浙江省2012届高三数学二轮复习专题训练:数系的扩充与复数的引入

合集下载

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测卷(答案解析)(3)

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测卷(答案解析)(3)

一、选择题1.已知,a b ∈R ,i 是虚数单位,若(1)(1)i bi a +-=,则a bi +=( )AB .2 CD .5 2.复数(34)i i +的虚部为A .3B .3iC .4D .4i3.已知i 是虚数单位,复数1i1i -+( ). A .1B .1-C .iD .i -4.对于复数z a bi =+(,,a b R ∈i 为虚数单位),定义||||z a b =+‖‖,给出下列命题:①对任何复数z ,都有0z ≥‖‖,等号成立的充要条件是0z =;②z z =‖‖‖‖:③若12z z =,则12=±z z :④对任何复数1z 、2z 、3z ,不等式131223z z z z z z -≤-+-恒成立,其中真命题的个数是( ) A .1B .2C .3D .45.当复数2(32)()z x x x i x =-+-∈R 的实部与虚部的差最小时,1zi =-( ) A .33i -+ B .33i +C .13i -D .13i --6.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆B .两条直线C .圆D .一条直线8.满足条件3z i z i +=+的复数z 对应点的轨迹是( ) A .直线B .圆C .椭圆D .线段9.复数z 满足(1)35i z i -⋅=+,则||z = A .2B.CD10.已知a ∈R ,复数12i z a =+,212i z =-,若12z z 为纯虚数,则复数12z z 的虚部为( ) A .1B .iC .25D .011.设i 是虚数单位,则复数734ii++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于( ) A .34B .43C .43-D .34-二、填空题13.设11()()()()11n ni i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 14.已知,z w C ∈,1z w +=,224z w +=,则zw 的最大值为______.15.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 16.复数z 满足21z i -+=,则z 的最大值是___________. 17.若复数23z i =+,则1iz+=__________. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.20.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是__________三、解答题21.(1)在复数范围内解方程:23||()2iz z z i i-++=+(i 为虚数单位); (2)设系数为整数的一元二次方程20ax bx c ++=的两根恰为(l )中方程的解,求||||||a b c ++的最小值;22.已知关于x 的实系数方程20x px q -+=,其中p q 、为实数. (1)若12x i =+是该方程的根,求p q +的值; (2)若22p q +=,求该方程两根之积的最大值.23.在复数范围内分解因式:42625x x -+= ________. 24.已知是复数,和均为实数(为虚数单位).(1)求复数; (2)求的模.25.证明:在复数范围内,方程()()255112iz i z i z i-+--+=+(为虚数单位)无解. 26.已知z 是复数,i z 2+、iz -2均为实数(i 为虚数单位),且复数2)(ai z +在复平面上对应的点在第一象限,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据复数相等的充要条件,构造关于,a b 的方程组,解得,a b 的值,进而可得答案. 【详解】因为(1)(1)1(1)i bi b b i a +-=++-=,结合,a b ∈R ,所以有110b a b +=⎧⎨-=⎩,解得21a b =⎧⎨=⎩,所以2a bi i +=+==故选C. 【点睛】该题考查的是有关复数的模的问题,涉及到的知识点有复数相等的条件,属于简单题目.2.A解析:A 【解析】 【分析】利用复数代数形式的乘法运算化简得答案. 【详解】 ∵i (3+4i )=-4+3i , ∴i (3+4i )的虚部为3. 故选A. 【点睛】本题考查复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.D解析:D 【解析】()()()()1i 1i 1i 12i 12ii 1i 1i 1i 112------====-++-+,故选D. 4.C解析:C 【分析】在①中,当z =0时,‖z ‖=0;反之,当‖z ‖=0时,z =0;在②中,z =a +bi ,z =a ﹣bi ,从而‖z ‖=‖z ‖=|a |+|b |;在③中,当z 1=2+3i ,z 2=3+2i 时,不成立;④由绝对值的性质得到‖z 1﹣z 3‖≤‖z 1﹣z 2‖+‖z 2﹣z 3‖恒成立. 【详解】由复数z =a +bi (a 、b ∈R ,i 为虚数单位),定义‖z ‖=|a |+|b |,知: 在①中,对任何复数,都有‖z ‖≥0,当z =0时,‖z ‖=0;反之,当‖z ‖=0时,z =0, ∴等号成立的充要条件是z =0,故①成立;在②中,∵z =a +bi ,z =a ﹣bi ,∴‖z ‖=‖z ‖=|a |+|b |,故②成立; 在③中,当z 1=2+3i ,z 2=3+2i 时,‖z 1‖=‖z 2‖,但z 1≠±z 2,故③错误; ④对任何复数z 1,z 2,z 3,设z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i , 则‖z 1﹣z 3‖=|a 1﹣a 3|+|b 1﹣b 3|,‖z 1﹣z 2‖+‖z 2﹣z 3‖=|a 1﹣a 2|+|a 2﹣a 3|+|b 1﹣b 2|+|b 2﹣b 3|, |a 1﹣a 3|≤|a 1﹣a 2|+|a 2﹣a 3|, |b 1﹣b 3|≤|b 1﹣b 2|+|b 2﹣b 3|,∴‖z 1﹣z 3‖≤‖z 1﹣z 2‖+‖z 2﹣z 3‖恒成立.故④成立. 故选:C . 【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意绝对值性质、复数概念及性质的合理运用.5.C解析:C 【解析】 【分析】实部与虚部的差为242x x -+。

高中数学第五章数系的扩充与复数的引入1数系的扩充与复数的引入教材基础素材

高中数学第五章数系的扩充与复数的引入1数系的扩充与复数的引入教材基础素材

§1 数系的扩充与复数的引入复数是16世纪人们在研究求解一元二次、三次方程的问题时引入的。

现在它已在数学、力学、电学以及其他科学里获得了广泛的应用。

复数的初步知识是进一步学习高等数学的基础,在初等数学范围内,它与平面解析几何、三角函数、指数和对数等也有密切的联系,为解决一些问题提供了方便。

高手支招1细品教材一、虚数单位i状元笔记i就是-1的一个平方根,-i是-1的另一个平方根。

1.我们把平方等于—1的数用i表示,规定i2=—1,其中的i叫做虚数单位.虚数单位的引入是为了使方程x2+1=0,即x2=—1有解,使实数的开方运算总可以实施(即让负数能开平方根),实数集的扩充就从引入平方等于—1的“新数”开始.2。

i可与实数进行四则运算,且原有的加、乘运算仍然成立.i可以与实数进行四则混合运算,是扩充数集的原则之一,这里只提加、乘运算,不提减、除运算,并不是对减、除运算不成立,这和后面在讲复数的四则运算时,只对加法和乘法法则作出规定,而把减法、除法运算分别定义为加法、乘法的逆运算的做法一致的,即在四则运算中突出加、乘运算,这样处理更为科学、合理,分清了主次。

二、复数的概念1.复数与复数集我们把形如a+bi (a ,b ∈R )的数叫做复数.其中i 做虚数单位.全体复数所构成的集合C={a+bi |a,b ∈R }叫做复数集。

2。

复数的实部与虚部(1)复数通常用字母z 来表示,即z=a+bi (a,b ∈R ),这一表示形式叫做复数的代数形式.其中a 与b 分别叫做复数z 的实部与虚部,分别用Rez 与Imz 表示,即a=Rez,b=Imz 。

【示例】 写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,2-3i ,0,21-+34i,5+2i,6i 。

思路分析:要指出这些复数的实部与虚部,我们首先要弄清楚这些复数的完整形式,如2—3i 本身已是复数的完整形式,其实部与虚部一目了然,然而像4,6i 等形式简化的复数,在指出它们的实部与虚部时可先写出它们的完整的复数形式,如4=4+0i,那么,我们便马上得出4的实部是4,虚部为0;6i=0+6i ,则我们马上可知其实部是0,虚部是6。

数系的扩充和复数的概念教学设计

数系的扩充和复数的概念教学设计

数系的扩充和复数的概念教学设计1. 引言在数学的世界里,数系就像是一条漫长的河流,我们每个人都是这条河流上的小船。

今天,我们要聊的是这条河流的扩展,尤其是复数的概念。

让我们一起“扬帆起航”,探寻数系的奥秘吧!2. 数系的扩充2.1 从自然数到整数首先,我们来回顾一下,数系的起点是自然数,也就是大家熟悉的1、2、3、4……这就是我们平时用来计数的基本数字。

可是,当我们遇到像1、2这种情况时,自然数就显得有些“力不从心”了。

这时,整数登场啦!整数包括了自然数和它们的负数,比如1、0、1、2、3等等。

这样一来,我们的数系就更加全面了。

2.2 从整数到有理数接下来,我们来看看有理数。

有理数的概念其实不难理解,它就是可以表示成两个整数之比的数。

举个例子,1/2、3/4这些都是有理数。

有理数的出现,让我们不仅可以处理整数量,还可以处理分数。

它就像是为我们的数系加上了一层新色彩。

2.3 从有理数到无理数不过,有时候我们还会遇到一些数,它们不能用两个整数之比来表示,比如√2、π。

这些数叫做无理数。

无理数的出现,就像给我们的数系带来了些许“神秘感”,它们让我们感受到数学的无限与奇妙。

3. 复数的引入3.1 复数的由来现在,我们进入了今天的重头戏:复数。

复数的诞生,是为了应对一些我们无法用实数解决的问题。

比如,方程x² + 1 = 0就没有实数解。

于是,复数的“英雄”——虚数单位i登场啦!i的平方等于1,这个看似“疯狂”的设定,让我们能够解决更多数学难题。

3.2 复数的基本概念复数其实很简单,它由两个部分组成:实数部分和虚数部分。

比如,3 + 4i就是一个复数,它的实数部分是3,虚数部分是4i。

这样一来,我们就可以用复数处理更多复杂的数学问题了。

复数的引入,犹如为数学的“工具箱”增加了新工具,让它变得更加全面。

4. 教学设计建议4.1 形象化教学为了让学生们更好地理解复数,可以使用一些形象化的教学方法。

比如,使用图像将复数表示在平面上,直观地展示复数的实部和虚部。

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)

一、选择题1.若i 为虚数单位,则复数311i i-+的模是( ) A .22B .5C .5D .22.已知i 是虚数单位,,a b ∈R ,31ia bi i++=-,则a b -等于( ) A .-1B .1C .3D .43.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101-B .21-C .101+D .21+4.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( ) A .2-B .12-C .12D .25.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45D .356.若复数满足,则复数的虚部为( )A .B .C .D .7.已知复数3412iz i+=-,是z 的共轭复数,则z 为 ( ) A .55B .221C .5D .58.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若复数z 满足(34)112i z i -=+,其中i 为虚数单位,则z 的虚部为( ) A .2-B .2C .2i -D .2i10.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆 B .两条直线C .圆D .一条直线11.已知复数33iz i --=,则z 的虚部为( ) A .3-B .3C .3iD .3i -12.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 二、填空题13.已知复数z 满足|2|1z i +-=,则|21|z -的取值范围是________. 14.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________. 15.复数z 满足21z i -+=,则z 的最大值是___________. 16.213i(3i)-+化简后的结果为_________. 17.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 18.设a R ∈,若复数3a i z i-=+(i 是虚数单位)的实部为12,则 a = __________.19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.三、解答题21.(Ⅰ)已知m R ∈,复数()()2245215z m m m m i =--+--是纯虚数,求m 的值;(Ⅱ)已知复数z 满足方程()20z z i +-=,求z 及2z i +的值. 22.已知复数w 满足()432(w w i i -=-为虚数单位). (1)求w ;(2)设z C ∈,在复平面内求满足不等式12z w ≤-≤的点Z 构成的图形面积. 23.已知复数,, , 求:(1)求的值; (2)若,且,求的值.24.已知复数()()2226z m m m m i =-++-所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m 的值或取值范围. 25.已知1z i =+.(1)设23(1)4z i ω=+--,求ω;(2)如果2211z az bi z z ++=--+,求实数,a b 的值. 26.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=; (2)2(21)(3)0x i x t i --+-=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数的除法运算把311i i-+化成(),a bi a b R +∈ 【详解】()()()()2231131331241211112i i i i i i ii i i i i -----++====+++--,31121i i i-∴=+==+ 故选:B . 【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.2.A解析:A 【分析】根据复数的除法化简31ii+-,再根据复数相等的充要条件求出,a b ,即得答案. 【详解】()()()()2231334241211112i i i i i ia bi i i i i i +++++++=====+--+-, 1,2,1ab a b ∴==∴-=-.故选:A . 【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.3.A解析:A 【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解. 【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径,即min 111z i ++==, 故选:A 【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D 【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a 值. 【详解】()()()()12i i 212i z a a a =++=-++为纯虚数, 20120a a -=⎧∴⎨+≠⎩,解得2a =,故选D. 【点睛】本题主要考查的是复数的乘法运算以及纯虚数的定义,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.5.C解析:C 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.6.B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7.C解析:C 【解析】分析:利用复数模的性质直接求解. 详解:∵3412iz i+=-, ∴2222343434512121(2)i i z z i i +++=====--+- 故选C .点睛:复数(,)z a bi a b R =+∈的模为22z a b =+1212z z z z =,1122z z z z =. 8.B解析:B 【分析】先化简得到2z i =--,再计算2z i =-+得到答案。

