求线段最小值

合集下载

二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。

在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。

关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。

小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。

变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。

分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。

,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。

分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。

变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。

初三数学两之间线段最短求最值四大类型

初三数学两之间线段最短求最值四大类型

两之间线段最短求最值四大类型【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。

【方法技巧】模型一“一线两点”型(一动+两定)类型一异侧线段和最小值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.【解题思路】根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.类型二同侧线段和最小值问题(将军饮马模型)问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.【解题思路】将两定点同侧转化为异侧问题,同类型一即可解决.作点B关于l 的对称点B′,连接AB′,与直线l的交点即为点P.类型三同侧差最大值问题问题:两定点A,B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B,P 三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延长,与直线l的交点即为点P.类型四异侧差最大值问题问题:两定点A,B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.【解题思路】将异侧点转化为同侧,同类型三即可解决.模型二“一点两线”型(两动+一定)问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN周长最小.【解题思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之间线段最短,将三条线段转化到同一直线上即可.模型三“两点两线”型(两动+两定)问题:点P,Q是∠AOB的内部两定点,在OA上找点M,在OB上找点N,使得四边形PQNM周长最小.【解题思路】要使四边形PQNM周长最小,PQ为定值,即求得PM+MN+NQ的最小值即可,需将线段PM,MN,NQ三条线段尽可能转化在一条直线上,因此想到作点P关于OA的对称点,点Q关于OB的对称点.【典例分析】【典例1-1】基本模型问题:如图,定点A,B位于动点P所在直线l同侧试确定点P的位置,使AP+BP的值最小.解题思路:一找:作点B关于直线l的对称点B',连接AB′,与直线l交于点P;二证:验证当A,P,B'三点共线时,AP+BP取得最小值.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例1-2】模型演变问题:如图,定点A,B位于动点P所在直线l同侧,在直线l上确定点P的位置,使|P A ﹣PB|的值最大.解题思路:一找:连接AB并延长,交直线l于点P;二证:验证当A,B,P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-3】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使AP+BP 的值最小.解题思路:一找:连接AB交直线l于点P;二证:验证当A,P,B三点共线时,AP+BP取得最小值.三计算.请写出【模型演变】中解题思路“二证”的过程.【典例1-4】模型演变问题:如图,定点A,B位于动点P所在直线l的两侧,试确定点P的位置,使|P A﹣PB|的值最大.解题思路:一找:作点B关于直线l的对称点B',连接AB'并延长,交直线于点P;二证:验证当A,B',P三点共线时,|P A﹣PB|取得最大值.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式1-1】如图,已知菱形ABCD的边长为4,∠ABC=60°,点N为BC的中点,点M是对角线AC上一点,则MB+MN的最小值为.【变式1-2】如图,在矩形ABCD中,AB=4,BC=6,点O是对角线BD的中点,E是AB 边上一点,且AE=1,P是CD边上一点,则|PE﹣PO|的最大值为.【变式1-3】如图,在菱形ABCD中,AB=12,∠DAB=60°,对角线AC,BD交于点O,点E,F分别在BD,AB上,且BF=DE=4.点P为AC上一点,则|PF﹣PE|的最大值为.【变式1-4】结论:如图,抛物线y=ax2﹣bx﹣4与x轴交于,A(﹣1,0),B(4,0)两点,与y轴交于点C,直线l为该抛物线的对称轴,点M为直线l上的一点,则MA+MC 的最小值为.【典例2】模型分析问题:点P是∠AOB内的一定点,点M,N分别为OA,OB上的动点,试确定点M,N 的位置,使△PMN的周长最小.解题思路:一找:分别作点P关于OA,OB的对称点P′,P“,连接P'P“,分别交OA,OB于点M,N;二证:验证当P′,M,N,P″四点共线时,△PMN的周长最小.三计算.注:当三个点均为动点时,先假定一个点为定点,再将其特化为“一定两动“问题请写出【模型分析】中解题思路“二证”的过程.【变式2-1】如图,在四边形ABCD中,∠BAD=121°,∠B=∠D=90°,点M、N分别在BC、CD上,(1)当∠MAN=∠C时,∠AMN+∠ANM=°;(2)当△AMN周长最小时,∠AMN+∠ANM=°.【变式2-2】如图,在边长为2的等边△ABC中,点P,M,N分别是BC,AB,AC上的动点,则△PMN周长的最小值为.【典例3】模型分析问题:点P,Q是∠AOB内部的两定点,点M,N分别是OA,OB上的动点,试确定点M,N的位置,使四边形PMNQ的周长最小.解题思路:一找:作点P关于OA的对称点P',点Q关于OB的对称点Q′,连接P′Q′,分别交OA,OB于点M,N;二证:验证当P′,M,N,Q′四点共线时,四边形PQNM的周长最小.三计算.请写出【模型分析】中解题思路“二证”的过程.【变式3-1】如图,已知正方形ABCD的边长为5,AE=2DF=2,点G,H分别在CD,BC 边上,则四边形EFGH周长的最小值为.【变式3-2】如图,在矩形ABCD中,AB=6,BC=3,点E是AB的中点,若点P,Q分别是边BC,CD上的动点,则四边形AEPQ周长的最小值为.【典例4-1】基本模型问题:如图,点A,B为直线l同侧两定点,M,N为直线l上的动点,且MN的长度为定值,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边.构造▱AMNA′,作点A′关于直线l的对称点A“,连接A “B,交直线l于点N,再确定点M;二证:验证当A“,N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【基本模型】中解题思路“二证”的过程.【典例4-2】模型演变问题:如图,直线a∥b,定点A,B分别位于直线a的上方和直线b的下方,M,N分别为直线a,b上的动点,且MN⊥a,试确定点M,N的位置,使AM+MN+BN的值最小.解题思路:一找:以AM,MN为邻边构造▱AMNA′,连接A'B;二证:验证当A',N,B三点共线时,AM+MN+BN的值最小.三计算.请写出【模型演变】中解题思路“二证”的过程.【变式4-1】如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AM+CN的最小值为.【变式4-2】如图,在矩形ABCD中,AB=,BC=1,将△ABD沿射线DB方向平移得到△A'B'D',连接B'C,D'C,求B'C+D'C的最小值.专题12 两之间线段最短求最值(四大类型含将军饮马)(知识解读)【专题说明】“两点之间,线段最短”是初中数学中的基本定理之一,也是人们在生活中认识到的基本事实,而对于数学中的最值问题,学生往往无从下手,其实往往就是这个基本定理的应用。

