第5章波动学基础

合集下载

第1章-质点运动学

第1章-质点运动学
为了描述速 度随时间
z A.
(t )
.B
的变化情况,定义:质点
的平均加速度为
(t t )
O
a t
y
24
x
质点的(瞬时)加速度定义为:
d d r a lim 2 t 0 t dt dt
2

即:质点在某时刻或某位置的(瞬时)加速度等于
速度矢量 对时间的一阶导数,或等于矢径 r 对时
第一篇 力 学
1
内容提要
第一章 运动学 第二章 质点动力学(牛顿运动定律) 第三章 刚体力学
第四章 振动学基础
第五章 第六章 波动学基础
狭义相对论
2
第1章 质点运动学
§1-1 参考系、坐标系和理想模型
运动的可认知性——绝对运动与相对静止的辩证统一
案例讨论:关于物质运动属性的两种哲学论断 赫拉克利特:“人不能两次踏进同一条河流”
y
y
位置矢量 r 的大小(即质点P到原点o的距离)为
2 2 2 r r x y z
方向余弦: cos=x/r, cos=y/r, cos=z/r 式中 , , 取小于180°的值。
z

r

P(x,y,z)
z
C
cos2 + cos2 + cos2 =1
x
A
运动方程
—— 轨道方程。
11
消去时间t得:x2+y2=62
§1-3 位移 速 度
一.位移和路程
如图所示,质点沿曲线C运动。时刻t在A点,时 刻t+t在B点。 从起点A到终点B的有向线 段AB=r,称为质点在时间t内 的位移。 而A到B的路径长度S为 路程。

大学物理练习册习题及答案6--波动学基础

大学物理练习册习题及答案6--波动学基础

⼤学物理练习册习题及答案6--波动学基础习题及参考答案第五章波动学基础参考答案思考题5-1把⼀根⼗分长的绳⼦拉成⽔平,⽤⼿握其⼀端,维持拉⼒恒定,使绳端在垂直于绳⼦的⽅向上作简谐振动,则(A )振动频率越⾼,波长越长;(B )振动频率越低,波长越长;(C )振动频率越⾼,波速越⼤;(D )振动频率越低,波速越⼤。

5-2在下⾯⼏种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B )波源振动的速度与波速相同;(C )在波传播⽅向上的任⼆质点振动位相总是⽐波源的位相滞后;(D )在波传播⽅向上的任⼀质点的振动位相总是⽐波源的位相超前 5-3⼀平⾯简谐波沿ox 正⽅向传播,波动⽅程为010cos 2242t x y ππ??=-+ ?. (SI)该波在t =0.5s 时刻的波形图是()5-4图⽰为⼀沿x 轴正向传播的平⾯简谐波在t =0时刻的波形,若振动以余弦函数表⽰,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5⼀平⾯简谐波沿x 轴负⽅向传播。

已知x=b 处质点的振动⽅程为[]0cos y A t ωφ=+,波速为u ,则振动⽅程为()(A)()0cos y A t b x ωφ??=+++??(B)(){}0cos y A t b x ωφ??=-++??(C)(){}0cos y A t x b ωφ??=+-+?? (D)(){}0cos y A t b x u ωφ??=+-+?? 5-6⼀平⾯简谐波,波速u =5m?s -1,t =3s 时刻的波形曲线如图所⽰,则0x =处的振动⽅程为()(A )211210cos 22y t ππ-??=?- (SI) (B )()2210cos y t ππ-=?+ (SI) (C )211210cos 22y t ππ-??=?+ (SI) (D )23210cos 2y t ππ-?=-(SI) 5-7⼀平⾯简谐波沿x 轴正⽅向传播,t =0的波形曲线如图所⽰,则P 处质点的振动在t =0时刻的旋转⽮量图是()5-8当⼀平⾯简谐机械波在弹性媒质中传播时,下述各结论⼀哪个是正确的?(A )媒质质元的振动动能增⼤时,其弹性势能减少,总机械能守恒;(B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任⼀时刻都相同,但两者的数值不相等;(D )媒质质元在其平衡位置处弹性势能最⼤。

《大学物理 I》课程教学大纲

《大学物理 I》课程教学大纲

《大学物理I》课程教学大纲英文名称:University Physics I适用专业:理工科非物理类本科各专业学时:112 学分:6课程类别:学科基础课程课程性质:必修课一、课程的性质和目的大学物理课是普通大学的一门科学课程,物理学是探讨人类直接接触的世界,时间、空间,以及时空中的物质结构和物质运动规律的科学,物理学着重研究世界中最普遍、最基本的运动形式及规律。

