《圆锥的体积》
《圆锥的体积》教案精选6篇
《圆锥的体积》教案精选6篇小学六年级数学《圆锥的体积》教案篇一教学内容:教材第20页例2、练一练。
教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:教学重点:进-步掌握圆锥的体积计算方法。
教学难点:根据不同的条件计算圆锥的体积。
教学过程:一.铺垫孕伏:1.口算。
2.复习体积计算。
(1)提问:圆锥的体积怎样计算?(2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
3.引入新课。
今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。
二、自主探究:l.教学例2.出示例题,让学生读题。
提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。
2.组织练习。
(1)做练一练。
指名一人板演,其余学生做在练习本上,集体订正。
(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后学生做在练习本上。
集体订正。
(3)讨论练习三第7题。
底面周长相等,底面积就相等吗?三、课堂小结这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。
如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。
应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。
四、布置作业1.练习三第5题及数训。
2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。
请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。
3.思考练习三第8、9题。
小学六年级数学《圆锥的体积》教案篇二教学目标1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
苏教版六年级下册《圆锥的体积》课件
本节课的难点解析
圆锥体积公式的应用
如何根据已知条件(如底面半径或高)正确使用公式进行计算。
理解等底等高的圆柱与圆锥的关系
为什么圆锥的体积是等底等高的圆柱体积的1/3,通过图形和公式推导加深理解。
本节课的学习建议
多做练习题
通过大量的练习题,加深 对圆锥体积公式的理解和 应用。
与实际生活联系
尝试将圆锥体积的知识应 用于实际生活中,如计算 沙堆的体积、制作冰淇淋 等。
在建筑设计、工程制造等领域,利用圆锥和圆柱的体积关系可以优化材料使用和 降低成本。
04
圆锥的体积在实际生活中的应 用
圆锥的体积在建筑中的应用
建筑设计
圆锥体的形状在建筑设计中经常 被使用,如圆锥形的屋顶、拱门 等,可以增强建筑的稳定性和美 观性。
建筑材料
圆锥体的形状在建筑材料中也有 广泛应用,如圆锥形的砖块、混 凝土等,可以更好地适应建筑结 构的需求其中r是底面半径。
圆柱体体积的计算公式
V = πr²h,其中r是底面半径,h是高。
圆锥体积的推导过程
通过将圆锥切割成若干个小的圆柱体,再求 和得到圆锥的体积。
圆锥体积公式的推导结果
V = (1/3)πr²h。
圆锥的体积公式应用
计算圆锥的体积
解决实际问题
圆锥的体积在机械工程中的应用
机械零件
圆锥体的形状在机械零件中很常见, 如圆锥形的轴、轴承等,可以更好地 承受载荷和传递动力。
发动机设计
发动机中的活塞和气瓶通常采用圆锥 形状,以实现更好的密封和压力平衡 。
圆锥的体积在日常生活中的应用
食品包装
一些食品的包装容器采用圆锥形状,如酸奶、冰淇淋等,可以更好地节省空间 和方便携带。
小学六年级数学圆锥的体积教案(优秀5篇)
小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
苏教版数学六年级下册《圆锥的体积》说课稿及反思(共三篇)
《圆锥的体积》说课稿及反思(一)一、说教材圆锥的体积。
(教材第20~23页)圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。
圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。
二、说教学目标1.引导学生探索并初步掌握圆锥的体积计算方法和推导过程。
2.指导学生学会应用公式计算圆锥的体积并解决一些实际问题。
