1990中科院量子力学试题理论型

合集下载

中科院量子力学题90-11

中科院量子力学题90-11

a 2
中国科学院研究生院 2010 年招收攻读硕士研究生学位研究生入学统一考试试题 811 ) 试题名称:量子力学( 试题名称:量子力学(811 811)
ˆ、B ˆ 与泡利算符对易,证明: 一、 (1)设 A ˆ )(σ ˆ ⋅B ˆ ⋅B ˆ) = A ˆ + iσ ˆ) ˆ⋅A ˆ ⋅B ˆ(A (σ ˆ、σ ˆ 为单位算符。 ˆ x + iσ ˆ y ) 2 表示成 I ˆ x、σ ˆ y、σ ˆ z 的线性叠加, I (2)试将 ( Iˆ + σ
θ 2
θ 2
(4)求演化成 −ψ ( x, t ) 所需要的最短时间 tmin 。 三、设基态氢原子处于弱电场中,微扰哈密顿量是:
-2-
t ≤ 0; ⎧ 0, ˆ' =⎪ 其中 λ、T 为常数。 H t ⎨ − T ⎪ > λ ze , t 0. ⎩
(1) 求很长时间后 t ≫ T 电子跃迁到激发态的概率,已知基态中 a 为玻尔半 径,基态和激发态波函数为:
0 ⎤ ⎡1 λ ⎢ ˆ 三、 在 H = ⎢λ 3 0 ⎥ 中的粒子的本征值, 设 λ ≪ 1, 利用微扰求其本征值 (精 ⎥ ⎢0 0 λ − 2⎦ ⎥ ⎣ ⎧ 0, 0 < ϕ < ϕ0 ,求粒 other ⎩∞,
确到二级近似) ,并与精确求解相比较。
⎡ cos θ e −iωt ⎤ ⎡1 ⎤ ℏ 四、两个自旋为 的粒子,两个粒子分别为 X 1 = ⎢ ⎥ , X 2 = ⎢ ,求系统处 − iωt ⎥ 2 ⎣0 ⎦ ⎣ sin θ e ⎦
一、在一维无限深方势阱 ( 0 < x < a ) 中运动的粒子受到微扰
a 2a ⎧ < x<a 0, 0 < x < , ⎪ ⎪ 3 3 ' ˆ H ( x) = ⎨ 作用。试求基态能量的一级修正。 a 2a ⎪ −V , < x< 1 ⎪ 3 3 ⎩

中科院量子力学历年详解(phileas)

中科院量子力学历年详解(phileas)

2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。

答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。

答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。

答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。

答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。

答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。

在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。

2. 描述一下量子力学中的量子态叠加原理。

答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。

这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。

3. 解释什么是量子纠缠,并给出一个实际应用的例子。

答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。

中科大量子历年期末考试题

中科大量子历年期末考试题

说明,这些都是个人搜集到的历年题目,把每道题的出现的年份题目都标注了。

可能有遗漏,但是老大尽力了。

比如,07-08-1,就是07-08年的第一题。

07-08-1,09-10-1,就是说这道题在07-08年的第一题,09-10年的第一题都出现了。

一次类推。

求轻拍。

07-08-1,09-10-1,13-14-11. 么正算符在什么情况下也是厄米算符?x•p 是否为厄米算符?利用对偶空间的概念说明厄米算符的本征值为实数。

(5分) 答:若U 为幺正算符,则有1-+=U U ,而任意厄密算符P 应有P P =+。

所以当算符U 满足1-=UU 时,它也是一个厄密算符。

(1分)p x *不是厄密算符:p x x p x p p x *≠*=*=*+++)( (1分)设a 为态矢|a >在厄密算符A 作用下得到的本征值,则*||,||A a a a a A a a >=><=< (1分) *||||a A a a a a a a a ∴<>=<>=<> (1分)也即*a a =,a 为实数。