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)

一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。

【高中数学】练习题:数系的扩充与复数的引入(含详解)

【高中数学】练习题:数系的扩充与复数的引入(含详解)

【高中数学】练习题:数系的扩充与复数的引入(含详解)一、选择题1.(2011·辽宁高考)a 为正实数,i 为虚数单位,|a +i i|=2,则a =( ) A .2 B. 3 C. 2 D .12.(2012·武汉模拟)若复数2-b i 1+2i(b ∈R)的实部与虚部互为相反数,则b 等于( ) A. 2 B.23 C .-23 D .23.(2012·皖南八校联考)复数z 满足z =2-i 1-i,则z 等于( ) A .1+3i B .3-i C. 32-12i D. 12+32i 4.(2012·广东六校联考)若(1+2a i)i =1-b i ,其中a 、b ∈R ,i 是虚数单位,则|a +b i|=( ) A.12+i B. 5 C.52 D.54 5.定义:若z 2=a +b i(a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,则复数-3+4i 的平方根是( )A .1-2i 或-1+2iB .1+2i 或-1-2iC .-7-24iD .7+24i 二、填空题 6.在复平面内,复数1+i 与-1+3i 分别对应向量OA 和OB ,其中O 为坐标原点,则|AB |=________.7.设复数z 满足|z |=5且(3+4i)z 是纯虚数,则z =________.三、解答题8.计算:(1)(-1+i )(2+i )i 3(2)(1+2i )2+3(1-i )2+i (3)1-i (1+i )2+1+i (1-i )2.9.实数m 分别取什么数值时?复数z =(m 2+5m +6)+(m 2-2m -15)i(1)与复数2-12i 相等;(2)与复数12+16i 互为共轭;(3)对应的点在x 轴上方。

10.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值.题组专练:【题组一】复数的有关概念及复数的几何意义11.(2010·广州模拟)若复数a +3i 1+2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A .-6 B .13 C.32 D.1312.设a 是实数,且a 1+i+1+i 2是实数,则a 等于 ( ) A.12B .1 C.32 D .2 13.(2009·江苏高考)若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________.【题组二】复数相等14.(2009·全国卷Ⅰ)已知z 1+i =2+i ,则复数z =( ) A .-1+3i B .1-3i C .3+i D .3-i 15.已知m 1+i=1-n i ,其中m 、n 是实数,i 是虚数单位,则m +n i =( ) A .1+2iB .1-2iC .2+iD .2-i 16.如果实数b 与纯虚数z 满足关系式(2-i)z =4-b i(其中i 为虚数单位),那么b 等于( )A .8B .-8C .2D .-2 【题组三】复数的代数运算17.(2010·连云港模拟)复数3+2i 2-3i -3-2i 2+3i=( ) A .0 B .2 C .-2iD .2i 18.(2009·浙江高考)设z =1+i(i 是虚数单位),则2z+z 2=( ) A .-1-iB .-1+iC .1-iD .1+i19.计算:(1)(2+2i)4(1-3i)5(2)-23+i 1+23i +(21-i )2010 (3)(1+i 1-i )6+2+3i 3-2i . 【题组四】复数的综合应用20.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,5)B .(1,3)C .(1,5)D .(1,3)21.已知z 1,z 2为复数,(3+i)z 1为实数,z 2=z 12+i,且|z 2|=52,则z 2= . 22.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z 1+z 2是实数,求实数a 的值.参考答案:一、选择题1.解析:由已知|a +i i |=2得|a +i i|=|(a +i)·(-i)|=|-a i +1|=2, ∴1+a 2=2,∵a >0,∴a = 3.答案:B2.解析:2-b i 1+2i =(2-b i )(1-2i )(1+2i )(1-2i )=2-2b -(4+b )i 5, 由题意得2-2b 5-4+b 5=0,得b =-23. 3.解析:∵z =2-i 1-i=(2-i )(1+i )2=3+i 2,∴z =32-12i. 4.解析:由(1+2a i)i =1-b i 得,a =-12,b =-1, 所以|a +b i|=a 2+b 2=52. 答案:C5.解析:设(x +y i)2=-3+4i ,则⎩⎪⎨⎪⎧x 2-y 2=-3,xy =2, 解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =-1,y =-2. 答案:B二、填空题6.解析:由题意知A (1,1),B (-1,3), 故|AB |=(-1-1)2+(3-1)2=2 2.答案:2 27.解析:设z =a +b i(a 、b ∈R),则有a 2+b 2=5.*于是(3+4i)z =(3a -4b )+(4a +3b )i.由题设得⎩⎪⎨⎪⎧ 3a -4b =04a +3b ≠0得b =34a 代入*得a 2+⎝⎛⎭⎫34a 2=25,a =±4,∴⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =-4,b =-3. ∴z =4-3i 或z =-4+3i.答案:±(4-3i) 三、解答题8.解:(1)(-1+i )(2+i )i 3=-3+i -i=-1-3i. (2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i=i (2-i )5=15+25i. (3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. 9.解:(1)根据复数相等的充要条件得⎩⎪⎨⎪⎧ m 2+5m +6=2,m 2-2m -15=-12.解之得m =-1. (2)根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16.解之得m =1. (3)根据复数z 对应点在x 轴上方可得m 2-2m -15>0,解之得m <-3或m >5.=⎝⎛⎭⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. 又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.11.解析:∵a +3i 1+2i =(a +3i)(1-2i)(1+2i)(1-2i)=6+a +(3-2a )i 5是纯虚数,∴6+a =0,即a =-6. 答案:A12.解析:∵a 1+i+1+i 2=a (1-i)2+1+i 2=1+a 2+1-a 2i ∈R , ∵a ∈R ,∴1-a 2=0,解得a =1. 答案:B13.解析:(z 1-z 2)i =(-2+20i)i =-20-2i ,故(z 1-z 2)i 的实部为-20.答案:-2014.解析:由已知得z =(1+i)(2+i)=1+3i ,∴z =1-3i.答案:B15.解析:m 1+i=m (1-i)2=m 2-m 2i =1-n i , ∴m 2=1,n =m 2=1. 故m =2,n =1,则m +n i =2+i.答案:C16.解析:∵z 为纯虚数,∴可设z =a i(a ≠0),由(2-i)z =4-b i ,得(2-i)a i =4-b i ,∴2a i +a =4-b i ,∴⎩⎪⎨⎪⎧a =4-b =2a ,即b =-8. 答案:B17.解析:3+2i 2-3i -3-2i 2+3i =(3+2i)(2+3i)(2-3i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i 13--13i 13=i +i =2i. 答案:D18.解析:2z +z 2=21+i+(1+i)2=2(1-i)2+1+i 2+2i =1+i.19.解:(1)原式=16(1+i)4(1-3i)4(1-3i)=16(2i)2(-2-23i)2(1-3i)=-644(1+3i)2(1-3i)=-16(1+3i)×4=-41+3i=-1+3i. (2)原式=i(1+23i)1+23i+[(21-i )2]1005=i +(2-2i )1005=i +i 1005=i +i 4×251+1=i +i =2i. (3)原式=[(1+i)22]6+(2+3i)(3+2i)(3)2+(2)2=i 6+6+2i +3i -65=-1+i. 20.解析:|z |=a 2+1,∵0<a <2,∴1<a 2+1< 5.答案:C21.解析:z 1=z 2(2+i),(3+i)z 1=z 2(2+i)(3+i)=z 2(5+5i)∈R ,∵|z 2|=52,∴|z 2(5+5i)|=50,∴z 2(5+5i)=±50,∴z 2=±505+5i =±101+i=±(5-5i). 答案:±(5-5i)22.解:z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =(3a +5+21-a)+[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0.解得a =-5或a =3.∵分母a +5≠0,∴a ≠-5,故a =3.。

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)(2)

(易错题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》测试题(有答案解析)(2)

