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB=DB C.∠ACD=∠ADC D.OM=MD10.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A、是正方形B、是长方形C、是菱形D、以上答案都不对二、填空题(共6小题,每小题4分,共24分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.12.如图,AB是⊙O的弦,OC⊥AB于C.若AB=23,0C=1,则半径OB的长为________.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.14.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.15.如图所示,AB为⊙O的直径,AC为弦,OD∥BC交AC于点D,若AB=20cm,∠A=30°,则AD=cm.16.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交AB于E,交⊙O于D.则AD=_____________.三、解答题(共7题,共66分)17、(本题8分)如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的A BCO第10题第11题第12题第13题第14题第15题第16题中点,AD ⊥BC 于点D .求证:AD =12BF .18(本题8分).如图,⊙O 的直径AB 和弦CD 相交于点E ,∠CEA =30°, 求CD 的长.19.(本题8分)如图所示,OA 、OB 、OC都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .20、(本题10分)如图,弧AC 是劣弧,M 是弧AC 中点,B 为弧AC 上任意一点,自M 向BC 弦引垂线,垂足为D ,求证:AB +BD =DC 。

2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷(解析版)

2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷(解析版)

2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为(用含α的式子表示).17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.2020年浙教新版九年级上册数学《第3章圆的基本性质》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定【分析】根据图形,得两个小半圆的直径之和等于大半圆的直径,则根据圆周长公式,得二人所走的路程相等.【解答】解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.【点评】本题考查了圆的认识,注意计算两个小半圆周长的时候,可以提取,则两个小半圆的直径之和是大半圆的直径.2.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5B.C.2D.【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【解答】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点评】本题考查的是垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.3.我国著名的引滦工程的主干线输水管的截面如图所示,直径为2.6米,水最深为2.5米,则水面AB的宽为()A.0.9 米B.1.0 米C.1.1米D.1.2米【分析】作OC⊥AB交圆于C,交AB于D,连接OA,根据勾股定理求出AD,根据垂径定理解答.【解答】解:作OC⊥AB交圆于C,交AB于D,连接OA,则OA=1.3,OD=1.2,由勾股定理得,AD==0.5,则AB=2AD=1.0(米),故选:B.【点评】本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y【分析】连接BC,根据圆周角定理求出∠B,根据平行线的性质,圆内接四边形的性质,三角形内角和定理计算即可.【解答】解:连接BC,由圆周角定理得,∠BAC=∠BOC=x°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣x°,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=90°+x°,∵OA=OC,∴∠OCA=∠OAC=x°,∵AD∥OC,∴∠DAC=∠OCA=x°,∴∠ACD=180°﹣∠DAC﹣∠D,即y=180°﹣x°﹣(90°+x°)=90°﹣x°,∴x+y=90,故选:A.【点评】本题考查的是圆周角定理,圆心角、弧、弦的关系定理,掌握圆内接四边形的性质,圆周角定理是解题的关键.5.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°【分析】根据等腰三角形的性质、三角形的外角的性质计算,得到答案.【解答】解:∵OE=OD,DC=OE,∴DC=DO,∴∠C=∠DOC,∴∠ODE=2∠C,∵OD=OE,∴∠ODE=∠OED,∴∠OED=2∠C,∵∠BOE=∠C+∠OED,∴∠C+2∠C=72°,解得,∠C=24°,故选:A.【点评】本题考查的是圆周角定理、三角形的外角的性质,掌握等腰三角形的性质、三角形的外角的性质是解题的关键.6.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片【分析】根据旋转的定义来判断即可.【解答】解:骑自行车的人在前进的过程中没有发生旋转.故选:C.【点评】本题主要考查了生活中的旋转现象,解题的关键是要正确理解旋转的特征:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.7.如图,将Rt△ABC(∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【分析】首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据对应点与旋转中心所连线段的夹角等于旋转角,可得旋转角的度数等于∠BAB1的度数,据此解答即可.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=180°﹣35°﹣90°=55°,∵点C,A,B1在同一条直线上,∴∠BAB1=180°﹣∠BAC=180°﹣55°=125°,即旋转角等于125°.故选:C.【点评】此题主要考查了旋转的性质和应用,要熟练掌握,解答此题的关键是要明确:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.8.如图四个圆形网案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.【分析】观察图形,从图形的性质可以确定旋转角,然后进行判断即可得到答案.【解答】解:A图形顺时针旋转120°后,能与原图形完全重合,A不正确;B图形顺时针旋转90°后,能与原图形完全重合,B不正确;C图形顺时针旋转180°后,能与原图形完全重合,C不正确;D图形顺时针旋转72°后,能与原图形完全重合,D正确,故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)【分析】根据题意只研究点B的旋转即可,OB与x轴夹角为45°,分别按顺时针和逆时针旋转75°后,与y轴负向、x轴正向分别夹角为30°,由此计算坐标即可.【解答】解:由点B坐标为(2,﹣2)则OB=2,且OB与x轴、y轴夹角为45°当点B绕原点逆时针转动75°时,OB1与x轴正向夹角为30°则B1到x轴、y轴距离分别为,,则点B1坐标为(,);同理,当点B绕原点顺时针转动75°时,OB1与y轴负半轴夹角为30°,则B1到x轴、y轴距离分别为,,则点B1坐标为(﹣,﹣);故选:C.【点评】本题为坐标旋转变换问题,考查了图形旋转的性质、特殊角锐角三角函数值,解答时注意分类讨论和确定象限符号.10.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A.30°B.45°C.60°D.90°【分析】根据旋转的性质,观察图形,中心角是由四个角度相同的角组成,结合周角是360°求解.【解答】解:∵中心角是由四个角度相同的角组成,∴旋转的角度是360°÷4=90°.故选:D.【点评】本题把旋转的性质和一个周角是360°结合求解.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.二.填空题(共8小题)11.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.【分析】解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.【解答】解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.【点评】此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.12.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为或.【分析】分AB、CD在圆心O的两侧、AB、CD在圆心O的同侧两种情况,根据垂径定理、勾股定理计算即可.【解答】解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.【点评】本题考查了勾股定理和垂径定理以及分类讨论,掌握垂径定理和勾股定理,灵活运用分类讨论思想是解题的关键.13.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是37.5cm.【分析】根据切线的性质和已知条件证出O、D、C共线,根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【解答】解:如图,设点O为圆环的圆心,连接OA和OD,∵AB是内圆O的切线,∴AB⊥OD,∴∠ADO=90°,∵CD⊥AB,∴∠ADC=90°,∴∠ODC=180°,∴O、D、C共线,∴OC⊥AB,∴AD=AB=30cm,∴设OA为rcm,则OD=(r﹣15)cm,根据题意得:r2=(r﹣15)2+302,解得:r=37.5.∴这个摆件的外圆半径长为37.5cm;故答案为:37.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.14.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为或2.【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OC,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OC,∵CE===2,∴边CD===2,故答案为或2.【点评】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.15.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为105°.【分析】连结AC并且延长至E,根据旋转的性质和平角的定义,由角的和差关系即可求解.【解答】解:如图:连结AC并且延长至E,∠DCE=180°﹣∠DCB﹣∠ACB=105°.故灰斗柄AB绕点C转动的角度为105°.故答案为:105°.【点评】考查了生活中的旋转现象,本题关键是由角的和差关系得到∠DCE的度数.16.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,若点D在AB上,则此时旋转角的大小为2α(用含α的式子表示).【分析】由直角三角形的性质得出∠B=90°﹣α,由旋转的性质得出CD=CB,由等腰三角形的性质得出∠CDB=∠B=90°﹣α,由三角形内角和定理即可得出答案.【解答】解:∵∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质得:CD=CB,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣2(90°﹣α)=2α;故答案为:2α.【点评】本题考查了旋转的性质、等腰三角形的性质、直角三角形的性质等知识;熟练掌握旋转的性质和等腰三角形的性质是解题的关键.17.如图所示的图案,可以看成是由字母“Y”绕中心每次旋转36度构成的.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.【解答】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.故答案为:36.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.18.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O 分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2018的坐标为(10090,4).【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求得B2018的坐标.【解答】解:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,且B2C2=4,∴B4的横坐标为:2×10=20,∴点B2018的横坐标为:1009×10=10090.∴点B2018的纵坐标为:4.故点B2018的坐标为(10090,4).故答案为:(10090,4).【点评】此题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三.解答题(共8小题)19.已知线段AB=4cm,以3cm长为半径作圆,使它经过点A、B,能作几个这样的?请作出符合要求的图.【分析】先作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆即可.【解答】解:这样的圆能画2个.如图:作AB的垂直平分线l,再以点A为圆心,3cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3cm为半径作圆,则⊙O1和⊙O2为所求圆.【点评】本题考查了圆的认识,解题的关键是找出圆心O1和O2.20.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.【分析】(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;(2)令⊙O的半径为r,由垂径定理得出BE=CE=BC=4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD∥AC;(2)解:令⊙O的半径为r,根据垂径定理可得:BE=CE=BC=4,由勾股定理得:r2=42+(r﹣3)2,解得:r=,所以⊙O的直径为.【点评】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.21.一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.【分析】(1)作半径OD⊥AB于C,连接OB,根据勾股定理计算;(2)分水位上升到圆心以下、水位上升到圆心以上两种情况,根据垂径定理、勾股定理计算即可.【解答】解:(1)作半径OD⊥AB于C,连接OB,由垂径定理得:BC=AB=0.3,在Rt△OBC中,OC==0.4CD=0.5﹣0.4=0.1,此时的水深为0.1米;(2)当水位上升到圆心以下时水面宽0.8 米则OC==0.3,水面上升的高度为:0.3﹣0.2=0.1米;当水位上升到圆心以上时,水面上升的高度为:0.4+0.3=0.7米,综上可得,水面上升的高度为0.1米或0.7米.【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.22.如图,在△ACE中,AC=CE,⊙O经过点A,C,且与边AE,CE分别交于点D,F,点B是劣弧AC上的一点,且=,连接AB,BC,CD.求证:△CDE≌△ABC.【分析】连接DF,根据圆内接四边形的性质得到∠CAE=∠DFE、∠B=∠CDE,根据圆心角、弧、弦的关系定理得到BC=DE,根据全等三角形的判定定理证明即可.【解答】证明:∵四边形ABCD内接于⊙O,∴∠ABC=∠CDE,∵=,∴∠BAC=∠DCE,在△CDE和△ABC中,,∴△CDE≌△ABC(AAS).【点评】本题考查的是圆心角、弧、弦的关系、全等三角形的判定、等腰三角形的性质,掌握圆心角、弧、弦的关系定理是解题的关键.23.小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?【分析】利用分针与时针的速度关系,列出方程求出时针走的圆心角的度数,再由时针走1°相当于2分钟,即可求出准确时间.【解答】解:分针的速度是时针速度的12倍,设时针走了x°,则分针走了12x°,∵小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),且时针与分针刚好重合在一起.∴12x°﹣x°=120°,解得x°=°,∵时针走1°相当于2分钟,∴时针走过的分钟为°×2=21分.∴这时准确的时间为4时21分.【点评】本题主要考查了生活中的旋转现象,解题的关键是求出时针走了多少度.24.如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是OC=OM﹣ON(直接写出结论,不必证明)【分析】(1)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论;(2)作∠OCG=60°,交OA于G,证明△OCG是等边三角形,得出OC=OG,∠CGM=60°=∠CON,证出∠OCN=∠GCM,证明△OCN≌△GCM(ASA),得出ON=GM,即可得出结论.【解答】(1)证明:作∠OCG=60°,交OA于G,如图1所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGM=60°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM+GM,∴OC=OM+ON;(2)解:OC=OM﹣ON,理由如下:作∠OCG=60°,交OA于G,如图2所示:∵∠AOB=120°,OC平分∠AOB,∴∠CON=∠COG=60°,∴∠CON=120°,∠OCG=∠COG,∴OC=CG,∴△OCG是等边三角形,∴OC=OG,∠CGO=60°,∴∠CGM=120°=∠CON,∵∠MCN=∠OCG=60°,∴∠OCN=∠GCM,在△OCN和△GCM中,,∴△OCN≌△GCM(ASA),∴ON=GM,∵OG=OM﹣GM,∴OC=OM﹣ON;故答案为:OC=OM﹣ON【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、旋转的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.25.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【分析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,﹣2);(2)如图所示,A2的坐标为(3,﹣5);B2的坐标为(2,﹣1);C2的坐标为(1,﹣3);(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).【点评】本题主要考查平移变换和旋转变换,熟练掌握平移变换和旋转变换的定义是解题的关键.26.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).若△ABC和△A1B1C1关于原点O成中心对称图形,画出图形并写出△A1B1C1的各顶点的坐标.【分析】根据关于原点成中心对称的图形横纵坐标都互为相反数即可得结论.【解答】解:如图所示:△A1B1C1即为所求作的图形.A1(3,﹣5),B1(2,﹣1),C1(1,﹣3).【点评】本题考查了旋转变换、中心对称图形,解决本题的关键是掌握中心对称图形的坐标特征.。