几何专项——线段最值问题

几何专项——线段最值问题

1 / 14线段最值问题一、将军饮马问题作法图形原理在直线l 上求作点P ,使PA +PB 最小.连接AB ,与l 交点即为P.两点之间,线段最短. PA +PB 最小值即为AB 长.在直线l 上求一点P ,使AP BP +最短将A 对称到'A ,连接'A B ,与l 的交点即为点P两点之间,线段最短.'AP BP A B +=在直线12l l 、上分别求点M N 、,使PMN △周长最小分别将点P 关于两直线对称到'''P P 、,连接'''P P 与两直线交点即为M N 、两点之间,线段最短.'''PM MN PN P P ++=在直线l 1、l 2上分别求点M N 、,使四边形PMNQ 周长最小将P Q 、分别对称到P ′、Q ′,连接''P Q 与直线的交点即为M N 、两点之间,线段最短.''PM MN NQ P Q ++=直线l 1∥l 2,在l 1、l 2上分别求点M N 、,使MN ⊥l 1,且AM +MN +NB 最小.将点A 向下平移MN 的长度 得A ′,连接A ′B ,交l 2于点N ,过点N 作MN⊥l 1于点M.两点之间,线段最短. AM +MN +NB 的最小值为A ′B+MN .2 / 14在直线l 上求两点M N 、(M在左),使得MN =a ,并使AM MN NB ++最短将B 向左平移a 个单位到B ′,对称A 到A′,连接A′B′与l 交点即为M ,右平移a 个单位即为N.两点之间,线段最短.AM MN NB ++的最小值为A′B′+MN .在OA 上求点M ,在OB 上求点B ,使PM+PN 值最小.作点P 关于OA 的对称点P ′,作P ′N ⊥OB 于点N ,交OA 于点M.点到直线,垂线段最短.PA+AB 的最小值为线段P ′N 的长.P ,Q 为OA ,OB 的定点,在OA ,OB 上求作点M ,N ,使PN +NM +MQ 的值最小.作点P 关于OA 的对称点P ′,作点Q 关于OB 的对称点Q ′,连P ′Q′交OA 于点M ,交OB 于点N.两点之间,线段最短. PN +NM +MQ 最小值为线段P′Q′的长.在直线l 上求作点P ,使|PA -PB|的值最小.连AB ,作AB 的垂直平分线与直线l 的交点即为P.垂直平分线上的点到线段两端的距离相等.|PA -PB|最小为0.在直线l 上求作点P ,使|PA -PB|的值最大.作直线AB ,与直线l 的交点即为P.三角形任意两边之差小于第三边. |PA -PB|最大值即为AB 长.在直线l 上求点P ,使AP BP -最大 作点B 关于l 的对称点B ′,作直线'AB ,与l 的交点即为点P .三角形任意两边之差小于第三边. |AP −BP |最大值即为AB′.3 / 14二、垂线段最值问题作法图形原理在直线l 上求作点P ,使线段AP 的值最小. 过点A 作AP ′⊥l于点P ′.连结直线外一点和直线上各点的所有线段中,垂线段最短. AP ′即为最小值.三、轨迹问题问题作法图形原理如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是________.由翻折得到,DF=DB=3.所以点F 在以点D 为圆心以3为半径的圆上.连接A 与圆心D ,AD 与圆的交点即为F'所以AF 的最小值是AD-DF'=5-3=2.利用“画圆”来确定动点问题解决最值问题. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小时,DH的长度最小.值为其他两线段之差.4/ 14巩固练习类型一、将军饮马问题1.如图,在Rt△ABC中∠ACB=90°,AC=BC=8,CD=2,点P是AB上的一的动点,求:PC+PD的最小值。

两线段长度和最小值的求法word精品文档6页

两线段长度和最小值的求法word精品文档6页

“求两线段长度值和最小”问题全解析在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2019 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4,∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE=二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2019江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC+PD 和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF 直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA +PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC =60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE +PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN +MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P 为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2019年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2019山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2019年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2019年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以 BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E 的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x轴交于点E,在EA上截EF=2.因为 GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又 DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以 BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。

线段和最小值问题

线段和最小值问题

(2)(1)运用图形得轴对称求线段与得最小值学习目标:会用轴对称知识解决一些常见几何图形得线段与最小值问题、 学习重点:利用常见几何图形得对称特性运用转化思想,学生会解决有关线段与最小值问题、学习方法:自主探究法、合作交流法 学习过程: 一、知识链接1、已知直线l 及其两侧两点,在直线l 上求作一点P ,使PA+P B与最小。

(写出画图方法,画出图形)2、如图,已知点A,B 在直线l 得同一侧,在l 上求作一点P,使得PA+PB最小。

(写出画图方法,画出图形)总结:此时PA+PB 等于线段 。

二、知识应用如图,铁路l同侧有两个仓库A,B ,它们到铁路得距离AD ,BE 分别为500m ,300m,DE=600m、现要在铁路上建一个货场C,要求CA+CB最小,求这个最小值。

三、自主探究知识链接:在平行四边形,矩形,菱形,正方形,等腰梯形,圆中,就是轴对称图形得有 。

1、如图1,正方形ABCD 得边长为2,E 为B C得中点,P就是B D上一动点。

连接E P,CP,则EP+CP 得最小值就是2、如图2,已知菱形ABCD ,AB=6, ∠BA D=60°,E 为AD 得中点,M为AC 上一动点,则E M+DM 得最小值就是3、如图3,梯形ABCD 中,AD ∥BC ,AB =CD=AD=1,∠B=60°,直线MN 为梯形ABC D得对称轴,P 为MN 上一动点,则P C+PD 得最小值为 、 4、如图4,⊙O 直径AB 为2,∠COB=60°,D 就是弧B C中点,P 就是直线AB 上一动点,则PC+PD 得最小值为 1如图,点A(1,3),D(2,1),在y 在x 轴上找到点C ,使得四边形AB 小,并求周长得最小值。

从点A 再经镜面x轴反射后如果经过点走得路径最短) 五、课堂检测1、如图,已知正方形A BCDA上一点,且FA=2,点P 就是B D上一动点,则 A P+PF 得最小值为 、2、如图抛物线y=a x2+bx+c 交x 轴于A 、B两点,交y 轴于C ,且A (—1,0) B (3,0) C (0,—3)(1)在对称轴上就是否存在一点P 使△PAC 周长最小,若存在,请求出P得坐标.若不存在,说明理由。