因此,它是自然科学和工程技术的基础,也是人类思想方法、世界观建立的基础。

它的教学性质和目的是:使学生对物理学的基本概念,基本原理和基本规律有较全面、系统的认识。

了解各种运动形式之间的联系,以及物理学的近现代发展和成就。

使学生在试验能力,运算能力和抽象思维能力,对世界的认识能力等方面受到初步训练。

熟悉研究物理学的基本思想和基本方法;培养学生分析问题和解决问题的能力。

使学生在学习物理学知识的同时,逐步建立正确的思想方法和研究方法,充分发挥本课程在培养学生辩证唯物主义世界观方面的作用,进行科学素质教育。

二、课程教学内容第零章绪论基本内容与要求1了解物质与运动的基本概念。

2了解物理学研究对象与研究方法。

3了解物理学与哲学的关系以及物理学与科学技术的关系。

第一章质点运动学基本内容与要求1掌握参照系和坐标系的概念。

2掌握质点的概念。

3掌握位置矢量、速度、加速度的概念。

4掌握运动迭加原理、抛体运动、圆周运动。

5理解切向与法向加速度。

6掌握圆周运动角量描述。

教学重点1参照系和坐标系的概念。

2位置矢量、速度、加速度的概念教学难点1质点运动描述的方法。

2切向与法向加速度。

第二章质点动力学基本内容与要求1掌握牛顿运动定律。

2掌握单位制和量纲。

3掌握惯性系、力学相对性原理。

4掌握动量、冲量、动量定理、动量守恒定律。

5掌握动能、动能定理、保守力与耗散力、势能、弹性势能、万有引力势能、机械能守恒定律。

教学重点1牛顿运动定律。

2动量、冲量、动量定理、动量守恒定律。

3掌握动能、动能定理、保守力与耗散力、势能、、机械能守恒定律。

高中物理 第5章 波与粒子 5.1 光电效应 5.2 康普顿效应教案

高中物理 第5章 波与粒子 5.1 光电效应 5.2 康普顿效应教案

第1节光电效应第2节康普顿效应●课标要求1.知道什么是光电效应,通过实验了解光电效应现象,知道光电效应的瞬时性和极限频率的概念及其与电磁理论的矛盾.2.理解爱因斯坦的光子说及光电方程,并用来解释光电效应现象.3.了解康普顿效应的实验现象,了解光子理论对康普顿效应的解释.4.认识光的波粒二象性,了解玻恩的概率波对光的波粒二象性的解释,了解光在哪些情况下会表现出粒子性或波动性.5.了解人类探索光本质所经历的漫长而曲折的历程,认识科学的探索,是一个不断深入的、永无止境的过程.●教学地位本节教学应注意讲授和讨论相结合,宜从经典物理的局限性开始,引出普朗克量子假说,为后面学习爱因斯坦光子理论做好铺垫,使得教学有清晰的思路和逻辑脉络.做好演示实验是教好光电效应的前提,为改善实验的演示效果,也可以先使验电器带上负电,使指针张开某一角度,光照锌板后,指针张角变小.对光电效应实验结果进行理论解释是教学的难点,教学时可鼓励学生各抒己见,在争论中引出矛盾,促进学生积极思考与发现.通过对康普顿效应的解释进一步认识光的波粒二象性,进而认识光的本质,教学中可适当介绍有关人类对光本质的认识过程,使学生体会到科学探索的道路是曲折的、永无止境的,让学生了解光在什么情况下表现出什么不同的特性,可以举例子加以说明或让学生自己尝试解释一些实例,增进学生对光的波粒二象性和光是一种概率波的理解.●新课导入建议问题导入用弧光灯照射连在验电器上的锌板,验电器的金属箔会张开一个角度.你想知道上述现象的原因吗?图教5-1-1●教学流程设计课前预习安排:1.看教材2.填写【课前自主导学】同学之间可进行讨论⇒步骤1:导入新课,本节教学地位分析⇒步骤2:老师提问,检查预习效果可多提问几个学生⇒错误!⇓步骤7:完成“探究4”讲解利用数学知识处理物理问题的技巧⇒步骤6:完成“探究3”重在讲解规律方法技巧⇐步骤5:师生互动完成“探究2”方式同完成探究1相同⇐步骤4:让学生完成【迁移应用】,检查完成情况并点评⇓步骤8:指导学生完成【当堂双基达标】,验证学习情况⇒错误!课标解读重点难点1.知道什么是光电效应及其实验现象.2.理解光子说和爱因斯坦光电效应方程,能够利用它解释光电效应实验现象.3.知道什么是康普顿效应及X射线实验原理.4.理解光的波粒二象性,了解光是一种概率波. 1.光电效应的基本规律、光子说的基本思想.(重点)2.光的波粒二象性及光电效应实验.(重点)3.对光电效应的理解.(难点)4.光是一种概率波的建立过程.(难点)光电效应(1)光电效应现象:在物理学中,在光的照射下电子从物体表面逸出的现象.(2)光电效应的实验规律①发生的条件:每一种金属对应一种光的最小频率,又称极限频率.只有当光的频率大于或等于这个最小频率时,才会产生光电效应.当光的频率小于这个最小频率时,即使增加光的强度或照射时间,也不能产生光电效应.②与光的强度的关系:产生光电效应时,光的强度越大,单位时间内逸出的电子数越多.③发生光电效应所需的时间:从光照射到金属表面至产生光电效应的时间间隔很短,通常可在10-9_s内发生光电效应.(3)光子说:看似连续的光实际上是由个数有限、分立于空间各点的光子组成的,每一个光子的能量为hν.光在发射和吸收时能量是一份一份的.(4)光电效应方程①表达式:hν=W+12mv2.②物理意义:金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于从金属表面逸出时做功,剩下的表现为电子逸出后的最大初动能.(5)光电效应的应用①光电开关.②光电成像.③光电池.2.思考判断(1)光电效应实验中光照时间越长光电流越大.(×)(2)光电效应实验中入射光足够强就可以有光电流.(×)(3)光电子的最大初动能与入射光的强度无关.(√)3.探究交流你对光电效应中的“光”是怎样认识的?【提示】这里的光,可以是可见光,也可以是紫外线、X光等.康普顿效应及光的波粒二象性(1)康普顿效应X射线在石墨上散射时,发现部分散射光的波长变长,波长改变的多少与散射角有关.这种现象称为康普顿效应.(2)康普顿的理论当光子与电子相互作用时,既遵守能量守恒定律.又遵守动量守恒定律,在碰撞中光子将能量hν的一部分传递给了电子,光子能量减少,波长变长.(3)康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.(4)光电效应与康普顿效应当波长较短的X射线或γ射线入射时,产生康普顿效应;当波长较长的可见光或紫外光入射时,主要产生光电效应.(5)光的波粒二象性①光的本性:光子既有粒子的特征,又有波的特征,即光具有波粒二象性.②光是一种电磁波.③当光的波长较长时,光在传播过程中波动性明显;当光的波长较短时,光子与粒子相互作用时,粒子性明显.2.思考判断(1)康普顿效应证实了光子不仅具有能量,也具有动量.(√)(2)康普顿效应进一步说明光具有粒子性.(√)(3)光的波动性和粒子性是统一的,光具有波粒二象性.(√)3.探究交流太阳光从小孔射入室内时,我们从侧面可以看到这束光;白天的天空各处都是亮的;宇航员在太空中,尽管太阳光线耀眼刺目,其他方向的天空却是黑的,为什么?【提示】地球上存在着大气,太阳光经大气中的微粒散射后传向各个方向;而在太空的真空环境下,光不再散射,只向前传播.光电效应现象及其理解1.光子和光电子是一回事吗?2.只要光照足够强就能有光电子逸出吗?3.光电效应现象中能量守恒吗?1.光电效应中的三组概念的对比2.对光电效应方程hν=W +2mv 2的理解 (1)公式中的12mv 2是光电子的最大初动能,对某个光电子而言,其离开金属时剩余动能大小可以是0~12mv 2范围内的任何数值. (2)光电效应方程实质上是能量守恒方程.能量为E =hν的光子被电子所吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.如果克服吸引力做功最少为W ,则电子离开金属表面时动能最大为12mv 2,根据能量守恒定律可知: hν=W +12mv 2. (3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即E k=hν-W >0,亦即hν>W ,ν>W h =νc ,而νc =W h恰好是金属的极限频率.(4)E km -v 曲线.如图5-1-1所示是光电子最大初动能E km 随入射光频率ν的变化曲线.这里,横轴上的截距是极限频率;纵轴上的截距是逸出功的负值;斜率为普朗克常量.图5-1-1(2013·福州一中检测)入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么( )A .从光照射金属表面到发射出光电子之间的时间间隔将明显增加B .逸出的光电子的最大初动能将减小C .单位时间内从金属表面逸出的光电子数目将减少D .有可能不发生光电效应【解析】 根据光电效应的实验规律知,从光照射金属表面到光电子发射的时间间隔极短,这与光的强度无关,故A 错误;实验规律还指出,逸出光电子的最大初动能与入射光频率有关,光电流与入射光强度成正比,由此可知,B 、D 错误,C 正确.【答案】 C1.极限频率为ν0的光射照金属对应逸出电子的最大初动能为零,逸出功W =hν0.2.逸出功的大小由金属本身决定,与其他因素无关.3.光电效应的实质是光现象转化为电现象.1.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能E k 随入射频率ν变化的E k —ν图象,已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个E k -ν坐标系中,如图所示中用实线表示钨、虚线表示锌,则正确反映这一过程的是( )【解析】 依据光电效应方程E k =hν-W 可知,E k -ν图线的斜率代表普朗克常量h ,因此钨和锌的E k -ν图线应该平行.图线的横截距代表极限频率ν0,而ν0=W h,因此钨的ν0小些.综上所述,A 图正确.【答案】 A 对康普顿效应的理解1.X 射线照在石墨上会有什么现象?2.光子和电子碰撞后,波长会改变吗?3.经典理论能解释康普顿现象吗?1.实验现象X射线管发出波长为λ0的X射线,通过小孔投射到散射物石墨上.X射线在石墨上被散射,部分散射光的波长变长,波长改变的多少与散射角有关.2.康普顿效应与经典物理理论的矛盾按照经典物理理论,入射光引起物质内部带电粒子的受迫振动,振动着的带电粒子从入射光吸收能量,并向四周辐射,这就是散射光.散射光的频率应该等于粒子受迫振动的频率(即入射光的频率).因此散射光的波长与入射光的波长应该相同,不应该出现波长变长的散射光.另外,经典物理理论无法解释波长改变与散射角的关系.3.光子说对康普顿效应的解释假定X射线光子与电子发生弹性碰撞.(1)光子和电子相碰撞时,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长.(2)因为碰撞中交换的能量与碰撞的角度有关,所以波长改变与散射角有关.康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.