高考数学百大经典例题+圆的方程

合集下载

高中数学圆的方程典型例题(经典版)

高中数学圆的方程典型例题(经典版)

高中数学圆的方程典型例题类型一:圆的方程例 1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆42422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b ba ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解. 本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

圆方程经典例题

圆方程经典例题

高中数学圆的方程典型例题类型一:圆的方程〔1〕标准方程,圆心a,b,半径为r;点M(x0,y0)与圆(x a)2(y b)2r2的位置关系:当,点在圆外当,点在圆上当,点在圆内〔2〕一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

3〕求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

1.假设过点P(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,那么实数a的取值范围是.2.圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,那么a-b的取值范围是()A.(-∞,4)B.(-∞,0)C.(-4,+∞)D.(4,+∞)3.求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关4.求半径为4,与圆x2y24x 2y 4 0相切,且和直线y0相切的圆的方程.5.求经过点A(0,5),且与直线x 2y 0和2x y0都相切的圆的方程.6.直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,那么与直线l和圆C都相切且半径最小的圆的标准方程是.7、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x 2y0的距离最小的圆的方程.12+(y-1)2222=上的动点,那么|PN|-|PM|的8.点P(2,2),点M是圆O:x=上的动点,点N是圆O:(x-2)+y 最大值是()A.-1B.-2类型二:直线与圆的位置关系直线与圆的位置关系有三种情况:〔1〕设直线l:AxByC0222,圆心Ca,b到l的距离为,圆C:xa ybrAa BbC,那么有dB2A22〕过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程1、直线3x y 23 0和圆x2y24,判断此直线与圆的位置关系.2:直线x y 1与圆x2y22ay 0(a 0)没有公共点,那么a的取值范围是3:假设直线ykx2与圆(x2)2(y3)21有两个不同的交点,那么k的取值范围是.4.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.圆(x3)2(y3)29上到直线3x4y110的距离为1的点有几个6.、假设直线y x m与曲线y 4 x2有且只有一个公共点,求实数m的取值范围.7.圆M:x2(y2)21,Q是x轴上的动点,QA、QB分别切圆M于A,B两点(1)假设点Q的坐标为〔1,0〕,求切线QA、QB的方程;42(2)求四边形QAMB的面积的最小值;(3)假设AB,求直线MQ的方程.3类型三:圆与圆的位置关系通过两圆半径的和〔差〕,与圆心距〔d〕之间的大小比拟来确定。

最新高中数学圆的方程经典例题与解析

最新高中数学圆的方程经典例题与解析

高中数学圆的方程经典例题与解析例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k 所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解. 例3、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例4 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.例5:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

高中圆方程练习题

高中圆方程练习题

高中圆方程练习题题一:求圆的标准方程已知圆心坐标为(3,-4),半径为2,求圆的标准方程。

解:设圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心坐标为(a, b),半径为r。

代入已知条件:(x-3)² + (y+4)² = 2²化简得到圆的标准方程为(x-3)² + (y+4)² = 4。

题二:圆的切线方程已知圆的方程为(x-2)² + (y+1)² = 9,求过点(3,-2)的圆的切线方程。

解:首先,计算圆心坐标:圆心坐标为(a, b),其中a = 2,b = -1。

其次,计算圆的半径:半径r = √9 = 3。

然后,通过已知点(3,-2)和圆心坐标计算切线斜率:切线斜率k = (b - (-2))/(a - 3) = (-1 - (-2))/(2 - 3) = -1/1 = -1。

最后,带入切点坐标和切线斜率,得到切线方程:y - (-2) = -1(x - 3)y + 2 = -x + 3x + y - 1 = 0所以过点(3,-2)的圆的切线方程为x + y - 1 = 0。