一、选择题1.设复数z 满足1z =,则1z i -+的最大值为( ) A .21- B .22- C .21+ D .22+ 2.若复数z 的虚部小于0,|z |5=,且4z z +=,则iz =( )A .13i +B .2i +C .12i +D .12i - 3.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101- B .21- C .101+ D .21+4.设复数,在复平面内对应的点关于实轴对称,若,则等于 A .4iB .C .2D . 5.已知复数,满足,那么在复平面上对应的点的轨迹是( ).A .圆B .椭圆C .双曲线D .抛物线 6.已知复数z 满足()(13)10z i i i ++=,其中i 为虚数单位,则z =( )A 3B 6C .6D .3 7.若复数1a i a i -+为纯虚数,则实数的值为 A .i B .0 C .1 D .-18.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ).A .椭圆B .两条直线C .圆D .一条直线9.2(1)1i i+=-( ) A .1i + B .1i - C .1i -+ D .1i -- 10.已知3(0)z a i a =>且||2z =,则z =( )A .13iB .13iC .23iD .33i + 11.已知复数(3)(2)z m i i =+-+在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .(,1)-∞B .2,3⎛⎫-∞ ⎪⎝⎭C .2,13⎛⎫ ⎪⎝⎭D .2,(1,)3⎛⎫-∞⋃+∞ ⎪⎝⎭12.已知i 为虚数单位,a R ∈,若2i a i -+为纯虚数,则复数23z a i =的模等于( )A .17B .3C .11D .2二、填空题13.设11()()()()11n n i i f n n i N i+-=+∈-+,则集合{|()}x x f n =的子集个数是___________. 14.已知35z i -=,则2z +的最大值为_________.15.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________.16.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 17.已知i 为虚数单位,计算1i 1i -=+__________. 18.复数21z i=-,则z z -对应的点位于第__________象限 19.设i 是虚数单位,1i 2ia ++是纯虚数,则实数a 的值是________. 20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+(1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.在复平面内,复数21i z i =+(i 为虚数单位)的共轭复数z 对应点为A ,点A 关于原点O 的对称点为B ,求:(Ⅰ)点A 所在的象限;(Ⅱ)向量OB 对应的复数.23.设复数z a i =+(i 是虚数单位,a R ∈,0a >),且10z =.(Ⅰ)求复数z ;(Ⅱ)在复平面内,若复数1m i z i ++-()m R ∈对应的点在第四象限,求实数m 的取值范围.24.复数2(21)(1),z a a a i a R =--+-∈.(1)若z 为实数,求a 的值;(2)若z 为纯虚数,求a 的值;(3)若93z i =-,求a 的值.25.已知复数(1)m 取什么值时,z 是实数?(2)m 取什么值时,z 是纯虚数?26.已知复数z 满足(2)z i a i -=+()a R ∈.(1)求复数z ;(2)a 为何值时,复数2z 对应点在第一象限.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 如图所示,复数满足1z =时轨迹方程为复平面内的单位圆, 而()11z i z i -+=--表示z 与复数1i -所对应的点在复平面内的距离,结合圆的性质可知,1z i -+的最大值为()2211121+-+=+.本题选择C 选项.2.C解析:C【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解.【详解】由4z z +=,得()2z mi m =+∈R ,因为2||45z m =+=1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+.故选:C【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解. 3.A解析:A【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解.【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径, 即22min 11(21)1101z i ++=++-=-,故选:A【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D【解析】【分析】利用复数的运算法则可得:,再利用几何意义可得.【详解】,复数,在复平面内对应的点关于实轴对称,,则. 故选:D .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 5.D解析:D【分析】把复数z 代入|z ﹣1|=x ,化简可求z 在复平面上对应的点(x ,y )的轨迹方程,推出轨迹.【详解】已知复数z=x+yi (x ,y ∈R ,x≥),满足|z ﹣1|=x ,(x ﹣1)2+y 2=x 2即y 2=2x ﹣1那么z 在复平面上对应的点(x ,y )的轨迹是抛物线.故选D .【点睛】本题考查复数的基本概念,轨迹方程,抛物线的定义,考查计算能力,是基础题.6.D解析:D【解析】分析:由()()1310z i i i ++=,,可得10i 13iz i =-+,利用复数除法法则可得结果. 详解:因为()()1310z i i i ++=, 所以()()()2210i 13i 10i 30i 10i 13i 13i 13i 19i z i i i --+=-=-=-++-- 30+10i 310i =-=,所以3z =,故选D. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7.C解析:C【解析】分析:由题意首先设出纯虚数,然后利用复数相等的充分必要条件整理计算即可求得最终结果. 详解:不妨设()1a i ki k R i-=∈+,则:()21a i ki i ki ki k ki -=+=+=-+, 由复数相等的充分必要条件可得:1a k k =-⎧⎨-=⎩,即11a k =⎧⎨=-⎩, 即实数a 的值为1.本题选择C 选项.点睛:本题主要考查复数的分类,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.8.A解析:A【分析】转化复数方程为复平面点的几何意义,然后利用椭圆的定义,即可判定,得到答案.【详解】 由题意,复数4z i z i ++-=的几何意义表示:复数z 在复平面上点到两定点(0,1)和(0,1)-的距离之和等于4,且距离之和大于两定点间的距离,根据椭圆的定义,可知复数z 对应点的轨迹为以两定点(0,1)和(0,1)-为焦点的椭圆, 故选A .【点睛】本题主要考查了复数的几何意义的应用,其中解答中熟记复数的表示,以及复数在复平面内的几何意义是解答的关键,注重考查了分析问题和解答问题的能力,属于基础题. 9.C解析:C【分析】由题意结合复数的运算法则计算其值即可.【详解】由复数的运算法则有:()()()()()22121(1)21111112i i i i i i i i i i i i i +++====+=-+---+. 故选C .【点睛】本题主要考查复数的除法运算,复数的乘法运算等知识,意在考查学生的转化能力和计算求解能力.10.B解析:B【解析】【分析】利用复数求模公式得到关于a 的方程,解方程后结合题意即可确定z 的值.【详解】根据复数的模的公式,可知234a +=,即21a =,因为0a >,所以1a =,即1z =,故选B .故答案为B .【点睛】本题主要考查复数的模的运算法则,复数的表示方法等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B【分析】根据复数的几何意义建立不等式关系即可.【详解】(3)(2)(32)(1)z m i i m m i =+-+=-+-,若复数在复平面内对应的点在第三象限,则32010m m -<⎧⎨-<⎩,解得23m <, 所以m 的取值范围是2(,)3-∞,故选B.【点睛】该题考查的是有关复数在复平面内对应的点的问题,属于简单题目.12.D解析:D【分析】先根据纯虚数概念得a ,再根据模的定义求结果.【详解】 因为()()221221a a i i a i a --+-=++为纯虚数,所以21020a a ,-=+≠,即12a =,因此21z a ==,所以2z =,选D.【点睛】本题考查纯虚数以及复数的模,考查基本分析求解能力,属基础题.二、填空题13.8【分析】化简得到计算结合复数乘方的周期性得到得到答案【详解】根据的周期性知子集个数为故答案为:【点睛】本题考查了复数的运算集合的子集意在考查学生的计算能力和综合应用能力周期性的利用是解题的关键 解析:8【分析】化简得到()()()n ni f n i =+-,计算结合复数乘方的周期性得到{}{}|()2,0,2x x f n ==-,得到答案.【详解】()()()()()()()()22111()()()()()1111111n n n n n n i i i f n i i i i i i i i i -+-=+=+-+-=+-++-+, ()()00(0)2i f i =+-=,()()11(1)0i f i =+-=,()()22(2)2i f i =+-=-, ()()33(3)0i f i =+-=,()()44(4)2i f i =+-=,根据n i 的周期性知{}{}|()2,0,2x x f n ==-,子集个数为328=.故答案为:8.【点睛】本题考查了复数的运算,集合的子集,意在考查学生的计算能力和综合应用能力,周期性的利用是解题的关键. 14.【分析】利用复数模的几何意义及圆的性质求解【详解】满足的对应点在以为圆心5的半径的圆上表示点到的距离∴的最大值为故答案为:【点睛】本题考查复数模的最值解题关键是掌握复数模的几何意义利用复数差的模表示5【分析】利用复数模的几何意义及圆的性质求解.【详解】 满足35z i -=的z 对应点Z 在以(0,3)C 为圆心,5的半径的圆上,2z +表示点Z 到(2,0)A -的距离,AC =∴AZ 5+.5.【点睛】本题考查复数模的最值,解题关键是掌握复数模的几何意义,利用复数差的模表示复平面上两点间的距离,结合点到圆的位置关系求解更加简便.15.【分析】根据复数的运算可得再利用模的计算公式即可求解【详解】由题意复数满足则则的模为【点睛】本题主要考查了复数的运算以及复数模的计算其中解答中熟记复数的运算法则以及复数模的计算公式是解答的关键着重考 解析:【分析】 根据复数的运算可得11i z i i +==-,再利用模的计算公式,即可求解. 【详解】由题意,复数z 满足(1)1z i i -=+,则()()()()11121112i i i i z i i i i +++====--+, 则z 的模为1z i ==.【点睛】本题主要考查了复数的运算以及复数模的计算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查了运算与求解能力,属于基础题. 16.【解析】【分析】把等式两边同时乘以直接利用复数的除法运算求解再根据共轭复数的概念即可得解【详解】由得∴复数的共轭复数为故答案为【点睛】本题考查了复数代数形式的乘除运算复数的除法采用分子分母同时乘以分 解析:122i - 【解析】【分析】 把等式两边同时乘以11i +,直接利用复数的除法运算求解,再根据共轭复数的概念即可得解.【详解】由()1z i i +=,得(1)111(1)(1)222i i i i i z i i i -+====+++-.∴复数z 的共轭复数为122i - 故答案为122i -. 【点睛】本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.17.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为解析:i -【解析】分析:根据复数除法法则求解. 详解:复数1i (1)(1)2i i 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi18.二【解析】则对应的点位于第二象限解析:二【解析】()()()2121111i z i i i i +===+--+,则1z z i -=+(1位于第二象限. 19.【解析】由题意可得:满足题意时:解得:解析:2-【解析】 由题意可得:()()()()21i 21i 222212i 2i 2555a i a ai i ai a a i i +-++--+-===+++- , 满足题意时:2052105a a +⎧=⎪⎪⎨-⎪≠⎪⎩ ,解得:2a =- . 20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =.【解析】【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解.【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-; (2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(Ⅰ)位于第四象限;(Ⅱ)-1+i.【分析】(I )利用复数的运算法则、几何意义即可得出.(II )利用复数的几何意义即可得出.【详解】解:(Ⅰ)z ()()()2i 1i 2i 1i 1i 1i -===++-1+i ,所以z =1﹣i , 所以点A (1,﹣1)位于第四象限.(Ⅱ)又点A ,B 关于原点O 对称.∴点B 的坐标为B (﹣1,1).因此向量OB 对应的复数为﹣1+i .【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 23.(Ⅰ)3i z =+.(Ⅱ)﹣5<m <1【解析】试题分析:(Ⅰ)根据复数的模长公式进行化简即可.(Ⅱ)根据复数的几何意义进行化简求解. 试题(Ⅰ)∵z a i =+,10z =,∴2110z a =+=, 即29a =,解得3a =±,又∵0a >,∴3a =,∴3z i =+.(Ⅱ)∵3z i =+,则3z i =-,∴()()()()151311122m i i m i m m z i i i i i ++++-+=-+=+--+ 又∵复数1m i z i++-(m R ∈)对应的点在第四象限, ∴502{102m m +>-< 得5{1m m >-< ∴﹣5<m <1点睛:本题考查的是复数的运算和复数的概念,首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a+bi)(c+di)=(ac−bd)+(ad+bc)i,(a,b,c ∈R). 其次要熟悉复数相关基本概念,如复数a+bi(a,b ∈R)的实部为a 、虚部为b 、模为22a b +对应点为(a,b)、共轭复数为a−bi24.(1)1a =;(2)21-=a ;(3)2-=a . 【解析】试题分析:(1)复数(,)z a bi a b R =+∈为实数的条件0b =;(2)复数z 为纯虚数的条件0,0a b =≠;(3)两复数相等的条件:实部、虚部分别对应相等.试题解:(1)若z 为实数,则01=-a ,得1=a . (2)若z 为纯虚数,则⎩⎨⎧≠-=--010122a a a ,解得21-=a . (3)若i 39-=z ,则⎩⎨⎧-=-=--319122a a a ,解得2-=a .考点:1.复数为实数、纯虚数的条件;2.两复数相等的条件.25.(1);(2)3【解析】试题分析:本题考查了复数的基本概念,明确实数的条件是复数的虚部是0,且分式的分母有意义第二问明确复数是纯虚数的条件是虚部不为0而实部为0.试题(1)解当时,z 为实数 (2)解:当时,z 为纯虚数考点:复数是实数,纯虚数的条件. 26.(1)3z ai =-(2)30a -<<【详解】(1)由已知得21a i z ai i +-==-,∴3z ai =-. (2)由(1)得2296z a ai =--,∵复数2z 对应点在第一象限,∴290{60a a ->->,解得30a -<<.。

数系的扩充与复数的引入

数系的扩充与复数的引入

《高中数学教学中关于贯彻“双基”策略的研究》课题结题报告渭南市瑞泉中学数学课题组主持人:张蕊青成员:杜德厚谭刚强尚娜刘秀英李秀丽程洁琼【摘要】本课题是我组根据新课程教育理念,关注学生的个体差异和不同的学习需求,经过一年多的努力,基本上达到了预期目标,并形成了本研究报告。

本课题从教材,教师的自身教学机智,培养学生的思维能力,提高教师的教学模式和教学策略以及习题的变式教学五个方面具体阐述了高中数学教学中贯彻“双基”的策略。

同时,文章最后给出了课题存在的不足以及今后的设想。

【关键词】双基教材教育机制现代化教学技术数学思维变式一、课题提出的背景注重“双基”教学一直是我国数学教育的传统。

数学新课程改革以来,数学教育得到了很快的发展。

教学更加科学化,也更加规范。

“双基”也有新的内涵,数学思想、算法、概率等都属于这个范畴。

近几年,国内也有相关文献对此做了一定的研究。

如:许利霞 - 谈高中数学怎样打好“双基”--《中华少年:研究青少年教育》.,黄德勇 -新课标下的高中数学“双基”教学 --《读写算:教育教学研究》,马晓霞 - 浅谈高中数学课程标准下的“双基”教学--《软件:电子版》,张小平 - 对高中数学新课程“双基”教学的几点思考--《当代教育论坛月刊》等都对双基教学给了建设性的意见和策略。

二、课题研究的意义高中数学是高中学生学习的一大基础学科,是学习其他学科的基础,而数学基本知识和基本技能则是基础中的基础,近几年,高考对课本基本知识和方法的考查更加有指向性。

但是目前,我校城关校区大部分学生基础较弱,导致听课困难,不明原理、概念,照搬公式等,从而对数学感到乏味,成绩提不上去。

这些状况出现的原因是多方面的,如学生基础不牢固,高中教材内容层次较深等。

但究其原因,主要一点是学生数学基础不好,也就是基本知识掌握不够扎实。

为此,在数学教学中如何更好地贯彻“双基”成为一个迫切的问题。

我国中小学教育一直以重视“双基”为特色,中学数学教学也不例外。

(完整版)数系的扩充与复数的引入

(完整版)数系的扩充与复数的引入

数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式:z a bi (a R,b R)
2 7 , 0.618, 2 i, 0
7
i i 2 , i 1 3 , 3 9 2i, 5 +8,
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
例1: 实数m取什么值时,复数
z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算律(包括交换律、结 合律和分配律)仍然成立。
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R位。
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b