3.提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
4.培养学生的合作意识和探究意识。
5.使学生获得成功的体验,体验数学与生活的联系。
三、说教学重难点重点:进一步掌握圆锥体积的计算方法。
难点:根据不同的条件计算圆锥的体积。
四、说教学过程板块一、情境导入师:同学们,前面我们学习了圆柱的体积计算公式,是什么呢?生:圆柱的体积=底面积×高,用字母表示是V=Sh。
师:你想知道圆锥的体积怎样计算吗?猜一猜,圆锥的体积大小会与什么有关呢?学生可能会说:·圆锥的体积应该与圆锥的底面积有关。
·圆锥的体积可能跟圆锥的高有关。
……师:圆锥的体积计算公式究竟是什么呢?让我们一起来探究吧!【设计意图:简明扼要的复习,为新课教学做好充分的知识铺垫】板块二、探究新知1. 圆锥体积计算公式的推导。
师:下面的圆柱和圆锥的底面积相等,高相等。
(课件出示:教材第20页例5)你能估计出这个圆锥的体积是圆柱体积的几分之几吗?生:可能这个圆锥的体积是圆柱体积的1吧!3师:你有什么办法来验证自己的估计呢?生:我们可以准备好底面积相等,高相等的圆柱形容器和圆锥形容器;然后用圆锥形容器装满沙子,再倒入圆柱形容器里,看是否3次能装满。
如果3次能正好装满,就说明圆锥的体积是等底等高的圆柱体积的1。
3师:这个方法可以吗?生:可以。
师:那就按这种方法以小组为单位,进行实验吧!学生进行小组活动;教师巡视了解情况。
《圆锥的体积》教学设计(精选5篇)
《圆锥的体积》教学设计(精选5篇)《圆锥的体积》教学设计1一、教学内容:六年制小学数学教材第十二册第25-26页二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:◆培养学生的合作意识和探究意识;◆使学生获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积方法和推导过程。
教学过程:一、质疑引入1圆锥有什么特征?指名学生回答。
2说一说圆柱体积的计算公式。
(1)已知s、h求v(2)已知r、h求v(3)已知d、h求v3我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积二、新课(一)教学圆锥体积的计算公式1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式----推导圆柱体公式)2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式〈1〉学生独立操作让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。
先在圆锥里装满水,然后倒入圆柱。
看几次正好把圆柱装满?〈2〉教师教具演示巩固学生的操作效果,cai课件演示a屏幕上出示等底、等高b等底、不等高c等高、不等底实验报告单实验器材实验结果等底不等高的圆锥、圆柱等高不等底的圆锥、圆柱等底等高的圆锥、圆柱〈3〉引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)用字母表示圆锥的体积公式.v锥=1/3sh做一做:填空:等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(),圆锥的体积是圆柱的体积的()已知圆锥的体积是9立方分米,圆柱的体积是();如果圆柱的体积是12立方分米,那么圆锥的体积是()。
《圆锥的体积》数学教案(优秀9篇)
《圆锥的体积》数学教案(优秀9篇)【教学目标:】1、使学生探索并初步掌握圆锥体积的计算方法和推导过程;2、使学生会应用公式计算圆锥的体积并解决一些实际问题;3、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念;【教学重点:】使学生初步掌握圆锥体积的计算方法并解决一些实际问题。
【教学难点:】探索圆锥体积的计算方法和推导过程。
【教具准备:】1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱,沙、米,实验报告单;【教学过程:】一、创设情境,发现问题1、故事引入:爱迪生是一位伟大的发明家,他的一生有1000多项发明,当人们都说他是天才的时候,他却谦虚的说:天才=99%的汗水和1%的灵感。
孩子们,请记住这句话吧,你的未来一定会很出色的哦。
