12上线性代数试题

合集下载

线性代数考试试题

线性代数考试试题

线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

2012年10月 线代

2012年10月 线代
4.设向量组 =(2,0,0)T, =(0,0,—1)T,则下列向量中可以由 , 线性表示的是
A.(—1,—1,—1)TB.(0,—1,—1)T
C.(—1,—1,0)TD.(—1,0,—1)T
5.已知4×3矩阵A的列向量组线性无关,则r(AT)=
A.1B.2
C.3D.4
6.设 , 是非齐次线性方程组Ax=b的两个解向量,则下列向量中为方程组解的是
5.C
解:A的列向量组线性无关,即r(A)=3,
考点:考察向量组的秩,书p100,定理3.3.5
6.D
解:由题知 ,故选D
考点:考察非齐次线性方程组的解得结构,书p119,性质1
7.B
解:齐次线性方程组的系数矩阵A= ,r(A)=2
考点:考察齐次线性方程组基础解系所含解向量个数,书p112,定理4.1.1
……6分
……9分
22.解因 ,故 可逆, ……4分
……9分
23.解 ……2分
……5分
向量组的秩为3……7分
为一个极大线性无关组(答案不惟一)……9分
24.解由
……2分
……5分
得到 ,故方程组有无穷多解……7分
通解为 , 为任意常数……9分
25.解由
得 的3个特征值为 ……4分
当 时,由 ……6分
得基础解系
三、计算题(本大题共6小题,每小题9分,共54分)
21.计算行列式D= 的值.
22.设矩阵A= ,B= ,求满足方程AX=BT的矩阵X.
23.设向量组 , , , ,求该向量组的秩和一个极大线性无关组.
24.求解非齐次线性方程组 .(要求用它的一个特解和导出组的基础解系表示)
25.求矩阵A= 的全部特征值和特征向量.

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数试题

线性代数试题

线性代数试题LELE was finally revised on the morning of December 16, 2020一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。

(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。

2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。

你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。

(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。

(A) 0(B) 0或-1(C) -1(D) -1或1你选择的答案:未选择[错误]正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。

(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )你选择的答案:未选择[错误]正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n你选择的答案:未选择[错误]正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3你选择的答案:未选择[错误]正确答案:C解答参考:8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1你选择的答案:未选择[错误]正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设 A ,B 是同阶方阵,则 AB=BA 。

北京理工大学2012级线性代数(A)A卷及答案

北京理工大学2012级线性代数(A)A卷及答案

课程编号:A073122 北京理工大学2012-2013学年第一学期线性代数A 试题 A 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知3阶方阵123035002A ⎛⎫⎪= ⎪ ⎪⎝⎭,计算行列式*123A I+。

二、(10分) 设423110, 2123A AX A X ⎛⎫ ⎪⎪==+ ⎪ ⎪-⎝⎭, 求X 。

三、(10分)已知线性空间4][x F 的自然基为231,,,x x x 。

(1) 证明:2231,12,123,1234x x x x x x ++++++为4][x F 的一个基;(2) 求自然基231,,,x x x 到基2231,12,123,1234x x x x x x ++++++的过渡矩阵,以及23()1h x x x x =--+在后一个基下的坐标。

四、(10分)已知123(1,0,1), (2,2,0), (0,1,1)TTTααα=-==。

(1) 求向量组123,,ααα的一个极大无关组;(2) 求生成子空间123(,,)L ααα的一个标准正交基。

五、(10分)设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得111112P AP --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。

六、(10分)在多项式空间4[]R x 中定义变换σ:233012330201()()a a x a x a x a a a x a a x σ+++=-+++(1)证明:σ是4[]R x 上的线性变换;(2)求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。

七、(10分)假设A 是m n ⨯的实矩阵,证明:()()TA A A =秩秩八 (10分)已知(1,1,1)T ξ=-是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量, (1)确定参数a , b 及特征向量ξ所对应的特征值; (2)判断A 是否可以相似对角化,说明理由。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案线性代数(试卷⼀)1、填空题(本题总计20分,每⼩题2分)1. 排列7623451的逆序数是。