第3章 圆的基本性质单元测试卷(含解析)

第3章 圆的基本性质单元测试卷(含解析)

绝密★启用前第三章圆的基本性质单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,AB是直径,,∠BOC=40°,则∠AOE的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3 C.S1<S3<S2D.S3<S2<S17.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)为()A.10 cm B.16 cm C.24 cm D.26 cm9.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C12.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=度.13.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.14.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.15.在Rt△ABC中,∠ACB=90°,在斜边AB上分别截取AD=AC,BE=BC,DE=6,点O是△CDE的外心,如图所示,则点O到△ABC的三边的距离之和是.16.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,17.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.18.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点,==,则CM+DM 的最小值为.评卷人得分三.解答题(共6小题,共46分)19.(6分)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.20.(6分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.21.(8分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.22.(8分)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.23.(8分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).24.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.参考答案与试题解析1.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.2.解:∵,∠BOC=40°,∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故选:D.3.解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x ∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•P B即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.4.解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.5.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,6.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.7.解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.8.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.9.解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.10.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选:B.11.解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.12.解:如图,连接AE,∵点D是的中点,∴∠AED=∠CED,∵∠CED=40°,∴∠AEC=2∠CED=80°,∵四边形ADCE是圆内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°﹣∠AEC=100°,故答案为:100.13.解:连接OC,如图,∵OA=OC,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.14.解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.15.解:由题意点O是EC、CD垂直平分线的交点,∵AD=AC,BE=BC,∴EC的垂直平分线经过B且平分∠B,CD的垂直平分线经过A且平分∠A,∴O是△ABC的内心,则r=(AC+BC﹣AB)=(AD+BE﹣AB)=DE=3,∴点O到△ABC的三边的距离之和是3r=9,故答案为9.16.解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.17.解:如图,连接CE.∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在直角△OEC 中,OC=2,CE=4, ∴∠CEO=30°,∠ECB=60°,OE=2∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =﹣π×22﹣×2×2=﹣2,故答案为:﹣2.18.解:如图,作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M , 此时,点M 为CM +DM 的最小值时的位置, 由垂径定理,=,∴=,∵==,AB 为直径,∴C ′D 为直径,∴CM +DM 的最小值是16. 故答案是:16.19.证明:连接OC , ∵=,∴∠AOC=∠BOC .∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO=∠CEO=90° 在△COD 与△COE 中, ∵,∴△COD ≌△COE (AAS ), ∴OD=OE ,∵AO=BO,∴AD=BE.20.解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.21.(1)解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠ADC=86°,∴∠ABC=94°,∴∠CBE=180°﹣94°=86°;(2)证明:∵AC=EC,∴∠E=∠CAE,∵AC平分∠BAD,∴∠DAC=∠CAB,∴∠DAC=∠E,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠ADC=∠CBE,在△ADC和△EBC中,,∴△ADC≌△EBC,∴AD=BE.22.解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2, ∴△DOC 为等边三角形, ∴∠DOC=60°, ∴∠CBD=30°, ∴∠ADB=90°, ∴∠BED=60°, ∴∠AEC=60°.23.解:(1)连接OD ,OC , ∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°, ∴∠CAB=30°, ∵DE ⊥AB , ∴∠AEF=90°,∴∠AFE=90°﹣30°=60°; (2)由(1)知,∠AOD=60°, ∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2, ∵DE ⊥AO , ∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×=π﹣.24.(1)证明:∵CD ⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B,∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.。