光电效应应用于电子吸收光子的问题,而康普顿效应讨论光子与电子碰撞且没有被电子吸收的问题.康普顿效应证实了光子不仅具有能量,也具有动量.入射光和电子的作用可以看成弹性碰撞,则当光子与电子碰撞时,光子的一些能量转移给了电子,如图5-1-2给出了光子与静止电子碰撞后,电子的运动方向,则碰撞过程中动量________(选填“守恒”或“不守恒”),能量________(选填“守恒”或“不守恒”),碰后光子可能沿________(选填“1”、“2”或“3”)方向运动,并且波长________(选填“不变”、“变小”或“变长”).碰前碰后图5-1-2【审题指导】(1)看成弹性碰撞把握动量、能量守恒.(2)利用光的频率与波长的关系ν=c/λ计算.【解析】光子与电子碰撞过程满足动量守恒和能量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前的方向一致,由矢量合成知识可知碰撞后光子的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由E=hν知,频率变小,再根据c=λν知,波长变长.【答案】守恒守恒 1 变长2.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( )A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′【解析】能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前光子的能量E=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量E′=hν′=h cλ′,由E>E′,可知λ<λ′,选项C正确.【答案】C对光的波粒二象性的理解1.爱因斯坦光子说中的“粒子”和牛顿微粒说中的“粒子”一样吗?2.哪些实验能说明光具有波动性?3.哪些实验能证明光具有粒子性?1.光的粒子性的含义粒子的含义是“不连续”、“一份一份”的,光的粒子即光子,不同于宏观概念的粒子,但也具有动量和能量.(1)当光同物质发生作用时,表现出粒子的性质.(2)少量或个别光子易显示出光的粒子性.(3)频率高,波长短的光,粒子性特征显著.2.光的波动性的含义光的波动性是光子本身的一种属性,它不同于宏观的波,它是一种概率波,即光子在空间各点出现的可能性(概率)大小可用波动规律描述.(1)足够能量的光(大量光子)在传播时,表现出波的性质.(2)频率低,波长长的光,波动性特征显著.3.光的波粒二象性(1)光的粒子性并不否定光的波动性,光既具有波动性,又具有粒子性,波动性、粒子性都是光的本质属性,只是在不同条件下的表现不同.(2)只有从波粒二象性的角度,才能统一说明光的各种行为.(2013·西安一中检测)关于光的波粒二象性,下列说法中正确的是( )A.光的频率越高,衍射现象越容易看到B.光的频率越高,粒子性越显著C.大量光子产生的效果往往显示波动性D.光的波粒二象性否定了光的电磁说【审题指导】(1)波粒二象性是对光本质的描述.(2)频率高低影响光的粒子性和波动性的表现.(3)大量光子波动性显著,少量光子粒子性显著.【解析】光具有波粒二象性,波粒二象性并不否定光的电磁说,只是说某些情况下粒子性明显,某些情况下波动性明显,故D 错误.光的频率越高,波长越短,粒子性越明显,波动性越不明显,越不易看到其衍射现象,故B对、A错误.大量光子的行为表现出波动性,个别光子的行为表现出粒子性,故C对.【答案】BC1.光的干涉和衍射及偏振说明光具有波动性,而光电效应和康普顿效应是光具有粒子性的例证.2.波动性和粒子性都是光的本质属性,只是在不同条件下的表现不同.当光与其他物质发生作用时,表现出粒子的性质;少量或个别光子易显示出光的粒子性;频率高波长短的光,粒子性显著.大量光子在传播时表现为波动性;频率低波长长的光,波动性显著.3.对光的认识,下列说法正确的是( )A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的C.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了D.光的波粒二象性应理解为:在某些场合下光的波动性表现明显,在某些场合下,光的粒子性表现明显【解析】本题考查光的波粒二象性.光是一种概率波,少量光子的行为易显示出粒子性,而大量光子的行为往往显示出波动性,A选项正确;光的波动性不是由光子之间的相互作用引起的,而是光的一种属性,这已被弱光照射双缝后在胶片上的感光实验所证实,B选项正确;粒子性和波动性是光同时具备的两种属性,C 选项错误,D选项正确.【答案】ABD综合解题方略——光电效应规律的应用(2011·福建高考)爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖,某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图5-1-3所示,其中ν0为极限频率.从图中可以确定的是________.(填选项前的字母)A.逸出功与ν有关B.E km与入射光强度成正比C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关【规范解答】每种金属的逸出功是由自身因素决定,A错误;由光电效应方程知E km=hν-W0,E km与ν有关,而与光强无关;当ν<ν0时金属不可能发生光电效应;图中直线与h有关,由此知B、C错误,D正确.【答案】D在理解光电效应方程的基础上,把其数学关系式与数学函数图像结合起来,经分析、推导得出图像的斜率及在图像横、纵坐标轴上的截距所对应的物理量,从而理解它们的物理意义,有效提高自身应用数学解决物理问题的能力.【备课资源】(教师用书独具)X射线的发现1895年11月8日晚,伦琴陷入了深深的沉思.他以前做过一次放电实验,为了确保实验的精确性,他事先用锡纸和硬纸板把各种实验器材都包裹得严严实实,并且用一个没有安装铝窗的阴极管让阴极射线透出.可是现在,他却惊奇地发现,对着阴极射线发射的一块涂有氰亚铂酸钡的屏幕(这个屏幕用于另外一个实验)发出了光.而放电管旁边这叠原本严密封闭的底片,现在也变成了灰黑色——这说明它们已经曝光了!这个一般人很快就会忽略的现象,却引起了伦琴的注意,使他产生了浓厚的兴趣.他想:底片的变化,恰恰说明放电管放出了一种穿透力极强的新射线,它甚至能够穿透装底片的袋子.不过目前还不知道它是什么射线,于是取名“X射线”.于是,伦琴开始了对这种神秘的X射线的研究.他先把一个涂有磷光物质的屏幕放在放电管附近,结果发现屏幕马上发出了亮光.接着,他尝试着拿一些平时不透光的较轻物质——比如书本、橡皮板和木板——放到放电管和屏幕之间去挡那束看不见的神秘射线,可是谁也不能把它挡住,在屏幕上几乎看不到任何阴影,它甚至能够轻而易举地穿透15毫米厚的铝板!直到他把一块厚厚的金属板放在放电管与屏幕之间,屏幕上才出现了金属板的阴影——看来这种射线还是没有能力穿透太厚的物质.实验还发现,只有铅板和铂板才能使屏不发光,当阴极管被接通时,放在旁边的照相底片也将被感光,即使用厚厚的黑纸将底片包起来也无济于事.接下来更为神奇的现象发生了,一天晚上,伦琴很晚也没回家,他的妻子来实验室看他,于是他的妻子便成了在那不明辐射作用下在照相底片上留下痕迹的第一人.当时伦琴要求他的妻子用手捂住照相底片.当显影后,夫妻俩在底片上看见了手指骨头和结婚戒指的影象.1896年1月5日,在柏林物理学会会议上展出了很多X射线的照片,同一天,维也纳《新闻报》也报道了发现X射线的消息.这一伟大的发现立即引起人们的极大关注,并很快传遍全世界.在几个月的时间里,数百名科学家为此进行调查研究,一年之中就有上千篇关于X射线的论文问世.伦琴虽然发现了X射线,但当时的人们——包括他本人在内,都不知道这种射线究竟是什么东西.直到20世纪初,人们才知道X射线实质上是一种比光波波长更短的电磁波,它不仅在医学中用途广泛,成为人类战胜许多疾病的有力武器,而且还为今后物理学的重大变革提供了重要的证据.正因为这些原因,在1901年诺贝尔奖的颁奖仪式上,伦琴成为世界上第一个荣获诺贝尔物理学奖的人,人们为了纪念伦琴,将X(未知数)射线命名为伦琴射线.1.(2013·海口检测)在演示光电效应实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针张开一个角度,如图5-1-4所示,这时( )图5-1-4A.锌板带正电,指针带负电B.锌板带正电,指针带正电C 锌板带负电,指针带正电D.锌板带负电,指针带负电【解析】弧光灯发出的紫外线照射锌板,发生光电效应,有电子从锌板飞出,锌板由于失去电子而带正电;验电器与锌板相连接,指针带正电.故B项正确.【答案】B2.关于光的本性,下列说法中正确的是( )A.光子说并没有否定光的电磁说B.光电效应现象反映了光的粒子性C.光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出来的D.大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性【解析】光既有粒子性,又有波动性,但这两种特性并不是牛顿所支持的微粒说和惠更斯提出的波动说,它体现出的规律不再是宏观粒子和机械波所表现出的规律,而是自身体现的一种微观世界特有的规律.光子说和电磁说各自能解释光特有的现象,两者构成一个统一的整体,而微粒说和波动说是相互对立的.【答案】AB3.频率为ν的光子,具有的能量为hν,动量为hν/c,将这个光子打在处于静止状态的电子上,光子将偏离原来的运动方向,这种现象称为光的散射.散射后的光子( )A.改变原来的运动方向,但频率保持不变B.光子将从电子处获得能量,因而频率将增大C.散射后的光子运动方向将与电子运动方向在一条直线上,但方向相反D.由于电子受到碰撞时会吸收光子的一部分能量,散射后的光子频率低于入射光的频率【解析】电子能量增加,光子能量减少,而光速不变,由E =hν知,光子频率减小,A、B均错误,D正确.光子散射后运动方向不一定与电子运动方向共线,C错误.【答案】D4.(2012·海南高考)产生光电效应时,关于逸出光电子的最大初动能E k,下列说法正确的是________.A.对于同种金属,E k与照射光的强度无关B.对于同种金属,E k与照射光的波长成反比C.对于同种金属,E k与照射光的时间成正比D.对于同种金属,E k与照射光的频率成线性关系E.对于不同种金属,若照射光频率不变,E k与金属的逸出功成线性关系【解析】E k=hν-W=h cλ-W,同种金属最大初动能逸出功相同,最大初动能与照射光强度无关,与照射光的波长有关但不是反比例函数关系,最大初动能与入射光的频率成线性关系,不同种金属,保持入射光频率不变,最大初动能E k与逸出功成线性关系.【答案】ADE。