高考数学专题平面向量、数系的扩充与复数的引入

高考数学专题平面向量、数系的扩充与复数的引入

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算平行四边形法则3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点; 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. [试一试]1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量答案:C2.若菱形ABCD 的边长为2,则|AB -CB+CD |=________.解析:|AB -CB +CD |=|AB +BC +CD |=|AD|=2. 答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP OP =12(OA +OB). 2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB(λ≠0)⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,则向量CD等于( )A .-BC +12BAB .-BC -12BAC .BC -12BAD .BC +12BA答案:A2.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )], 所以⎩⎨⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-131.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③.故选A.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,a -|a |是与a 反向的单位向量.[典例] (1)如图,在正六边形ABCDEF 中,BA+CD +EF=( )A .0B . BEC .ADD . CF(2)(2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] (1)如图,∵在正六边形ABCDEF 中,CD =AF,BF =CE,∴BA +CD +EF =BA +AF +EF =BF +EF =CE+EF =CF.(2)由题意DE =CE +BE =12AB +23BC =12AB +23(BA +AC )=-16AB+23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12. [答案] (1)D (2)12解析:∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD=2CE , ∴2CD =CA +CB +13AB =CA +CB +13(CB -CA ) =23CA+43CB .∴CD =13CA +23CB ,即λ=23. 答案:23 [类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC+AD ; ③AC -BD =DC +AB.其中正确的有( ) A .0个B .1个C .2个D .3个解析:选C ①式的等价式是AB -BC =DA -CD ,左边=AB +CB,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC+CB=AD +CE =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD成立.[典例] 设两个非零向量a 与b 不共线,(1)若AB=a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB=a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB. ∴AB ,BD共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0, ∴k 2-1=0.∴k =±1.[类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值. (2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB=λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b , OC =c , OD =d , OE=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎨⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB=(x 2-x 1,y 2-y 1),|AB|3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.若向量BA=(2,3),CA =(4,7),则BC =( ) A .(-2,-4) B .(2,4) C .(6,10)D .(-6,-10)答案:A2.(2013·石家庄模拟)已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12.答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )·e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -131.(2014·昆明一中摸底)已知点M (5,-6)和向量a =(1,-2),若MN=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)解析:选A MN =-3a =-3(1,-2)=(-3,6),设N (x ,y ),则MN=(x -5,y -(-6))=(-3,6),所以⎩⎨⎧ x -5=-3,y +6=6,即⎩⎨⎧x =2,y =0,选A.2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa+μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ), ∴⎩⎨⎧ -6m +n =5,-3m +8n =-5,解得⎩⎨⎧m =-1,n =-1. [类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF , DF ,CD.[解] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a , CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b . [类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014·济南调研)如图,在△ABC 中,AN =13NC,P 是BN上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB+k (AN -AB )=AB +k ⎝ ⎛⎭⎪⎫14 AC-AB=(1-k )AB +k 4AC,且AP =m AB +211AC, 所以1-k =m ,k 4=211, 解得k =811,m =311. 答案:311[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[解] (1)由题意得(3,2)=m (-1,2)+n (4,1), 所以⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0. ∴k =-1613.解:设由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3. ∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB=(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3. ∴点C 的坐标为(5,-3).第三节平面向量的数量积与平面向量应用举例1.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.向量数量积的运算律 (1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ). (3)(a +b )·c =a·c +b·c .3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ·b )·c ≠a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )·c 与a ·(b ·c )不一定相等.[试一试]1.(2013·广州调研)已知向量a ,b 都是单位向量,且a ·b =12,则|2a -b |的值为________.解析:|2a -b |=(2a -b )2=4a 2-4a ·b +b 2=4-2+1= 3. 答案: 32.(2013·山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:AB =OB -OA =(3,2-t ),由题意知OB ·AB=0,所以2×3+2(2-t )=0,t =5.答案:51.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立);(2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.[练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6 B.π3 C.2π3D.5π6解析:选B (a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2cos a ,b =0,可得cos a ,b =12,又因为0≤ a ,b ≤π,所以 a ,b =π3.2.(2013·福建高考)在四边形ABCD 中,AC =(1,2),BD=(-4,2),则该四边形的面积为( )A. 5B .2 5C .5D .10解析:选C 依题意得,AC ·BD=1×(-4)+2×2=0, ∴AC ⊥BD ,∴四边形ABCD 的面积为12|AC|·|BD |=12×5×20=5.1.(2014·11=(x 2,y 2),若|=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A.23 B .-23 C.56D .-56解析:选B 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.2.(2014·温州适应性测试)在△ABC 中,若∠A =120°,AB ·AC=-1,则|BC |的最小值是( )A. 2 B .2C. 6D .6 解析:选C ∵AB ·AC =-1,∴|AB |·|AC |cos 120°=-1,即|AB |·|AC|=2,∴|BC |2=|AC -AB |2=AC 2-2AB ·AC +AB 2≥2|AB |·|AC |-2AB ·AC =6,∴|BC|min = 6.3.(2013·南昌模拟)已知向量e 1=⎝ ⎛⎭⎪⎫cos π4,sin π6,e 2=⎝ ⎛⎭⎪⎫2sin π4,4cos π3,则e 1·e 2=________.解析:由向量数量积公式得e 1·e 2=cos π4×2sin π4+sin π6×4cos π3=22×2+12×2=2.答案:24.(2013·全国卷Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD=________.解析:因为AE =AD +12AB ,BD =AD -AB ,所以AE ·BD =(AD +12AB )·(AD -AB )=AD 2-12AD ·AB -12AB 2=2. 答案:2 [类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos a ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.平面向量数量积的性质是高考的重点.归纳起来常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2013·天津高考)在平行四边形ABCD 中,AD =1,∠BAD =60° , E 为CD的中点.若AC ·BE=1 , 则AB 的长为________. 解析:由已知得AC =AD +AB ,BE =AD -12AB,∴AC ·BE =AD 2-12AB ·AD +AB ·AD -12AB 2=1+12AB·AD -12|AB |2=1+12|AB |·|AD |cos 60°-12|AB|2=1,∴|AB |=12.答案:12角度二 平面向量的夹角2.(1)已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与a +b 的夹角为( )A.π2 B.π3 C.π6D .π解析:选B ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3,∴4+4a ·b +3=7,∴a ·b =0,∴a ⊥b .如图所示,a 与a +b 的夹角为∠COA .∵tan ∠COA =|CA ||OA |=|b ||a |=3,∴∠COA =π3,即a 与a +b 的夹角为π3. (2)(2014·云南第一次检测)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126 B .-126 C.112D .-112解析:选B 记向量2a -b 与a +2b 的夹角为θ,又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即向量2a-b 与a +2b 的夹角的余弦值是-126,因此选B.角度三 平面向量的垂直3.(1)(2013·荆州高中毕业班质量检查Ⅰ)已知向量a 与b 的夹角是2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.解析:若a ⊥(2a +λb ),则a ·(2a +λb )=0,即2|a |2+λ·|a ||b |·cos 2π3=0,∴2+λ×1×4×⎝ ⎛⎭⎪⎫-12=0.∴λ=1.答案:1(2)在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),则k 的值为________. 解析:①当A =90°时,∵AB ⊥AC ,∴AB ·AC=0.∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ·BC=2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时, ∵AC ⊥BC,∴1×(-1)+k (k -3)=0,即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132. [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法 (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.[典例),b =(cos β,,0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6. [类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又由0<θ<π,知π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4. 因此θ=π2或θ=3π4.第四节数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 3.z 2<0在复数范围内有可能成立,例如:当z =3i 时z 2=-9<0.[试一试]1.(2014·惠州调研)i 是虚数单位,若z (i +1)=i ,则|z |等于( ) A .1 B.32 C.22D.12解析:选C 由题意知z =i i +1=i (1-i )(i +1)(1-i )=1+i 2,|z |=22,故选C. 2.(2013·天津高考)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =________.解析:因为(a +i)(1+i)=a -1+(a +1)i =b i ,a ,b ∈R ,所以⎩⎨⎧a -1=0,a +1=b ,解得⎩⎨⎧a =1,b =2,所以a +b i =1+2i. 答案:1+2i1.把握复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.2.掌握复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i1+i=-i ; (2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. [练一练](2013·安徽联考)已知i 是虚数单位,则⎝ ⎛⎭⎪⎫1+i 2 2 013在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C ∵⎝⎛⎭⎪⎫1+i 22=2i2=i , ∴⎝ ⎛⎭⎪⎫1+i 2 2 013=⎝ ⎛⎭⎪⎫1+i 2 2 0121+i 2=i 1 006·1+i 2=i 2·1+i 2=-22-22i.∴其对应点位于第三象限,故选C.1.(2014·湖北八校联考)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由纯虚数的定义知:⎩⎨⎧x 2-1=0,x +1≠0,⇒x =1,选C.2.(2014·安徽“江南十校”联考)若a +b i =51+2i(i 是虚数单位,a ,b ∈R ),则ab =( )A .-2B .-1C .1D .2解析:选A a +b i =51+2i =1-2i ,所以a =1,b =-2,ab =-2.3.(2013·安徽高考)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3解析:选D 复数a -103-i =a -10(3+i )(3-i )(3+i )=(a -3)-i 为纯虚数,则a -3=0,即a =3.4.(2013·洛阳统考)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z -|=( )A.10 B .2 C. 2D .1解析:选A 依题意得(1-z )·z -=(2+i)(-1+i)=-3+i ,|(1-z )·z -|=|-3+i|=(-3)2+12=10.选A.[类题通法]解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +bi (a ,b ∈R )的形式,以确定实部和虚部.[典例] (1)(2013·四川高考)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D(2)(2014·郑州质量预测)复数z 1=3+i ,z 2=1-i ,则z =z 1z 2的共轭复数在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.(2)依题意得,z =3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i 2=1+2i ,因此复数z =z 1z 2的共轭复数1-2i 在复平面内的对应点的坐标是(1,-2),该点位于第四象限,选D.[答案] (1)B (2)D [类题通法]对复数几何意义的理解及应用(1)复数z 、复平面上的点Z 及向量OZ相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔ OZ(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[针对训练]1.(2013·湖北八校联考)已知i 是虚数单位,z =1+i ,z -为z 的共轭复数,则复数z 2z-在复平面上对应的点的坐标为________.解析:z =1+i ,则z 2z -=(1+i )21-i =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则复数z 2z-在复平面上对应的点的坐标为(-1,1).答案:(-1,1)2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC =λOA +μOB,(λ,μ∈R ),则λ+μ的值是________.解析:由条件得OC =(3,-4),OA=(-1,2), OB=(1,-1),根据OC =λOA +μOB 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ), ∴⎩⎨⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎨⎧λ=-1,μ=2. ∴λ+μ=1. 答案:1[典例] (1)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)(2013·长春调研)已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =( )A .2B .-2C .±2D .-12[解析] (1)z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i. (2)由题意可知:1-a i 1+a i =(1-a i )2(1+a i )(1-a i )=1-2a i -a 21+a 2=1-a 21+a 2-2a 1+a 2i =-35+45i ,因此1-a 21+a 2=-35,化简得5a 2-5=3a 2+3,a 2=4,则a =±2,由-2a 1+a 2=45可知a <0,仅有a =-2满足,故选B.[答案] (1)A (2)B解:∵z =3+5i ,∴z -=3-5i∴(1+z )·z -=(4+5i)(3-5i)=12-20i +15i +25=37-5i. [类题通法]复数四则运算的解答策略复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.[针对训练]1.(2013·山东高考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC.5+i D.5-i解析:选D由(z-3)(2-i)=5,得z=3+52-i=3+5(2+i)(2-i)(2+i)=3+2+i=5+i,所以z=5-i.2.设复数z的共轭复数为z,若z=1-i(i为虚数单位),则zz+z2的值为()A.-3i B.-2i C.i D.-i解析:选D依题意得zz+z2=1+i1-i+(1-i)2=-i2+i1-i-2i=i-2i=-i.。

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

= =
1, 1
C.
������ ������
= =
0, 2
D.
������ = -1, ������ = -1
解析:由
������ + ������ = 2, 得 ������-������ = 0,
������ ������
= =
1, 1.
故选B.
答案:B
知识梳理
3.复数的分类 (1)对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时, 它是实数0;当b≠0时,叫做虚数;当a=0,且b≠0时,叫做纯虚数. 这样,复数z=a+bi(a,b∈R)可以分类如下: 复数������ 实数(������ = 0)
我们规定:a+bi与c+di相等的充要条件是a=c,且b=d .
温馨提示应用两个复数相等的充要条件时,首先要把“=”左右两
边的复数写成代数形式,即分离实部与虚部,然后列出等式求解. 【做一做2】 满足x+y+(x-y)i=2的实数x,y的值为 ( )
A.
������ ������
= =
2, 0
B.
������ ������
要条件;但若a=0,且b=0,则a+bi=0为实数,即不是充分条件.故选B.
答案:B
重难聚焦
1.数系扩充的一般原则是什么? 剖析数系扩充的脉络是:自然数系→整数系→有理数系→实数系 →复数系,用集合符号表示为N→Z→Q→R→C. 从自然数系逐步扩充到复数系的过程可以看出,数系的每一次扩 充都与实际需求密切相关.数系扩充后,在新数系中,原来规定的加 法运算与乘法运算的定律仍然适用,加法和乘法都满足交换律和结 合律,乘法对加法满足分配律. 一般来说,数的概念在扩大时,要遵循如下几项原则: (1)增添新元素,新旧元素在一起构成新数集; (2)在新数集里,定义一些基本关系和运算,使原有的一些主要性 质(如运算定律)依然适用; (3)旧元素作为新数集里的元素,原有的运算关系保持不变; (4)新的数集能够解决旧的数集不能解决的矛盾.

