2011量子力学期末考试题目

合集下载

【试题】量子力学期末考试题库含答案22套

【试题】量子力学期末考试题库含答案22套

【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。

(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。

三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。

五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。

性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。

3、全同费米子的波函数是反对称波函数。

两个费米子组成的全同粒子体系的波函数为:。

4、=,因为是厄密算符,所以是厄密算符。

5、设和的对易关系,是一个算符或普通的数。

以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。

坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。

6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧z lC.i∧x l D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B.ψ一定是 ∧B 的本征态; C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。

8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。

10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA.)1(21+N N ; B.)2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D.z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。

080910203量子力学I期末考题(A)答案

080910203量子力学I期末考题(A)答案

080910203量子力学I期末考题(A)答案山东师范大学2014年期末考试试题(A)答案及评分标准(时间:120分钟共100分)课程编号:080910203 课程名称:量子力学适用年级:2011 学制:四年适用专业:物理学、光电试题类别: A一、简答题:(本题共5小题,每小题5分,共25分)1、在体系所处的某一个状态中测量不同的力学量,其测值概率分布是否相同?试举例说明。

答:在体系所处的状态中测量不同的力学量其测值概率分布是不一样的。

(2分)比如某状态中测量出的坐标概率分布与动量概率分布可用不同函数来表示。

(3分)(给出其它合适的例子同样给分)2、试讨论:若两算符对易,是否在所有态下它们都同时有确定值。

答:对易算符可以有共同的本征态,在共同本征态下它们同时取确定值。

(3分)但若所给定的态不是它们的共同本征态,在此态下两算符是不能同时取确定值的。

比如)2()1(βα是z s1?的本征态,尽管0]?,?[12=z s S ,但它不是2?S 的本征态。

(2分)(不给例子,讨论合适也给分)3、试述全同粒子的特点以及对波函数的要求。

答:全同粒子的特点:任意交换两个粒子的位置不影响体系的状态。

(3分)这个特点要求描述全同粒子的波函数对任意两个粒子的交换要么是对称的,要么是反对称的。

(2分) 4、使用狄拉克符号导出能量本征值方程在动量表象中的表示。

答:在坐标表象下的能量本征值方程为>>=+ψψμ||)2?(2E V p(1分)方程两边取动量表象,有><>=<+><ψψψμ||||2?|2p E V p pp (1分)令>=<ψ?|)(p p ,并加入完备性关系?><|''|'p p dp ,并利用>p |动量算符属于本征值p 的本征函数,有(1分))(|''||')(22p E p p V p dp p p ?ψ?μ=>><<+? 即 )()'(')(2'2p E p V dp p p pp μ=+? (2分)(从松处理,如果写的是含时薛定谔方程的动量表象,只扣1分)5、以α和β分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。

量子力学期末试题及答案

量子力学期末试题及答案

(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜

2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜

2⎟

i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3

量子力学考试题

量子力学考试题

量子力学考试题量子力学考试题(共五题,每题20分)1、扼要说明:(a )束缚定态的主要性质。

(b )单价原子自发能级跃迁过程的选择定则及其理论根据。

2、设力学量算符(厄米算符)∧F ,∧G 不对易,令∧K =i (∧F ∧G -∧G ∧F ),试证明:(a )∧K 的本征值是实数。

(b )对于∧F 的任何本征态ψ,∧K 的平均值为0。

(c )在任何态中2F +2G ≥K3、自旋/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为S H ??ω=∧H =ω∧z S +ν∧x S (ω,ν>0,ω?ν)(a )求能级的精确值。

(b )视ν∧x S 项为微扰,用微扰论公式求能级。

4、质量为m 的粒子在无限深势阱(0<x</x5、某物理体系由两个粒子组成,粒子间相互作用微弱,可以忽略。

已知单粒子“轨道”态只有3种:a ψ(→r ),b ψ(→r ),c ψ(→r ),试分别就以下两种情况,求体系的可能(独立)状态数目。

(i )无自旋全同粒子。

(ii )自旋 /2的全同粒子(例如电子)。

量子力学考试评分标准1、(a ),(b )各10分(a )能量有确定值。

力学量(不显含t )的可能测值及概率不随时间改变。

(b )(n l m m s )→(n’ l’ m’ m s ’)选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e →r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分(a )∧K 是厄米算符,所以其本征值必为实数。