大学物理教程(第四版)上册(一)2024

大学物理教程(第四版)上册(一)2024

大学物理教程(第四版)上册(一)引言概述:本文主要介绍了《大学物理教程(第四版)上册》的内容。

该教材是大学物理入门教材的经典之作,旨在为学生提供理论基础和实践应用方面的知识。

通过对物理学的学习,学生将能够深入了解物质、能量和力的性质,并将这些知识应用到解决实际问题中。

本文将按照教材的章节顺序,以五个大点来介绍教程的内容和教学要点。

正文:一、力学基础1. 运动学a. 位移、速度和加速度的概念b. 直线运动与曲线运动的区别c. 根据速度图和位移图分析运动状态2. 牛顿力学a. 牛顿三定律的表述与应用b. 重力和摩擦力的研究c. 常见力的合成和分解问题3. 力的做功和能量a. 力对物体做功的定义与计算b. 动能与势能的概念与转化c. 机械能守恒定律的适用范围与实例4. 线性动量与碰撞a. 线性动量的定义与计算b. 弹性碰撞与非弹性碰撞的区别与应用c. 动量守恒定律与碰撞分析5. 刚体力学a. 刚体的基本概念与特性b. 平面运动、平衡状态与运动学分析c. 转动力学与动力学分析二、热学基础1. 温度、热量与热量传递a. 温度的定义与测量方法b. 热量的传递方式:传导、对流和辐射c. 热平衡与热力学循环的应用2. 热力学第一定律a. 内能与热量传递的关系b. 等容、等压、等温过程的特点与计算c. 热力学循环与效率的计算3. 理想气体状态方程a. 状态方程的定义与推导b. 理想气体的性质及其物态变化c. 维尔纳定律的应用与理解4. 热力学第二定律a. 热力学不可逆性的概念与表述b. 熵的概念与计算c. 卡诺循环与热力学效率的极限5. 热力学性质的应用a. 热传导的应用与热绝缘材料的设计b. 热力学循环在能源转换中的应用c. 热力学性质的实验测量与数据处理三、波动光学基础1. 机械波动a. 波的基本概念与性质b. 声波与弹性波的特点与应用c. 波的叠加与干涉的原理与应用2. 光的波动性质a. 光的波动学说与希尔伯特原理b. 光的干涉、衍射与偏振c. 光的干涉与衍射现象在实际应用中的意义3. 光的几何光学a. 光的传播路径与光线追迹法b. 透镜与光学仪器的成像原理与应用c. 光的反射与折射定律的应用4. 光的颜色与色散a. 光的频率与波长与颜色的关系b. 化学荧光与光的颜色效应c. 光的色散与光谱的应用5. 光的波动光学实验a. 光的干涉与衍射实验设计与操作b. 光的波长测量与频率测量c. 光的光谱分析与光度法测量四、电磁学基础1. 静电场与电势a. 电荷、电场与库仑定律的关系b. 高斯定理与电场强度的计算c. 电势能与等势面的特点与应用2. 电流与电阻a. 电流的定义与电荷守恒定律b. 欧姆定律与电阻的概念与计算c. 电源、电动势与电功率的应用3. 磁场与电磁感应a. 磁力与磁场的关系与定向b. 电磁感应的法拉第定律与楞次定律c. 电磁感应与发电机、电动机的应用4. 电磁波的特性与传播a. 电磁波的产生与性质b. 光速的定义与电磁波的传播c. 声光电效应与电磁波与物质的相互作用5. 电磁学实验与应用a. 静电场与电势测量实验b. 电路电流与电压测量实验c. 磁场与电磁感应实验五、现代物理基础1. 光的粒子性与能量子化a. 光子概念与光子能量计算b. 斯托克斯定律与波函数的性质c. 光谱线与能级跃迁的解释2. 相对论与狭义相对论a. 狭义相对论基本假设与论证b. 时空观念的变化与洛仑兹变换c. 质量、能量与动量的相对论性表述3. 原子基本结构与核物理a. 经典模型与量子模型的比较b. 电子的波粒二象性与波函数c. 原子核的结构与强相互作用4. 系统的熵与热力学统计a. 系统宏观状态与熵的概念与计算b. 统计力学与微观粒子的行为c. 量子力学与统计力学的关系与应用5. 现代物理实践与应用a. 材料科学与能源技术的应用b. 物理实验技术与仪器设计c. 当代物理研究与前沿领域的概述总结:《大学物理教程(第四版)上册》涵盖了力学基础、热学基础、波动光学基础、电磁学基础和现代物理基础五个大点的知识内容。