初中数学求线段最值的方法

初中数学求线段最值的方法

初中数学求线段最值的方法初中数学中,求解线段的最值是一个基本的问题,它可以用来优化一些实际问题的解法,例如最短路径、最大收益、最小支出等。

本文将为大家介绍在初中数学中求解线段最值的方法,包括整体流程和每个环节的详细描述。

一、问题描述和基本概念假设有一条直线段AB,其中A(x1,y1)和B(x2,y2)是已知的点。

我们的问题是如何求出该直线段上某个点P(x,y)的函数值的最大值或最小值。

我们需要了解一些基本的概念和知识:1. 直线段:由两个端点确定的线段,其中端点A是起点,端点B是终点。

2. 函数:将一个集合中的每个元素都对应到另一个集合中的唯一元素的规则。

通常用f(x)表示函数。

3. 函数的最值:给定一个函数f(x),若存在x1,x2∈D,使得f(x1)≥f(x) ∀x∈D 或f(x2)≤f(x) ∀x∈D,则称f(x)在D上取得最大值或最小值。

4. 坐标系:用于描述点或图形位置的平面直角坐标系,由x轴和y轴组成、原点为(0,0)。

5. 勾股定理:在直角三角形ABC中,设直角边分别为a,b,斜边为c,则有c²=a²+b²。

二、分析求解思路和方法对于我们的问题,我们可以用函数来描述直线段AB上每个点P(x,y)的值。

为了方便,我们通常称这个函数为f(x)。

如果我们要求f(x)的最大值,则需要寻找使得f(x)取得最大值的点x值。

同理,如果我们要求f(x)的最小值,则需要寻找使得f(x)取得最小值的点x值。

基于这个思路,我们可以考虑用以下的方法来求解线段最值:1. 明确问题:首先需要明确问题的具体描述和目标,即要求线段上某个点P(x,y)的函数值的最大值或最小值。

2. 理解数据:仔细查看题目给定的图形或数据,注意理解每个点的坐标和重要的约束条件。

3. 定义函数:用函数f(x)来描述线段上每个点P(x,y)的值,需要注意函数的定义域D,即x的取值范围。

4. 求解方法:根据问题的不同,可以选用合适的求解方法来求解线段的最值。

求线段最小值常见解法探析

求线段最小值常见解法探析

数理化学习求战段最小值素见鮮法採析■马先龙摘要:求线段长的最小值一直是解题的难点.实 际解题时,若能灵活地运用化斜为垂法、特殊位置法、 函数最值法,则可化难为易,顺利解题.关键词:线段;最小值;解法解答几何题时,经常需求线段的最小值.此类问题 往往具有一定的难度,有时甚至让答题者望而生畏.实 际解题时,若能灵活地运用化斜为垂法、特殊位置法、 函数最值法等解法,则可化难为易,顺利解题.一、化斜为垂法 例1如图l ,RtA 4B C 中,AACB - 90°,AC = 4,BC = 2,P 是斜边上的动点(不与/l 、B 重 合),过点P 分别作丄<4C 于点丄S C 于点£,连接则£)£的最小值为分析:如图1,连接CP ,由条件,易知四边形P Z )C £ 是矩形,所以£»£ = C /3,易求C P 的最小值,从而得£»£ 的最小值.解:如图1,连接CP .因为乙= 90°,/lC = 4,BC = 2,^])1AB = 742 + 22 = 2/S "•因为丄/tC ,P £ 丄 fiC ,所以乙PDC == 90。

,又因为 Z 4CB =90°,所以四边形是矩形,所以= CP .过点C作CM 丄/1B 于点M ,根据“垂线段最短”,知CP _ =CM ,所以 = CM •因为 SA 4S C = 士/lC • BC = 士仙2/5 5 5的最小值是4/5".评注:本题先连接CP ,运用矩形的性质进行等线 段代换,得到£»£ = CP .接下来,自然会想到化斜为垂, 去求垂线段CM 的长,问题立刻变得简单了.例 2 如图 2,E 74B C Z > 中,= 2/3,AD =\,L A B C =60°,A E ,F 分别在边AB 、B C 上,A B E F 与BM F C关于直线对称,点B 的对称点落在边/I Z )上,则长的 图2最小值为_______•分析:如图2,由题意,易知= /TF ,易求S T 长的最小值,从而得S F 长的最小值.解:如图2,因为与关于直线£厂对 称,所以因为四边形/1BCD 是平行四边形, 所以/!£> // SC .由条件,点B '、F 分别在/!0、SC 上,过点 4作/1M 丄BC 于点M ,则ZTF m i … = <4紙所以=•在 RtA 4ftW 中,/Ifi = 2v ^",乙4BC = 60。