(b )∧F ψ=λψ,ψ∧F =λψ K =ψ∧K ψ=i ψ∧F ∧G -∧G ∧F ψ =i λ{ψ∧G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧F 2+∧G 2-∧Kψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧F -i ∧G )ψ︱2≥0 ∴<∧F 2+∧G 2-∧K >≥0,即2F +2G ≥K 3、(a),(b)各10分(a) ∧H =ω∧z S +ν∧x S =2 ω[1001-]+2 ν[0110]=2 [ωννω-]∧H ψ=E ψ,ψ=[b a ],令E =2λ,则[λωννλω---][b a ]=0,︱λωννλω---︱=2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 22νω+,E 2=222νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+2 22ων)=ω+ων22E 1≈-2 [ω+ων22],E 2 =2[ω+ων22](b )∧H =ω∧z S +ν∧x S =∧H 0+∧H’,∧H 0=ω∧z S ,∧H ’=ν∧x S∧H 0本征值为ω 21±,取E 1(0)=-ω 21,E 2(0)=ω 21相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ]则∧H ’之矩阵元(S z 表象)为'11H =0,'22H =0,'12H ='21H =ν 21E 1=E 1(0)+'11H +)0(2)0(12'21E E H-=-ω 21+0-ων2241=-ω21-ων241 E 2=E2(0)+'22H +)0(1)0(22'12E E H -=ω 21+ων2414、E 1=2222ma π,)(1x ψ=0sin 2a xa π a x x a x ≥≤<<,00x =dx x a ?021ψ=2sin 202a dx a x x a a=?π x p =-i ?=a dx dx d011ψψ-i ?=aa x d a 020)sin 21(2π x xp =-i ??-=aaa x d a x x a i dx dx d x 0011)(sin sin 2ππψψ =-a a x xd a i 02)(sin 1π =0sin [12a a x x a i π --?adx a x 02]sin π=0+?=ai dx ih 02122 ψ 四项各5分5、(i ),(ii )各10分(i )s =0,为玻色子,体系波函数应交换对称。

量子力学期末考试题库含答案22套

量子力学期末考试题库含答案22套

量子力学期末考试题库含答案22套量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明)??(22x x p x x p i -是厄密算符(5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x p之间的测不准关系。

(6分)二、(15分)已知厄密算符B A ?,?,满足1??22==B A,且0=+A B B A ,求 1、在A 表象中算符A、B ?的矩阵表示; 2、在B 表象中算符A的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。

三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021?θ?θ?θψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2L和z L ?的取值几率和平均值;2、0>t 时体系的波函数,并给出此时体系的E 、2L ?和z L ?的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出+????? ??-=C C C H000000200030001? 这里,H H H'+=)0(,C 是一个常数,1<<="">五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态???? ??=+0121和=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -?=ρρηψ2、定态:定态是能量取确定值的状态。

2011量子力学期末考试题目

2011量子力学期末考试题目

第一章⒈玻尔的量子化条件,索末菲的量子化条件。

⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。

表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。

表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。

⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。

爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。

⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。

②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。

⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。

⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。

量子力学2011级量子力学期末试卷A

量子力学2011级量子力学期末试卷A

徐州工程学院试卷2013 — 2014 学年第 二 学期 课程名称 量子力学 试卷类型 期末A 考试形式 闭卷 考试时间 100 分钟命 题 人 胡峰 2014 年5月21日 使用班级 11测试、11光伏及11电子1、2班 教研室主任 年 月 日 教学院长 年 月 日 姓 名 班 级 学 号一、填空题(共10小题,每空2分,共计20分)1. 电子被150V 的电压加速,则电子的德布罗意波长为 。

(电子的质量为kg 31101.9-⨯,电子的电量为1910602.1-⨯库仑)2.波函数的标准条件为 。

3.一维线性谐振子的能级为 。

4.利用ˆxL 和ˆy L 的对易关系,得()()y x L L ∆⋅∆≥ 。

5.偶极跃迁中,角量子数与磁量子数的选择定则分别是 。

6.电子处于某能态的寿命为81.0010s -⨯,则该能态能量的最小不确定度E ∆为 。

7. 描写电子状态第四个变量是 。

8. 用Dirac 符号来表示本征函数封闭性表达式为 。

9.以线性谐振子哈密顿的本征态n 为基矢,†ˆ=an 。

10.全同性原理为: 。

二、简答题(5分) 1.量子力学的基本假定。

三、证明题(共2小题,共计10分) 1.(6分)证明z L 的本征态下,x y L L 0==2.(4分)证明[,]x y z L L i L =。

四、(10分)设2()cos (0)x xx x aa a ππψ=<<是一维无限深势阱中运动粒子的波函数,求在此任意态下粒子能量的可能值和相应的几率。

五、(10分) 一质量为m 的粒子在一维势阱中运动,求能量的一级近似0,2,20,2()0,2,x a x a a x a V x a x a V a x a∞<->⎧⎪-<<-⎪=⎨<<⎪⎪-<<⎩六、(10分)求01ˆ102xS⎛⎫= ⎪⎝⎭及ˆ2yiSi-⎛⎫= ⎪⎝⎭的本征值和所属的本征函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章⒈玻尔的量子化条件,索末菲的量子化条件。

⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。

表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。

表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。

⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。

爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。

⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。

②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。

⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。

⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。

⒚光谱线:光经过一系列光学透镜及棱镜后,会在底片上留下若干条线,每个线条就是一条光谱线。

所有光谱线的总和称为光谱。

⒛线状光谱:原子光谱是由一条条断续的光谱线构成的。

21.标识线状光谱:对于确定的原子,在各种激发条件下得到的光谱总是完全一样的,也就是说,可以表征原子特征的线状光谱。

22.戴维逊-革末实验证明了什么?第二章⒈量子力学中,原子的轨道半径的含义。

⒉波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。

按照这种解释,描写粒子的波是几率波。

⒊波函数的特性:波函数乘上一个常数后,并不改变在空间各点找到粒子的几率,即不改变波函数所描写的状态。

⒋波函数的归一化条件 )7-1.2( 1),,,( 2⎰=ψ∞τd t z y x ⒌态叠加原理:若体系具有一系列不同的可能状态Ψ1,Ψ2,…Ψn ,则这些可能状态的任意线性组合,也一定是该体系的一个可能的状态。

也可以说,当体系处于态Ψ时,体系部分地处于态Ψ1,Ψ2,…Ψn 中。

⒍波函数的标准条件:单值性,有限性和连续性,波函数归一化。

⒎定态:微观体系处于具有确定的能量值的状态称为定态。

定态波函数:描述定态的波函数称为定态波函数。

⒐定态的性质:⑴由定态波函数给出的几率密度不随时间改变。

⑵粒子几率流密度不随时间改变。

⑶任何不显含时间变量的力学量的平均值不随时间改变。

⒑本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。

常数f n 为该算符的第n 个本征值。

波函数ψn 为f n 相应的本征波函数。

⒒束缚态:在无穷远处为零的波函数所描述的状态。

基态:体系能量最低的态。

⒓宇称:在一维问题中,凡波函数ψ(x)为x 的偶函数的态称为偶(正)宇称态;凡波函数ψ(x)为x 的奇函数的态称为奇(负)宇称态。

⒔在一维空间内运动的粒子的势能为(μω2x 2)/2, ω是常数,这种粒子构成的体系称为线性谐振子。

线性谐振子的能级为:⋅⋅⋅=+=,,,, ),(321021n n E n ω ⒕透射系数:透射波几率流密度与入射波几率流密度之比。

反射系数:反射波几率流密度与入射波几率流密度之比。

⒖隧道效应:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象。

⒗求证:在薛定谔方程中只有当势能V(r)为实函数时,连续性方程0=⋅∇+∂∂J tt r w ),( 才能成立。

⒘设一个质量为μ的粒子束缚在势场中作一维运动,其能量本征值和本征波函数分别为E n ,ψn ,n=1,2,3,4、…。

求证:⒙对一维运动的粒子,设Ψ1(x)和Ψ2(x)均为定态薛定谔方程的具有相同能量E 的解,求证: ⒚一粒子在一维势场中运动,求粒子的能级和对应的波函数。

⒛体系处于ψ(x,t)态,几率密度ρ(x,t)=?几率流密度j(x,t)=? xJ t ∂∂-=∂∂ρ证明: 21.设粒子波函数为ψ(r,t),写出粒子几率守恒的微分表达式。

22.量子力学的波函数与经典的波场有何本质性的区别?答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。