(好题)高中数学选修1-2第四章《数系的扩充与复数的引入》测试卷(有答案解析)(2)

(好题)高中数学选修1-2第四章《数系的扩充与复数的引入》测试卷(有答案解析)(2)

一、选择题1.若i 是虚数单位,则复数11i i +=-( ) A .-1 B .1 C .i - D .i2.已知集合{|()()20,,,}A z a bi z a bi z a b R z C =++-+=∈∈,{|||1,}B z z z C ==∈,若A B =∅,则a ,b 之间的关系是( )A .1a b +>B .1a b +<C .221a b +<D .221a b +> 3.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段4.下列关于复数z 的四个命题中,正确的个数是( )(1)若|1||1|2z z -++=,则复数z 对应的动点的轨迹是椭圆;(2)若|2||2|2z z --+=,则复数z 对应的动点的轨迹是双曲线;(3)若|1||Re 1|z z -=+,则复数z 对应的动点的轨迹是抛物线;(4)若|2|3z -≤,则||z 的取值范围是[1,5]A .4B .1C .2D .3 5.在复平面内,复数12z i =-对应的向量为OA ,复数2z 对应的向量为OB ,则向量AB所对应的复数为( )A . 42i +B . 42i -C . 42i --D . 42i -+ 6.在复平面内,若复数z 满足|z +1|=|1+i z |,则z 在复平面内对应点的轨迹是( ) A .直线B .圆C .椭圆D .抛物线 7.若(13)n x +的二项展开式各项系数和为256,i 为虚数单位,则复数(1)n i +的运算结果为( )A .16-B .16C .4-D .48.已知复数z 满足:32z z =-,且z 的实部为2,则|1|z -=A .3B C .D .9.设复数3422i i z +-=,则复数z 的共轭复数是( ) A .52i - B .52i + C .52i -+ D .52i -- 10.已知i 是虚数单位,复数z 满足|12|z i i -=+,则z 的共轭复数z 在复平面上对应点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 11.在复平面内满足11z -=的动点z 的轨迹为( )A .直线B .线段C .两个点D .圆12.已知复数(,,0)z x yi x y R x =+∈≠且|2|3z -=,则y x 的范围为( ) A .33,⎡⎤-⎢⎥⎣⎦ B .33,,⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .3,3⎡⎤-⎣⎦D .(,3][3,)-∞-⋃+∞二、填空题13.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为____. 14.在下列命题中:①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若()()22132x x x i -+++是纯虚数,则实数1x =±;④若()()2212230z z z z -+-=,则123z z z ==;⑤“复数(),,a bi a b c R +∈为纯虚数”是“0a =”的充要条件;⑥复数12120z z z z >⇔->;⑦复数z 满足22z z =;⑧复数z为实数z z ⇔=.其中正确命题的是______.(填序号)15.i 为虚数单位,若复数22(23)()m m m m i +-+-是纯虚数,则实数m =_______. 16.若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围为_____. 17.复数z=(其中i 为虚数单位)的虚部为________.18.已知复数z 与(z +2)2+5均为纯虚数,则复数z =__.19.若复数z 满足1z =,则1z i -+的最大值是______.20.设()f z z =,且115z i =+,232z i =-+,则12()f z z -的值是__________.三、解答题21.已知i 为虚数单位,m 为实数,复数()(12)z m i i =+-.(1)m 为何值时,z 是纯虚数?(2)若||5z ≤,求||z i -的取值范围.22.已知复数2i α=-,i m β=-,m R ∈.(1)若2αβα+<,求实数m 的取值范围;(2)若αβ+是关于x 的方程2130()x nx n -+=∈R 的一个根,求实数m 与n 的值.23.已知复数2()z a ai a R =+∈,若2z =z 在复平面内对应的点位于第四象限.(1)求复数z ; (2)若22m m mz +-是纯虚数,求实数m 的值.24.已知复数()221132z x x x i =-+-+,()232,z x x i x R =+-∈ (1)若1z 为纯虚数,求实数x 的值;(2)在复平面内,若1z 对应的点在第四象限,2z 对应的点在第一象限,求实数x 的取值范围.25.(1)已知121,2z i z i =+=-,且12111z z z =+,求z ; (2)已知32i --是关于x 的方程220x px q ++=的一个根,求实数,p q 的值.26.设z 1是虚数,z 2=z 111z +是实数,且﹣1≤z 2≤1. (1)求|z 1|的值以及z 1的实部的取值范围;(2)若ω1111z z -=+,求证ω为纯虚数; (3)求z 2﹣ω2的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】()()()21121112i i i i i i i ++===--+, 本题选择D 选项. 2.C解析:C【分析】先设出复数z ,利用复数相等的定义得到集合A 看成复平面上直线上的点,集合B 可看成复平面上圆的点集,若A ∩B =∅即直线与圆没有交点,借助直线与圆相离的定义建立不等关系即可.【详解】设z =x +yi ,,x y R ∈,则(a +bi )(x ﹣yi )+(a ﹣bi )(x +yi )+2=0化简整理得,ax +by +1=0即,集合A 可看成复平面上直线上的点,集合B 可看成复平面上圆x 2+y 2=1的点集,若A ∩B =∅,即直线ax +by +1=0与圆x 2+y 2=1没有交点,1d =,即a 2+b 2<1故选C .【点睛】本题考查了复数相等的定义及几何意义,考查了直线与圆的位置关系,考查了转化思想,属于中档题.3.D解析:D【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.4.B解析:B【分析】(1)根据椭圆的定义来判断;(2)根据双曲线的定义来判断;(3)根据抛物线的定义来判断;(4)利用圆的有关知识点判断.【详解】(1)|1||1|2z z -++=,表示复平面内到点()()1,0,1,0-距离之和为2的点的轨迹,是由点()()1,0,1,0-构成的线段,故错误;(2)|2||2|2z z --+=,表示复平面内到点()2,0的距离比到点()2,0-的距离大2的点的轨迹,是双曲线的左支,故错误;(3)|1||Re 1|z z -=+,表示复平面内到点()1,0的距离等于到直线1x =-的距离的点的轨迹(点()1,0不在直线1x =-上),所以轨迹是抛物线,故正确;(4)|2|3z -≤,表示点的轨迹是圆心为()2,0,半径为3的圆及其内部(坐标原点在圆内),且z 表示轨迹上的点到原点的距离,所以min 0=,此时z 对应的点为原点,max 325r d =+=+=(d 表示原点到圆心的距离),所以 ||z 的取值范围是[0,5],故错误.故选B.【点睛】复数对应的轨迹方程:(1)122z z z z a -+-=,当122a z z >-时,此时z 对应的点的轨迹是椭圆;(2)()1220z z z z a a ---=>,当122a z z <-时,此时z 对应的点的轨迹是双曲线. 5.C解析:C【分析】先计算A 点坐标和B 点坐标,再计算向量AB ,最后得到对应的复数.【详解】复数12z i =-对应的向量为(1,2)OA A ⇒-22()3412i z i ==---复数2z 对应的向量为(3,4)OB B ⇒--(4,2)AB =--对应的复数为:42i -- 故答案选C【点睛】本题考查了复数的计算,对应向量,意在考查学生综合应用能力.6.A解析:A【解析】【分析】设()z x yi x y R =+∈、,代入11z iz +=+,求模后整理得z 在复平面内对应点的轨迹是直线.【详解】设()z x yi x y R =+∈、,1x yi ++=,()11iz i x yi +=++=y x =-,所以复数z x yi =+对应点的轨迹为直线,故选A.【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,动点的轨迹问题,是基础题.7.C解析:C【详解】分析:利用赋值法求得n ,再按复数的乘方法则计算.详解:令1x =,得4256n =,4n =,∴42(1)(2)4i i +==-.故选C .点睛:在二项式()()n f x a bx =+的展开式中,求系数和问题,一般用赋值法,如各项系数为(1)f ,二项式系数和为2n ,两者不能混淆.8.B解析:B【解析】分析:根据题意设2,z bi =+根据题意得到224+1412b b b z i =+⇒=±∴=±,从而根据复数的模的概念得到结果.详解:设2,z bi =+根据题意得到224+1412b b b z i =+⇒=±∴=±则1z -.故答案为B.点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.9.B解析:B【解析】分析:根据复数模的定义化简复数,再根据共轭复数概念求结果. 详解:因为3422i iz +-=,所以522i z -=, 所以复数z 的共轭复数是52i +, 选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi10.D解析:D【解析】分析:先根据复数的模求出z ,再求z 的共轭复数,最后确定对应点所在象限.详解:因为12z i i -=+,所以z i =,所以z i =,因此对应点为1-),在第四象限, 选D.点睛:.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi11.D解析:D【分析】由题意把|1|2||z z -=平方可得关于x 、y 的方程,化简方程可判其对应的图形.【详解】解:设z x yi =+,|1|1z -=,2|1|1z ∴-=,2|1|1x yi ∴-+=,22(1)1x y ∴-+=,故该方程表示的图形为圆,故选:D .【点睛】本题主要考查复数的代数形式及其几何意义,考查圆的方程,涉及复数的模长公式,属于中档题.12.C解析:C【分析】转化|2|z -=为22(2)3x y -+=,设,y k y kx x==,即直线和圆有公共点,联立2164(1)0k ∆=-+≥,即得解.【详解】由于|2||2z x yi -=-+22(2)3x y -+=∴ 设y k y kx x=∴= 联立:2222(2)3,(1+)410x y y kx k x x -+==∴-+=由于直线和圆有公共点,2164(1)0k k ∴∆=-+≥≤≤故y x 的范围为[ 故选:C【点睛】 本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.二、填空题13.1【解析】因为为纯虚数所以解析:1【解析】因为()1i z +⋅(1)()(1)(1)i a i a a i =++=-++ 为纯虚数,所以10110a a a -=⎧∴=⎨+≠⎩ 14.⑧【分析】根据复数的定义和性质依次判断每个选项得到答案【详解】①当复数虚部为0时可以比较大小①错误;②复数对应的点在第二象限②错误;③若是纯虚数则实数③错误;④若不能得到举反例④错误;⑤复数为纯虚数解析:⑧【分析】根据复数的定义和性质,依次判断每个选项得到答案.【详解】①当复数虚部为0时可以比较大小,①错误;②复数1z i =-对应的点在第二象限,②错误;③若()()22132x x x i -+++是纯虚数,则实数1x =,③错误;④若()()2212230z z z z -+-=,不能得到123z z z ==,举反例1231,0,z z z i ===,④错误;⑤“复数(),,a bi a b c R +∈为纯虚数”是“0a =”的充分不必要条件,⑤错误; ⑥复数12120z z z z >⇔->,取122,z i z i =+=,不能得到12z z >,⑥错误; ⑦复数z 满足22z z =,取z i ,22z z ≠,⑦错误; ⑧复数z 为实数z z ⇔=,根据共轭复数定义知⑧正确.故答案为:⑧.【点睛】本题考查了复数的性质,定义,意在考查学生对于复数知识的理解和掌握.15.-3【解析】分析:利用纯虚数的定义直接求解详解:∵复数是纯虚数解得故答案为-3点睛:本题考实数值的求法是基础题解题时要认真审题注意纯虚数的定义的合理运用解析:-3【解析】分析:利用纯虚数的定义直接求解.详解:∵复数()()2223m m m m i +-+-是纯虚数,222300m m m m ⎧+-∴⎨-≠⎩= ,解得3m =- .故答案为-3.点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用.16.【解析】故复数对应的点的坐标为由对应的点在第二象限可得解得故答案为解析:1a <-【解析】()()()111i a i a a i -+=++-,故复数对应的点的坐标为()1,1a a +-,由对应的点在第二象限可得1010a a +<⎧⎨->⎩解得1a <-,故答案为1a <-. 17.﹣【解析】试题分析:利用复数除法运算化简可得虚部解:==则复数z 的虚部为﹣故答案为﹣考点:复数代数形式的乘除运算解析:﹣.【解析】试题分析:利用复数除法运算化简,可得虚部. 解:==,则复数z 的虚部为﹣, 故答案为﹣.考点:复数代数形式的乘除运算.18.±3i 【分析】设然后代入利用复数代数形式的乘除运算化简结合已知条件列出方程组求解即可得答案【详解】解:设为纯虚数解得故答案为:【点睛】本题考查了复数代数形式的乘除运算考查了复数的基本概念属于基础题 解析:±3i【分析】设(,0)z bi b R b =∈≠,然后代入2(2)5z ++利用复数代数形式的乘除运算化简,结合已知条件列出方程组,求解即可得答案.【详解】解:设(,0)z bi b R b =∈≠,222(2)5(2)594z bi b bi ++=++=-+为纯虚数,∴29040b b ⎧-=⎨≠⎩,解得3b =±, 3z i ∴=±.故答案为:3i ±.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.19.【分析】利用复数模的三角不等式可得出可得出的最大值【详解】由复数模的三角不等式可得因此的最大值是故答案为【点睛】本题考查复数模的最值的计算可将问题转化为复平面内复数对应的点的轨迹利用数形结合思想求解解析:1【分析】 利用复数模的三角不等式可得出()111z i z i z i -+=--≤+-可得出1z i -+的最大值.【详解】由复数模的三角不等式可得()11111z i z i z i -+=--≤+-==+因此,1z i -+的最大值是1故答案为1【点睛】本题考查复数模的最值的计算,可将问题转化为复平面内复数对应的点的轨迹,利用数形结合思想求解,同时也可以利用复数模的三角不等式进行计算,考查分析问题和解决问题的能力,属于中等题. 20.4+3i 【解析】分析:由题意可得再结合即可得到答案详解:又点睛:本题主要考查的是复数的加减法以及共轭复数掌握复数的运算法则以及共轭复数的概念是解题的关键解析:4+3i【解析】分析:由题意可得1243z z i -=+,再结合()f z z =,即可得到答案详解:115z i =+,232z i =-+,1243z z i ∴-=+1243z z i ∴-=-又()f z z =,()1243f z z i ∴-=+点睛:本题主要考查的是复数的加减法以及共轭复数,掌握复数的运算法则以及共轭复数的概念是解题的关键。