“求两线段长度之的最小值”问题全解析

“求两线段长度之的最小值”问题全解析

“求两线段长度值和最小”问题全解析在近几年的中考中.经常遇到求PA+PB最小型问题.为了让同学们对这类问题有一个比较全面的认识和了解.我们特此编写了“求两线段长度值和最小”问题全解析.希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1.在锐角三角形ABC中.AB=4,∠BAC=45°.∠BAC的平分线交BC于点D.M,N分别是AD和AB上的动点.则BM+MN的最小值为.分析:在这里.有两个动点.所以在解答时.就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图 1.在AC上截取AE=AN.连接BE.因为∠BAC的平分线交BC于点 D.所以∠EAM=∠NAM.又因为AM=AM. 所以△AME≌△AMN.所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时.BE取最小值为4.以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示.等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值.关键是利用轴对称思想.找出这条最短的线段.后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称.连接BE交AD于点M.这就是EM+CM最小时的位置.如图5所示.因为CM=BM.所以EM+CM=BE.过点E作EF⊥BC.垂足为F.因为AE=2.AC=6.所以EC=4.在直角三角形EFC中.因为EC=4, ∠ECF=60°.∠FEC=30°.所以FC=2,EF==2.因为BC=6.FC=2.所以BF=4.在直角三角形BEF中.BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3.在直角梯形ABCD中.∠ABC=90°.AD∥BC.AD=4.AB=5.BC =6.点P是AB上一个动点.当PC+PD的和最小时.PB的长为__________.分析:在这里有一个动点.两个定点符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:如图3所示.作点D关于直线AB的对称点E.连接CE.交AB于点P.此时PC+PD和最小.为线段CE.因为AD=4.所以AE=4.因为∠ABC=90°.AD∥BC.所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC.所以.因为AE=4.BC=6.所以.所以.所以,因为AB=5.所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4.等腰梯形ABCD中.AB=AD=CD=1.∠ABC=60°.P是上底.下底中点EF直线上的一点.则PA+PB的最小值为.分析:根据等腰梯形的性质知道.点A的对称点是点D.这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示.因为点D关于直线EF的对称点为A.连接BD.交EF于点P.此时PA+PB和最小.为线段BD.过点D作DG⊥BC.垂足为G.因为四边形ABCD是等腰梯形.且AB=AD=CD=1.∠ABC=60°.所以∠C=60°.∠GDC=30°.所以GC=,DG=.因为∠ABC=60°.AD∥BC.所以∠BAD=120°.因为AB=AD.所以∠ABD=∠ADB=30°.所以∠ADBC=30°.所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中.AB=2.∠BAD=60°.E是AB的中点.P是对角线AC上的一个动点.则PE+PB的最小值为.分析:根据菱形的性质知道.点B的对称点是点D.这是解题的一个关键点.解:如图5所示.因为点B关于直线AC的对称点为D.连接DE.交AC于点P.此时PE+PB和最小.为线段ED.因为四边形ABCD是菱形.且∠BAD=60°.所以三角形ABD是等边三角形.因为E是AB的中点.AB=2.所以AE=1.DE⊥AB.所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示.已知正方形ABCD的边长为8.点M在DC上.且DM=2.N是AC上的一个动点.则DN+MN的最小值为.分析:根据正方形的性质知道.点B的对称点是点D.这是解题的一个关键点.解:如图6所示.因为点D关于直线AC的对称点为B.连接BM.交AC于点N.此时DN+MN和最小.为线段BM.因为四边形ABCD是正方形.所以BC=CD=8.因为DM=2.所以MC=6.所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7.在边长为2cm的正方形ABCD中.点Q为BC边的中点.点P为对角线AC上一动点.连接PB、PQ.则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ.而BQ是正方形边长的一半.是一个定值1.所以要想使得三角形的周长最小.问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P.两个定点B,Q符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:如图7所示.根据正方形的性质知道点B与点D关于AC对称.连接DQ.交AC于点P.连接PB.所以BP=DP.所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中.DQ== .所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8.MN是半径为1的⊙O的直径.点A在⊙O上.∠AMN=30°.B 为AN弧的中点.P是直径MN上一动点.则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2分析:根据圆的对称性.作出点A的对称点D.连接DB.则线段和的最小值就是线段DB 的长度.解:如图8.作出点A的对称点D.连接DB.OB,OD.因为∠AMN=30°.B为AN弧的中点.所以弧AB的度数为30°.弧AB的度数为30°.弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON+∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9.正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点.过A点作x轴的垂线.垂足为M.已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合).且B点的横坐标为1.在x轴上求一点P.使PA+PB最小.分析:利用三角形的面积和交点坐标的意义.确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值.关键是明白怎样才能保证PA+PB的和最小.同学们可以联想我们以前学过的对称作图问题.明白了最小的内涵.解题的过程就迎刃而解了.解:(1)设点A的坐标为(x.y).且点A在第一象限.所以OM=x,AM=y.因为三角形OAM的面积为1.所以所以xy=2.所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A.所以=x.解得x=2.或x=-2.因为x>0.所以x=2.所以y=1.即点A的坐标为(2.1).因为点B的横坐标为1.且点B在反比例函数的图像上.所以点B的纵坐标为2.所点B的坐标为(1.2).所以点B关于x轴的对称点D的坐标为(1.-2).设直线AD的解析式为y=kx+b.所以.解得k=3.b=-5.所以函数的解析式为y=3x-5.当y=0时.x=.所以当点P在(.0)时.PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10.在平面直角坐标系中.点A的坐标为(1.) .△AOB 的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C.使△AOC的周长最小?若存在.求出点C的坐标;若不存在.请说明理由;分析:在这里△AOC周长等于AC+CO+AO.而A,O是定点.所以AO是一个定长.所以要想使得三角形的周长最小.问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C.两个定点A,O符合对称点法求线段和最小的思路.所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上.所以点B 的坐标为(-2.);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2).将点A的坐标为(1.)代入解析式得:3a=.所以a=.所以函数的解析式为y=+x.(3)存在点C. 如图10.根据抛物线的性质知道点B与点O是对称点.所以连接AB与抛物线的对称轴x= - 1交AC于点C.此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F.则BE=EO=EF=1.因为△BCE∽△B AF,所以, 所以.所以CE=.因为点C在第二象限.所以点C的坐标为(-1.).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11.在平面直角坐标系中.矩形的顶点O在坐标原点.顶点A、B分别在x轴、y轴的正半轴上.OA=3.OB=4.D为边OB的中点.(1)若E为边OA上的一个动点.当△CDE的周长最小时.求点E的坐标;(2)若E、F为边OA上的两个动点.且EF=2.当四边形CDEF的周长最小时.求点E、F 的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起.并很好的运用到平面直角坐标系中.解:(1)如图12.作点D关于x轴的对称点.连接C与x轴交于点E.连接DE.若在边OA上任取点(与点E不重合).连接C、D、.由D+ C=+ C>C= D+CE=DE+CE.所以△的周长最小.因为在矩形OACB中.OA=3,OB=4, D为OB的中点.所以 BC=3.DO=O=2.所以点C的坐标为(3.4).点的坐标为(0.-2).设直线C的解析式为y=kx+b.则.解得k=2.b=-2.所以函数的解析式为y=2x-2.令y=0.则x=1.所以点E的坐标为(1.0);(2)如图13.作点D关于x轴的对称点.在CB边上截取CG=2.连接G与x轴交于点E.在EA上截EF=2.因为GC∥EF.GC=EF.所以四边形GEFC为平行四边形.有GE=CF.又 DC、EF的长为定值.所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中.OA=3,OB=4, D为OB的中点.CG=2,所以 BC=3.DO=O=2,BG=1.所以点G的坐标为(1.4).点的坐标为(0.-2).设直线G的解析式为y=kx+b.则.解得k=6.b=-2.所以函数的解析式为y=6x-2.令y=0.则x=.所以点E的坐标为(.0),所以点F的坐标为(+2.0)即F的坐标为(.0)。

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧

初中数学线段最值问题解题技巧(最新版4篇)目录(篇1)1.线段最值问题的定义和特点2.解题思路和方法3.具体解题步骤和技巧正文(篇1)一、线段最值问题的定义和特点线段最值问题是指在已知线段长度范围内,求取最大或最小值的问题。