(1分)07-08-2,13-14-32设方势阱中运动粒子的能量本征态波函数为n x 'φ(),求*nnn dx x x ∞=''''φφ∑⎰()() 解:*nnn dx x x ∞=''''φφ∑⎰()() = ∑⎰∞=>''><'<0'||n n x x n dx=>'''<'⎰x x x d | = )(x x ''-'δ07-08-3,09-10-2,10-11-1,13-14-33求对易关系2,()ax bp e e x p ⎡⎤++⎣⎦,其中,a b 为常数解: 对)(),(→→x F p G 做幂级数展开,lk m j n i lm n lm n l km j ni lm n lm n x x x bx F p p p ap G ∑∑==→→,,,,,,,,)(,)(由基本公式],[],[],[],[D A BC CD B A BCD A i p x +==,αββαδ 可得: lk m j n i ilk m j n il k m j n i i lk m j n i ilk m j n il k m j n i i x x x x i x x x i x x x p p p p p i p p p ni p p p x ∂∂-=-=∂∂==-- 11],[],[,由此可推得,)()](,[)()](,[→→→→∂∂-=∂∂=x F x i x F p p G p i p G x ii ii同理,将(2)中的bpx e e ,α换成上题中的即可得,)()(→→p G x F,ax bpe e x p ⎡⎤++⎣⎦= ],[],[x e p e bp ax + = ],[],[bp ax e x e p -- = bp ax e pi e x i ∂∂-∂∂= )(bp axbe aei -2,()ax bp e e x p ⎡⎤++⎣⎦=(x+p) 2,()ax bp e e x p ⎡⎤++⎣⎦+2,()ax bp e e x p ⎡⎤++⎣⎦(x+p)=}],{},{2-2[ax bp bp axe p a e x b bpe axei +-07-08-4,13-14-14若i 和j 为厄米算符A 的不同本征矢,在什么情况下,i +j 也是A 的本征矢?解:设ja j A i a i A j i ==,则有ja i a j i A j i +=+)(而若i+j也是A 的本征矢,则存在c 使得)()(j i c j i A +=+ 所以必须有ji a a c == 。

量子力学统考真题答案解析

量子力学统考真题答案解析

量子力学统考真题答案解析近年来,量子力学成为物理学领域研究的热点,其在现代科技中的应用也越发广泛。

因此,掌握量子力学相关知识成为了很多学生的目标。

本文将对一些量子力学统考真题的答案进行解析,帮助读者更好地理解这一领域的知识。

真题一:在泊松括号的定义中,以下哪个性质是正确的?A. 反对称性B. 可加性C. 分配律D. 结合律答案解析:泊松括号的正确性质是反对称性,即对于量子力学中的两个算符A和B,其泊松括号满足{A, B} = -{B, A}。

可加性、分配律和结合律均不是泊松括号的性质。

真题二:以下哪个选项是描述薛定谔方程解的最准确的描述?A. 波函数是一种物理量B. 波函数是一种运动学参数C. 波函数描述了粒子的运动状态D. 波函数描述了粒子的位置答案解析:准确描述薛定谔方程解的选项是C,即波函数描述了粒子的运动状态。

量子力学中的波函数是对粒子运动状态的描述,可以通过求解薛定谔方程得到。

真题三:以下哪个选项是正确的?对于一个哈密顿量H,若其本征态满足ψ = Cψ,其中C为常数,则A. H是没有本征值的。

B. ψ是H的本征态。

C. ψ是H的本征值。

D. ψ不是H的本征态。

答案解析:本题要求判断给定情况下的哈密顿量H与其本征态之间的关系。

根据题目中给出的条件,可以得出结论:ψ是H的本征态。

因为薛定谔方程的解包含了波函数和能量本征值,ψ满足薛定谔方程,因此可以认为ψ是H的本征态。

真题四:以下哪个量是角动量算符的一个本征值?A. 平动动量B. 能量C. 电荷D. 波长答案解析:角动量算符的一个本征值是角动量,选项A的平动动量与角动量概念不同,选项B的能量与角动量没有直接关系,选项C的电荷也与角动量无关,只有选项D的波长与角动量有一定关系,因此答案选D。

通过以上对量子力学统考真题的答案解析,希望可以帮助读者更好地理解量子力学知识。

量子力学是一门复杂而且深奥的学科,需要持续的学习和思考。

只有通过理论的学习和实践的应用,我们才能真正掌握量子力学的精髓,为科学技术的发展做出贡献。

中科院量子力学历年详解

中科院量子力学历年详解

1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 详解 i 19
4 曾谨言《量子力学》卷 I 练习详解 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
量子力学的诞生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 波函数与 Schrödinger 方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 一维定态问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 力学量用算符表达 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 力学量随时间的演化与对称性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 中心力场 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 粒子在电磁场中的运动 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 表象变换与量子力学的矩阵形式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 自旋 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ii 目录 返回