2. 若,则3. 已知阶矩阵、和满⾜,其中为阶单位矩阵,则。

4. 若为矩阵,则⾮齐次线性⽅程组有唯⼀解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性⽅程组的解空间维数为__2___________。

6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性⽅程组有⾮零解的充分必要条件是8.已知五阶⾏列式,则9. 向量的模(范数)。

10.若与正交,则⼆、选择题(本题总计10分,每⼩题2分)1. 向量组线性相关且秩为s,则(D)A.B.C.D.2. 若A为三阶⽅阵,且,则(A)A.B.C.D.3.设向量组A能由向量组B线性表⽰,则( d )A.B.C.D.4. 设阶矩阵的⾏列式等于,则等于。

c5. 设阶矩阵,和,则下列说法正确的是。

则 ,则或三、计算题(本题总计60分。

1-3每⼩题8分,4-7每⼩题9分)1. 计算阶⾏列式。

2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,⾮齐次线性⽅程组①有唯⼀解;②有⽆穷多解;③⽆解。

5. 求下⾮齐次线性⽅程组所对应的齐次线性⽅程组的基础解系和此⽅程6.已知向量组、、、、,求此向量组的⼀个最⼤⽆关组,并把其余向量⽤该最⼤⽆关组线性表⽰.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的⼀个解,为对应齐次线性⽅程组的基础解系,证明线性⽆关。

(答案⼀)、填空题(本题总计20分,每⼩题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。

.⼆、选择题(本总计 10 分,每⼩题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每⼩题8分,4-7他每⼩题9分)1、解: ------3分-------6分----------8分此题的⽅法不唯⼀,可以酌情给分。

(完整版)线性代数试题和答案(精选版)

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。

m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。

120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。

设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。

6C。

2 D. –24。

设A是方阵,如有矩阵关系式AB=AC,则必有( )A。

A =0 B. B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5。

已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。

2C。

3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。

有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。

设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案### 线性代数试题及答案#### 一、选择题1. 题目:设矩阵 \( A = \begin{bmatrix} 2 & 1 \\ 1 & 3\end{bmatrix} \),矩阵 \( A \) 的行列式值是:- A. -1- B. 1- C. 5- D. 6答案:B2. 题目:线性空间 \( V \) 的基 \( B \) 包含 3 个向量,那么\( V \) 的维数是:- A. 1- B. 2- C. 3- D. 4答案:C3. 题目:若 \( \mathbf{u} = \begin{bmatrix} 1 \\ 2\end{bmatrix} \) 和 \( \mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \),则 \( \mathbf{u} \) 和 \( \mathbf{v} \) 的点积是:- A. 11- B. 7- C. 8- D. 14答案:B#### 二、简答题1. 题目:解释什么是矩阵的秩,并给出一个 3x3 矩阵的例子,计算其秩。

答案:矩阵的秩是指矩阵中线性独立行或列的最大数目。

对于一个 3x3 矩阵 \( A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix} \),通过行简化或列简化,我们可以发现矩阵 \( A \) 中有两个线性独立的行(或列),因此其秩为 2。

2. 题目:线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) 由矩阵 \( A \) 表示,其中 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \)。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案 线性代数是数学的重点知识,多进⾏试题练习提⾼⾃⼰的能⼒。

以下是由店铺整理线性代数试题及答案,希望⼤家喜欢! 线性代数试题及答案(⼀) 说明:在本卷中,AT表⽰矩阵A的转置矩阵,A*表⽰矩阵A的伴随矩阵,E表⽰单位矩阵。

表⽰⽅阵A的⾏列式,r(A)表⽰矩阵A的秩。

⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分) 在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错癣多选或未选均⽆分。