圆单元测试题及答案解析

圆单元测试题及答案解析

圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。

答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。

答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。

7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。

四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。

答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。

9. 一个圆的周长是44厘米,求这个圆的半径。

答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。

五、证明题10. 证明:圆的内接四边形的对角线互相平分。

答案:设圆内接四边形ABCD,连接对角线AC和BD。

由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。

根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。

同理∠CAD和∠ABD也相等。

因此,△ABC和△ADC是全等的,所以AC平分BD。

同理,BD平分AC。

所以圆的内接四边形的对角线互相平分。

六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。

(完整版)圆的基本性质检测试题

(完整版)圆的基本性质检测试题

圆的基本性质测试题班级 姓名 得分一:选择题(每题3分,共30分)( )1.下列语句中不正确的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,对称轴是任意一条直径所在的直线, ④半圆是弧,⑸直径是圆内 最长的弦,⑥等弧所对的圆周角相等. A .3个 B.4个 C .5个 D.6个( )2. 如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是:A .2.5B .3.5C .4.5D .5.5 ( )3.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=A.400B. 600C.800D.1200( )4.如图,将圆沿AB 折叠后,圆弧 恰好经过圆心,则 ∠AOB 等于:A .60°B .90°C .120°D .150°(第3题) (第4题) (第5题) (第6题)( )5. 两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为A .(45)+ cmB .9 cmC .45cmD .62cm( )6. 如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是 A .30︒ B .45︒ C .60︒ D .80︒( )7.AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是:A .30ºB .60ºC .45ºD .75º(第7题) (第8题) (第9题) (第10题)( )8.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为: A .4cm B.2cm C.1cm D.0.5cm ( )9. 已知⊙O 的直径AB=12,弦AC=6,AD=62,则∠CAD=A. 60°B. 450C.1050 或150D. 60°或 450( )10.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点,P 是直径AB 上一动点,则PC+PD 的最小值为: A.22 B.2 C.1 D.2二:填空题(每题3分,共18分)11. 如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距 离为 。

最新浙教版九年级数学上学期《圆的基本性质》单元测试卷及答案解析.docx

最新浙教版九年级数学上学期《圆的基本性质》单元测试卷及答案解析.docx

九年级上数学圆的基本性质单元测试卷班级 姓名一、选择题1、下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 2、过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题) 5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是()A B C D6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A、35B、5 C、25D、67.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A. 60πcm2B. 45πcm2C. 30πcm2D15πcm2ABCP15c m3c m9c m(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P 之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△11BC A 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分的面积)为( )A 、38737-π B 、38734+π C 、π D 、334+π (第10题)二、填空题(每题4分,共32分)11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.12.同圆的内接正三角形与内接正方形的边长的比是______.13. 如图,△ABC 是等腰直角三角形,BC 是斜边,点P 是△ABC 内的一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合.如果AP=3,那么线段PP ′的长是______.(第13题) (第14题)14.如图,三角形ABC 是等边三角形,以BC 为直径作圆交AB ,AC 于点D ,E ,若BC=1,则DC=________.(第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 .17、在平面直角坐标系中,已知一圆弧点A (-1,3),B (-2,-2),C (4,-2),则该圆弧所在圆的圆心坐标为 .18、如图⊙O 的半径为1cm ,弦AB ,CD 的长度分别为2cm ,1cm ,则弦AC ,BD 相交所夹的锐角 = . 三、解答题(第18题)19、已知:如图,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 长为半径的圆交AB 于D,求的度数.DCBAE DCBA O(第19题)20、 “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E, CE=1寸,求直径CD 的长.”(第20题)21、如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC . 求证:∠ACB=2∠BAC.CBAO(第21题)22、如图所示,BC 是⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ;求证:BE =AE .(第22题)23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD=8,求AE的长;(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.(第24题)25、如图所示,已知⊙O的直径为32,AB为⊙O的弦,且AB=4,P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.第25题26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在AB上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,DF⊥CD交AB于点F. (1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.第26题27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.40cm40cm60cm DCB A 60O参考答案:1~5:AADCC 6~10:ADBCC11. 7厘米或1厘米 12.6213.32 点拨:由旋转的性质,知∠PAP ′等于90°,AP ′=AP=3,所以PP ′=22AP AP '+ =2233+=32. 14.3215、33648-π16、2017、(1,0)18、75°19、50°20、26寸21、求证圆周角∠ACB=2∠BAC,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB=2∠BOC 容易得到.22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC ,∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C ,∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2(2)224、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;(2)解:连结AO 并延长交BC 于F ,连结OB ,OC ,∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =21BC =21×6=3, 在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,BF =3,OF =4-r ,∴222)4(3r r -+=,解得825=r ,∴⊙O 的半径是825 25.解:存在以A ,P ,B 为顶点的面积最大的三角形.如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC=90°.∴BC=22AC AB -=22(32)4-=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线,OD=12BC =22.∴PD=PO+OD=322+22=22.∴APB S =12AB ·PD=12×4×22=42. 26.(1)证明:过点O 作OH ⊥CD 于点H ,∴H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD,则O 为EF 的中点,OE=OF.又∵AB 为直径,∴OA=OB ,∴AE=OA-OE=OB-OF=BF,即AE=BF.(2)解:四边形CDFE 的面积为定值,是216 5 cm .理由:∵动弦CD 在滑动过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,∴CDFE S 四边形=OH ·CD.连结OC.∴OH=22OC CH -=2212822⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=25(cm ).又∵CD 为定值8 cm,∴CDFE S 四边形=OH ·CD=25×8=165(2cm ),是常数.即四边形CDFE 的面积为定值.27.示意图略,路线的长度为140-π3103320+。

浙教 版 九年级数学上册 第3章 圆的基本性质 单元测试卷(解析版)

浙教 版 九年级数学上册 第3章 圆的基本性质 单元测试卷(解析版)