硕士学位研究生入学量子力学试卷

硕士学位研究生入学量子力学试卷

附件中国科学院-中国科技大学2000年招收攻读硕士学位研究生入学试卷 试卷名称:量子力学(理论型) 选做五题,毎题20分1、 一个质量为m 的粒子被限制在一维区域0x a ≤≤运动,0t =的波函数为(),012cos sin x x x t A a a ππψ⎡⎤⎛⎫⎛⎫==+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ A 为常数。

(1) 后来某一时刻0t t =时波函数是什么?(2) 体系在0t t =和0t =时平均能量是多少? (3) 在0t t =时于势阱右半部(即2ax a ≤≤)发现粒子的几率是多少? 2、3、设粒子处于(),lm Y θϕ状态,计算角动量的x 分量和y 分量的方均差22,x y l l ∆∆4、记123,,σσσ为Pauli 矩阵,定义12,i σσσ±=±(1) 计算[][][]()233,,,,,,σσσσσσσ+-+-+和()2σ-, (2) 证明(ξ为常数 )332e e e ξσξσξσσ±±±=,证:[]3,2σσσ±±=± ()33322σσσσσσσ±±±±∴=±=±()()2233333322σσσσσσσσσσ±±±±==±=±反复利用即得()332nn σσσσ±±=± 两边同乘实数nξ得 ()332nn n nξσσσξσ±±=± 即()33322e ee e ξσξσξσξσσσ±±±±±==(3) 化简下面二式331112,e e e e ξσξσξσξσσσ--。

5、设0H 为一量子系统的能量算符,其本征态为0,1,2,⋅⋅⋅若体系受到微扰作用,微扰算符为ˆˆˆ,(H i A B λλ⎡⎤'=⎣⎦为实数),ˆA为厄密算符,ˆˆ,B C 为另外的厄密算符,且ˆˆˆ,.C i A B ⎡⎤=⎣⎦如在微扰作用前的基态0中,ˆˆˆ,,A B C 的平均值已知为000,,A B C ,试对微扰后的基态(非简并)计算厄密算符ˆB的平均值B ,精确到量级λ。

(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(NEW)中国科学技术大学《828量子力学》历年考研真题汇编(含部分答案)

(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
5.(30分)假设自由空间中有两个质量为m、自旋为 /2的粒子,它们 按如下自旋相关势
相互作用,其中r为两粒子之间的距离,g>0为常量,而 (i=l,2)为 分别作用于第1个粒子自旋的Pauli矩阵。
。算符 , 与升降算符之间的关系为:
其中
。对于体系基态,相关的平均值为:
所以,

最终得到:
。 4.(20分〉设有2维空间中的如下矩阵
(a)请考察A的厄米性;
(b)请写出A用 阵;
展开的表达式,其中
为著名的Pauli矩
(c)请求解A的本征方程,得出本征值和相应本征态。
解:(a)矩阵A的转置共轭为:
因此,矩阵A为厄米矩阵。 (b)Pauli矩阵分别为:

,则 , 与哈密顿量对易。对于 ,此结果是显然的。对
于,
体系的角动量 显然也与哈密顿量及自旋对易。因此力学量组 即为体系的一组可对易力学量完全集。
(b)为考虑体系的束缚态,需要在质心系中考查,哈密顿量可改写 为:
其中 为质心动量。由于质心的运动相当于一自由粒子,体系的波函数 首先可分离为空间部分和自旋部分,空间部分可以进一步分解为质心部 分和与体系内部结构相关的部分。略去质心部分,将波函数写成力学量 完全集的本征函数:
目 录
2014年中国科学技术大学828量子力学 考研真题
2013年中国科学技术大学828量子力学 考研真题
2012年中国科学技术大学828量子力学 考研真题
2011年中国科学技术大学809量子力学 考研真题