1.设3阶⽅阵A的⾏列式为2,则 ( )A.-1B. C. D.1 2.设则⽅程的根的个数为( )A.0B.1C.2D.3 3.设A为n阶⽅阵,将A的第1列与第2列交换得到⽅阵B,若则必有( ) A. B. C. D. 4.设A,B是任意的n阶⽅阵,下列命题中正确的是( ) A. B. C. D. 5.设其中则矩阵A的秩为( )A.0B.1C.2D.3 6.设6阶⽅阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.10 8.已知线性⽅程组⽆解,则数a=( ) A. B.0 C. D.1 9.设3阶⽅阵A的特征多项式为则 ( )A.-18B.-6C.6D.18 10.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3 ⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分) 请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

11.设⾏列式其第3⾏各元素的代数余⼦式之和为__________. 12.设则 __________. 13.设A是4×3矩阵且则 __________. 14.向量组(1,2),(2,3)(3,4)的'秩为__________. 15.设线性⽆关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表⽰,则r与s的关系为__________. 16.设⽅程组有⾮零解,且数则 __________. 17.设4元线性⽅程组的三个解α1,α2,α3,已知则⽅程组的通解是__________. 18.设3阶⽅阵A的秩为2,且则A的全部特征值为__________. 19.设矩阵有⼀个特征值对应的特征向量为则数a=__________. 20.设实⼆次型已知A的特征值为-1,1,2,则该⼆次型的规范形为__________. 三、计算题(本⼤题共6⼩题,每⼩题9分,共54分) 21.设矩阵其中均为3维列向量,且求 22.解矩阵⽅程 23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和⼀个极⼤⽆关组. 24.设3元线性⽅程组 , (1)确定当λ取何值时,⽅程组有惟⼀解、⽆解、有⽆穷多解? (2)当⽅程组有⽆穷多解时,求出该⽅程组的通解(要求⽤其⼀个特解和导出组的基础解系表⽰). 25.已知2阶⽅阵A的特征值为及⽅阵 (1)求B的特征值; (2)求B的⾏列式. 26.⽤配⽅法化⼆次型为标准形,并写出所作的可逆线性变换. 四、证明题(本题6分) 27.设A是3阶反对称矩阵,证明|A|=0. 线性代数试题及答案(⼆)【线性代数试题及答案】。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

线性代数试题及答案

线性代数试题及答案

1线性代数试题及答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1 B.CA -1B -1 C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )2A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21 B.1 C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)

线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。

项。

4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。

9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。

(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。

2.在六阶行列式中项a32a41a25a13a56a64的符号为-。

改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。

《线性代数》练习题库参考答案

《线性代数》练习题库参考答案

《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

线性代数测试题及答案

线性代数测试题及答案

补充练习三 矩阵一、选择题:(1)设A 和B 均为n 阶方阵,则必有( )。

(A )|A+B|=|A|+|B|; (B )AB=BA (C )|AB|=|BA| (D )(A+B )-1=A -1+B -1 (2)设A 和B 均为n 阶方阵,且满足AB=0,则必有( )。

(A )A=0或B=0 (B )A+B=0 (C )|A|=0或|B|=0 (D )|A|+|B|=0 (3)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=133312321131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P ,则必有( )。

(A )AP 1P 2=B ; (B )AP 2P 1=B ; (C )P 1P 2A=B ; (D )P 2P 1A=B (4)设n 维行向量⎪⎭⎫⎝⎛=21,0,,0,21α,矩阵ααT E A -=,ααT E B 2+=,其中E 为n 阶单位矩阵,则AB=( )。

(A )0; (B )E ; (C )-E (D )ααTE + (5)设n 阶方阵A 非奇异(n ≥2),A *是A 的伴随矩阵,则( )。

(A )(A *)*=|A|n-1A ; (B )(A *)*=|A|n+1A ; (C )(A *)*=|A|n-2A ; (D )(A *)*=|A|n+2A(6)设n 阶方阵A 、B 、C 满足ABC=E ,其中E 是n 阶单位矩阵,则必有( )。