今天这节课我们就从爱迪生的一个小故事开始吧,有一天爱迪生让他的助手测量一个灯泡的体积,由于灯泡的形状很不规则,助手苦苦思考,还是没有答案,爱迪生用了一个非常巧妙的办法他将灯泡里装满水,然后将水倒入量筒中(教师拿出圆柱体量筒作演示),就得出了灯泡的体积。
你能说说爱迪生这样做的理由吗?师:因为圆柱体的体积等于底面积高。
(板书)2、提出问题,明确方向。
爱迪生帮他的助手解决了这个问题,现在请同学们帮打谷场上的农民伯伯们一个忙(用多媒体显示一堆圆锥体的小麦堆)请大家算算这堆小麦的体积。
看看谁是未来的爱迪生生:利用爱迪生的方法,利用一个圆柱体或长方体大桶来装这堆谷子,就能求出这堆谷子的体积了。
师:长方体的体积公式是什么呢?生:长宽高师:非常棒,其实呀不管是爱迪生,还是未来的爱迪生都是运用转化这一重要的数学思想来解决新的问题,今天我们同样能不能用转化的数学思想找到一种简单而又科学合理的方法计算出圆锥的体积的计算公式呢?板书:圆锥体积二、讨论问题,提出方案1、现在请同桌互相讨论一下,可以采取什么办法找到手中圆锥的体积。
比一比,哪个学习小组的方法多,方法好。
各小组汇报:把圆锥投入装了水的长方体、正方体或圆柱体的容器中,求出上升部分水的体积。
《圆锥的体积》教学设计【优秀4篇】
《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点:通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。
猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。
也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。
(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。
圆锥的体积知识点总结
圆锥的体积知识点总结圆锥是一种几何图形,它由一个圆形底面和连接底面的直线构成。
在数学中,圆锥是一种常见的立体图形,它有许多重要的性质和计算公式。
在本文中,我们将总结圆锥的体积知识点,包括定义、计算公式和相关例题。
一、圆锥的定义圆锥是由一个圆形底面和从圆心到任意一点的直线(称为母线)构成的立体图形。
圆锥的形状类似于棒冰或者椭圆锥形的山峰,它在几何学和工程学中都有广泛的应用。
二、圆锥的体积计算公式圆锥的体积是指圆锥内部所能容纳的空间大小,它的计算公式是:V = 1/3 * πr^2h其中V表示圆锥的体积,π表示圆周率(约为3.14159),r表示圆锥底面的半径,h表示圆锥的高度。
这个公式的推导可以通过积分和微积分的方法,也可以通过立体几何的方法进行推导。
不管是哪种方法,都可以得到这个公式。
三、圆锥的体积计算步骤圆锥的体积计算步骤可以分为以下几个步骤:1. 确定圆锥的底面半径(r)和高度(h);2. 根据圆锥的体积计算公式V = 1/3 * πr^2h,计算出圆锥的体积;3. 如果半径和高度的单位不一致,需要注意进行单位换算;4. 最后给出计算结果,并确定单位。
四、圆锥体积计算的相关例题1. 例题一:计算一个底面半径为5cm,高度为10cm的圆锥的体积。
解:根据圆锥的体积计算公式V = 1/3 * πr^2h,将半径r = 5cm和高度h = 10cm代入公式中,得到V = 1/3 * π * 5^2 * 10 = 1/3 * 3.14159 * 25 * 10 = 261.799cm³。
所以这个圆锥的体积为261.799cm³。
2. 例题二:一个饼干筒的底面直径为6cm,高度为8cm,求这个饼干筒的体积。
解:首先计算底面半径r = 6cm,然后根据圆锥的体积计算公式V = 1/3 * πr^2h,将半径r = 6cm和高度h = 8cm代入公式中,得到V = 1/3 * 3.14159 * 3^2 * 8 = 150.796cm³。
六年级数学下册《圆锥的体积》课件
圆锥的体积公式推导
01
将圆锥分割成若干个小的圆柱体 ,每个圆柱体的体积为πr²h/3, 因此整个圆锥的体积为(1/3)πr²h 。
02
通过实验的方法,将圆锥装满水 或其他液体,然后将液体倒入量 杯或其他容器中,读出液体的体 积即为圆锥的体积。
圆锥的体积公式应用
计算圆锥的容积
通过测量圆锥的高度和底面直径或半径,利用公式计算出圆锥的 容积。
制造望远镜。
圆锥的体积练习题
04
基础练习题
01
02
03
04
圆锥的体积公式是什么 ?
一个圆锥的底面积是15 平方厘米,高是8厘米, 它的体积是多少?
一个圆锥的体积是18立 方厘米,它的底面积是 多少?
一个圆锥的底面半径是3 厘米,高是5厘米,它的 体积是多少?