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、选择题(每题3分,共30分)1. 量子力学中,粒子的波函数ψ(x,t)描述了粒子的哪种物理量?A. 粒子的位置B. 粒子的动量C. 粒子在空间的分布概率D. 粒子的能量答案:C2. 海森堡不确定性原理表明了哪两个物理量的不确定性之间存在关系?A. 位置和能量B. 动量和时间C. 动量和位置D. 时间和能量答案:C3. 在量子力学中,一个粒子的波函数在某个位置的概率密度是该波函数在该位置的什么?A. 绝对值的平方B. 对数C. 导数D. 积分答案:A4. 根据泡利不相容原理,一个原子中的两个电子不能具有完全相同的一组量子数,这些量子数包括哪些?A. 主量子数和磁量子数B. 主量子数、磁量子数和自旋量子数C. 所有四个量子数D. 主量子数和自旋量子数答案:B5. 薛定谔方程是一个描述什么的波动方程?A. 粒子的波动性质B. 粒子的运动轨迹C. 粒子的能量分布D. 粒子的动量分布答案:A6. 在量子力学中,一个系统的状态可以用哪种数学对象来描述?A. 矩阵B. 向量C. 张量D. 标量答案:B7. 量子力学中的隧穿效应是指什么?A. 粒子通过一个高于其能量的势垒B. 粒子在两个势垒之间振荡C. 粒子在势垒内部反射D. 粒子在势垒外部反射答案:A8. 在量子力学中,一个二能级系统在两个能级间跃迁时,必须吸收或发射一个具有特定能量的光子,这个能量差是由什么决定的?A. 两个能级的差B. 光子的频率C. 系统的总能量D. 系统的动量答案:A9. 量子纠缠是指两个或多个粒子之间的一种什么关系?A. 经典力学关系B. 量子力学关系C. 热力学关系D. 电磁相互作用答案:B10. 下列哪个原理说明了在量子力学中测量一个物理量会改变系统的状态?A. 海森堡不确定性原理B. 哥本哈根解释C. 德布罗意假说D. 薛定谔猫佯谬答案:B二、简答题(每题10分,共40分)11. 简述德布罗意假说的内容及其对量子力学发展的意义。

《中科院量子力学考研真题及答案详解(1990—2010共40套真题)》

《中科院量子力学考研真题及答案详解(1990—2010共40套真题)》

ˆ2 之间的一切对易关系; ˆ, L ˆ , L ˆ 及算符 L (1) 写出角动量算符 L x y z ˆ2 与 L ˆ 的本征态,求出本征值; 亦为 L z ˆ 与L ˆ 的本征态。 (3) 证明当 l 0 时,态 lm 也是 L x y
三、请根据不确定关系估计氢原子基态的能量。
ˆ2 与 L ˆ iL ˆ ˆ 的本征态,本征值分别为 l (l 1) 2 和 m ,证明 L (2) 设 lm 是 L z x y lm
1 1 1 1 ˆ , a† ˆ , 。 xi p x i p 2 2 † a, a 1; (1) 证明 a
ˆ; a † 写出哈密顿量 H ˆ 的本征矢,本征值为 E 。证明 a n 为 H ˆ 的本征矢,本征值为 ( E ) 。 (3) 设 n 为 H n n
Ze Z 3 Zr a Ze 3 r 2 , a为 e (r ) 2 ,球外电势为 ,类氢原子基态波函数 1s R 2 2R a3 r
玻尔半径。 四、 ˆ, J ˆ 的表达式。 ˆS ˆ S (1) 用 j , l , s 写出 L ˆ 的可能值。 ˆS (2) 对于 l 2, s 1 2 ,计算 L
Hale Waihona Puke (3) 一维谐振子的维里定理是 T V ,试利用这个定理证明: x p
x x 2 x 2 , p p 2 p 2 。
,其中 2
三、精确到微扰论的一级近似, 试计算由于不把原子核当作点电荷, 而作为是半径为 R , 均匀带电荷 Ze 的球体所引起的类氢原子基态能量的修正。已知球内静电势
3
中国科学院-中国科技大学 1991 年招收攻读硕士学位研究生入学试卷