题三:两圆的交点坐标已知圆A的方程为(x-1)² + (y-2)² = 4,圆B的方程为(x+2)² + (y-3)² = 9,求两圆的交点坐标。

解:将两个圆的方程相减:(x+2)² + (y-3)² - [(x-1)² + (y-2)²] = 9 - 4化简得到:4x - 4 = 54x = 9x = 9/4带入x的值,得到y的值:(9/4 + 2)² + (y-3)² - [(9/4 - 1)² + (y-2)²] = 9 - 4化简得到:(y-3)² - (y-2)² = 9 - 4 - (25/16 - 2/4)²(y-3)² - (y-2)² = 5 - (25/16 - 8/16)(y-3)² - (y-2)² = 5 - 17/16化简得到:4(y-3)² - 4(y-2)² = 5*16 - 174(y² - 6y + 9) - 4(y² - 4y + 4) = 80 - 174y² - 24y + 36 - 4y² + 16y - 16 = 63-8y + 20 = 63-8y = 63 - 20-8y = 43y = 43/-8y = -43/8所以两圆的交点坐标为(x, y) = (9/4, -43/8)。

圆的方程典型例题

圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1、 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的 关系.例2、 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 例3、 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 类型二:切线方程、切点弦方程、公共弦方程例5、已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例6、 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

练习:1、求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 2、过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为 3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 . 类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长. 例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长 类型四:直线与圆的位置关系例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系. 例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例13、圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?练习1:直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是 练习2:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 .3、圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ) (A )1个 (B )2个 (C )3个 (D )4个 类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系, 例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

高中数学圆的方程典型例题

高中数学圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1、 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3 在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例4两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

类型三:弦长、弧问题例6、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例7、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为例8、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例9、已知直线0323=-+y x 和圆422=+y x ,判断此直线与圆的位置关系.例10、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例11 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?类型五:圆与圆的位置关系例12、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例13:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

类型六:圆中的对称问题例14、圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是例15 自点()33,-A 发出的光线l 射到x 轴上, 被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.类型七:圆中的最值问题例16:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例17 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例18:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .类型八:轨迹问题例19、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例20、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例21 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.例22 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.高中数学圆的方程典型例题类型一:圆的方程例1 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5y 2x 52y -x +=.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得 43=k 所以 ()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例4 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

高中数学圆的方程典型例题

高中数学圆的方程典型例题
(A)1 个 (B)2 个 (C)3 个 (D)4 个
4:过点 P(− 3,− 4)作直线 l ,当斜率为何值时,直线 l 与圆 C:(x −1)2 + (y + 2)2 = 4 有公共点
类型五:圆与圆的位置关系
例 14、判断圆 C1 : x 2 + y 2 + 2x − 6 y − 26 = 0 与圆 C2 : x 2 + y 2 − 4x + 2 y + 4 = 0 的位置关系,
=
y−2
的几何意义是过圆
x2
+
y2
= 1上一动点和定点 (−1 ,
2) 的连线的斜率,利用
x +1
此直线与圆 x2 + y2 = 1有公共点,可确定出 u 的取值范围.
解法二:由 u
=
y−2
得:
y − 2 = u(x +1) ,此直线与圆 x2
+
y2
= 1 有公共点,故点 (0 , 0) 到
x +1
解法三:设 A(r cosα , r sinα ) 、 B(r cos β , r sin β ) 、 Q(x , y) ,
第5页
由于 APBQ 为矩形,故 AB 与 PQ 的中点重合,即有
x + a = r cosα + r cos β ,

y + b = r sinα + r sin β ,

cosθ +1 ∴ u cosθ − sinθ = −(u + 2) .
即 u 2 + 1 sin(θ − ϕ ) = u + 2 ( tanϕ = u )
(u + 2)