此类问题在数学中较为常见,尤其是在几何学和代数中的应用广泛。

其特点在于,通常需要结合线段长度、角度、边长等几何要素进行求解。

二、解题思路和方法1.转化:将问题转化为具体几何模型或代数方程。

2.寻找最大值点:通过观察线段或几何图形,找到最大值点。

3.应用数学知识:利用数学知识求解最大值,如三角函数、勾股定理等。

4.运用数学公式:运用特定数学公式,如辅助线公式、几何倍增等,来寻找最大值。

三、具体解题步骤和技巧1.分析问题:首先需要认真阅读问题,理解问题的要求。

2.构建模型:根据问题建立几何模型或代数方程。

3.寻找最大值点:根据题目中的条件,找到最大值点。

这可能需要对几何图形或代数方程进行深入分析。

4.应用数学知识:使用所学的数学知识求解最大值,例如:三角函数、勾股定理等。

5.验证结果:验证所求得的解是否符合题目要求,必要时进行修正。

总之,解决线段最值问题需要灵活运用数学知识,同时注意分析问题、建立模型、寻找最大值点和应用数学知识等多个步骤。

目录(篇2)一、初中数学线段最值问题解题技巧概述1.解题技巧简介2.解题技巧的应用范围和优势3.解题技巧的适用条件和限制二、初中数学线段最值问题解题技巧详解1.寻找临界点法2.构造辅助线法3.转化角度法4.函数思想法三、初中数学线段最值问题解题技巧的实际应用案例1.题目类型:线段和的最值问题2.题目类型:线段长的最值问题3.题目类型:线段差的的最值问题4.题目类型:三角形中的最值问题正文(篇2)初中数学线段最值问题解题技巧是解决线段相关问题的有效工具。

它通过寻找临界点、构造辅助线、转化角度以及运用函数思想等方法,将复杂的问题简单化,从而快速准确地求解。

动点问题求最小值的做法思路

动点问题求最小值的做法思路

动点问题求最小值的做法思路
1、化动为静:将动点问题转化为静态的几何问题,简化问题,使解题过程更加直观和易于操作。

这种方法适用于多种动点问题,包括但不限于求最值问题。

2、构造比例线段:在某些特定的动点问题中,通过构造比例线段来求解是最直接有效的方法。

这种方法在解决阿氏圆最值模型等题目时尤为常见。

3、利用轴对称性质:初中数学中,利用轴对称的性质可以实现“搬点移线”,从而求解几何图形中的最值问题。

这种方法依赖于基本定理,如两点之间线段最短、三角形任意两边之和大于第三边等。

4、寻找线段的“替身”或“等比替身”:在解决双动点线段问题时,找到一个与原线段长度相等或成比例的线段作为替代,是解题的关键。

这种方法有助于简化问题,找到解决问题的突破口。

5、分类讨论:当动点问题存在多种可能性时,需要进行分类讨论,以确保不遗漏任何可能的情况。

这种方法适用于那些情况复杂、可能存在多种解法的问题。

6、建立直角三角形模型:在某些情况下,通过建立直角三角形模型并利用其性质(如勾股定理)来求解是最有效的策略之一。

这种方法特别适用于涉及圆和直线的问题。

7、动态规划:虽然动态规划主要用于解决算法问题,但其思想也可以应用于某些特定的动点最值问题中。

通过定义状态、计算转移方程和确定终止条件,可以有效地求解这类问题。

换一种思路求线段和的最小值

换一种思路求线段和的最小值

2020^.^1i m换一种思路求战段和的最小值■马先龙摘要:解答几何题时,经常需求线段和的最小值. 对于有的问题,直接求解,非常困难;若换一种思路,则 柳暗花明,别有洞天.关键词:线段和;最小值;折叠解线段和的最小值问题时,换一种思路,往往别有 洞天,易于求解.一、加上定长线段例1 如图丨,矩形中,/lB JM D ==6,点 M 、/V 分别是边 4Z )、 \ 'P <Q nC D 上的动点,且M i V =4,点五是线段”M N 的中点,点P 是边B C 上的动A , B c求P/l +■的最小值.分析:如图1,直接求+洲的 ,最小值比较困难.依题意,易知线段 图!况的长为定值,故欲求/M +P £的最小值,可加上定长线段£>£,先求出+ /^ + 的最小值,然后再减去线段的长即可.解:如图1,因为四边形4B C D 为矩形,所以乙S /1D =/1/1B C = zlCZM = 90。

•在 R t A M /V D 中,因为 乙M Z W = 90。

,£;为 M)V 的中点,MTV = 4,所以 £>£ =^■娜=2.延长仙到点水,使似,=仙,则点关于直线B C 对称.连接/M ',则/M = /M ',所以/M +P £ + Z )£ =凡4' + P £ +连接I D ,根据“两点之间线段最短”,知线段的长就是W +洲+训即/M +洲+ £>£ 的最小值•在 Rt中,= 90°,/i4,== 8,/lD = 6,由勾股定理,得 47) = VAA'2 + AD2=782 + 62 = 10,所以(以+J P £ + £)£)mm = 10,所以 (/M +P £;)m i … = 10-2 =8,即/M +™的最小值为8.点评:本题把求两条线段和的最小值问题转化为 求三条线段和的最小值问题.其中,发现定长线段并能灵活转化是解题的关键.本题考查了“直角三角形 斜边上的中线等于斜边一半”这一重要性质,考查了 矩形的性质,考查了勾股定理的应用,考查了“两点之 间线段最短”这一公理,考查了转化、轴对称、等线段 代换、化折为直等基本的数学思想和方法[1].例2 如图2,矩形4BCZ?中 ==5,A/、7V 分别是边上的动点,点£在边上,且=1,将沿财£所在的直线折叠 得到 A /4'O Z ,连接 n/V D ,求/t 'i V+ /V D 的最小值.分析:如图2,直接求A W +图2的最小值比较困难.由图形的折叠,知线段的长为 定值,故欲求的最小值,可加上定长线段 ^先求出f /V + /VZ)的最小值,然后再减去线段4'£的长即可.解:如图2,由图形的折叠,知= 1.因为 四边形为矩形,所以乙fiCD == 90。

线段和最小值问题

线段和最小值问题

线段与最小值问题问题模型:如下图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).题型一:两定一动一线例1:如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是______.方法总结:当有两个定点时,做任一定点关于线的对称点,连接另一点与对称点,与线的交点即为所求。

跟踪练习:如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为______.题型二:一定两动一线例2:如图,在矩形ABCD中,AB=10 ,BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为______.方法总结:点P在AD上运动,则作线段AD关于线AE的对称线段,结合垂线段最短求最小值。

跟踪练习如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD与AE上的动点,则DQ+PQ的最小值是______.拓展提升题型三:三动一线(做法参照题型二)例3:如图,菱形ABCD中,AB=2,∠BAD=60°,E、F、P分别是AB、BC、AC上的动点,PE+PF的最小值等于______.题型四:一定两动两线例4:如图,∠AOB=45°,角内有一动点P ,PO=10,在AO,BO上有两动点Q,R,求△PQR周长的最小值______.方法总结:分别作定点关于两线的对称点,连接两对称点所得线段即为线段与的最小值。

题型五:两定两动两线例5:如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_______.方法总结:分别作两定点关于两线的对称点,连接两对称点所得线段即为线段与的最小值。