(完整版)量子力学期末考试题及解答

(完整版)量子力学期末考试题及解答

一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。

2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。

解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。

1998中科院量子力学试题理论型

1998中科院量子力学试题理论型

三、一个质量为 m 的粒子在一维势场: , x 3a a x 3a 0, V ( x) x a V0 , 0, 3a x a 中运动。 (1) V0 0 时,求粒子的能谱;
(2) V0 0 时,用一级微扰法求基态能量。
四、设有算符 ai 和 ai† 满足如下对易关系( ai† 是 ai 的厄密共轭, i, j 1, 2 ) ;
中运动。
(2) 求存在且仅存在一个束缚态的条件。
二、自旋为
(1999 年(理论型)第三题)
的带电粒子(电荷为 q ,质量为 m )受到均匀磁场 B Be y 的作用( e y 为 y 2 ˆ eB s ˆy 为自旋算符的 y 分量) ˆy 。 方向的单位矢量) ,其哈密顿量为 H (s ,如果 mc t 0 时粒子的自旋指向正 x 轴方向,求粒子自旋平均值的时间演化。(1999 年(理论 型)第四题)
† † † ai a † ai a j a j ai 0, ai† a † j a j ai a † a i a † a a † a 的能谱。 试求哈密顿量 (0 1 0) H 2 2 0 1 1 1 2 2 1 1
† ˆ 化为二个不耦合的谐振子 (提示:仅利用 a1和a2 , a1†和 a2 之间的线性变换,可将 H
的哈密顿量之和。 ) 五、将上题哈密顿量 中与 有关的部分当作微扰,请用定态微扰论求出第一激发态的 修正。 (第一激发态的二度简并的。 )
试题名称:1998 量子力学(理论型)
第1页
共1页
中国科学院-中国科技大学 1998 年招收攻读硕士学位研究生入学试卷
试题名称: 量子力学(理论型)
说明:共六道大题,选作五题,每题 20 分。 一、质量为 m 的粒子在一维势场 0, x a (V0 0) V ( x) V0 , x a (1) 求基态能量 E0 满足的方程:

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

中科院量子力学题90-11

中科院量子力学题90-11

θ 2
θ 2
(4)求演化成 −ψ ( x, t ) 所需要的最短时间 tmin 。 三、设基态氢原子处于弱电场中,微扰哈密顿量是:
-2-
t ≤ 0; ⎧ 0, ˆ' =⎪ 其中 λ、T 为常数。 H t ⎨ − T ⎪ > λ ze , t 0. ⎩
(1) 求很长时间后 t ≫ T 电子跃迁到激发态的概率,已知基态中 a 为玻尔半 径,基态和激发态波函数为:
1 2 1 2
中国科学院研究生院 2007 年招收攻读硕士研究生学位研究生入学统一考试试题 试题名称:量子力学 B 卷
一、考虑一维阶梯势 V ( x) = ⎨
⎧V0 , ⎩ 0,
x > 0(V0 > 0) x<0
设粒子从右边向左边入射,试求反射系数和入射系数。 二、电子处于沿 + z 方向大小为 B 的均匀磁场中。设 t = 0 时刻电子自旋沿 + y 方 向。 (1)试求 t = 0 时电子自旋波函数; (2)试分别求出 t > 0 时电子自旋沿 + x, + y, + z 方向的概率。 三、粒子在 V ( 100 ( r ) = R10 ( r ) Y00 (θ , ϕ ) = e ; 3 4π 2 a 3 1 � cos θ ψ 210 ( r ) = R21 ( r ) Y10 (θ , ϕ ) = 3 4π (2a) 2
r − 2ra e . 3a
(2)基态电子跃迁到下列哪个激发态的概率等于零?简述理由。 (a)ψ 200 (b)ψ 211 (c)ψ 21−1 (d)ψ 210
一、在一维无限深方势阱 ( 0 < x < a ) 中运动的粒子受到微扰
a 2a ⎧ < x<a 0, 0 < x < , ⎪ ⎪ 3 3 ' ˆ H ( x) = ⎨ 作用。试求基态能量的一级修正。 a 2a ⎪ −V , < x< 1 ⎪ 3 3 ⎩

量子力学经典题目及解答.ppt

量子力学经典题目及解答.ppt

00
2 er2 d ( r 2 ) er2 0
0
2
I
,A
1
1/4
,
1
1/4
ex2 /2
<2>
2d xA 2x2 e 2xd x 1 ,(分 部 积 分 )
0
A 2 x 2e 2 xdx
A2
[ x 2e 2 x 2 xe 2 xdx ]
0
2
0 0
A2 [ 1
偶宇称解)。
解:定态schr.eq
2
2
d2 dx2
u(x)
E
(1)
u0
(x) 2(E u) 0 (1)
2
ⅠⅡ
-a
o
Ⅲ a
即,222E(u02E0), 0
xa x a
(2) (3)
令 k 2 2 2 E ,2 2 ( u 0 2 E ), 解 为 : , ( x ( ) x ) A a e e ik x x B b e e i k x x
4
f1 f
sin(
)x
2.试将以下波函数归一化:(1)Aex2/2,(2)Ax0e, xx,x00
(3)(x)Ax(ax),0xa
解:<1> 2 dx A2 ex2 dx A2I 1
2
I 2 ex2 dx e y2 dy e(x2 y2 )dxdy er2 rdrd
1khTv1c2Tv
decc2 1vv/T 3d v1c c1 2vv3/dT vc c1 2Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式E n
解: 角动量量子化条件,
ers22
Ln