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

圆方程-圆的方程典型例题

圆方程-圆的方程典型例题

.圆与方程--圆的方程典型例题类型一:圆的方程例1求过两点A(1,4)、B(3,2)且圆心在直线y0上的圆的标准方程并判断点P(2,4)与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆的位置关系,只须看点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为2()22(xa)ybr.∵圆心在y0上,故b0.∴圆的方程为222 (x a)yr.又∵该圆过A(1,4)、B(3,2)两点.22(1a)16r∴22(3a)4r2解之得:a1,20r.2y2所以所求圆的方程为(1)20x.解法二:(直接求出圆心坐标和半径)因为圆过A(1,4)、B(3,2)两点,所以圆心C必在线段AB的垂直平分线l上,又因为42k1,故l的斜率为1,又AB的中点为(2,3),故AB的垂直平分线l的方程为:AB13y3x2即xy10.又知圆心在直线y0上,故圆心坐标为C(1,0)22∴半径rAC(11)420.2y2故所求圆的方程为(1)20x.又点P(2,4)到圆心C(1,0)的距离为22.dPC(21)425r∴点P在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?word范文.2y2xy例2求半径为4,与圆4240x相切,且和直线y0相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆2()22C:(x a)ybr.圆C与直线y0相切,且半径为4,则圆心C的坐标为(,4)C1a或C2(a,4).2yxy2又已知圆x4240的圆心A的坐标为(2,1),半径为3.若两圆相切,则CA437或CA431.(1)当C1(a,4)时,2(41)722(a2),或2(41)212(a2)(无解),故可得a2210.∴所求圆方程为2(4)422(x2210)y,或2(4)242 (x2210)y.(2)当C2(a,4)时,2(41)722(a2),或2(41)212 (a2)(无解),故a226.∴所求圆的方程为2(4)422(x226)y,或2(4)242 (x226)y.说明:对本题,易发生以下误解:由题意,所求圆与直线y0相切且半径为4,则圆心坐标为C(a,4),且方程形如2(4)24222yxy (xa)y.又圆x4240,即2(1)322 (x2)y,其圆心为A(2,1),半径为3.若两圆相切,则CA43.故2(41)272(a2),解之得a2210.所以欲求圆的方程为2(4)422(x2210)y,或2(4)422 (x2210)y.上述误解只考虑了圆心在直线y0上方的情形,而疏漏了圆心在直线y0下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3求经过点A(0,5),且与直线x2y0和2xy0都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线x2y0与2xy0相切,∴圆心C在这两条直线的交角平分线上,又圆心到两直线x2y0和2xy0的距离相等.word范文.x2y x2y∴.55∴两直线交角的平分线方程是x3y0或3xy0.又∵圆过点A(0,5),∴圆心C只能在直线3xy0上.设圆心C(t,3t)∵C到直线2xy0的距离等于AC,∴2t 3t5 t 2(35)t2.化简整理得t26t50.解得:t1或t5∴圆心是(1,3),半径为5或圆心是(5,15),半径为55.2y2y22∴所求圆的方程为(1)(3)5x或(x5)(15)125.说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x2y0的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为P(a,b),半径为r.则P到x轴、y轴的距离分别为b和a.由题设知:圆截x轴所得劣弧所对的圆心角为90,故圆截x轴所得弦长为2r.∴r 22b2又圆截y轴所得弦长为2.∴r2a21.word范文WORD 格式.又∵P(a,b)到直线x2y0的距离为da2b5∴225d ab222a4b4ab2bab222a42()2a22b1当且仅当ab时取“=”号,此时5 d.min5这时有a b2a22b1∴ab 11或ab112b2又22r2y2y22 故所求圆的方程为(1)(1)2x或(x1)(1)2解法二:同解法一,得a2bd.5∴a2b5d.∴24b245bd5d2a.将a22b21代入上式得:2bdd22b45510.上述方程有实根,故2 8(5d1)0,∴5 d.5word范文.将5 db15又2b2a21∴a1.由a2b1知a、b同号.故所求圆的方程为(x1)2(y1)22或(x1)2(y1)22.说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5已知圆O:x2y24,求过点P2,4与圆O相切的切线.解:∵点P2,4不在圆O上,∴切线PT的直线方程可设为ykx24根据dr2k4∴221k解得k343所以24yx4即3x4y100因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为x2.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用2x0xyyr,求出切点坐标x、y0的值来解决,此时没有漏解.2222例6两圆0C:相交于A、B两C1:xyDxEyF与2xyD2xE2yF20111点,求它们的公共弦AB所在直线的方程.分析:首先求A、B两点的坐标,再用两点式求直线AB的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆C1、C2的任一交点坐标为(x0,y0),则有:22x0yDxEyF0①01010122x0yDxEyF0②020202 word范文.①-②得:()()0D1DxEEyFF.2012012∵A、B的坐标满足方程()()0D1DxEEyFF.21212∴方程(D)()0是过A、B两点的直线方程.1DxEEyFF21212又过A、B两点的直线是唯一的.∴两圆C1、C2的公共弦AB所在直线的方程为(D1D2)x(E1E2)yF1F20.说明:上述解法中,巧妙地避开了求A、B两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆x2y21外一点M(2,3),作这个圆的两条切线MA、MB,切点分别是A、B,求直线AB的方程。