《光学》课程教学电子教案 第0章 前言绪论(32P)

《光学》课程教学电子教案 第0章 前言绪论(32P)
高等教育出版社 高等教育电子音像出版社
绪论
目录
1. 光学的研究对象、地位和特点 2. 光的本性 3. 现代光学的主要标志 4. 光学的发展趋势——光子学的崛起 5. 光学课程的学习方法
绪论
1. 光学的研究对象、地位和特点
光是一种重要的自然现象 光学是物理学的一个重要分支 光学学科是一门应用性极强的基础学科
第8章激光基础第0章第1章第2章第3章第4章绪论光波光线与光子光学成像的几何学原理光的干涉与相干性光的衍射与变换第5章第6章光学成像的波动学原理光的双折射与光调制第7章光的吸收色散及散射目录光学教案简介绪论光学教案赵建林编著普通高等教育十五国家级规划教材高等教育出版社高等教育出版社高等教育电子音像出版社目录1
光学 教案
简介
致谢
本教案中给出的所有插图仅供用于课堂教学参考。其中绝大多数 插图中系作者自己制作,个别图片取自网络共享文献,在此向原作者表 示感谢。
在本电子教案的编写和出版过程中,高等教育出版社胡凯飞、庞 永江、王文颖、郭亚嫘等编辑付出了辛勤的努力,西北工业大学教务处 为作者提供了精神和经费上的重要支持,西北工业大学教材建设委员会 的诸位专家对提出了许多宝贵的建设性修改意见。此外,作者的研究生 徐宏来曾协助作者编制教案的PPT版初稿,谢嘉宁、曲伟娟、陆红强、 王军等曾协助制作了部分仿真实验图片。作者在此一并表示衷心感谢。
(8) 量子论的提出
普朗克(M. Planck)的黑体辐射公式 爱因斯坦的光电效应方程 “光子(photon)”概念的提出
(9) 光的本性的再认识
激光与新效应 光是一种特殊的客体,具有波粒二象性
绪论
3. 现代光学的主要标志
传统光学的研究对象:
以望远镜、显微镜、光谱仪、干涉仪、照相机等为代表的各种光学仪 器及其在精密测量、光谱分析以及成像等方面的应用

大学物理_波动学基础

大学物理_波动学基础
绳的微振动横波
a T a Y

T:绳的张力
杆的纵向微振动波
杆的横向微振动波 声音在空气中传播 真空中的电磁波
Y:杨氏弹性模量
a G

G:切变弹性摸量 B:体变模量
a
B
a
0 0 0真空介电常数,0真空磁导率
1
《大学物理》课件
介质的几种典型模量
(1).杨氏模量 若在截面为S,长为l的细棒两端加上大小相等、方向相反 的轴向拉力F,使棒伸长l,实验证明:在弹性限度内,正应 力F/S与线性应变l/l成正比,即
y Acos( t
l
u
)
《大学物理》课件
例题2-4 波沿x轴正向传播,A=10cm, =7rad/s; 当t=1s时, ya=0, a<0, yb=5cm,b>0 。设>10cm, 求该波 的波动方程。 y x ) o ] (t 解 y Acos[ u u
o
3.波长 — 一个周期内波动传播的距离。
u

T

4.平面简谐波—波面为平面,媒质中各质点 都作同频率的简谐振动形成的波动。本章主要讨 论这种波。
《大学物理》课件
1 1 例题2-1 已知: y 0.5cos ( t x )(SI), 2 2 求:(1)波的传播方向,A、T、、u,原点 的初相; (2) x=2m处质点的振动方程,及t=1s时质点 的速度和加速度。 (3)x1=1m和x2=2m两点的相差。
· ·· · · · · t · · · ·· · ·
u t 平面波
球面波
惠更斯原理的不足:不能求出波的强度分布; 不能解释后退波问题等。
《大学物理》课件
§5.2 平面简谐行波的波动方程 !

第5章波动学基础-1

第5章波动学基础-1

质点振动方向
软绳
波的传播方向
振动在软绳中的传播
5.2
机械振动:
物体在一定位置附近作来回往复的周期性运动, 称机械振动。 如:弹簧振子的运动、心脏的跳动、昆虫翅膀的 发声振动等,
机械振动是生活中常见的运动形式
被手拨动的弹簧片
上下跳动的皮球
小鸟飞离后颤动的树枝
⒈在平衡位置附近来回做往复运动的现象 叫做机械振动,简称振动。

描述简谐振动的(三要素):振幅、周期、相位
相位的意义:
一个相位对应一个确定的振动状态; 相位每改变 2 ,振动重复一次. 相位 2 范围内变化, 振动状态不重复.
x
A O -A
= 2
t
相位差
x1 A1 cos(1t 1 )
x2 A2 cos( 2t 2 )
t
讨论二:
A A A 2 A1 A2 cos( 2 1 )
2 1 2 2
2 1 (2k 1)
k 0,1,2,
A | A1 A2 |
反相,两分振动相互削弱,合 振幅最小,称为干涉相消。 A1 =A2时合振幅为0.
A2
A
A1
合振动
x
以 o 为原 点旋转矢量 A 的端点在 x 轴 上的投影点的 运动为简谐运 动.
用旋转矢量描述简谐振动
x
A0
x
A
1
x A cos t