高考数学(浙江专用)总复习教师用书:第5章 第4讲 数系的扩充与复数的引入 Word版含解析

高考数学(浙江专用)总复习教师用书:第5章 第4讲 数系的扩充与复数的引入 Word版含解析

第4讲 数系的扩充与复数的引入最新考纲 1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知 识 梳 理1.复数的有关概念复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ→.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i ≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小 答案 (1)× (2)× (3)√ (4)√2.(2016·全国Ⅰ卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A.-3 B.-2 C.2 D.3解析因为(1+2i)(a +i)=a -2+(2a +1)i ,所以a -2=2a +1,解得a =-3,故选A. 答案 A3.(选修2-2P112A2改编)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( ) A.4+8i B.8+2i C.2+4i D.4+i解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i. 答案 C4.(2015·全国Ⅱ卷)若a 为实数,且2+a i1+i=3+i ,则a 等于( ) A.-4 B.-3 C.3 D.4 解析 由2+a i 1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D. 答案 D5.已知(1+2i)z =4+3i ,则z =________. 解析 ∵z =4+3i 1+2i=(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i. 答案 2+i6.(2017·温州调研)设a ∈R ,若复数a +i1+i (i 为虚数单位)的实部和虚部相等,则a=________,|z |=________.解析 复数a +i1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,由于复数a +i1+i (i 为虚数单位)的实部和虚部相等,则a +1=1-a ,解得a =0,则z =12-12i ,则|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22.答案 0 22考点一 复数的有关概念【例1】 (1)i 为虚数单位,i 607的共轭复数为( ) A.i B.-i C.1 D.-1(2)(2017·东阳中学期末)设i是虚数单位,复数a+i2-i是纯虚数,则实数a=()A.2B.12C.-12D.-2解析(1)因为i607=(i2)303·i=-i,-i的共轭复数为i.所以应选A.(2)∵a+i2-i=(a+i)(2+i)5=(2a-1)+(a+2)i5是纯虚数,∴2a-1=0且a+2≠0,∴a=12,故选B.答案(1)A(2)B规律方法(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.【训练1】(1)(2016·河南六市联考)如果复数2-b i1+2i(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.-6B.23C.-23D.2(2)设复数a+b i(a,b∈R)的模为3,则(a+b i)(a-b i)=________.解析(1)由2-b i1+2i=(2-b i)(1-2i)5=2-2b-(b+4)i5,由2-2b=b+4,得b=-2 3.(2)因为复数a+b i(a,b∈R)的模为3,即a2+b2=3,所以(a+b i)(a-b i)=a2-b2i2=a2+b2=3.答案(1)C(2)3考点二复数的几何意义【例2】 (1)(2014·全国Ⅱ卷)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.-5 B.5 C.-4+i D.-4-i(2)(2016·全国Ⅱ卷)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1) B.(-1,3) C.(1,+∞) D.(-∞,-3)解析 (1)由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,故选A.(2)由复数z =(m +3)+(m -1)i 在复平面内对应的点在第四象限得⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1,故选A. 答案 (1)A (2)A规律方法 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.【训练2】 (1)(2016·邯郸一中月考)复数z =i(1+i)在复平面内所对应点的坐标为( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)(2)(2016·北京卷)设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.解析 (1)因为z =i(1+i)=-1+i ,故复数z =i(1+i)在复平面内所对应点的坐标为(-1,1),故选D.(2)(1+i)(a +i)=(a -1)+(a +1)i ,由已知得a +1=0,解得a =-1. 答案 (1)D (2)-1 考点三 复数的运算【例3】 (1)(2016·全国Ⅲ卷)若z =1+2i ,则4iz z -1=( ) A.1 B.-1 C.i D.-i(2)(2015·全国Ⅱ卷)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A.-1 B.0 C.1 D.2 解析 (1)4izz -1=4i(1+2i )(1-2i )-1=i. (2)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B. 答案 (1)C (2)B规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. (2)记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i=-i ;④a +b ii =b -a i ;⑤i 4n =1,i 4n +1=i ,i 4n+2=-1,i 4n +3=-i(n ∈N ).【训练3】 (1)(2016·北京卷)复数1+2i2-i =( )A.iB.1+iC.-iD.1-i (2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)1+2i2-i =(1+2i )(2+i )(2-i )(2+i )=2+i +4i +2i 24-i2=5i 5=i ,故选A. (2)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.答案(1)A(2)-1+i[思想方法]1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z=a+b i(a,b∈R)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识.[易错防范]1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意复数的虚部是指在a+b i(a,b∈R)中的实数b,即虚部是一个实数.基础巩固题组(建议用时:30分钟)一、选择题1.(2015·福建卷)若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4解析(1+i)+(2-3i)=3-2i=a+b i,∴a=3,b=-2,故选A.答案 A2.(2016·四川卷)设i为虚数单位,则复数(1+i)2=()A.0B.2C.2iD.2+2i解析(1+i)2=1+2i+i2=2i,故选C.答案 C3.(2016·山东卷)若复数z=21-i,其中i为虚数单位,则z=()A.1+iB.1-iC.-1+iD.-1-i 解析 ∵z =21-i=2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,故选B.答案 B4.(2015·安徽卷)设i 为虚数单位,则复数(1-i)(1+2i)=( ) A.3+3i B.-1+3i C.3+i D.-1+i 解析 (1-i)(1+2i)=1+2i -i -2i 2=3+i. 答案 C5.复数1-i 2-i 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 解析 复数1-i 2-i=(1-i )(2+i )(2-i )(2+i )=35-15i ,∴其对应的点为⎝ ⎛⎭⎪⎫35,-15,在第四象限,故选D. 答案 D6.(2017·北京东城综合测试)若复数(m 2-m )+m i 为纯虚数,则实数m 的值为( ) A.-1 B.0 C.1 D.2解析 因为复数(m 2-m )+m i 为纯虚数,所以⎩⎪⎨⎪⎧m 2-m =0,m ≠0,解得m =1,故选C.答案 C 7.已知复数z =1+2i2-i(i 为虚数单位),则z 的虚部为( ) A.-1 B.0 C.1 D.i 解析∵z =1+2i 2-i=(1+2i )(2+i )(2-i )(2+i )=5i5=i ,故虚部为1.答案 C8.设z 是复数,则下列命题中的假命题是( )A.若z2≥0,则z是实数B.若z2<0,则z是虚数C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0解析举反例说明,若z=i,则z2=-1<0,故选C.答案 C9.(2015·全国Ⅰ卷)已知复数z满足(z-1)i=1+i,则z等于()A.-2-iB.-2+iC.2-iD.2+i解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.答案 C10.设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22解析A中,|z1-z2|=0,则z1=z2,故z1=z2,成立.B中,z1=z2,则z1=z2成立.C中,|z1|=|z2|,则|z1|2=|z2|2,即z1z1=z2z2,C正确.D不一定成立,如z1=1+3i,z2=2,则|z1|=2=|z2|,但z21=-2+23i,z22=4,z21≠z22.答案 D11.(2017·浙江省三市联考)若复数z=a+3ii+a在复平面上对应的点在第二象限,则实数a可以是() A.-4 B.-3 C.1 D.2解析因为z=a+3ii+a=(3+a)-a i在复平面上对应的点在第二象限,所以a<-3,选A.答案 A12.(2016·全国Ⅰ卷)设(1+i)x=1+y i,其中x,y是实数,则|x+y i|=()A.1B.2C. 3D.2解析 由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B. 答案 B 二、填空题13.(2016·江苏卷改编)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________;z 的虚部是________.解析 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5,虚部为5. 答案 5 514.(2015·四川卷)设i 是虚数单位,则复数i -1i =________. 解析 i -1i =i -ii 2=2i. 答案 2i15.(2015·江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 解析 设复数z =a +b i ,a ,b ∈R ,则z 2=a 2-b 2+2ab i =3+4i ,a ,b ∈R ,则⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4(a ,b ∈R ),解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1,则z =±(2+i),故|z |= 5. 答案 516.(2017·丽水质测)若3+b i 1-i =a +b i(a ,b 为实数,i 为虚数单位),则a =________;b =________. 解析3+b i1-i=(3+b i )(1+i )2=12[(3-b )+(3+b )i]=3-b 2+3+b 2i.∴⎩⎨⎧a =3-b 2,b =3+b 2,解得⎩⎪⎨⎪⎧a =0,b =3.∴a +b =3.答案 0 3能力提升题组(建议用时:20分钟)17.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i 的点是( )A.EB.FC.GD.H解析 由题图知复数z =3+i ,∴z 1+i =3+i1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.∴表示复数z1+i 的点为H .答案 D 18.z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于() A.1+i B.-1-i C.-1+i D.1-i解析 法一设z =a +b i ,a ,b 为实数,则z =a -b i.∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i.法二∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2,∴2z =-2i +2,∴z =1-i.答案 D19.(2014·全国Ⅰ卷)设z =11+i +i ,则|z |=( )A.12B.22C.32D.2解析 ∵z =11+i +i =1-i(1+i )(1-i )+i =1-i 2+i =12+12i , ∴|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,故选B. 答案 B20.(2017·温州月考)已知复数z =(cos θ-isin θ)·(1+i),则“z 为纯虚数”的一个充分不必要条件是( )A.θ=π4B.θ=π2C.θ=3π4D.θ=5π4解析 因为z =(cos θ+sin θ)+(cos θ-sin θ)i ,所以当θ=3π4时,z =-2i 为纯虚数,当z 为纯虚数时,θ=k π-π4.故选C.答案 C21.(2017·哈尔滨六中期中)若复数z 满足i·z =-12(1+i),则z 的共轭复数的虚部是( )A.-12iB.12iC.-12D.12解析 i·z =-12(1+i)⇒z =-12(1+i )i =-12(1+i )·i i·i =12(-1+i),则z 的共轭复数z =12(-1-i),其虚部是-12.答案 C22.(2017·绍兴月考)i 是虚数单位,若2+i 1+i=a +b i(a ,b ∈R ),则lg(a +b )的值是( )A.-2B.-1C.0D.12解析 ∵(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i =a +b i ,∴⎩⎪⎨⎪⎧a =32,b =-12,∴lg(a +b )=lg 1=0. 答案 C23.下面是关于复数z =2-1+i的四个命题: p 1:|z |=2; p 2:z 2=2i ;p 3:z 的共轭复数为1+i; p 4:z 的虚部为-1.其中的真命题为( )A.p 2,p 3B.p 1,p 2C.p 2,p 4D.p 3,p 4解析 ∵z =2-1+i =-1-i ,∴|z |=(-1)2+(-1)2=2,∴p 1是假命题;∵z 2=(-1-i)2=2i ,∴p 2是真命题;∵z =-1+i ,∴p 3是假命题;∵z 的虚部为-1,∴p 4是真命题.其中的真命题共有2个:p 2,p 4.答案 C24.(2017·广州综合测试)若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q =0(p ,q ∈R )的一个解,则p +q =( )A.-3B.-1C.1D.3解析 依题意得(1-i)2+2p (1-i)+q =(2p +q )-2(p +1)i =0,即⎩⎪⎨⎪⎧2p +q =0,p +1=0,解得p =-1,q =2,所以p +q =1,故选C.答案 C25.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________. 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23.答案 ⎝ ⎛⎭⎪⎫-∞,23 26.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________. 解析 f (n )=⎝ ⎛⎭⎪⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,… ∴集合中共有3个元素.答案 327.(2017·杭州调研)已知复数z =x +y i ,且|z -2|=3,则y x 的最大值为________;最小值为________.解析 ∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.⎝ ⎛⎭⎪⎫y x min=- 3. 答案 3 - 328.定义运算=ad -bc .若复数x =1-i 1+i,y =,则y =________. 解析 因为x =1-i 1+i=(1-i )22=-i. 所以y ===-2. 答案 -2。