高中数学圆的方程典型例题

高中数学圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆的位置关系,只须看点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆.解法一:(待定系数法)设圆的标准方程为(x a)2 (y b)2 r2.•.•圆心在y 0上,故b 0.圆的方程为(x a)2 y2 r2.又•.•该圆过A(1,4)、B(3,2)两点.2.2(1 a) 16 r,-、2 2(3 a) 4 r解之得:a 1, r2 20.所以所求圆的方程为(x 1)2 y2 20 .解法二:(直接求出圆心坐标和半径)因为圆过A(1,4)、B(3, 2)两点,所以圆心C必在线段AB的垂直平分线l上,又因为4 2k AB —— 1 ,故l的斜率为1,又AB的中点为(2,3),故AB的垂直平分线l的方程为:1 3y 3 x 2 即x y 1 0 .又知圆心在直线y 0上,故圆心坐标为C( 1,0).•半径r AC J(1 1)242J20 .故所求圆的方程为(x 1)2 y2 20 .又点P(2,4)到圆心C( 1,0)的距离为d PC V(2 1)242V25 r ..••点P在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定宜线与圆的位置关系呢?2 2例2求半径为4,与圆x y 4x 2y 4 0相切,且和直线y 0相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆C:(x a)2 (y b)2 r2.圆C与直线y 0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a, 4).又已知圆x2 y2 4x 2y 4 0的圆心A的坐标为(2,1),半径为3.若两圆相切,则CA 4 3 7或CA 4 3 1.(1)当G(a,4)时,(a 2)2 (4 1)2 72 ,或(a 2)2 (4 1)2 12(无解),故可得a 2 2 血.所求圆方程为(x 2 2',10)2(y 4)242,或(x 2 2 Ji0)2(y4)242 .2 (2)当C2(a, 4)时,(a 2)(4 1)22 27 ,或(a 2) ( 41)212(无解),故a 2 2柢.所求圆的方程为(x 2 2 ...6)2(y 4)242,或(x 2 2J6)2(y4)242 .说明:对本题,易发生以下误解:由题意,所求圆与直线y 0相切且半径为4 ,则圆心坐标为C(a,4),且方程形如22222 2 2 2x a) (y 4) 4 .又圆x y 4x 2y 4 0,即(x 2) (y 1) 3 ,其圆心为A(2,1),半径为3.若两圆相切,则CA 4 3 .故(a 2)2 (4 1)2 72,解之得a 2 2血.所以欲求圆的方程为(x 2 2&0)2(y 4)2 42,或(x 2 2血)2(y 4)242 .上述误解只考虑了圆心在直线y 0上方的情形,而疏漏了圆心在直线y 0下方的情形.另外,误解中没有考虑两圆切的情况.也是不全面的.例3求经过点A(0,5),且与直线x 2y 0和2x y 0都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:•.•圆和直线x 2y 0与2x y 0相切,圆心C在这两条直线的交角平分线上,又圆心到两直线x 2y 0和2x y 0的距离相等.. |x 2y| |x 2y| , , -- .(.、5 、、5两直线交角的平分线方程是x 3y 0或3x y 0 .又•.•圆过点A(0,5),圆心C只能在直线3x y 0上.设圆心C(t ,3t)C到直线2x y 0的距离等于AC ,.2t 3t 2 2. • —尸一,t (3t 5)-•.5化简整理得t2 6t 5 0.解得:t 1或t 5圆心是(1,3),半径为J5或圆心是(5,15),半径为5/5..••所求圆的方程为(x 1)2 (y 3)2 5或(x 5)2 (y 15)2 125 .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、设圆满足:(1)截y轴所得弦长为2; (2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l: x 2y 0的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为P(a , b),半径为r .贝U P到x轴、y轴的距离分别为b和a .由题设知:圆截x轴所得劣弧所对的圆心角为90,故圆截x轴所得弦长为V2r .2 _ 2••- r 2b又圆截y轴所得弦长为2.. 2 2--r a 1.又P(a , b)到直线x 2y 0的距离为a 2b、5a 2b解法二:同解法一,得a 2b j5d .•■- a 2 4b 2 4. 5bd 5d 2将a 22b 21代入上式得:2b 2 4.5bd5d 2 1 0上述方程有实根,故.28( 5d 1) 0 , . .d 芸 5…5、…. /将d——代入方程得b 1.又r 2 a2b 22a 4b 2 4ab2a 4b 2 2(a 2b 2)2b 2 2a1ab 时取“=” 号,此时 a b2b 22 a 12b 2故所求圆的方程为(x ■51)2 (y 1)2 2 或(x 1)2 (y 1)2当且仅当 这时有1a ••- 5d 2d min5又2b2 a2 1 a 1 .由a 2b 1知a、b同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5已知圆O: x2 y2 4,求过点P 2,4与圆O相切的切线.解:•.•点P 2,4不在圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题一例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答.解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r .设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意.∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.典型例题三例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=ABk ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?