进阶练习题
01
02
03
04
一个圆锥的底面直径是6厘米 ,高是4厘米,它的体积是多
圆锥的体积在建筑中的应用
计算土方量
在建筑工地,挖土和填土是常见 的作业。圆锥的体积公式可以帮 助我们快速计算土方量,从而优
化施工计划。
设计桥梁
桥梁的桥墩通常设计成圆锥形,以 承受压力。通过计算圆锥的体积, 可以确定桥墩的大小和所需的材料 量。
设计排水系统
排水管道通常设计成圆柱形或圆锥 形。通过计算圆锥的体积,可以确 定管道的大小和所需的材料量。
六年级数学下册《圆锥 的体积》ppt课件
目录
• 圆锥的体积公式 • 圆锥的体积与圆柱的关系 • 圆锥的体积的实际应用 • 圆锥的体积练习题 • 圆锥的体积总结与回顾
圆锥的体积公式
01
圆锥的体积定义
圆锥的体积
指圆锥所占空间的大小。
《圆锥的体积》教案6篇
《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。
六年级数学下册圆锥的体积教案(优秀5篇)
六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。
][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。
《圆锥的体积》教案12篇
《圆锥的体积》教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆锥的体积》教案12篇《圆锥的体积》教案1教学内容:练习四第4~12题和第23页思考题教学目标:1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)
人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。
”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。
五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。
让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。
用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:求下面各圆锥的体积,只列算式。
(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。
第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
《圆锥的体积》说课稿15篇
《圆锥的体积》说课稿15篇《圆锥的体积》说课稿1一、教材分析教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。
也就是等底等高的圆锥体积是圆柱体积的三分之一。
教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。
二、学生基本情况六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。
三、教学方法由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。
本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。
四、教学过程本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。
紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。
然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。
例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。
学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。
圆锥的体积教学设计一等奖(优秀5篇)
圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。
本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。
圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。
圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。
通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。
鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
年级下册数学圆锥的体积
年级下册数学圆锥的体积1.引言1.1 介绍圆锥的体积计算的重要性和实际应用圆锥的体积计算在数学中具有重要的意义和实际应用价值。
通过计算圆锥的体积,可以帮助我们更好地理解和应用在生活中经常出现的圆锥形物体,比如冰淇淋蛋筒、圆锥形灯罩等。
在实际应用中,计算圆锥体积可以帮助我们更好地设计和制作产品,如建筑中的锥形塔尖、工业制造中的圆锥形容器等。
圆锥体积的计算方法也可以应用于地质勘探、天文测量等领域,具有广泛的实际意义。
通过学习圆锥的体积计算,可以培养学生的数学运用能力和实际解决问题的能力,同时也能够锻炼学生的逻辑思维和数学推导能力。
在数学学习中,掌握圆锥的体积计算也是学生逐渐提升数学水平,掌握数学知识的重要基础,为进一步学习和应用数学打下坚实的基础。
本文旨在通过引导学生了解圆锥的体积计算的重要性和实际应用,激发学生学习数学的兴趣,同时也为学生提供了更多的数学实际应用案例,帮助学生更好地学习和掌握圆锥的体积计算方法。
1.2 强调数学学习的重要性和意义数学是一门极具挑战和深远意义的学科,它在我们日常生活中扮演着重要的角色。
数学学习不仅可以培养我们的逻辑思维能力和解决问题的能力,更可以为我们未来的职业发展打下坚实的基础。
数学的重要性不言而喻,它广泛地应用于各个领域,包括科学、工程、金融等等。
数学学习对于学生的意义重大,它不仅可以帮助他们在学业上取得更好的成绩,更可以培养他们的耐心和毅力,让他们在解决问题的过程中体验到成就感。
数学学习也能够培养学生的创造力和想象力,让他们在未来的发展中有更多的选择。
特别是对于圆锥的体积计算这样的数学问题,通过学习和实践,可以锻炼学生的数学思维和解决实际问题的能力。
这对于他们未来面对各种挑战和问题时都会带来很大的帮助。
我们要强调数学学习的重要性和意义,鼓励学生们多加练习和思考,提高数学运用能力,为未来的成就打下牢固的基础。
数学学习不仅关乎个人的学业成就,更是对未来人生发展的投资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 学 重 难 点 教 具 准 备
教学重点:圆锥的体积计算公式。 教学难点:圆锥的体积计算公式的推导过程。
1、准备若干同样的圆柱形容器,若干与圆柱等底等高的圆锥;若干水槽, 若干小杯子,沙子和水;铅锤 1 个;量筒一个。 2、多媒体课件设计。 教 学 过 程
一、复习导入 师:同学们,我们已经学习过了哪些立体图形的体积计算? 生:我们学过了长方体、正方体、圆柱的体积计算。 教师课件出示:
师:那现在谁来回忆一下长方体的体积计算公式呢?