23.什么是量子力学中的定态?它有什么特征?24.设),(t p C 为归一化的动量表象下的波函数,写出dp t p C 2),( 的物理意义。

25.设质量为μ粒子处于如下势垒中若U 0>0,E>0,求在x=x 0处的反射系数和透射系数。

26.设质量为μ粒子沿x 轴正方向射向如下势垒若V 0>0,E>0,求在x=x 0处的反射系数和透射系数。

27.一个粒子的波函数为求:①归一化常数A ;②画出)(x ψ与x 关系图,并求粒子出现最大几率的点。

③在a x ≤≤0区间找到粒子的几率。

在a b =和a b 2=时的几率。

④x 的平均值。

28.I A =2ˆ,I 为单位矩阵,则算符A ˆ的本征值为__________。

29.自由粒子体系,__________守恒;中心力场中运动的粒子___________守恒。

30.力学量算符应满足的两个性质是 。

厄密算符的本征函数具有 。

第三章⒈算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

⒉厄密算符的定义:如果算符F ˆ满足下列等式()ˆ ˆdx F dx F φψφψ**⎰⎰=,则称F ˆ为厄密算符。

式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。

推论:量子力学中表示力学量的算符都是厄密算符。

⒊厄密算符的性质:厄密算符的本征值必是实数。

厄密算符的属于不同本征值的两个本征函数相互正交。

⒋简并:对应于一个本征值有一个以上本征函数的情况。

简并度:对应于同一个本征值的本征函数的数目。

⒌氢原子的电离态:氢原子中的电子脱离原子的束缚,成为自由电子的状态。

电离能:电离态与基态能量之差⒍氢原子中在半径r 到r+dr 的球壳内找到电子的概率是: dr r r R dr r W n lnl 22)()(= 在方向(θ,φ)附近立体角dΩ内的概率是: d ΩY d Ωw lm lm 2),(),(ϕθϕθ=⒎两函数ψ1和ψ2正交的条件是: 0τ =⎰*d 21ψψ式中积分是对变量变化的全部区域进行的,则称函数ψ1和ψ2相互正交。

⒏正交归一系:满足正交条件的归一化本征函数φk 或φl 。

⒐厄密算符本征波函数的完全性:如果φn (r)是厄密算符F ˆ的正交归一本征波函数,λn是本征值,则任一波函数ψ(r)可以按φn (r)展开为级数的性质。

或者说φn(r)组成完全系。

⒑算符与力学量的关系:当体系处于算符F ˆ的本征态φ时,力学量F 有确定值,这个值就是算符Fˆ在φ态中的本征值。

力学量在一般的状态中没有确定的数值,而有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。

每个可能值都以确定的几率出现。

⒒算符对易关系:[]A B B A B ,Aˆˆˆˆˆˆ-≡ 。

可对易算符:如果[]0ˆˆ=B ,A,则称算符A ˆ与B ˆ是可对易的; 不对易算符:如果[]0ˆˆ≠B ,A,则称算符A ˆ与B ˆ是不对易的。

⒓两力学量同时有确定值的条件:定理1:如果两个算符G Fˆ ˆ和有一组共同本征函数φn ,而且φn 组成完全系,则算符对易。

定理2:如果两个算符G Fˆ ˆ和对易,则这两个算符有组成完全系的共同本征函数。

⒔测不准关系:当两个算符不对易时,它们不能同时有确定值,⒕量子力学中力学量运动守恒定律形式是:量子力学中的能量守恒定律形式是:⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。

宇称算符:表示空间反演运算的算符。

宇称守恒:体系状态的宇称不随时间改变。

⒗一维谐振子处在基态t i x e x ω-α-πα=ψ2222)(,求: (1) 势能的平均值2221x Uμω=; (2) 动能的平均值μ=22p T ; (3) 动量的几率分布函数。

⒘证明下列关系式:μννδμ i p =⎥⎦⎤⎢⎣⎡ˆ,, ),,( ,,ˆz y x L L ==⎥⎦⎤⎢⎣⎡μμ02⒙量子力学中的力学量用什么算符表示?为什么?力学量算符在自身表象中的矩阵是什么形式?⒚表示力学量的厄密算符的所有本征函数构成 ;力学量的取值范围就是该算符的所有 。

⒛厄密算符有什么性质?①试证明厄密算符的本征值必是实数。

②试证明厄密算符的属于不同本征值的两个本征函数相互正交。

21. 证明算符关系:22. 试证明算符y z x p z p y L ˆˆˆ-=是厄密算符。

23. 写出角动量分量xL ˆ和y L ˆ之间的对易关系。

24. )(x f 是x 的可微函数,证明:x x f i x f p x ∂∂-=⎥⎦⎤⎢⎣⎡)()(,ˆ 25. B A ˆ,ˆ各为厄密算符,试证明:B A ˆˆ也是厄密算符的条件是B A ˆˆ与对易。

26. 粒子在宽度为a 的非对称一维无限深势阱中,其本征能量和本征波函数为: 当体系处于状态 )()(x a Ax x -=ψ时(A 是归一化常数),证明: ①960125316π=∑∞⋅⋅⋅,,,n ;②9614531π=∑∞⋅⋅⋅=,,n n 27. 氢原子处在基态001a re a r -=πϕθψ),,(,求: (1) r 的平均值;(2) 势能r e 2-的平均值 (3) 动量的几率分布函数。

28. 一维运动粒子的状态是求:(1) 粒子动量的几率分布函数;(2)粒子的平均动量。

相关文档
最新文档