第3章圆的基本性质单元测试卷一、选择题1.(3分)已知⊙O的半径为2,点P到圆心O的距离为,则点P在()A.圆内B.圆上C.圆外D.不能确定2.(3分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40°B.80°C.70°D.50°3.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.84.(3分)若正六边形的边长等于4,则它的面积等于()A.B.C.D.5.(3分)如图,⊙O的半径为6cm,四边形ABCD内接于⊙O,连结OB、OD,若∠BOD =∠BCD,则劣弧的长为()A.4πB.3πC.2πD.1π6.(3分)如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB 的度数是()A.36°B.60°C.72°D.108°7.(3分)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm8.(3分)已知⊙O的直径CD=4,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=2,则∠ACD等于()A.30°B.60°C.30°或60°D.45°或60°9.(3分)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2B.πm2C.15πm2D.πm210.(3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.9B.18C.36D.72二、填空题(每题3分,共32分)11.(4分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠D=.12.(4分)圆内接正五边形中,每个外角的度数=度.13.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.14.(4分)如图,在⊙O中,半径OA⊥弦BC.若∠ADC=24°,则∠OBC的度数为.15.(4分)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,使点A和点B有且只有一个点在⊙D内,则x的取值范围是.16.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=3,则⊙O的直径为.17.(4分)如图,直角坐标系中,已知点A(﹣3,0),B(0,4),将△AOB连续作旋转变换,依次得到三角形①,②,③,④,…则第19个三角形中顶点A的坐标是.18.(4分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.三、简答题(共38分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)20.(10分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当BC=CE=2时,求DE的长度.四、解答题(共2小题,满分0分)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11D.1524.一个半圆形零件,直径紧贴地面,现需要将零件按如图所示方式,向前作无滑动翻转,使圆心O再次落在地面上止.已知半圆的直径为6m,则圆心O所经过的路线与地面围成的面积是m2.(不取近似值)参考答案一、选择题(每题3分,共30分)1.(3分)已知⊙O的半径为2,点P到圆心O的距离为,则点P在()A.圆内B.圆上C.圆外D.不能确定解:∵点P到圆心的距离,小于圆的半径2,∴点P在圆内.故选:A.2.(3分)如图,⊙O的直径AB,C,D是⊙O上的两点,若∠ADC=20°,则∠CAB的度数为()A.40°B.80°C.70°D.50°解:∵AB是直径,∴∠ACB=90°,∵∠D=∠B=20°,∴∠CAB=90°﹣20°=70°.故选:C.3.(3分)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.8解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选:C.4.(3分)若正六边形的边长等于4,则它的面积等于()A.B.C.D.解:连接正六变形的中心O和两个顶点D、E,得到△ODE,∵∠DOE=360°×=60°,又∵OD=OE,∴∠ODE=∠OED=(180°﹣60°)÷2=60°,则△ODE为正三角形,∴OD=OE=DE=4,∴S△ODE=OD•OM=OD•OE•sin60°=×4×4×=4.正六边形的面积为6×4=24.故选:B.5.(3分)如图,⊙O的半径为6cm,四边形ABCD内接于⊙O,连结OB、OD,若∠BOD =∠BCD,则劣弧的长为()A.4πB.3πC.2πD.1π解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴劣弧BD的长==4π;故选:A.6.(3分)如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB 的度数是()A.36°B.60°C.72°D.108°解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108度,∴∠BAC=∠BCA=∠CBD=∠BDC==36°,∴∠APB=∠DBC+∠ACB=72°,故选:C.7.(3分)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()A.cm B.5cm C.4cm D.cm解:连接AO,∵半径OD与弦AB互相垂直,∴AC=AB=4cm,设半径为x,则OC=x﹣3,在Rt△ACO中,AO2=AC2+OC2,即x2=42+(x﹣3)2,解得:x=,故半径为cm.故选:A.8.(3分)已知⊙O的直径CD=4,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=2,则∠ACD等于()A.30°B.60°C.30°或60°D.45°或60°解:连接OA,∵CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,∴∠AMO=90°,AM=BM=AB==,∵AO=CD=2,∴由勾股定理得:OM===1,∴OM=OA,∴∠OAM=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠ACD=60°;当C和D互换一下位置,如图,∵CD是⊙O的直径,∴∠CAD=90°,∴此时∠ACD=180°﹣90°﹣60°=30°;所以∠ACD=30°或60°,故选:C.9.(3分)如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2B.πm2C.15πm2D.πm2解:大扇形的圆心角是90度,半径是6,所以面积==9πm2;小扇形的圆心角是180°﹣120°=60°,半径是2m,则面积==π(m2),则小羊A在草地上的最大活动区域面积=9π+π=π(m2).故选:B.10.(3分)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.9B.18C.36D.72解:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN是半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AED中,DE===3,∴阴影部分的面积=△DMN的面积==.故选:B.二、填空题(每题3分,共32分)11.(4分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠D=45°.解:∵四边形ABCD是⊙O的内接四边形,∠B=135°,∴∠D=45°,故答案为:45°.12.(4分)圆内接正五边形中,每个外角的度数=72度.解:360°÷5=72°.故答案为:72.13.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.14.(4分)如图,在⊙O中,半径OA⊥弦BC.若∠ADC=24°,则∠OBC的度数为42°.解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC=2×24°=48°,∴∠OBC=90°﹣∠AOB=90°﹣48°=42°.故答案为42°15.(4分)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为x的圆,使点A和点B有且只有一个点在⊙D内,则x的取值范围是3<x≤5.解:连接DB,如图,∵四边形ABCD为矩形,∴∠A=90°,∴BD==5,∵点A和点B有且只有一个点在⊙D内,∴点A在圆⊙D内,点D在圆⊙D上或圆⊙D外,∴3<x≤5.故答案为3<x≤5.16.(4分)如图,⊙O是△ABC的外接圆,∠A=45°,BC=3,则⊙O的直径为3.解:连接OB、OC,如图,∵∠BOC=2∠A=90°,而OB=OC,∴△OBC为等腰直角三角形,∴OB=BC=,∴⊙O的直径为3.故答案为3.17.(4分)如图,直角坐标系中,已知点A(﹣3,0),B(0,4),将△AOB连续作旋转变换,依次得到三角形①,②,③,④,…则第19个三角形中顶点A的坐标是(72,4).解:∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∵△AOB连续作三次旋转变换回到原来的状态,而19=3×6+1,∴第19个三角形的状态与第1个一样,∴第19个三角形中顶点A的横坐标为6×12=72,纵坐标是4,即第19个三角形中顶点A的坐标是(72,4).故答案为(72,4).18.(4分)如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为2.解:作点A关于MN的对称点A′,连接A′B,与MN的交点即为点P,PA+PB的最小值即为A′B的长,连接OA′、OB、OA,∵A′点为点A关于直线MN的对称点,∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵点B是弧AN的中点,∴=,∴∠BON=∠AOB=∠AON=×60°=30°,∴∠A′OB=∠A′ON+∠BON=60°+30°=90°,又∵MN=4,∴OA′=OB=MN=×4=2,∴Rt△A′OB中,A′B==2,即PA+PB的最小值为2.故答案为:2.三、简答题(共38分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.20.(10分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=(180°﹣∠AOD)=(180°﹣70°)=55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.21.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠DCB=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.22.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当BC=CE=2时,求DE的长度.【解答】(1)证明:∵OD⊥AC,∴=,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥AC,∴AE=CE=2,在Rt△ABC中,AB==2,∴OD=,∵AE=CE,OA=OB,∴OE为△ABC的中位线,∴OE=BC=1,∴DE=﹣1.四、解答题(共2小题,满分0分)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,AC,BC的中点分别是M,N,PQ若MP+NQ=12,AC+BC=18,则AB的长为()A.9B.C.11D.15解:连接OP,OQ,∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9,∵MH+NI=AC+BC=18,MP+NQ=12,∴PH+QI=18﹣12=6,∴AB=OP+OQ=OH+OI+PH+QI=9+6=15,故选:D.24.一个半圆形零件,直径紧贴地面,现需要将零件按如图所示方式,向前作无滑动翻转,使圆心O再次落在地面上止.已知半圆的直径为6m,则圆心O所经过的路线与地面围成的面积是πm2.(不取近似值)解:圆心O先以A为圆心、以3m为半径,圆心角为90°的弧OO1,接着圆心O从O1平移到O2,且O1O2的长为半圆的长,然后圆心O以B为圆心、以3m为半径,圆心角为90°的弧O2O3,所以圆心O所经过的路线与地面围成的面积=S扇形AOO1+S矩形ABO2O1+S扇形BO2O3=+3••2π•3+=π(m2).故答案为π.。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题2分,共10分)1. 半径为1的圆的周长是多少?A. 2πB. 3πC. 4πD. 6π2. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平行C. 互相平分D. 长度相等3. 圆的切线与半径在切点处的关系是什么?A. 垂直B. 平行C. 相交D. 重合4. 圆的面积公式是什么?A. πr²B. 2πrC. r²D. r³5. 圆心角、弧长、半径三者之间的关系是什么?A. 弧长 = 半径× 圆心角(弧度制)B. 弧长 = 半径× 圆心角(度制)C. 半径 = 弧长 / 圆心角(弧度制)D. 半径 = 弧长× 圆心角(弧度制)二、填空题(每题2分,共10分)6. 半径为2的圆的直径是________。