t+
相位
t
0
x( t )
At
振幅矢量
1 0 t 2
绕O点以角速度 逆时针旋转的矢量 At ,
在x 轴上的投影正好描述了一个简谐振动。

大学物理学(上册)(第二版)(滕保华-吴明和)PPT模板全文

大学物理学(上册)(第二版)(滕保华-吴明和)PPT模板全文
第二篇热力学与统计物理初步
第7章统计物理初步
2
7.2理想气体的微观模型、压强和温度的统计意义
3
7.3能量按自由度均分定理
1
7.1热力学系统与平衡态
6
*7.6量子统计分布简介
5
7.5玻尔兹曼分布定律
4
7.4麦克斯韦气体分子速率分布
第二篇热力学与统计物理初步
第7章统计物理初步
人物小传玻尔兹曼(Boltzmann,1844~1906)
6.4相对论时空观
6.5相对论的速度合成
6.6相对论动力学基础
第一篇力学
第6章狭义相对论
Байду номын сангаас
01
02
03
04
6.7广义相对论简介
人物小传爱因斯坦(AlbertEnsteini,1879~1955)
思考题
习题
03
第二篇热力学与统计物理初步
第二篇热力学与统计物理初步
第7章统计物理初步第8章热力学第9章气体和凝聚态
单击此处添加标题
第一篇力学
第1章运动学
1.1参考系坐标系对称性
1.3描述一般曲线运动的线参量与角参量
阅读材料物理学中的简单性与对称性概述
1.2运动叠加原理理想模型化方法
1.4相对运动
人物小传牛顿(IsaacNewton,1642~1727)
第一篇力学
第1章运动学
习题
思考题
第一篇力学
第2章质点动力学
5.2平面简谐波的运动方程
5.3波动的动力学方程
02
04
05
06
5.4波的能量
5.5声波、超声波和次声波
5.6波的叠加
第一篇力学

振动、波动学基础选择题及参考答案

振动、波动学基础选择题及参考答案

)振动学基础一、选择题:1、一质量为m 的物体挂在倔强系数为k 的轻弹簧下面,振动园频率为ω,若把此弹簧分割 为二等份,将物体m 挂在分割后的一根弹簧上,则振动园频率为: (A )ω2。

(C )ω2。

(C )2ω。

(D )22ω。

2、一质点沿x 轴作简谐振动,振动方程为))(32cos(1042SI t x ππ+⨯=-,从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为: (A )s )8/1(。

(B )s )4/1(。

(C )s )2/1(。

(D )s )3/1(。

(E )s )6/1(。

3 (A )s 62.2。

(B )s 40.2。

(C )s 20.2。

(D )s 00.2。

4、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,则此简谐振动方程为:(A )cm t x )3232cos(2ππ+=。

(B )cm t x )3232cos(2ππ-=。

(C )cm t x 3234cos(2ππ+=。

(D )cm t x 3234cos(2ππ-=。

(E )cm t x )434cos(2ππ-=。

5、一弹簧振子作简谐振动,总能量为1E ,如果简谐振动动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量1E 变为:(A )4/1E 。

(B )2/1E 。

(C )12E 。

(D )14E 。

6、一物体作简谐振动,振动方程为)2/cos(πω+=t A x 。

则该物体在0=t 时刻的动能与8/T t =(T 为周期)时刻的动能之比为:(A )4:1。

(B )2:1。

(C )1:1。

(D )1:2。

(E )1:4。

7、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取作坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为: (A )s 1。

光纤通信第5版-第3章-3-4-5波动光学基础

光纤通信第5版-第3章-3-4-5波动光学基础

P

n22 cosi n1 n22 cosi n1
n22 n12 sin 2 i n22 n12 sin 2 i
图3.21
.......... .......... ......3.29
S n1 cosi n1 cosi n1
c
, fc

c 2 Ln


c

20
c
f c . . . . . . . . .... .3.26
0

λ0 是 自 由 空 间 的 平 均 波 长,f是平均频率。
图3.17 谐振腔的谐振频率
例3.7:Δλc=0.311nm 半导体激光器的谱宽都在1nm~5nm之间。假设例3.7中的光
7
图3.14 激光器
激光器是一个极高频的振荡器,称其为光振荡器更为准确。
其功能与低频振荡的相似。图3.14中的激光器有圆柱形介 质及其两个端面的反射镜构成,介质起放大作用。介质的 特性决定了激光器的输出频率和谱宽。
反射镜为光振荡器提供反馈,使光反复通过放大介质。 光从激光器的一个部分透光的镜面输出。
直入射时,计算得到
的 反 射 比 是 4% , 对 于
入射角小于 20º 时都是
一个比较合适的近似
值。
图3.23 玻璃-空气界面的反射比 n1=1.5,n2=1.0
图中给出了两种可能的
偏振状态在任意两种电 介质界面上发生反射时 的一般特性。
2.对于某个特定的入 射角和偏振状态,反 射比是零,意味着波 的完全传输。
图3.19 光纤系 统中的反射面
17
§3.5 平面边界上的反射 光在输入端和连接缝隙间的反射应该足够小,因为这样的反射

物理高中各章知识点总结

物理高中各章知识点总结

物理高中各章知识点总结第一章:运动1. 位置、位移和路径位置是一个物体所在的地点;位移是物体在某段时期内从一个位置变到另一个位置的矢量差;路径是物体移动轨迹的总称。