中考数学复习求解双动点线段长的最小值问题

中考数学复习求解双动点线段长的最小值问题

如何求解双动点线段长的最小值问题双动点线段是指线段的两个端点都在某个图形上运动的线段.由于线段的两个端点都在运动,因此增加了解决问题的难度,这类问题的解题策略是:消点——将双动点转化为单动点,然后利用“垂线段最短”确定单动点线段长的最小值,进而得到双动点线段长的最小值.下面举例说明.例1 如图1,线段AB的长为2,C为AB上一个动点,分别以AC,BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是_______.说明本题构造矩形,利用“矩形的对角线相等“将双动点线段DE转化为单动点线段CF.达到消点目的.例2 如图2,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连结DE,则DE长的最小值是_______.由“垂线段最短”可知,当DF⊥AC时DF长最小,此时,DF=12AC=12×8=4,∴DE长的最小值是42.说明说明 本题构造等腰直角三角形,利用等腰直角三角形的斜边与直角边的关系,将双动点线段DE与单动点线段DF建立联系,进行消点.建立联系,进行消点.例3 如图3,已知点A在反比例函数y=6x的图象上,且点A横坐标为2.现将一个含30°的三角板的直角顶点与点A重合并绕点A旋转,旋转时三角板的两直角边与x 轴的交点分别为点B、C,则线段BC的最小值是_________.解析解析 过点A作AD⊥BC于点D,取线段BC的中点E,连结AE.当x=2时,y=6x=3,∴点A坐标为(2,3),∴AD=3.∵∠BAC=90°,E为线段BC的中点,的中点,∴BC=2AE.由“垂线段最短”可知,当AE⊥BC时AE最小,此时AE=AD=3.∴BC的最小值为6.说明 本题构造三角形中线,利用直角三角形斜边上的中线等于斜边的一半,将双动说明点线段BC与单动点线段AE建立联系,从而灵活消点.例4 如图4,在平面直角坐标系xOy中,直线AB过点A(-4,0)、B(O,4),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为_______.解得OP=22.说明 本题构造直角三角形,利用勾股定理将双动点线段PQ与单动点线段OP建立说明联系,从而巧妙消点.联系,从而巧妙消点.例5 如图5,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC 上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连结EF,则线段EF长度的最小值为_______.解析解析 作直径EG ,则∠EFG =90°,°, ∠G =∠BAC =60°,EG =AD . 在Rt △EFG 中,中,EF =EG ·sin ∠G=AD ·sin60°=32AD . 过点A 作AH ⊥BC ,垂足为点H , 在Rt △ABH 中,AH =AB ·s in ∠ABC =22·sin45° =2222=2. 由“垂线段最短”可知,AD ≥AH , ∴线段EF 长的最小值为32AH =32×2=3. 说明说明 本题构造直径为斜边的直角三角形,利用同圆的直径都相等,将双动点线段EF 与单动点线段AD 建立联系,实现消点.建立联系,实现消点.。

求线段最小值

求线段最小值

求线段最小值————————————————————————————————作者:————————————————————————————————日期:“求两线段长度值和最小”问题全解析山东沂源县徐家庄中心学校左进祥在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME ≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE取最小值为4,以BM+M N的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M 是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC +PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP =90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则PA+PB的最小值为 .分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时P A+PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC=60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE+PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN+MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为()(A)2 (B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB 的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,) ,△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B 的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C.如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+C=+C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x轴交于点E,在EA上截EF=2.因为GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。

中考线段最小值问题四种常见解法

中考线段最小值问题四种常见解法

方法一:利用几何性质解决问题知识点1:垂线段最短(点到直线的距离,垂线段最短)知识点2:两点之间线段最短(即“将军饮马”问题)知识点3:利用“画圆”来确定动点问题解决最值问题运用画圆解决问题有两种情况:情况1:动点到某一定点的距离是定值(圆上的点到圆心的距离恒等于半径)情况2:动点为90°固定角的顶点(直径所对的圆周角恒定为90°)在中考中最常用的是“知识点2”、“知识点3”方法二:利用代数法直接证明知识点1:利用配方法求三次二项式的最值知识点2:运用二次函数中顶点求最值代数方法较为常见,所以我们本篇暂时不会涉及.接下来,我们来简单看一下每个几何知识点对应的问题知识点1:垂线段最短常出现几何图形问题中,通常在初二会见到,中考中不会涉及。

例:如图,在△ABC中有一点D在AC上移动,若AB=AC=5,BC=6则AD+BD+CD的最小值为_______.分析:题目中问“AD+BD+CD”的最小值,通过图形我们可以知道“AD+CD”是定值,所以问题可以转换为求BD的最小值.那么求BD的最小值即为求一点B到某一直线AC上的最小值,所以可以利用“垂线段最短”的性质来求解.过点B作AC垂线即可解决问题.知识点2:两点之间线段最短这类问题常出现在函数的大题中,考生如果函数知识不过关也不能拿到满分,因为仅作出图形别不能得出答案,还需要利用函数知识进行求点坐标.解题思路:通常做定点关于动点所在直线的对称点(两个动点所在直线就做两个对称点),然后连接对称点与另一点与动点所在直线的交点即为动点位置。

例1.如图,在直角坐标系中,点A、B的坐标分别为(1,3)和(2,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是______.分析:典型的“将军饮马”问题。

通过作点B关于y轴的对称点即可解决问题.例2:如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C 是OB的中点,D、E分别是直线AB、y轴上的动点,则△CDE周长的最小值是_______.分析:本题中存在两个动点,分别是点D、点E所以我们只需要做点C关于直线AB、关于y轴的对称点即可解决问题.知识点3:利用“画圆”来确定动点问题解决最值问题例1:如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________.分析:由翻折得到,DF=DB=3.所以点F在以点D为圆心以3为半径的圆上.连接A与圆心D,AD与圆的交点即为F'所以AF的最小值是AD-DF'=5-3=2.例2:如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°.所以点H在以AB为直径的圆上,所以以AB中点为圆心,以AB长的一半为半径画圆,连接D与圆心交点即为点H.所以DH'=OD-OH'中考中常见的求最值方法就是上面所提到的这些。