7. 圆的周长与直径的比值称为________。

8. 圆的内切角等于________度。

9. 圆的外切角等于________度。

10. 圆的切线与半径在切点处的关系是________。

三、计算题(每题5分,共20分)11. 已知圆的半径为3,求圆的周长和面积。

12. 已知圆心角为60°,半径为4,求对应的弧长。

13. 已知圆的周长为12π,求圆的半径。

14. 已知圆的面积为9π,求圆的半径。

四、解答题(每题10分,共20分)15. 证明:圆的内接四边形的对角线互相平分。

16. 已知点A、B、C是圆上的三点,且AB=AC,求证:点B、C关于圆心对称。

五、综合题(每题15分,共30分)17. 已知圆O的半径为5,点P在圆O上,PA、PB是点P到圆O的两条切线,PA=PB=8。

求切线PA、PB的长度。

18. 已知圆O的半径为6,点A在圆上,PA垂直于OA,PA=4。

求点A 到圆O的切线长。

答案:一、选择题1. C2. C3. A4. A5. A二、填空题6. 47. 圆周率8. 909. 6010. 垂直三、计算题11. 周长:6π,面积:9π12. 弧长:2π13. 半径:614. 半径:3四、解答题15. 略16. 略五、综合题17. 切线PA、PB的长度为:√(8² - 5²) = √(64 - 25) = √3918. 点A到圆O的切线长为:√(6² - 4²) = √(36 - 16) = 2√5结束语:本测试题旨在帮助学生巩固圆的基本概念、性质和计算方法,通过不同类型的题目,检验学生对圆单元知识的掌握程度。

九年级数学 圆的基本性质 单元测试题

九年级数学 圆的基本性质 单元测试题

E O ABDC九年级数学《圆的基本性质》单元测试班级 姓名 学号 得分一、选择题(每题3分,共30分)1. 若一个圆的半径是3cm ,则此圆的最长弦的长度为( )A. 3cmB. 4cmC.5cmD. 6cm2. 以下命题:(1)同圆中等弧对等弦;(2)圆心角相等,它们所对的弧长也相等;(3)三点确定一个圆;(4)平分弦的直径必垂直于这条弦.其中正确的命题的个数是( )A. 1个B. 2个C. 3个D. 4个 3. 如图,点A ,B ,C 在⊙O 上,∠AOB =80°,则∠ACB =( )A. 20°B. 40°C. 60°D. 80° 4. 如图,正方形ABCD 的边长为6cm ,则它的外接圆的半径长是( )A.2cmB. 22cmC. 32cmD. 42cm第6题 第7题 5、在⊙O 中,∠AOB=120°,弧AB 的长为 6,则⊙O 的半径是( ) (A )6; (B )9; (C )18; (D )4.5。

6、如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) (A )110°; (B )70°; (C )55°; (D )125°。

7、如图3,在⊙O 中,直径CD=5,CD ⊥AB 于E ,OE= 0.7,则AB 的长是( ) (A )2.4; (B )4.8 ; (C )1.2; (D )2.5。

8. 如图,在半径为5的⊙O 中,如果弦AB 的长为8,那么它的弦心距OC 等于( )A. 2B. 3C. 4D. 6OAB CABCDO图1图2第3题第4题第8题图9. 已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠A PB 的度数为( )A. 30oB. 150oC. 30o 或150oD. 60°或120o10.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为() A .C. 2cmD. 3cm二、填空题(每题4分,共24分)11. 一条弧的度数是1080,则它所对的圆心角是 ,所对的圆周角是 .12.P 为⊙O 内一点,⊙O 的半径为5cm ,PO =3cm ,则过P 点的最长的弦长等于 cm ,最短的弦长等于 cm 。

【浙教版】九年级数学上册第三章圆的基本性质单元综合测试(含答案)

【浙教版】九年级数学上册第三章圆的基本性质单元综合测试(含答案)

【浙教版】九年级数学上册第三章圆的基本性质单元综合测试(含答案)浙教版九年级数学上册第三章圆的基本性质单元综合测试一.选择题(共10小题)1.如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°(第1题) (第2题) (第4题)2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB.C.D.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2π C. 3π D. 12π4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 55.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V26.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°(第6题) (第12题) (第15题)7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. π C. D.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是_________ (结果保留π).12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= _________ 度.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是_________ .14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为_________ .15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是_________ .16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为_________ cm2.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.18.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.19.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.20.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A 按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD 交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.22.如图,A.B是圆O上的两点,∠AOB=120°,C是AB弧的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC 的长.23.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE. (1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.24.如图,AB是半圆O的直径,C.D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.25.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.26.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB和∠CAD 的度数.参考答案与试题解析一.选择题(共10小题)1.(2014?重庆)如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC, 而∠ABC+∠AOC=90°, ∴∠AOC+∠AOC=90°, ∴∠AOC=60°.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB . C . D .考点:弧长的计算.分析:设AC=EG=a,用a表示出CE=2﹣2a,CO=3﹣a,EO=1+a,利用扇形弧长公式计算即可.解答:解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×+2π(1+a)×=(3﹣a+1+a)=.故选B.点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2πC. 3πD. 12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 5考点:圆周角定理;勾股定理;圆心角.弧.弦的关系.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V2考点:圆柱的计算.分析:根据两圆柱的底面积相同,且甲的高为乙的高的9倍设圆柱的底面半径为r,乙圆柱的高为h,从而得到甲圆柱的高为9h,然后利用圆柱的体积和表面积的计算方法即可得到正确的选项.解答:解:∵两圆柱的底面积相同,且甲的高为乙的高的9倍,∴设圆柱的底面半径为r,乙圆柱的高为h,∴甲圆柱的高为9h,∴甲圆柱的表面积S1为2πr×9h+2πr2=2πr(9h+r),体积V1为9πr2h;甲圆柱的表面积S2为2πrh+2πr 2=2πr(h+r),体积V1为πr2h;∴S1<9S2,V1=9V2,故选B.点评:本题考查了圆柱的计算,了解圆柱的表面积和体积的计算方法是解答本题的关键.6.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.考点:弧长的计算.分析:连接OA.OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.解答:解:连接OA.OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴的长为:=,故选:C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π考点:圆锥的计算.专计算题.题:分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=?4?2π?2=8π. 故选:B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°考点:弧长的计算.分析:首先设扇形圆心角为n°,根据弧长公式可得:=,再解方程即可.解答:解:设扇形圆心角为n°,根据弧长公式可得:=, 解得:n=120°,故选:B.点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=.10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. πC. D.考点:弧长的计算.分析:利用弧长公式l=即可直接求解.解答:解:弧长是:=. 故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20π(结果保留π).考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:∵底面圆的半径为4,∴底面周长=8π,∴侧面面积=×8π×5=20π. 故答案为:20π.点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= 50 度.点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:∠ACB=∠AOB=×100°=50°. 故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.解答:解:∵轴截面是一个边长为4的等边三角形, ∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n , 根据题意得4π=,解得n=180°.故答案为:180°.评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为 2 .考点:垂径定理;勾股定理.分析:先由直径是圆中最长的弦得出BD=4,再根据垂径定理的推论得出AC⊥BD,则四边形ABCD的面积=AC?BD.解答:解:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=AC?BD=×1×4=2.故答案为:2.点评:本题考查了垂径定理,四边形的面积,难度适中.得出BD是直径是解题的关键.15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是70°.考圆周角定理.专题:计算题.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°, ∴∠BOC=2∠A=70°.故答案为:70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.考点:圆锥的计算.分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:圆锥的侧面积=π×6×10=60πcm2.点评:本题考查圆锥侧面积公式的运用,掌握公式是关键.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD 恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.。