生 1:长方体的体积=长×宽×高
来说? 生 2:正方体的体积=棱长×棱长×棱长 师:圆柱体呢? 生 3:圆柱体的体积=底面积×高 二、教学圆锥的体积公式的推导过程 (1) 引出问题。 师:很好。老师这里有一个铅锤,它是什么形状的? 生:圆锥。 师:你有办法知道这个铅锤的体积吗? (学生讨论,然后汇报交流) 。 生:我用排水法,把它放进盛水的量杯里,看水面升高多少,就是铅锤的体积。 (同时上台演示给大家看) 。 师:你们认为这样的方法好吗? 生:好。 师:如果有很多这样大小不一样的铅锤呢? 生:如果每个圆锥都这样测,太麻烦了! 师:那你有什么好的想法吗? 生: 我们以前学过的体积都有计算公式, 我想要是圆锥也有一个计算公式就好了。 (2) 联想、猜测。 师: 圆锥的体积可能和什么图形的体积有关,有什么关系?(引导学生将圆锥的 体积与圆柱的体积联系起来。 ) 生:我认为圆锥的体积可能与圆柱的体积有关。 师:你是怎样想的呢? 生:因为圆柱的底面是圆,圆锥的底面也是圆,所以我认为它们一定有关系。 (掌 声鼓励) 同时课件出示图片 用字母表示是: v=sh 用字母表示是: v=a 3
(3) 实验探究。 师:下面通过试验,探究一下圆锥和圆柱体积之间的关系。 1、 各组准备好等底等高的圆柱和圆锥形容器。
出示课件:
让学生检查一下,是不是等底等高。(同时板书:等底等高) 同时教师也拿两个等底等高的圆柱和圆锥。把圆锥放进圆锥里面,让学生观察后 猜想圆锥的体积与等底等高的圆柱的体积有什么关系? 生 1:圆柱的体积可能是圆锥的 2 倍 生 2:圆锥的体积可能是圆柱的三分之一 生 3: …… 2、 用倒水或倒沙子的方法合作探究。
1 师:为什么要乘 ?(加深对圆锥体积公式的理解,防止出现错误。 ) 3
最后教师用课件演示一次解答过程并点评。
四、巩固练习 (一)师:接下来,打开书第 28 页,第 7 题。 (课件出示)
教学反思:
师:小组合作,试验开始。 教师指导学生完成试验。 汇报交流。 师:通过试验,你发现圆柱的体积和圆锥的体积之间有什么关系?
生 1:我们组用圆锥盛满沙子,往与它等底等高的圆柱里倒,正好倒了三次,就 装满了。这说明圆柱的体积是与它等底等高的圆锥的 3 倍。 生 2:我们组用圆柱盛满水,往与它等底等高的圆锥里倒了三次才倒完,这说明 圆柱的体积是与它等底等高的圆锥的 3 倍。 生 3:我们组用圆锥盛满水,往与它等底等高的圆柱里倒,正好倒了三次,就装
3
师:告诉我们哪些已知条件? 生:圆锥形沙堆的底面直径是 4m,高 1.2m。 师:要求圆锥形沙堆的体积,必须先求什么? 生 1:必须先用圆的面积公式 S=π Υ
2
求出底面积。
生 2:要求底面积又必须先用“直径÷2”求出半径。 师:同学们,会求了吗?,要注意得数要保留两位小数。 开始做吧!谁愿意上来板演?(抽一人板演) 然后汇报交流。
1 圆锥的体积是与它等底等高的圆柱的体积的 。 3
教师同时板书:
V
圆锥
1 3 V 圆柱 1 = Sh 3
=
师:刚才同学们通过自主的合作探究,得出了圆锥的计算公式,这就是我们今天 要学习的内容——圆锥的体积。 (教师点题,同时板书:圆锥的体积) 师:学习了这个内容,让我们去解决问题
三、教学圆锥的体积计算。 教师创设情景课件出示
费县实验小学教案
时间 2016.3 学科 焦方红 数学 年级 六年级 课型 焦方红 新授 备课教师 课题 1、 教 学 目 标 使用教师
人教版六年级数学下册第三单元《圆锥的体积》 通过动手操作实验,推导出圆锥的体积的计算方法,并能运用公式
计算圆锥的体积。 2、 3、 通过学生动手、动脑,培养学生的思维能力和空间想象能力。 培养学生个人的自主学习能力和小组的合作学习能力。
1 满了。这说明圆锥的体积等于与它等底等高的圆柱的体积的 。 3
…… 师:刚才几个小组汇报得很好。为了让大家看得更清楚,现在老师用带有红色的 水给大家现场演示一下: (4) 导出公式。 师:通过试验,你发现等底等高的圆锥、圆柱的体积有什么关系?你能用字母表 示出它们的关系吗? 生:圆柱的体积是与它等底等高的圆锥的体积的 3 倍,