典型例题四例4 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .典型例题五例5 过点()43--,P 作直线l ,当斜率为何值时,直线l与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k .典型例题六例6 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-k k解得 43=k 所以()4243+-=x y 即01043=+-y x因为过圆外一点作圆得切线应该有两一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.典型例题七例7 自点()33,-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切 (1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程. 分析、略解:观察动画演示,分析思路.根据对称关系,首先求出点A的对称点A '的坐标为()33--,,其次设过A '的圆C 的切线方程为()33-+=x k y根据r d =,即求出圆C 的切线的斜率为34=k 或43=k 进一步求出反射光线所在的直线的方程为0334=+-y x 或0343=--y x最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为0334=++y x 或0343=-+y x光路的距离为M A ',可由勾股定理求得7222=-'='CM C A MA .说明:本题亦可把圆对称到x 轴下方,再求解.典型例题八例8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH ,则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,所以AH OC //,OA CH //,OC OA =,所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y图3又),(''y x C 满足42'2'=+y x , 所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.典型例题九例9 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.典型例题十例10 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅OQ OP k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为x y ,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出OQ OP k k ⋅的值,从而使问题得以解决.解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即12211-=⋅x y x y ,也即:02121=+y y x x . ①另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=.将③代入,得51221+=m y y . ④ 将③、④代入①,解得3=m ,代入方程②,检验0>∆成立,∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得)274()3(4)12(22=-+-++y m xy m x m .由于0≠x ,故可得12)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅OQ OP k k .得127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在. 解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.典型例题十一例11 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.典型例题十二例12 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min=d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d , ∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号. 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:101012020=++++F y E x D y x①202022020=++++F y E x D y x②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.典型例题十四例14 已知对于圆()1122=-+y x 上任意一点()y x P ,,不等式0≥++m y x 恒成立,求实数m 的取值范围.解:运用圆的参数方程,设P 的坐标为()θθsin 1cos +,, [)πθ20,∈即θcos =x ,θsin 1+=y ,∵0≥++m y x 恒成立 ∴()y x m +-≥恒成立即()θθsin 1cos ++-≥m 恒成立 ∴只需m 大于等于()θθsin 1cos ++-的最大值.令()()4sin 21sin cos sin 1cos ⎝⎛+-=-+-=++-=πθθθθθuu 的最大值为12-∴12-≥m说明:在上述解法中我们运用了圆上点的参数设法.采用这种设法的优点在于,一方面可以减少参数的个数,另一方面可以灵活地运用三角公式.从代数的观点看,这种设法的实质就是三角代换.另外本题也可以不用圆的参数方程求解,本题的实质就是求最值问题,方法较多.但以上述解法较简.典型例题十五例15 试求圆⎩⎨⎧==θθsin 2,cos 2y x (θ为参数)上的点到点)4,3(A 距离的最大(小)值. 分析:利用两点间距离公式求解或数形结合求解.解法一:设P 是圆⎩⎨⎧==θθsin 2,cos 2y x 上任一点,则)sin 2,cos 2(θθP .所以22)sin 24()cos 23(θθ-+-=PAθθsin 16cos 12425--+=)43arctan ()sin(2029=+-=ϕϕθ.