第3章圆的基本性质单元测试卷(无答案)数学九年级上册+总结(标准版)

第3章圆的基本性质单元测试卷(无答案)数学九年级上册+总结(标准版)

浙教版九年级上册《第3章圆的基本性质》单元测试卷一、选择题1.(3分)如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q2.(3分)如图,△ADE绕点D按顺时针方向旋转,旋转的角是∠ADE,得到△CDB,则下列说法不一定正确的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC3.(3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠BOC的度数是()A.64°B.58°C.32°D.26°4. (3分)如图,△ABC 内接于⊙O ,∠B=65°,∠C=70°.若BC=2 √2 ,则 BC ―的长为( ) A .π B . √2 π C .2π D .2 √2 π5. (3分)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AC 交BD 于点G .若∠COD=126°,则∠CAB 的度数为( )A .63°B .45°C .30°D .27°6. (3分)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是( )A .AP=2OPB .CD=2OPC .OB ⊥ACD .AC 平分OB7.(3分)如图,四边形ABCD的外接圆为⊙O,BC=CD,∠DAC=36°,∠ACD=44°,则∠ADB的度数为()A.55°B.64°C.65°D.70°8.(3分)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC 2 =2AB•AEC.△ADE是等腰三角形D.BC=2AD9.(3分)如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=()A.60°B.65°C.72°D.75°10.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2 √3,那么图中阴影部分的面积是()A.π B.2π C.3π D.4π 二、填空题11.(3分)已知⊙O的半径为3,OP=4,则点P与⊙O的位置关系是:点P在⊙O ______ .12.(3分)如图,在平面直角坐标系中,点M,N的坐标分别为(0,-3),(0,-9),半径为5的⊙A经过点M,N,则点A的坐标为 ______ .13.(3分)如图,⊙O的半径为10cm,△ABC内接于⊙O,圆心O在△ABC内部.如果AB=AC,BC=12cm,那么△ABC的面积为 ______cm 2 .14.(3分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 ______ 度.15.(3分)如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为______ .16.(3分)如图,在扇形BOC中,∠BOC=60°,点D为弧BC的中点,点E为半径OB上一动点,若OB=1,则阴影部分周长的最小值为 ______ .三、解答题17.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A 1 B 1 C.(1)画出△A 1 B 1 C,直接写出点A 1 、B 1 的坐标;(2)求在旋转过程中,点B所经过的路径的长度.18.(8分)如图,AB是⊙O的直径,点C在⊙O上,半径OD⊥AC,DE⊥AB于点E,交弦AC于点F,连接BD,AD,(1)若∠ABD=25°,求∠DAC的度数(提示:半径OD⊥AC,可根据垂径定理解题);(2)求证:DF=AF.19.(10分)已知CD为△ABC的外角平分线,交△ABC的外接圆⊙O于点D.(1)如图①,连结OA ,OD ,求证:∠AOD=2∠BCD ;(2)如图②,若CB 平分∠ACD ,求证:AB=BD .20. (12分)如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 直径,AB=6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD .(1)求证:∠ABD=∠BED ;(2)若∠AEB=125°,求 BD ―的长(结果保留π).21. (14分)如图,在正方形ABCD 中,AD=2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG .(1)求证:EF ∥CG ;(2)求点C ,点A 在旋转过程中形成的 AC ― , AG ― 与线段CG 所围成的阴影部分的面积. 第3章圆的基本性质 单元测试卷总结一、选择题四点共圆与垂直平分线:通过尺规作图,检验M 、N 、P 、Q 四点是否共圆。