浙江新高考数学一轮复习(教学指导)数系的扩充与复数的引入

浙江新高考数学一轮复习(教学指导)数系的扩充与复数的引入

第4讲 数系的扩充与复数的引入1.复数的有关概念 (1)复数的定义形如a +b i(a ,b ∈R )的数叫做复数,其中实部是a ,虚部是b . (2)复数的分类复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0,b ≠0),非纯虚数(a ≠0,b ≠0). (3)复数相等a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数a +b i 与c +d i 共轭⇔a =c 且b =-d (a ,b ,c ,d ∈R ). (5)复数的模向量OZ →的模叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=r =a 2+b 2(r ≥0,a 、b ∈R ).2.复数的几何意义(1)复数z =a +b i ――――→一一对应复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R )――――→一一对应平面向量OZ →. 3.复数的运算(1)复数的加、减 、乘、除运算法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)若a ∈C ,则a 2≥0.( )(2)已知z =a +b i(a ,b ∈R ),当a =0时,复数z 为纯虚数.( ) (3)复数z =a +b i(a ,b ∈R )中,虚部为b i.( ) (4)方程x 2+x +1=0没有解.( )(5)由于复数包含实数,在实数范围内两个数能比较大小,因而在复数范围内两个数也能比较大小.( )答案:(1)× (2)× (3)× (4)× (5)× [教材衍化]1.(选修2-2P106B 组T1改编)设复数z 满足1+z1-z =i ,则|z |=________.解析:1+z =i(1-z ),z (1+i)=i -1, z =i -11+i =-(1-i )22=i ,所以|z |=|i|=1.答案:12.(选修2-2P112A 组T2改编)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是________.解析:CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i. 答案:-3-4i3.(选修2-2P116A 组T2改编)若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为________.解析:因为z 为纯虚数,所以⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,所以x =-1.答案:-1 [易错纠偏](1)复数的几何意义不清致误; (2)复数的运算方法不当致使出错; (3)z 与z 的不清致误.1.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i解析:选C.因为A (6,5),B (-2,3),所以线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i.故选C.2.若a 为实数,且2+a i1+i=3+i ,则a =________.解析:由2+a i1+i =3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.答案:43.已知(1+2i)z =4+3i ,则z =________.解析:因为z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i ,所以z =2+i.答案:2+i复数的有关概念(1)设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4(2)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________. 【解析】 (1)对于命题p 1,设z =a +b i(a ,b ∈R ),由1z =1a +b i =a -b i a 2+b 2∈R ,得b =0,则z ∈R 成立,故命题p 1正确;对于命题p 2,设z =a +b i(a ,b ∈R ),由z 2=a 2-b 2+2ab i ∈R ,得ab =0,则a =0或b =0,复数z 可能为实数或纯虚数,故命题p 2错误;对于命题p 3,设z 1=a +b i(a ,b ∈R ),z 2=c +d i(c ,d ∈R ),由z 1·z 2=(ac -bd )+(ad +bc )i ∈R ,得ad +bc=0,不一定有z 1=z 2,故命题p 3错误;对于命题p 4,设z =a +b i(a ,b ∈R ),则由z ∈R ,得b =0,所以z =a ∈R 成立,故命题p 4正确.故选B.(2)因为(a +b i)2=a 2-b 2+2ab i =3+4i ,所以⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,所以⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1,所以a 2+b 2=5,ab =2. 【答案】 (1)B (2)5 2解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.1.(2020·浙江省名校协作体高三联考)设复数z =2-i 1+i ,则z 的共轭复数为( )A.12-32i B.12+32i C .1-3iD .1+3i解析:选B.z =2+i 1-i=(2+i )(1+i )2=12+32i.2.(2020·浙江省高中学科基础测试)已知复数a +2i1+i (i 是虚数单位)是纯虚数,则实数a =( )A .-2B .-1C .0D .2解析:选A.a +2i 1+i =a +22+2-a 2i ,由a +2i 1+i是纯虚数得a +22=0,所以a =-2,故选A.复数的几何意义(1)(2020·台州模拟)复数z =3+i1+i+3i 在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)在复平面内与复数z =5i1+2i 所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1+2iB .1-2iC .-2+iD .2+i(3)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B .3C .2 2D .3 3【解析】 (1)z =3+i 1+i+3i =(3+i )(1-i )(1+i )(1-i )+3i =4-2i2+3i =2-i +3i =2+2i ,故z 在复平面内对应的点在第一象限,故选A.(2)依题意得,复数z =5i (1-2i )(1+2i )(1-2i )=i(1-2i)=2+i ,其对应的点的坐标是(2,1),因此点A (-2,1)对应的复数为-2+i.(3)由题图可知,z 1=-2-i ,z 2=i ,则z 1+z 2=-2,所以|z 1+z 2|=2. 【答案】 (1)A (2)C (3)A复数的几何意义及应用(1)复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.1.已知i 是虚数单位,则满足z -i =|3+4i|的复数z 在复平面上对应点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.z -i =|3+4i|=32+42=5,z =5+i ,对应点(5,1),在第一象限,故选A.2.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选 A.由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1,故选A.复数代数形式的运算(高频考点)复数代数形式的四则运算是每年高考的必考内容,题型为选择题或填空题,难度很小.主要命题角度有:(1)复数的乘法运算; (2)复数的除法运算; (3)利用复数相等求参数. 角度一 复数的乘法运算(2020·浙江新高考冲刺卷)已知复数z =1+i ,其中i 为虚数单位,则复数1+z +z 2+…+z 2 017的实部为( )A .1B .-1C .21 009D .-21 009【解析】 因为z =1+i ,所以1+z +z 2+…+z 2 017=1×(1-z 2 018)1-z =z 2 018-1z -1=(1+i )2 018-11+i -1=(2i )1 009-1i =(-1+21 009i )(-i )-i 2=21 009+i. 所以复数1+z +z 2+…+z 2 017的实部为21 009.故选C. 【答案】 C角度二 复数的除法运算计算下列各式的值.(1)⎝⎛⎭⎫2i 1+i 2;(2)2+4i (1+i )2;(3)1+i 1-i +i 3. 【解】 (1)⎝ ⎛⎭⎪⎫2i 1+i 2=4i 2(1+i )2=-42i=2i.(2)2+4i(1+i )2=2+4i2i =2-i.(3)1+i 1-i +i 3=(1+i )2(1-i )(1+i )+i 3=2i2+i 3=i -i =0.角度三 利用复数相等求参数已知⎝⎛⎭⎫1+2i 2=a +b i(a ,b ∈R ,i 为虚数单位),则a +b =( ) A .-7 B .7C .-4D .4【解析】 因为⎝⎛⎭⎫1+2i 2=1+4i +4i 2=-3-4i , 所以-3-4i =a +b i ,则a =-3,b =-4, 所以a +b =-7,故选A. 【答案】 A(1)复数的乘法:复数的乘法类似于多项式的乘法运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.1.(2018·高考浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A .1+iB .1-iC .-1+iD .-1-i解析:选B.因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i 的共轭复数为1-i ,故选B.2.(2020·嘉兴一中高考模拟)复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),则复数|zi |=( )A.253B .2C.553D. 5解析:选D.复数z 满足z ·(2-i)=3-4i(其中i 为虚数单位),所以z ·(2-i)(2+i)=(3-4i)(2+i),化为:5z =10-5i ,可得z =2-i.则复数|z i |=⎪⎪⎪⎪⎪⎪2-i i =⎪⎪⎪⎪⎪⎪-i (2-i )-i·i =|-1-2i|=|1+2i|=12+22= 5.故选D. 3.(2019·高考浙江卷)复数z =11+i(i 为虚数单位),则|z |=________. 解析:通解:z =11+i=1-i 2=12-i 2,所以|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫-122=22. 优解:|z |=⎪⎪⎪⎪⎪⎪11+i =1|1+i|=112+12=22.答案:22[基础题组练]1.(2020·温州七校联考)复数1(1+i )i在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C.1(1+i )i =1-1+i =-1-i (-1+i )(-1-i )=-12-12i ,其在复平面上对应的点位于第三象限.2.(2020·金华十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1 C .1D.2+12解析:选A.由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,故z 的实部为2-12,故选A.3.若复数z 满足(1+2i)z =1-i ,则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i1+2i=-1-3i 5⇒|z |=105.4.如果复数z 满足|z +1-i|=2,那么|z -2+i|的最大值是( ) A.13+2 B .2+3i C.13+ 2D.13+4解析:选A.复数z 满足|z +1-i|=2, 表示以C (-1,1)为圆心,2为半径的圆. |z -2+i|表示圆上的点与点M (2,-1)的距离. 因为|CM |=32+22=13.所以|z -2+i|的最大值是13+2. 故选A.5.(2020·杭州市学军中学联考)已知x1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( )A .1+2iB .1-2iC .2+iD .2-i解析:选D.x 1+i =12(x -x i)=1-y i ,所以⎩⎨⎧12x =1,-12x =-y ,解得x =2,y =1,故选D. 6.(2020·金丽衢十二校联考)已知复数z =x +(x -a )i ,若对任意实数x ∈(1,2),恒有|z |>|z +i|,则实数a 的取值范围为( )A.⎝⎛⎦⎤-∞,12 B.⎝⎛⎭⎫-∞,12 C.⎣⎡⎭⎫52,+∞D.⎝⎛⎭⎫32,+∞解析:选C.因为z =x +(x -a )i ,且对任意实数x ∈(1,2),恒有|z |>|z +i|, 所以x 2+(x -a )2>x 2+(x -a +1)2对任意实数x ∈(1,2)恒成立.即2(x -a )+1<0对任意实数x ∈(1,2)恒成立. 所以a >x +12(1<x <2).因为x +12∈⎝⎛⎭⎫32,52,所以a ≥52.所以实数a 的取值范围为⎣⎡⎭⎫52,+∞.故选C. 7.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于________. 解析:因为z 1=3+4i ,z 2=t +i ,所以z 1·z 2=(3t -4)+(4t +3)i ,又z 1·z 2是实数,所以4t +3=0,所以t =-34.答案:-348.(2020·杭州市学军中学联考)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z |=________.解析:因为z =-1-i ,所以z =-1+i , 所以(1-z )·z =(2+i)(-1+i)=-3+i , 所以|(1-z )·z |=|-3+i|=10. 答案:109.(2020·宁波南三县六校联考)已知i 是虚数单位,m ,n ∈R ,且m (1+i)=1+n i ,则⎝⎛⎭⎪⎫m +n i m -n i 2=________.解析:由m (1+i)=1+n i ,得m +m i =1+n i ,即m =n =1,所以⎝ ⎛⎭⎪⎫m +n i m -n i 2=⎝ ⎛⎭⎪⎫1+i 1-i 2=i 2=-1.答案:-110.已知复数z =4+2i(1+i )2(i 为虚数单位)在复平面内对应的点在直线x -2y +m =0上,则实数m =________.解析:z =4+2i(1+i )2=4+2i 2i =(4+2i )i2i 2=1-2i ,复数z 在复平面内对应的点的坐标为(1,-2),将其代入x -2y +m =0,得m =-5.答案:-511.计算:(1)(1+2i )2+3(1-i )2+i ;(2)1-i (1+i )2+1+i (1-i )2; (3)1-3i (3+i )2.解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (2)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (3)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i3+i =(-i )(3-i )4 =-14-34i. 12.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i(1)与复数2-12i 相等;(2)与复数12+16i 互为共轭复数;(3)对应的点在x 轴上方.解:(1)根据复数相等的充要条件得⎩⎪⎨⎪⎧m 2+5m +6=2,m 2-2m -15=-12,解得m =-1. (2)根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16,解得m =1. (3)根据复数z 对应点在x 轴上方可得m 2-2m -15>0,解得m <-3或m >5.[综合题组练]1.对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,下列结论正确的是( )A .|z -z |=2yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |解析:选D.依次判断各选项,其中A ,C 错,应为|z -z |=2|y i|;B 错,应为z 2=x 2-y 2+2xy i ,D 正确,因为|z |=x 2+y 2≤|x |2+|y |2+2|x |·|y |=(|x |+|y |)2=|x |+|y |.2.若虚数(x -2)+y i(x ,y ∈R )的模为3,则y x的最大值是 ( ) A.32 B.33C.12D. 3 解析:选D.因为(x -2)+y i 是虚数,所以y ≠0,又因为|(x -2)+y i|=3,所以(x -2)2+y 2=3.由图的几何意义得,y x是复数x +y i 对应点的斜率,所以⎝⎛⎭⎫y x max =tan ∠AOB =3, 所以y x的最大值为 3. 3.若复数z 1.z 2满足|z 1|=|z 2|=2,|z 1+z 2|=23,则|z 1-z 2|=________.解析:由已知z 1,z 2均在以原点为圆心、以2为半径的圆上,|z 1-z 2|为另一对角线长,如图,易知∠Z 1OZ 2=60°,所以|z 1-z 2|=2.答案:24.已知复数z =22a 1+i,当a ≥2时,|z |2+t |z |+4>0恒成立,则实数t 的取值范围是________. 解析:当a ≥2时,复数z =22a 1+i =22a (1-i )(1+i )(1-i )=2a -2a i ,|z |=(2a )2+(-2a )2=2a .当a ≥2时,|z |2+t |z |+4>0恒成立,则4a 2+2at +4>0,化为:t >-2-2a 2a=-2⎝⎛⎭⎫a +1a . 令f (a )=a +1a (a ≥2),f ′(a )=1-1a2>0, 所以f (a )在a ≥2时单调递增,所以a =2时取得最小值52.所以t >-5. 答案:(-5,+∞)5.若虚数z 同时满足下列两个条件:①z +5z是实数;②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解:这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b 2=⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. 因为z +5z 是实数,所以b -5b a 2+b 2=0. 又因为b ≠0,所以a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,所以a +3+b =0.②由⎩⎪⎨⎪⎧a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧a =-1,b =-2,或⎩⎪⎨⎪⎧a =-2,b =-1, 故存在虚数z ,z =-1-2i 或z =-2-i.。