量子力学例题与解答

量子力学例题与解答

《量子力学》复习例题与题解一、基本概念1. 波粒二象性微观粒子具有波粒二象性,即微观粒子既有波动性—弥漫性,又有粒子性—不可 分割性,德波罗意关系式是两者的统一: k p E==,ω 关系式的左边体现粒子性;右边体现波动性。

2. 测不准关系描述微观粒子体系的力学量算符一般是不可对易的,也就是说,这两个力学量不能同时测准,他们的不确定度可用测不准关系来描述:222]ˆ,ˆ[41)ˆ()ˆ(B A B A ≥∆∆ 3. 本征方程如下方程:n n n Q Q ψψ=ˆ(其中n Q 为常数)称为力学量算符Q ˆ的本证方程,n Q 为 力学量算符Q ˆ的相应于本征态nψ的本征值。

4. 简并度一个本征值相应于多个本征态的情形称为简并情形,本征态的个数称为相应于该本征值的简并度。

5. 全同性原理全同微观粒子体系,当两个粒子交换坐标时,波函数要末不变号,要末变号,即概率分布不变。

6..波函数微观粒子体系的态必须用具有统计意义的波函数),(t x ψ来描述,2),(t x ψ为概率密度,即在t 时刻,x附近单位体积内找到微观粒子的概率 7. 归一化常数为了让波函数),(t x ψ表示绝对的概率幅,),(t xψ必须归一化,即1),(2=⎰τψd t x A ,其中的A 即为归一化常数8. 力学量完全测量集合完全确定一微观粒子体系的状态所需要的力学量测量集合,这些力学量必须满足:他们是可测量;它们必须互相独立;与他们相应的力学量算符必须两两对易 9. 微扰理论当'ˆˆˆ0H H H +=,且>><<<<0ˆ'ˆH H ,零级近似的本征方程)0()0()0(0ˆnn n E H ψψ=可以 严格求解时,可用微扰理论来处理,即在零级近似)0()0(,k k E ψ的基础上,根据需要 的精度逐步进行一级、二级或高级修正。

10. 玻色子与费密子自旋量子数s 为整数的微观粒子称为玻色子;自旋量子数s 为半整数的微观粒子称为费米子;前者对波函数有对称性的要求;后者对波函数有反对称性的要求,受泡里原理的约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
n

Hale Waihona Puke n E0 n x 0
2
常数
ˆ2 ˆ p 这里 En 是哈密顿量 H V ( x) 的本征能量,相应的本征态为 n 。求出该常数。 2m 三、设一质量为 的粒子在球对称势 V (r ) kr (k 0) 中运动。利用测不准关系估算其 基态的能量。 四、电子偶素( e e 束缚态)类似于氢原子,只是用一个正电子代替质子作为核,在非 相对论极限下,其能量和波函数与氢原子类似。今设在电子偶素的基态里,存在一 ˆ 和M ˆ 8 M ˆ M ˆ 其中 M ˆ 是电子和正电子的自旋磁矩 种接触型自旋交换作用 H e p e p 3 ˆ , q e) 。利用一级微扰论,计算此基态中自旋单态与三重态之间的能 ˆ q S (M mc 量差,决定哪一个能量更低。对普通的氢原子,基态波函数: 1 r a e2 1 2 100 e , a , 3 2 me a c 137
五、一质量为 的粒子被势场 V (r ) V0 e
r a
(V0 a 0) 所散射,用一级玻恩近似计算微
分散射截面。
试题名称:1990 年 量子力学(理论型)
第1页
共1页
中国科学院-中国科技大学 1990 年招收攻读硕士学位研究生入学试卷
试题名称: 量子力学(理论型)
说明:共五道大题,无选择题,计分在题尾标出,满分 100 分。 一、在 t 0 ,氢原子波函数为 1 (r , 0) 2 100 210 2 211 3 211 10 其中右方函数下标表示量子数 nlm 。忽略自旋和辐射跃迁。 (1) 此系统的平均能量是多少? (2) 这系统在任意时刻处于角动量投影 Lz 0 的几率是多少? 二、利用坐标与动量算符之间的对易投影关系,证明
相关文档
最新文档