浙教版九年级数学上册第3章圆的基本性质单元测试卷含答案试卷分析详解

浙教版九年级数学上册第3章圆的基本性质单元测试卷含答案试卷分析详解

第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1.△AB C 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( )A.80°B.160°C.100°D.80°或100°2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( )A.50°B.60°C.65°D.70°①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4.如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( )A.20°B.25°C.30°D.40°5.如图,在⊙O 中,直径CD 垂直弦AB 于点E ,连接OB,CB ,已知⊙O 的半径为2,AB =32,则∠BCD 的大小为( )A. 30oB. 45oC. 60oD. 15o6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( )A.23 B.3 C.32 D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个8. 如图,在Rt△ABC 中,△ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作△O ,设线段CD 的中点为P ,则点P 与△O 的位置关系是( )A.点P 在△O 内B.点P 在△O 上C.点P 在△O 外D.无法确定9. 圆锥的底面圆的周长是4π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( )A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A.10 cmB.4π cmC.27π cmD.25 cm 二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =2√3,OC =1,则半径OB 的长为 .12.(·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=_______.14.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则OD=_______,CD=_______.15.如图,在△ABC中,点I是外心,∠BIC=110°,则∠A=_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的弧AB),点O是这段弧的圆心,C是弧AB上一点,OC⊥AB,垂足为D,AB=300 m,CD=50 m ,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是.三、解答题(共46分)19.(8分) (·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF 是等腰三角形.23.(8分)如图,已知OA、OB、OC都是⊙O的半径,且∠AOB=2∠BOC.试探索∠ACB 与∠BAC之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形S1、S2,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为h1、h2,试比较h1与h2的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =12∠AOC =12×160°=80°或∠ABC =12×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =12∠AOC =12×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =12∠BOC =12×60°=30°. 5.A 解析:由垂径定理得BE =√3,∠OEB =90o . 又OB =2, ∴ OE =1,∴ ∠BOE =60o . 又OB =OC ,∴ ∠BCD =30o .6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知CD =2CE =3,故选B . 7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP =21AD =25,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则nπ∙6180=4π,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27π (cm). 二、填空题11. 2 解析:∵ BC = 1 2AB = √3,∴ OB = √OC 2+BC 2=√12+(√3)2=2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°.又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°. 14.8;2 解析:因为OD ⊥AB ,由垂径定理得AD =BD =6 ,故OD =√OA 2-AD 2=8 ,CD = OC-OD =2.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得.16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1. 17.250 解析:依据垂径定理和勾股定理可得.18. 4√2 解析:扇形的弧长l =120π×6180=4π(cm ),所以圆锥的底面半径为4π÷2π=2(cm ),所以这个圆锥形纸帽的高为√62-22 = 4√2(cm ).三、解答题19.分析:连接BD ,易证∠BDC =∠C ,∠BOC =2∠BDC =2∠C ,∴ ∠C =30°, 从而∠ADC =60°.解:连接BD .∵ AB 是⊙O 的直径,∴ BD ⊥AD .又∵ CF ⊥AD ,∴ BD ∥CF .∴ ∠BDC =∠C .又∵ ∠BDC =12∠BOC ,∴ ∠C =12∠BOC .∵ AB ⊥CD ,∴ ∠C =30°,∴ ∠ADC =60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20. 解:连接AE ,则AE ⊥BC .由于E 是BC 的中点,则AB =AC ,∠BAE =∠CAE ,则BE =DE =EC ,S 弓形BE =S 弓形DE ,∴ S 阴影=S △DCE .由于∠BED =120°,则△ABC 与△DEC 都是等边三角形,∴ S △DCE =12×2×√3=√3.21.分析:(1)欲求∠DEB ,已知一圆心角,可利用圆周角与圆心角的关系求解.(2)利用垂径定理可以得到AC =BC =21AB ,从而AB 的长可求. 解:(1)连接OB ,∵ OD ⊥AB ,∴ AC =BC ,弧AD =弧BD ,∴ ∠AOD =∠BOD.又∠DEB =21∠DOB , ∴ ∠DEB =21∠AOD =21×52°=26°. (2)∵ OC =3,OA =5,∴ AC =4. 又AC =BC =21AB ,∴ AB =2AC =2×4=8. 22.分析:要证明△OEF 是等腰三角形,可以转化为证明OE =OF ,通过证明△OCE ≌△ODF 即可得出.证明:如图,连接OC 、OD ,则OC =OD ,∴ ∠OCD =∠ODC.在△OCE 和△ODF 中,{OC =OD,∠OCD =∠ODC,CE =DF,∴ △OCE ≌△ODF (SAS ),∴ OE =OF ,从而△OEF 是等腰三角形.23.分析:由圆周角定理,得∠ACB =21∠AOB ,∠CAB =21∠BOC ;已知 ∠AOB = 2∠BOC ,联立三式可得.解:∠ACB =2∠BAC .理由如下:∵ ∠ACB =21∠AOB ,∠BAC =21∠BOC ,又∠AOB =2∠BOC ,∴ ∠ACB =2∠BAC .24.解:(1)已知桥拱的跨度AB =16米,拱高CD =4米,∴ AD =8米.利用勾股定理可得OA 2=AD 2+OD 2=82+(OA-4)2,解得OA =10(米).故桥拱的半径为10米.(2)当河水上涨到EF 位置时,因为EF =12米,EF ∥AB ,所以OC ⊥EF ,∴ EM =21EF =6(米), 连接OE ,则OE =10米,OM =√OE 2-EM 2=√102-62=8(米).又OD =OC-CD =10-4=6(米),所以OM-OD =8-6=2(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是6π,则6π=nπ∙9180,∴ n =120,即圆锥侧面展开图的圆心角是120°.∴ ∠APB =60°.在圆锥侧面展开图中,AP =9,PC =4.5,可知∠ACP =90°.∴ AC =√AP 2-PC 2=239. 故从A 点到C 点在圆锥的侧面上的最短距离为239. 点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可. 解:设扇形S 2 做成圆锥的底面半径为R 2, 由题意知,扇形S 2的圆心角为240°,则它的弧长=240πr 180=2πR 2,解得R 2=32r , 由勾股定理得,h 2=√r 2-(32r)2=35r . 设扇形S 1做成圆锥的底面半径为R 1,由题意知,扇形S 1的圆心角为120°,则它的弧长=120πr 180=2πR 1,解得R 1=31r , 由勾股定理得h 1=√r 2-(31r)2=322r ,所以 h 1>h 2.。

圆的基本性质单元测试卷(标准难度)(含答案)

圆的基本性质单元测试卷(标准难度)(含答案)

浙教版初中数学九年级上册第三单元《圆的基本性质》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.若正多边形的内角和是540°,则该正多边形的一个外角为( )A. 45°B. 60°C. 72°D. 90°2.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α−β=90°D. 2α−β=90°3.如图,AB是半圆O的直径,以弦AC为折痕折叠AC⏜后,恰好经过点O,则∠AOC等于( )A. 120°B. 125°C. 130°D. 145°4.如图,在Rt△ABC中,∠ACB=90∘,∠A=60∘,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,则点B′与点B之间的距离为( )A. 12B. 6C. 6√2D. 6√35. 在平面直角坐标系中,把点A(3,4)绕原点逆时针旋转90°,得到点B ,则点B 的坐标为( )A. (4,−3)B. (−4,3)C. (−3,4)D. (−3,−4)6. 如图,在⊙O 中,弦AB//CD ,OP ⊥CD ,OM =MN ,AB =18,CD =12,则⊙O 的半径为( )A. 4B. 4√2C. 4√6D. 4√37. 如图,将⊙O 沿AB 折叠后,圆弧恰好经过圆心,则AMB ⌢所对的圆心角等于( )A. 60°B. 90°C. 120°D. 150°8. 如图,在△ABC 中,∠C =90°,DE ⏜的度数为α,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,则∠A 的度数为( )A. 45∘−12αB. 12αC. 45∘+12αD. 25∘+12α9. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦BC 的长为( ) A. 1B. √3C. 2D. 2√310.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC的度数等于( )A. 55°B. 60°C. 65°D. 70°11.如上图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若∠C=110∘,则∠ABC的度数等于( )A. 55∘B. 60∘C. 65∘D. 70∘12.如图,在3×4的方格中,每个小方格都是边长为1的正方形,O,A,B分别是小正方形的顶点,则AB⏜的长度为( )A. πB. √2πC. 2πD. 4π第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.根据“不在同一直线上的三点确定一个圆”,可以判断平面直角坐标系内的三个点A(3,0)、B(0,−4)、C(2,−3)______确定一个圆(填“能”或“不能”).14.如图,在⊙A中,弦DE=6,∠BAC+∠EAD=180°,则点A到弦BC的距离等于_________.15.如图,四边形ABCD内接于⊙O,F是CD⏜上一点,且DF⏜=BC⏜,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105∘,∠BAC=25∘,则∠E的度数为.16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2√3,则AC⏜的长为______.三、解答题(本大题共9小题,共72分。

浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)

浙教版数学九年级上册  第3章测试卷 圆的基本性质(含答案)

第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。

浙教版九年级数学上册 第三章 圆的基本性质单元测试(含答案)

浙教版九年级数学上册 第三章 圆的基本性质单元测试(含答案)

二、填空题(每题 4 分,共 60 分) 8、如图,⊙O 的半径 OA=6,以 A 为圆心,OA 为半径的弧交⊙O 于 B、C,则 BC 的长 是 .
(第 8 题图)
(第 9 题图)
(第 12 题图)
⌒ CD 9、如图,点 A、B、C、D 都在⊙O 上, 的度数等于 84°,CA 是∠OCD 的平分线,则 ∠ABD+∠CAO= . .
21、一个正多边形的所有对角线都相等,则这个正多边形的内角和为 22、AC、BD 是⊙O 的两条弦,且 AC⊥BD,⊙O 的半径为 . 三、解答题(共 32 分)
1ห้องสมุดไป่ตู้,则 AB 2 CD 2 的值为 2
23、(10 分)某地有一座圆弧形拱桥,桥下水面宽度 AB 为 7.2m,拱顶高出水面 2.4m,OC⊥AB,现有一艘宽 3m,船舱顶部为正方形并高出水面 2m 的货船要经过这里, 此货船能顺利通过这座桥吗?
18、如图,矩形 ABCD 的边 AB 过⊙O 的圆心,E、F 分别为 AB、CD 与⊙O 的交点,若 AE=3cm,AD=4cm,DF=5cm,则⊙O 的直径等于 19、如图,⊙O 是△ABC 的外接圆,AO⊥BC 于 F,D 为 点,∠DAE=114°,则∠CAD 等于 20、半径为 R 的圆内接正三角形的面积是 . . . ⌒ AC . 的中点,E 是 BA 延长线上一
(2)如图②,垂直于 AD 的三条弦 B1C1 , B 2 C 2 , B 3 C 3 把圆周 6 等分,分别求 ∠ B1 ,∠ B 2 ,∠ B 3 的度数; (3)如图③,垂直于 AD 的 n 条弦 B1C1 , B 2 C 2 , B 3 C 3 ,…, B n C n 把圆周 2n 等分, 请你用含 n 的代数式表示∠ B n 的度数(只需直接写出答案).