高三数学二轮温习专题能力提升训练十一数系的扩充与复数的引入

高三数学二轮温习专题能力提升训练十一数系的扩充与复数的引入

哈尔滨 高三数学二轮温习专题能力提升训练:数系的扩充与复数的引入 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,若 (1+i)z=i ,则z =( )A .i 2121+B .i 2121+-C .i 2121-D .i 2121-- 【答案】A2.设i 为虚数单位,则=+++++10321i i i i ( )A .iB . i -C .i 2D .i 2-【答案】A 3.已知复数z 知足(1i)2z -=,则||z 为( )A .1i +B .1i -C .2D .2 【答案】C4.已知ni m i n m ni im +-=+则是虚数单位是实数其中,,,,11的虚部为( ) A .1B .2C .iD .2i[来 【答案】A5.复数3223i i+=-( ) A .1 B .1-C .iD .i - 【答案】C 6.复数534+i的共轭复数是( ) A .34+i B .3545+i C .3545-i D .34-i【答案】B7.复数(2+i)i 的虚部是( )A .1B .-1C .2D .2i 【答案】C8.在复平面内,若复数132ω=-对应的向量为OA ,复数2ω对应的向量为OB ,则向量AB 对应的复数是( )A .1B .1-C .3iD .3i - 【答案】D9.若复数1(i i a i+-为虚数单位)为纯虚数,则实数a 的值是( ) A .2B . 1C . 0D . -1 【答案】B10.已知i b ii a +=++12(R b a ∈,),其中i 为虚数单位,则a b +=( ) A .1- B . 1 C . 2 D . 3【答案】B11.复数21i+等于( ) A .2i - B .2i C .1i - D .1i +【答案】C12.已知复数21,,i ai a R i i +=-∈其中是虚数单位,则a=( ) A .—2B .—iC .1D .2【答案】D 第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.,x y 互为共轭复数,且2()346x y xyi i +-=-则||||x y +=____________【答案】2214.i 是虚数单位,若复数1()1bi z b i+=∈+R 为纯虚数,则b= 。

(浙江专版)高考数学一轮复习 4.4 数系的扩充与复数的引入限时集训 理

(浙江专版)高考数学一轮复习 4.4 数系的扩充与复数的引入限时集训 理

(限时:50分钟 满分:106分)一、选择题(本大题共8个小题,每小题5分,共40分)1.(2012·陕西高考)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2012·浙江高考)已知i 是虚数单位,则3+i1-i =( )A .1-2iB .2-iC .2+iD .1+2i3.(2012·新课标全国卷)下面是关于复数z =2-1+i的四个命题:p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i, p 4:z 的虚部为-1.其中的真命题为( ) A .p 1,p 3 B .p 1,p 2 C .p 2,p 4D .p 3,p 44.已知f (x )=x 2,i 是虚数单位,则在复平面中复数f 1+i3+i对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2012·湖南高考)复数z =i(i +1)(i 为虚数单位)的共轭复数是( ) A .-1-i B .-1+i C .1-iD .1+i6.若(x -i)i =y +2i ,x ,y ∈R ,则复数x +y i =( ) A .-2+i B .2+i C .1-2i D .1+2i7.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i 1-i 1+2i =0的复数z 为( ) A.25-45i B .-25-45iC .-25+45iD.25+45i8.若复数z =a 2-1+(a +1)i(a ∈R)是纯虚数,则1z +a的虚部为( ) A .-25B .-25iC.25D.25i二、填空题(本大题共6个小题,每小题4分,共24分) 9.复数1+2i1+i(i 是虚数单位)的虚部是________.10.设复数z 满足z (2-3i)=6+4i(i 是虚数单位),则z =________.11.(2012·湖北高考)若3+b i1-i =a +b i(a ,b 为实数,i 为虚数单位),则a +b =________.12.i 为虚数单位,1i +1i 3+1i 5+1i7=________.13.设x 、y 为实数,且x 1-i +y 1-2i =51-3i,则x +y =________.14.已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,则实数x 的取值范围是________.三、解答题(本大题共3个小题,每小题14分,共42分) 15.计算:(1)-1+i2+ii3;(2)1+2i 2+31-i2+i;(3)1-i 1+i2+1+i 1-i2;(4)1-3i 3+i2.16.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i (1)与复数2-12i 相等;(2)与复数12+16i 互为共轭复数; (3)对应的点在x 轴上方.17.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z -1+z 2是实数,求实数a 的值.答 案[限时集训(二十六)]1.B 2.D 3.C 4.A 5.A 6.B 7.A 8.A 9.解析:1+2i 1+i =1+2i1-i 1+i 1-i =3+i2=32+12i , 故虚部是12.答案:1210.解析:∵z (2-3i)=6+4i , ∴z =6+4i 2-3i =6+4i 2+3i2-3i2+3i=2i.答案:2i11.解析:由3+b i1-i=3+b i 1+i 1-i1+i =3-b +3+b i 2=a +b i ,得a =3-b2,b=3+b2,解得b =3,a =0,所以a +b =3.答案:312.解析:1i +1i 3+1i 5+1i 7=-i +i -i +i =0.答案:013.解析:方程x 1-i +y 1-2i =51-3i可变形为12x (1+i)+15y (1+2i) =12(1+3i), 可建立方程组⎩⎪⎨⎪⎧12x +15y =12,12x +25y =32,解得⎩⎪⎨⎪⎧x =-1,y =5,从而x +y =4.答案:414.解析:∵x 为实数,∴x 2-6x +5和x -2都是实数.由题意,得⎩⎪⎨⎪⎧x 2-6x +5<0,x -2<0,解得⎩⎪⎨⎪⎧1<x <5,x <2,即1<x <2.故x 的取值范围是(1,2). 答案:(1,2) 15.解:(1)-1+i2+ii3=-3+i-i=-1-3i. (2)1+2i2+31-i2+i=-3+4i +3-3i2+i=i 2+i =i 2-i5=15+25i. (3)1-i 1+i2+1+i 1-i2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (4)1-3i 3+i 2=3+i-i3+i 2=-i 3+i=-i3-i4=-14-34i.16.解:(1)根据复数相等的充要条件得⎩⎪⎨⎪⎧ m 2+5m +6=2,m 2-2m -15=-12.解之得m =-1.(2)根据共轭复数的定义得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16.解之得m =1.(3)根据复数z 对应点在x 轴上方可得m 2-2m -15>0, 解之得m <-3或m >5.17.解:z -1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i=⎝ ⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13a +5a -1+(a 2+2a -15)i.∵z -1+z 2是实数, ∴a 2+2a -15=0. 解得a =-5或a =3. ∵分母a +5≠0,∴a ≠-5, 故a =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2012届高三数学二轮复习专题训练:数系的扩充与复数的引入
I 卷
一、选择题
1.设i 为虚数单位,复数z 1=1+i ,z 2=2i -1,则复数z 1·z 2在复平面上对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【答案】A
2.设i 是虚数单位,则31i i
-=( )
A .1
1
22i + B .1
1
22i - C .1
12i + D .1
12i -
【答案】A
3.若复数(,i 为虚数单位)是纯虚数,则实数a 的值为( )
A . -2
B . 4
C .—6
D . 6 【答案】C
【解析】因复数是分式且分母含有复数,需要分子分母同乘以1-2i ,再进行化简整理,由纯虚数的定义令实部为零求出a 的值。

4.已知复数1z i =-,则2
1z z =-( )
A . 2
B . -2
C . 2i
D . -2i
【答案】B
5. 若i 是虚数单位,且复数z=(a-i)·(1+2i)为实数,则实数a 等于 ( )
A .- 1
2 B .-2 C . 1
2 D .2
【答案】C
6.若复数11i
z i +=-,则2010z =( )
A .1
B .0
C .-1
D .1005(1)i +
【答案】C
7.已知复数z 满足(1+i)z =2,则z 等于( )
A .1+i
B .1-i
C .-1+i
D .-1-i
【答案】B
8.已知i 是虚数单位,则复数23
z i+2i 3i =+所对应的点落在 ( ) A .第一象限 B .第二象限 C .第三象限
D .第四象限 【答案】C
9.i 为虚数单位,则复数z =i -1i 的虚部是( )
A .2i
B .-2i
C .2
D .-2
【答案】C
10.复数2+i
1-2i 的共轭复数是( )
A .-35i
B .35i
C .-i
D .i
【答案】C
11.若复数(a +i)2对应点在y 轴负半轴上,则实数a 的值是(
) A .-1 B .1
C .- 2
D . 2
【答案】A
12.复数5i
1-2i =( )
A .2-i
B .1-2i
C .-2+i
D .-1+2i
【答案】C
II卷二、填空题
13.复数
1
1
i
z
i
-
=
+
的实部与虚部之和为.
【答案】-1
14.复数-i+1
i
=________.
【答案】-2i
15.已知
z
1+i
=2+i,则|z|=________.
【答案】10
16.若(a-2i)i=b-i,其中a,b∈R,i是虚数单位,则a2+b2等于________.【答案】5
三、解答题
17.已知复数z 1=i(1-i)3.
(1)设复数ω=z 1-i ,求||ω;
(2)当复数z 满足||z =1时,求||z -z 1的最大值.
【答案】(1)z 1=i(-2i)(1-i)=2-2i ,
∵ω=z 1-i =2+i ,∴||ω=5.
(2)设z =a +b i(a ,b ∈R),∵||z =1,∴a 2+b 2

1. 令a =cos θ,b =sin θ, 上式=-4cos θ+4sin θ+9=
9+42sin(θ-π4
), ∴||z -z 1max =9+42=22+1. 18.已知复数z =3x -1-x +(x 2-4x +3)i 且z >0,求实数x 的值.
【答案】∵z >0,
∴z ∈R ,
∴x 2-4x +3=0,解得x =1或x =3.
又z >0即3x -1-x >0,
∴当x =1时,上式成立.
当x =3时,上式不成立.
∴x =1.
19.设复数z =lg(m 2-2m -14)+(m 2+4m +3)i ,试求实数m 的值,使(1)z 是实数;(2)z 是纯虚数.
【答案】(1)∵z 为实数,∴m 2+4m +3=0,
∴m =-1或m =-3.
当m =-1时,
m 2-2m -14=1+2-14<0(不合题意,舍去),
当m =-3时,m 2-2m -14=1>0,
∴m =-3时,z 为实数.
(2)∵z 为纯虚数,
∴lg(m 2-2m -14)=0且m 2+4m +3≠0,
即⎩⎪⎨⎪⎧ m 2-2m -14=1m 2+4m +3≠0,解得m =5,
∴m =5时,z 为纯虚数.
20.实数m 取何值时,复平面内表示复数()()
222343i z m m m m =--+-+的点,
(1)位于第一、三象限?
(2)位于直线y x =上?
【答案】(1)22230430m m m m ⎧-->⎪⎨-+>⎪⎩或22230430.m m m m ⎧--<⎪⎨-+<⎪⎩,解得3m >或1m <-或13m <<. (2)依题意22
2343m m m m --=-+,解得3m =.
21.已知z ∈C ,且z =1+ti 1-ti
(t ∈R),求复数z 对应的点的轨迹. 【答案】设复数z =x +yi (x ,y ∈R),
∴x +yi =1+ti 1-ti =(1+ti )21+t 2=1-t 2+2ti 1+t 2. 据复数相等,可得⎩⎨⎧
x =1-t 21+t 2 ①y =2t 1+t 2
② ①2+②2得:x 2+y 2=1.③
由①②可知,x 、y 是③的解,但是否是曲线上的点呢?我们可通过求x 或y 的范围来考虑.
由①得:t 2=1-x 1+x
≥0, 即⎩⎪⎨⎪⎧ (x -1)(x +1)≤0x +1≠0,
∴-1<x ≤1.
而由③得:y =1-x 2≥0,
∴-1≤x ≤1.
综上所求轨迹应是单位圆,除去(-1,0)点.
22.已知虚数z 满足条件|z |=1,z 2+2z +1z
<0,求虚数z . 【答案】设z =x +y i(y ≠0,x ,y ∈R ),
∵|z |=1,∴x 2+y 2=1,①
则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i
=(x 2-y 2+3x )+y (2x +1)i. 又y ≠0,∴⎩⎪⎨⎪⎧ 2x +1=0, ②x 2-y 2+3x <0.③
由①②③得⎩⎪⎨⎪⎧
x =-12,
y =±32. ∴z =-12±32i. 23.已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,则a 的取值范围是多少? 【答案】由题意得z 1=-1+5i 1+i =2+3i , 于是|z 1-z 2|=|2+3i -a -2i|=2-a 2+1, |z 1|=13,所以2-a 2+1<13,
化简得a 2-4a -8<0,解得2-23<a <2+23.
24. 已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,求实数x 的取值范围.
【答案】∵x 为实数,∴x 2-6x +5和x -2都是实数.
由题意,得⎩⎪⎨⎪⎧ x 2-6x +5<0,x -2<0,解得⎩⎪⎨⎪⎧ 1<x <5,x <2,
即1<x <2.故x 的取值范围是(1,2).。

相关文档
最新文档