(A )ACB=E ; (B )CBA=E ; (C )BAC=E ; (D )BCA=E(7)设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41424344313233342122232411121314a a a a a a a a a a a a a a a a B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00010100001010001P ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10000010010000012P ,其中A 可逆,则B -1等于( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨理工大学 2012-2013学年第一学期考试试题 A 卷 系(部、中心、教研室)数学系 出题教师 系(部、中心、教研室)主任:
1 考试科目线性代数 考试时间:100分钟 试卷总分100分
一、单项选择题(将正确的选项填在括号里)(每小题3分,总计15分) 1. 设矩阵21A -12⎛⎫= ⎪⎝⎭, E 为二阶单位矩阵,矩阵B 满足B A =B +2E ,则B = . 2.四元齐次线性方程组123400x x x x +=⎧⎨-=⎩的通解为 . 3. 设矩阵A 是三阶方阵,将A 的第一列与第二列交换得B ,再将B 的第二列加到第三列得C ,满足 AQ=C 的可逆矩阵Q 为 . 4. 设A 为n 阶方阵,满足2A +A-4E=0,则()-1A-E = . 5. 设A 为n 阶方阵,其中元素全为1,则A 的全部特征值为 . 二、计算题(每小题3分,总计15分) 1. 设A 是n 阶可逆方阵,将A 的第1列与第2列交换得B ,A *和B *分别为A 和B 的伴
随阵,则 .
A 、 交换A *的第1列与第2列得
B *;B 、交换A *的第1行与第2行得B *;
C 、交换A *的第1列与第2列得-B *;
D 、交换A *的第1行与第2行得B *.
2.设向量组12r ,A ααα:,,可由向量组12r B ,βββ:,,线性表示,则 .
A 、 当r s >时,向量组
B 线性相关;B 、当r s >时,向量组A 线性相关;
C 、 当r s <时,向量组B 线性相关;
D 、当r s <时,向量组A 线性相关.
3. 设A 为m n ⨯阶矩阵,B 为n m ⨯阶矩阵,E 为单位矩阵,满足B E A =,()3R A =,则 .
A 、()()R A =m R
B =m ,; B 、()()R A =m R B =n ,;
C 、()()R A =n R B =m ,;
D 、()()R A =n R B =n ,.
4. 设A 为m n ⨯阶矩阵,B 为n m ⨯阶矩阵,则线性方程组ABX=0 .
A 、 当m n >时,仅有零解;
B 、当n m >时,必有非零解;
C 、 当n m <时,仅有零解;
D 、当n m <时,必有非零解;
5. 下列集合 不构成向量空间.
A 、(){}1121121,,,0,,n n V x x x x x x R --=
∈; B 、(){}1121212,,0,,,n n n V x x x x x x x x x R =
+++=∈; C 、(){}1121121,,,1,,n n V x x x x x x R --=
∈; D 、(){}112
2122,,,0,0,,n n V x x x x x x R --=∈;. 三、计算题(每小题10分,总计60分)
1. 求解方程11111101
11111x
x x x
=. 2. 设矩阵121320
120414A -⎛⎫ ⎪= ⎪ ⎪--⎝⎭
, (1)问矩阵A 有几个三阶子式,任写一个并求其值;
(2)求()R A .
3. 设1-1-1A=01-1001⎛⎫ ⎪ ⎪ ⎪⎝⎭
,求1A -.
4. 设方程组12342341
243211233x x x x x ax ax x x x +++=⎧⎪+-=-⎨⎪++=⎩,问a 取何值时,方程组有解?并写出通解. 5. 设向量组()()T T 12=1-11-1=3113A αα:,,向量组
()()
()T T T 123B =21011=1102=3-βββ:,,,问向量组A 和B 是否等价?说明理由.
6. 给出向量组()()()T T T 123=1234=-23-15=4173ααα,,的线性相关性,并说明理由.
四、证明题(每小题5分,总计10分)
1、设向量组123,ααα,线性无关,证明向量组122331++2,+2αααααα2,线性无关.
2、设A 为n 阶方阵,满足T
AA =E ,且A 0<,证明A E +不可逆.。

相关文档
最新文档