第24章圆单元测试

第24章圆单元测试

第24章圆单元测试标题:第24章圆单元测试一、测试范围本单元测试主要涉及圆的性质、圆与圆的位置关系、圆弧长及扇形面积的计算方法。

通过本测试,旨在检验学生对圆的知识的掌握程度和应用能力。

二、测试题型及分值本测试包括选择题、填空题和解答题三种题型,分值分别为30分、20分和50分。

三、测试内容1、选择题(每题2分,共10分)(1)下列图形中,是圆的是()。

A. B. C. D.(2)在圆中,直径是半径的()。

A.一半B.两倍C.四倍D.无法确定(3)当圆心到直线的距离小于半径时,直线和圆的位置关系是()。

A.相交B.相切C.相离D.不确定(4)一个圆的周长是2πr,它的面积是()。

A.2πr²B.πr²C.r²D.2r²(5)在一张纸上,画出一个半径为3cm的圆,这个圆的面积为()。

A.9cm²B.18cm²C.9πcm²D.18πcm²2、填空题(每题3分,共6分)(1)圆的周长是半径的()倍。

(2)在圆中,直径是半径的()倍。

3、解答题(共50分)(1)已知一个圆的半径为4cm,求这个圆的周长和面积。

(10分)(2)已知一个圆的直径为6cm,求这个圆的周长和面积。

(10分)(3)已知一个圆心为O的圆,半径为5cm,直线L离圆心O的距离为3cm,求直线L与圆的位置关系,并求出圆心到直线L的距离。

(15分)(4)已知一个圆心为O的圆,半径为5cm,直线L离圆心O的距离为4cm,求直线L与圆的位置关系,并求出圆心到直线L的距离。

(15分)圆的认识单元测试卷一、填空题1、圆是一种由曲线包围的图形,其特征是()。

A.没有对称性B.对称性唯一C.有多种对称性D.以上都不对2、在一个圆中,从圆心到圆上任意一点的距离是()。

A.相等的B.不等的C.以上都不对3、在圆的认识中,圆的周长与直径之间的比值叫做()。

A.圆周率B.圆弧C.圆的半径D.圆的面积二、选择题4、下列哪个图形有且只有一条对称轴?()A.正方形B.长方形C.圆形D.以上都不对41、下列哪个图形没有对称性?()A.正方形B.长方形C.圆形D.以上都不对三、判断题6、在一个圆中,直径是半径的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质单元测试
班级_________姓名_________学号_________
一、选择题:(每小题4分,共40分)
1.⊙O 半径为5,圆心O 的坐标为(0,0),点P 的坐标为(3,4),则点P 与⊙O 的位置关系是( )
A .点P 在⊙O 内
B .点P 在⊙O 上
C .点P 在⊙O 外
D .点P 在⊙O 上或外 2.△ABC 的外心在三角形的外部,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法判断 3.如图:O 是圆心,半径OC ⊥弦AB 于点D,AB=8,CD=2,则OD 等于( ) A.2 B.3 C.2 2 D.23
A
B
C
A
'C '
4.下列结论中,正确的是( )
A. 长度相等的两条弧是等弧
B. 相等的圆心角所对的弧相等
C. 圆是轴对称图形
D. 平分弦的直径垂直于弦
5.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A.80° B.100° C.120° D.130°
6.如图中,D 是弧AC 的中点,与∠ABD 相等的角的个数是( ) A .4个 B .3个 C .2个 D .1个 7.在⊙O 中,∠AOB=84°,则弦AB 所对的圆周角是( ) A. 42° B.138° C.69° D. 42°或138°
8.如图,一块边长为8 cm 的正三角形木板ABC ,在水平桌面上绕点B 按顺时针方向旋转至 △
A ′BC ′的位置时,顶点C 从开始到结束所经过的路径长为( )
A.16π
B.
3
8π C.
3
64π D.
3
16π
9.如图,有一圆心角为120 o
、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,
那么圆锥的高是( )
A .24cm
B .35cm
C .62cm
D .32cm
(4)D
C B
A
O
第3题图 100
(2)C
O
B
A 第5题图 D
C
B A
第6题图
第8题图
10.如图PA=PB,OE ⊥PA, OF ⊥PB,则以下结论:①OP 是∠APB 的 平分线;②PE=PF; ③ CA = BD; ④CD ∥AB;其中正确的有( )个 A.4 B.3 C.2 D.1 二、填空题:(每小题4分,共24分)
11.直角三角形两直角边分别为7,2,它的外接圆半径长 12.如图,已知∠BAE=125°,则∠BCD= 度
13.数学课上,小刚动手制作了一个圆锥,他量圆锥的母线与高的夹角为30°,母线长为8cm 则它的侧面积应是_____ cm 2
14.已知⊙的半径为10cm,弦AB ∥CD,AB=6cm,CD=8cm,则AB 和CD 的距离为 cm 15.如图,矩形A B C D 中,86AB AD ==,,将矩形A B C D 在直线l 上按顺时针方向不滑动的每秒转动90 ,转动3次后停止,则顶点A
经过的路线长为 .
16.
如图,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为m 4的半圆,其边缘AB = CD =m 20,点E 在CD 上,CE =m 2,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离约为 .(边缘部分的厚度忽略不极,结果保留整数) 三、解答题(共56分)
17.(本题6分)已知:如图,在△ABC 中,∠ACB =90°,∠B =25°,
以C 为圆心,CA 长为半径的圆交AB 于D ,求
的度数.
第9题
O P
F
E D
C B
A
第10题
E
D
C
B
A
第12题
第15题
第16题
⌒ ⌒
18.(6分) 如图所示,在Rt △ABC 中,∠BAC=90°,AC=AB=2,以AB 为直径的圆交BC 于D, 求
图形阴影部分的面积.
19.(6分)如图 ⊙O 中,AB 、CD 是两条直径,弦CE∥AB,弧EC 的度数是40°,
求∠BOD 的度数。

20.(本题7分)如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB =cm 12,高BC =cm 8,求这个零件的表面积.结果保留 )
21.(7分)如图已知AB = AC ,∠APC=60°。

(1)求证:△ABC 是等边三角形
(2)若BC=34,求⊙O 的面积。

n
A
B
C
D
.B A
B
C
D
E O
⌒ ⌒ O P
C
B
A
22.(7分)如图所示,已知F 是以O 为圆心,BC 为直径的半圆上任一点,A 是BF 的中点,
AD ⊥BC 于点D.求证:AD=12
BF.
23.(7分)如图,⊙O 的直径AB 和弦CD 相交于点E,已知AE=6cm,EB=2cm,
∠CEA=30°, 求CD 的长.
24.(10分)如图,⊙O 的直径AB 的两侧有定点C 和动点P.已知BC=4,CA=3,点P 在AB 上运
动,过点C 作CP 的垂线,与PB 的延长线交于点Q. (1)当点P 运动到与点C 关于AB 对称时 ,求C Q 的长. (2)当点P 运动到弧AB 的中点时,求C Q 的长.
(3)当点P 运动到什么位置时,CQ 取到最大值,并求此时CQ 的长.
.
O
D
C
F
B
A

E
D
C
B
A
O

O
Q P
D
C B
A
O
C
B
A。

相关文档
最新文档