两定点到圆上一动点的线段和最小值

两定点到圆上一动点的线段和最小值

两定点到圆上一动点的线段和最小值1. 引言大家好!今天我们聊聊一个有趣的几何问题,那就是“两定点到圆上一动点的线段和的最小值”。

这个问题看似复杂,但其实非常有趣。

让我们一起揭开这个谜团,看看怎么找到这个最小值吧!2. 问题背景2.1. 定义问题设想我们有一个圆和两个定点A和B。

在这个圆上,有一个点P在移动,我们关心的是,从点A到点P的线段长度加上从点P到点B的线段长度的和,也就是AP + PB的和。

这种情况下,我们想找出这个和的最小值。

2.2. 问题的意义这个问题在现实生活中其实有点像“走最短的路”。

比如你在城市里走路,要从家到公司,你会选择最短的路径,减少走的距离。

在几何中,这个最小值也就是我们要寻找的目标。

3. 方法探讨3.1. 对称性分析先来简单理解一下,对称性是如何帮助我们解决问题的。

我们可以把点A和点B看成两个固定的点,圆上的点P可以移动。

如果我们把圆外的点A和B连接起来,形成一条线段,然后再考虑圆的对称性,这样我们可以发现,从点P到A和B的总距离,其实可以用镜像反射的技巧来简化。

3.2. 反射法来个小窍门,设想把圆以点P为对称中心,进行镜像反射。

这样,圆上的点P变成了圆外的点P'。

这时候,我们可以得到从点A到点P加上从点P到点B的最短路径等于从点A到点P'的直线距离。

听起来是不是很简单?4. 解决过程4.1. 几何直观好啦,现在我们开始具体计算了。

通过反射,我们就可以知道最短路径的长度是线段AP' + P'B。

因为线段AP'是直线段,而圆上的任何点到这个直线段的距离都不会比直线段的长度长。

所以最短的总和就是AP' + P'B,也就是我们最初所说的最小值。

4.2. 代数验证为了更加确信,我们也可以通过代数方法来验证一下。

假设圆心为O,半径为r,那么AP + PB的最小值就等于A和B之间的距离。

这个距离可以通过简单的几何公式或者代数运算得出,结果是最小值等于线段AB的长度。

初中数学最小值知识点总结

初中数学最小值知识点总结

初中数学最小值知识点总结一、最小值的概念在数学中,最小值是指在一组数中的最小数值。

最小值在数学中经常出现,我们可以在代数、几何、函数等各个领域中都会遇到最小值的概念。

在数学中,最小值往往是与最大值相对应的,通过求解最小值可以帮助我们找到适当的方案和解决问题的方法。

二、求最小值的方法1. 通过求导数的方法在函数的求解中,通过求导数的方法可以找到函数的最小值。

当一个函数在某一点的导数等于0时,这个点就有可能是这个函数的最小值点。

通过求导数并令导数为0,我们可以找到函数的极值点,进而确认最小值的位置。

2. 通过代数的方法在代数中,有些题目需要我们利用代数知识进行求解。

比如:求一个式子的最小值,可以通过将其转化为完全平方式或者配方法,从而得到最小值。

3. 通过几何的方法在几何中,也经常会遇到最小值的问题。

比如,求解一个线段的最小值,可以通过利用三角形的性质或者利用勾股定理来求解。

在几何中,我们也可以利用图形的特性,通过计算图形的参数来求解最小值。

三、应用场景1. 最小二乘法最小二乘法是一种常用的拟合曲线的方法,它可以通过已知的一组数据点,来寻找一条曲线使得这些数据点到曲线的距离之和最小。

通过最小二乘法,我们可以找到一条最佳的拟合曲线,使得误差最小。

2. 最短路径问题在网络规划中,我们常常需要求解最短路径问题,即从一个点到另一个点的最短距离。

这类问题可以通过最小值的方法来求解,通过寻找出最短路径,可以帮助我们在网络规划中合理安排资源,从而提高效率。

3. 效益最大化问题在经济管理中,我们经常需要求解效益最大化问题,即在资源有限的情况下,如何安排资源使得效益最大。

这类问题经常需要通过求解最小值来得到最佳的解决方案。

四、最小值的性质1. 最小值的存在性在数学中,最小值不一定都存在。

对于一些函数,它们可能没有最小值或者有多个最小值。

因此,在求解最小值时,我们需要结合具体的题目和条件来确定最小值是否存在。

2. 最小值的判断方法在求解最小值时,我们可以通过函数的二阶导数测试来判断最小值的性质。

线段最小值的几种情况

线段最小值的几种情况

线段最小值的几种情况线段是几何学中的基本概念,它是由两个端点确定的一条直线段。

在线段中,最小值是指线段上所有点的最小值。

线段的最小值可能出现在不同的情况下,下面将就几种常见的情况分别进行介绍。

情况一:线段两端点相等当线段的两个端点重合时,线段上的所有点都具有相同的数值,此时线段的最小值即为这个数值。

例如,一个线段的两个端点分别是点A(2, 3)和点B(2, 3),则线段上的所有点的数值都是(2, 3),其最小值为(2, 3)。

情况二:线段的斜率为正当线段的斜率为正时,线段从左下方向向右上方延伸,最小值通常出现在线段的起点。

此时,线段上的所有点的数值随着x坐标的增大而增大,因此最小值出现在x坐标最小的点上。

例如,一个线段的两个端点分别是点A(1, 2)和点B(3, 4),则线段上的所有点的数值随着x坐标的增大而增大,最小值为(1, 2)。

情况三:线段的斜率为负当线段的斜率为负时,线段从左上方向向右下方延伸,最小值通常出现在线段的终点。

此时,线段上的所有点的数值随着x坐标的增大而减小,因此最小值出现在x坐标最大的点上。

例如,一个线段的两个端点分别是点A(3, 4)和点B(1, 2),则线段上的所有点的数值随着x坐标的增大而减小,最小值为(1, 2)。

情况四:线段的最小值出现在中间某一点除了以上两种情况外,线段的最小值有时也可能出现在线段的中间某一点上。

这种情况通常发生在线段呈现凹曲形状时,即线段的凸起部分向下。

例如,一个线段的两个端点分别是点A(1, 3)和点B(5, 5),线段上的所有点的数值随着x坐标的增大而先增大后减小,最小值为(3, 4)。

线段最小值的几种情况包括线段两端点相等、线段的斜率为正、线段的斜率为负以及线段的最小值出现在中间某一点。

在求解线段的最小值时,需要考虑线段的斜率变化以及端点的位置关系,只有准确把握线段的特征,才能得出正确的最小值。

通过对线段最小值的不同情况进行分析,可以更好地理解和应用线段的特性,为解决实际问题提供帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“求两线段长度值和最小”问题全解析山东沂源县徐家庄中心学校左进祥在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助.一、在三角形背景下探求线段和的最小值1.1 在锐角三角形中探求线段和的最小值例1如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决.解:如图1,在AC上截取AE=AN,连接BE.因为∠BAC的平分线交BC于点D,所以∠EAM=∠NAM,又因为AM=AM,所以△AME≌△AMN,所以ME=MN.所以BM+MN=BM+ME≥BE.因为BM+MN有最小值.当BE是点B到直线AC的距离时,BE取最小值为4,以BM+MN的最小值是4.故填4.1.2在等边三角形中探求线段和的最小值例2(2010 山东滨州)如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 .分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可.解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4,∠ECF=60°,∠FEC=30°,所以FC=2,EF==2.因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE==.