因为R ∈θ,所以R ∈+ϕθ,因此 当1)sin(-=+ϕθ时,72029=+=最大值PA .当1)sin(=+ϕθ时,32029=-=最小值PA .解法二:将圆⎩⎨⎧==θθsin 2,cos 2y x 代入普通方程得422=+y x .如图所示可得,A P 1、A P 2分别是圆上的点到)4,3(A 的距离的最小值和最大值.易知:31=A P ,72=A P.说明:(1)在圆的参数方程⎩⎨⎧+=+=θθsin ,cos r b y r a x (θ为参数)中,),(b a A 为圆心,)0(>r r 为半径,参数θ的几何意义是:圆的半径从x 轴正向绕圆心按逆时针方向旋转到P 所得圆心角的大小.若原点为圆心,常常用)s i n ,c o s (θθr r 来表示半径为r 的圆上的任一点.(2)圆的参数方程也是解决某些代数问题的一个重要工具.典型例题十六例16 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AM OM =+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++,也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+.又22AB PQ =,即(22)()()()(21222122122x x r y y x x b y a x -=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q ,由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ① βαsin sin r r b y +=+, ②又由PBPA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+. 说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解.典型例题十七例17 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决.解法一:设圆122=+y x 上任一点)sin ,(cos θθP则有θcos =x ,θsin =y )2,0[πθ∈∴1cos 2sin +-=θθu ,∴2s i nc o s -=+θθu u ∴)2(sin cos +-=-u u θθ. 即2)sin(12+=-+u u ϕθ(u =ϕtan )∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u解之得:43-≤u . 分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d .∴1122≤++u u 解得:43-≤u . 另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理: 由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u ,此方程有实根,故)34)(1(4)42(2222≥+++-+=∆u u u u u ,解之得:43-≤u .说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.典型例题十八例18 已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+min )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x u y x得:0)1(2222=++-u y u y ∵0≥∆且228)1(4u u -+=∆, ∴0)12(42≥++-u u . 即)122≤--u u ,∴2121+≤≤-u ,∴21min -=u ,即21)(m in -=+y x 又0≥++m y x 恒成立即m y x -≥+恒成立.∴m y x -≥-=+21)(min 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立. ∴只须m 不小于)sin cos 1(θθ++-的最大值.设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)s i n ,c o s (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.典型例题十九例19(1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值. 分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x .可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ,得tt 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθtt 433433+≤≤-⇒t . 所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-.此时)co 52s i n2c o s 22φθθθ++-=-+-=-y x .所以y x 2-的最大值为52+-,最小值为52--.(法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=kk k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-. 令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.典型例题二十例20 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B . 设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费 即:2222)5()5(3y x a y x a +-≤++.∵0>a ,∴2222)5()5(3y x y x +-≤++ 化简整理得:222)415()425(≤++y x∴以点)0,425(为圆心415为半径的圆是两地购货的分界线.圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.。

相关文档
最新文档