要求学生掌握如何计算位移和路径。

2. 速度与加速度速度是物体在单位时间内通过的路程数,是一个矢量,加速度是速度的改变率。

学生需要了解如何计算速度和加速度。

3. 运动的描述定义均匀运动、变速运动和匀变速运动,学习如何描述物体在运动中的位置变化、速度变化和加速度变化。

4. 直线运动规律讲述匀变速直线运动的规律,包括匀变速直线运动的位移、速度、加速度、运动时间与初末速度的关系。

学生需要能够应用这些规律解决实际问题。

5. 运动的图像化表示学生需要学会运动图像的绘制和分析,特别是v-t图和x-t图的绘制。

第二章:力1. 力的概念力是引起物体状态变化的原因,它可以改变物体的速度或者形状。

学生需要理解力的概念及其性质。

2. 力的分类介绍重力、弹力、摩擦力、张力和剧烈等几种常见的力,以及它们的特点和作用。

3. 牛顿运动定律讲解牛顿三定律的内容:第一定律——惯性定律,第二定律——运动定律和第三定律——作用与反作用定律,并能够应用这些定律解决相关问题。

4. 力的合成与分解学习如何分解力、合成力以及推导合力公式。

5. 重心与稳定性学生需要掌握质点系重心的概念,以及如何判断物体的稳定性。

第三章:功和能1. 功的概念介绍功的定义和计算公式,学生需要掌握如何计算功。

2. 功率讲解功率的概念及其计算方法。

3. 动能和动能定理学习动能的定义、计算方法以及动能定理。

4. 势能和机械能讨论势能的概念、计算方法,以及机械能守恒定律。

第四章:波动1. 波的性质介绍波的概念、分类、特性和传播规律。

2. 机械波讲解机械波的传播、沿直线传播和波面的变化,以及驻波和波的干涉等。

3. 声波讲解声波的特点、传播规律、声强、频率、光谱和音速等。

4. 光波介绍光波的特性、反射、折射、透射和偏振等。

大学物理波动光学

大学物理波动光学

大学物理波动光学摘要:波动光学是大学物理课程中重要的组成部分,主要研究光的波动性质及其在介质中的传播规律。

本文主要介绍了波动光学的基本概念、波动方程、干涉现象、衍射现象、偏振现象以及光学仪器等,旨在为读者提供系统的波动光学知识,为进一步学习和研究打下基础。

一、引言波动光学是研究光波在传播过程中所表现出的波动性质的科学。

光波是一种电磁波,具有波动性、粒子性和量子性。

波动光学主要关注光的波动性质,研究光波在介质中的传播、反射、折射、干涉、衍射、偏振等现象。

波动光学在科学技术、工程应用、日常生活等领域具有广泛的应用,如光纤通信、激光技术、光学仪器等。

二、波动方程波动方程是描述波动现象的基本方程。

光波在真空中的传播速度为c,介质中的传播速度为v。

波动方程可以表示为:∇^2E(1/c^2)∂^2E/∂t^2=0其中,E表示电场强度,∇^2表示拉普拉斯算子,t表示时间。

该方程描述了光波在空间和时间上的传播规律。

三、干涉现象1.极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向相同,相互加强,形成明条纹;当电场矢量方向相反,相互抵消,形成暗条纹。

2.非极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向垂直,相互叠加,形成干涉条纹。

四、衍射现象衍射现象是光波传播过程中遇到障碍物或通过狭缝时产生的现象。

衍射现象的本质是光波的传播方向发生改变,使得光波在空间中形成干涉图样。

衍射现象可以分为菲涅耳衍射和夫琅禾费衍射两种:1.菲涅耳衍射:当光波通过狭缝或障碍物时,光波在衍射角较小的情况下发生的衍射现象。

菲涅耳衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

2.夫琅禾费衍射:当光波通过狭缝或障碍物时,光波在衍射角较大的情况下发生的衍射现象。

夫琅禾费衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

五、偏振现象偏振现象是光波在传播过程中,电场矢量在空间某一方向上振动的现象。

偏振光具有方向性,其电场矢量只在一个特定方向上振动。

高一物理章节内容课件 第五章波动学基础

高一物理章节内容课件 第五章波动学基础

线。
四、质点运动速度方向的判断 沿波的传播速度方向看: 波峰 波谷 质点运动速度 波谷 波峰 质点运动速度
本次课重点 1.机械波的产生和传播; 2. 波函数的推导方法、表达式及其物理 意义 3. 质点运动速度方向的判断
例二(3071)一平面简谐波以速度 沿X轴
正向传播,在
时波形曲线如图所
示。求坐标原点 的振动方程
二、机械波的产生和传播
结论:振动是产生波动的原因 波动是某一质点的振动状态由近而远 的传播过程
是质点1的位移值、速度值、加速度值逐渐传 到了质点2、再传到质点3、经过四分之一周 期传到了质点4、经过二分之一周期传到了质 点7这样一个所谓振动状态由近而远的传播过 程。这样,随着时间的推移,作为绳子上的 每一个质点它都会在各自的平衡位置上下来 回往复地运动起来,在同一个时刻,不同的 质点一般会有不同的位移。那么,在任意时 刻 ,平衡位置坐标为 的质点的位移 与所处的时刻、与平衡位置的坐标究竟存在 什么样的相互关系呢?这是波动学中,我们
无半波损失。 设入射波方程(波函数)
波密,反射波
此波在
处引起的振动方程
该振动即为反射波源
无半波损失时 有半波损失时 所以,本题反射波的波动方程为
与已知条件相比,可得
驻波方程
波节位置
例二( 3311 )在弦线上有一简谐波,其表达 式为
为了在此弦线上形成驻波,并且在 处为一波腹,此弦线上还应有一简谐 波,其表达式为 (A)
第五章 波动学基础
复习与自学安排(所有均为考试内容) 5月27日至6月2日 2.1 行波 2.2 简谐波 2. 3 物体的弹性形变 2. 4 波动方程与波速 2. 5 波的能量 2. 6 惠更斯原理与波的反射和折射 2. 7 波的叠加 驻波 2. 8 声波

大学_大学物理教程上册(范仰才著)课后答案

大学_大学物理教程上册(范仰才著)课后答案

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

《水声学》习题作业-波动声学基础

《水声学》习题作业-波动声学基础

一、简答题1.理想流体介质中小振幅波所满足的波动方程可根据哪些方程导出?2.波动方程的定解条件有哪些?3.均匀浅海声道中的简正波是如何形成的?说明简正波的特性。

4.何谓简正波的相速度、群速度?硬底均匀浅海中简正波的相速度、群速度有何特征?5.何谓波导的截止频率?6.判断正误并解释命题:浅海波导中,声波的频率越低,其传播距离就一定越远。

一、简答题答案1.答:根据质量守恒定律、牛顿第二定律和绝热压缩定律,理想流体介质中小振幅波所满足的波动方程可根据连续性方程、运动方程和状态方程导出。

2.答:满足物理问题的具体条件称为定解条件。

波动方程的定解条件有边界条件、辐射条件、奇性条件和初始条件。

其中边界条件包含绝对软边界条件、绝对硬边界条件、混合边界条件、边界上声压和振速连续边界条件。

3.答:简正波的形成原因:与z轴夹角满足特定关系的上行波和下行波的迭加形成某一阶次的简正波。

简正波在垂直方向为驻波、水平方向为行波,每阶简正波有各自的简正频率,简正波的相速度与阶次有关,不同阶次的简正波其相速度不同,称为频散。

4.答:等相位面的传播速度称为相速度,波形包络的传播速度称为群速度。

简正波的相速度、群速度与声波频率有关。

随着频率的升高,相速度逐渐减小群速度逐渐增大,最终趋近于介质的声速。

相速度和群速度的乘积为常数。

5.答:最低阶简正波的临界频率即为波导的截止频率。

当声波频率低于波导的截止频率时,波导中各阶简正波都为衰减的简正波,声波不能远距离传播。

6.答:命题不正确。

对相同的声源,频率越高,介质的吸收衰减越大,因此传播距离就越近。

频率降低,吸收损失减小,传播距离变远。

但是当声波频率低于波导的截止频率时,介质中不存在传播的简正波,它们都随水平距离的增大指数衰减,因此频率低于一定值后,传播距离反而变近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


量纲!
Y
T为绳索或弦线中张力;
为质量线密度
ul
* 细长的棒状媒质中纵波波速为
Y 为媒质的杨氏弹性模量; 为质量密度

G * 各向同性均匀固体媒质横波波速 u t G为媒质的切变弹性模量; 为质量密度
在同一种固体媒质中,横波波速比纵波波速小些。
震中
26
*
5.3 平面波的动力学方程 p172—177(不要求)
质量为 m 的媒质其动能为:
2
x y A cos[ (t )] u x y A sin[ (t )] u
1 x y 1 2 2 2 Wk m VA sin [ (t )] 2 2 u t 以棒内传播纵波为例讨论弹性势能:
2 2 2x y A cos( t ) T 2
0

u
X
21
0 0.2m 0.4m
2 2x y A cos( t ) T 2
0.4 10 cos(100t 5x 2) (m)
2
因为:
y ( x, t ) x v y A sin[ (t ) ] t u 2
10
惠更斯原理 1. 惠更斯原理
• 媒质中波传到的各点,都可看作开始发射子波的 子波源 (点波源)。 • 在以后的任一时刻, 这些子波面的包络面就是 实际的波在该时刻的波前 。 2. 应用 :
t时刻波面 t+t时刻波面波的传播方向
11
t 时刻波面
· · · · ·
t+t时刻波面
波传播方向
y x 1 y A 2 cos[ (t ) 0 ] 2 2 2 x u u u t 2 2 动平 y 1 y 力面 2 学波 2 2 x u t 方动
2 2 2
程的
见书 P173 式(5.3.6)和(5.3.12) 27
§5-4 波的能量和能流 1.波的能量 有一行波: 质元的振动速度:
波面
8
波速—单位时间某种一定的振动状态(或振动相位) ,也称之相速 。 所传播的距离称为波速 u
频率—单位时间内质点振动的次数
1 T
u
uT
u
1点的振动频率。
——表示波在时间上的周期性
——表示波在空间的周期性
通过波速 u 联系起来
波线(或波射线) —波的传播方向称之为波射线或波线。
波面(或相面、波阵面) —某时刻介质内振动相位相同的点组成的面称为 波面。 波前—某时刻处在最前面的波面。
7
4.平面波 球面波 柱面波 在各向同性均匀介质中,波 线与波阵面垂直.
波面
波线
波线
3)波的周期性和波速
波长、波速和频率:
波长——振动相位相同的两个相邻波 面之间的距离是一个波长。或振动 在一个周期中传播的距离,称为波长, 用 表示。
y
u
这就是右行波的波方程。
p

X
定义 k 为角波数
O
x
2 2; T u u 因此下述几式等价: T 15
2 T 2 k u T
因此下述几式等价:
x y ( x, t ) A cos[ (t ) 0 ] u 2x y ( x, t ) A cos[t 0 ] x y ( x, t ) A cos[2 (t ) 0 ]
3
· · · · · · · · · · · · ·t = 0 · · · · · · · · · ··· ·· ·· · · · · · · · ·· · · t = T/4 · · · · · · · · ·· · ·· · ·· · · · ·· · · · · · · t = T/2 · · · · · ·· · · · · · · · · ·· · ·· · · · · · · ·· · · t = 3T/4 ·· · ··· · · · · · ·· ·t = T · ·· ·· ···· · ·· · ·
t + t
· ·· · · · · t · · · ·· · ·
ut 平面波
球面波
不足: 只能解决波的传播方向,不知道波的强度分布.
3. 波的衍射(绕射) 1.) 现象 波传播过程中当遇到障碍物时,能绕过障碍物的 边缘而传播的现象。
12
2.) 作图
可用惠更斯原理作图
· a · ·
比较两图
·
★ 如你家在大山后,听广播和看 电视哪个更容易?

y
0.04m
u
X
20
0 0.2m 0.4m
A 4.0 10 m,

2
0.4m
u=20m/s,
0.4 T 0.02 s u 20
设o点振动方程为:
t 0 x0 y0
0点的初相位:

2 yo A cos( t ) T
由旋转矢量法得:
y
0.04m
0 2
沿波的传播方向上,各质元的相位依次落后。
5
u a ·
传播方向
b ·
x
x
图中b点比a点的相位落后
2

u
x
3. 波形曲线(波形图)
y o
t

x
• 不同时刻对应有不同的波形曲线(后面再讲)
6
1) 纵波和横波: 横波——振动方向与传播方向垂直,如电磁波 任一波例如,水波、地表波,都能分解为 横波与纵波来进行研究。 2) 波线、波面、波前
2 ( x x) y( x x, t t ) A cos[ (t t ) 0 ] 2x 2 A cos[t (ut x) 0 ]


若这两处相位相同,则有:
y( x x, t t ) y( x, t ) 2x y ( x, t ) A cos(t 0 ) 2 (ut x) 0 x ut
可见波速就是相位传播的速度
19
x ut
故为行波方程
u x
t和t t 时刻的波形完全相同。波动方程描述了波形的传播
3.描述简谐波的物理量
t
即就是波形向前传播的速度。
~ 1
Tu
2 T

u
2



u
例 已知:u=20m/s, t=0的波 形如图所示: 求:振幅,波长,波的周 期、波函数 及质元振动速 度表达式 解:由图知:
也就是左行波的波方程:
x t u
x y ( x, t ) A cos[ (t ) 0 ] u
y( x, t ) A cos[k ( x ut ) 0 ]
17
2. 一维简谐波表达式的物理意义: (1)x 一定时,为该处质点的振动方程,对应曲线为该 处质点振动曲线;
波的周期T:波传过一个波长的时间,或一个 完整的波通过波线上某一点所需要的时间叫 做波的周期T。
9
显然,这里波长远大于媒质分子间距离,即假设 弹性媒质是连续的,媒质中一个波长的距离内有 无数分子在陆续振动,宏观上看来媒质就象连续 的一样。如果波长小到等于或小于分子间距离时 ,相距约为一波长的两个分子之间,不再存在其 它分子,我们就不能认为媒质是连续的了,这时 媒质就再也不能传播弹性波了。因此有一个频率 上限存在。高度真空中分子间距离极大,不能传 播声波,就是由于这原因。
所以
y ( x , t ) v y 12.6 cos(100t 5x) t
22
例 一平面简谐波沿X轴正方向传播,其振幅为A,频率 为,波速为u。设t=t’时刻的波形典线如图所示,求: (1) x=0处质点的振动方程;
y0 A cos( 2t ) 0 2t 2t
y(x, t) x vy A sin (t ) 0 t u 2 y( x, t ) x 2 a y A cos[ (t ) 0 ] 2 t u
x y ( x, t ) A cos[ (t ) 0 ] u
(P170--172本节只了解下面概念. u 的公式不要求)
24
f
F l0 l0 + l F 长变
正弹力
f
V V
f
体变

F切
切变
F切
f
切弹力
* 在液体和气体只能传播纵波,
其波速为:
ut
B

25
B为媒质的体变弹性模量;
为质量密度
可以证明:
* 对于柔软的绳索和弦线中横波波速为
ut T
(若广播台、电视台都在山前侧)
13
§5-2 平面 简谐波运动学方程 1.平面行波 (波动方程) 下面要用数学表达式描述波线上每一质点在每 一时刻的位移,这样的函数 y f ( x, t ) 称为行波 的波函数。 以横波为例说明平面简谐波的波函数。 已知o点振动表达式:
y A cos(t 0 )
y表示各质点在Y方向上的
位移,A是振幅, 是角频 率或叫圆频率, 0 为o点在 零时刻的相位。
o点振动传到 p点需用
O
y
x
u
p
X
14
x t u
x 相位落后 ,所以 p点的运动方程: u x
y ( x, t ) A cos[ (t ) 0 ] 2 / T u 2 x u /T y ( x, t ) A cos[(t 0 ) ] 2x 也即p点的相位落后于o点相位: 。
机械振动在弹性介质中的传播称为机械波。下面 以机械波为例介绍波的一些物理概念。
相关文档
最新文档