二、在四边形背景下探求线段和的最小值2.1在直角梯形中探求线段和的最小值例3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC+PD 和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°.因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3.2.2在等腰梯形中探求线段和的最小值例4如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF 直线上的一点,则PA+PB的最小值为.分析:根据等腰梯形的性质知道,点A的对称点是点D,这是解题的一个关键点.其次运用好直角三角形的性质是解题的又一个关键.解:如图4所示,因为点D关于直线EF的对称点为A,连接BD,交EF于点P,此时PA +PB和最小,为线段BD.过点D作DG⊥BC,垂足为G,因为四边形ABCD是等腰梯形,且AB=AD=CD=1,∠ABC=60°,所以∠C=60°,∠GDC=30°,所以GC=,DG=.因为∠ABC =60°,AD∥BC,所以∠BAD=120°.因为AB=AD,所以∠ABD=∠ADB=30°,所以∠ADBC=30°,所以BD=2DG=2×=.所以PA+PB的最小值为.2.3在菱形中探求线段和的最小值例5如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.分析:根据菱形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图5所示,因为点B关于直线AC的对称点为D,连接DE,交AC于点P,此时PE +PB和最小,为线段ED.因为四边形ABCD是菱形,且∠BAD=60°,所以三角形ABD是等边三角形.因为E是AB的中点,AB=2,所以AE=1,DE⊥AB,所以ED==.所以PE+PB的最小值为.2.4在正方形中探求线段和的最小值例6如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上的一个动点,则DN+MN的最小值为.分析:根据正方形的性质知道,点B的对称点是点D,这是解题的一个关键点.解:如图6所示,因为点D关于直线AC的对称点为B,连接BM,交AC于点N,此时DN +MN和最小,为线段BM.因为四边形ABCD是正方形,所以BC=CD=8.因为DM=2,所以MC=6,所以BM==10.所以DN+MN的最小值为10.例7(2009?达州)如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P 为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm.(结果不取近似值).分析:在这里△PBQ周长等于PB+PQ+BQ,而BQ是正方形边长的一半,是一个定值1,所以要想使得三角形的周长最小,问题就转化成使得PB+PQ的和最小问题.因为题目中有一个动点P,两个定点B,Q符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:如图7所示,根据正方形的性质知道点B与点D关于AC对称,连接DQ,交AC于点P,连接PB.所以BP=DP,所以BP+PQ=DP+PQ=DQ.在Rt△CDQ中,DQ==,所以△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ= +1.故答案为+1.三、在圆背景下探求线段和的最小值例8(2010年荆门)如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2 (B) (C)1 (D)2分析:根据圆的对称性,作出点A的对称点D,连接DB,则线段和的最小值就是线段DB的长度.解:如图8,作出点A的对称点D,连接DB,OB,OD.因为∠AMN=30°,B为AN弧的中点,所以弧AB的度数为30°,弧AB的度数为30°,弧AN的度数为60°.根据圆心角与圆周角的关系定理得到:∠BON=30°.由垂径定理得:弧DN的度数为60°.所以∠BOD=∠BON +∠DON= 30°+60°=90°.所以DB==.所以选择B.四、在反比例函数图象背景下探求线段和的最小值例9(2010山东济宁)如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.分析:利用三角形的面积和交点坐标的意义,确定出点A的坐标是解题的第一个关键.要想确定出PA+PB的最小值,关键是明白怎样才能保证PA+PB的和最小,同学们可以联想我们以前学过的对称作图问题,明白了最小的内涵,解题的过程就迎刃而解了.解:(1)设点A的坐标为(x,y),且点A在第一象限,所以OM=x,AM=y.因为三角形OAM的面积为1,所以所以xy=2,所以反比例函数的解析式为y=.(2)因为y=x与y=相交于点A,所以=x,解得x=2,或x=-2.因为x>0,所以x=2,所以y=1,即点A的坐标为(2,1).因为点B的横坐标为1,且点B在反比例函数的图像上,所以点B的纵坐标为2,所点B的坐标为(1,2),所以点B关于x轴的对称点D的坐标为(1,-2).设直线AD的解析式为y=kx+b,所以,解得k=3,b=-5,所以函数的解析式为y=3x-5,当y=0时,x=,所以当点P在(,0)时,PA+PB的值最小.五、在二次函数背景下探求线段和的最小值例10(2010年玉溪改编)如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;分析:在这里△AOC周长等于AC+CO+AO,而A,O是定点,所以AO是一个定长,所以要想使得三角形的周长最小,问题就转化成使得AC+CO的和最小问题.因为题目中有一个动点C,两个定点A,O符合对称点法求线段和最小的思路,所以解答时可以用对称法.解:(1)由题意得:所以OB=2.因为点B在x轴的负半轴上,所以点B的坐标为(-2,);(2)因为B(-2,0),O(0,0),所以设抛物线的解析式为:y=ax(x+2),将点A的坐标为(1,)代入解析式得:3a=,所以a=,所以函数的解析式为y=+x.(3)存在点C. 如图10,根据抛物线的性质知道点B与点O是对称点,所以连接AB 与抛物线的对称轴x= - 1交AC于点C,此时△AOC的周长最小.设对称轴与x轴的交点为E.过点A作AF垂直于x轴于点F,则BE=EO=EF=1.因为△BCE∽△BAF,所以,所以,所以CE=.因为点C在第二象限,所以点C的坐标为(-1,).六、在平面直角坐标系背景下探求线段和的最小值例11(2010年天津)如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.分析:本题的最大亮点是将一个动点求最小值和两个动点求最小值问题糅合在一起,并很好的运用到平面直角坐标系中.解:(1)如图12,作点D关于x轴的对称点,连接C与x轴交于点E,连接DE.若在边OA上任取点(与点E不重合),连接C、D、.由D+ C=+ C>C= D+CE=DE+CE,所以△的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,所以 BC=3,DO=O=2.所以点C的坐标为(3,4),点的坐标为(0,-2),设直线C的解析式为y=kx+b,则,解得k=2,b=-2,所以函数的解析式为y=2x-2,令y=0,则x=1,所以点E 的坐标为(1,0);(2)如图13,作点D关于x轴的对称点,在CB边上截取CG=2,连接G与x轴交于点E,在EA上截EF=2.因为 GC∥EF,GC=EF,所以四边形GEFC为平行四边形,有GE=CF.又 DC、EF的长为定值,所以此时得到的点E、F使四边形CDEF的周长最小.因为在矩形OACB中,OA=3,OB=4, D为OB的中点,CG=2,所以 BC=3,DO=O=2,BG=1.所以点G的坐标为(1,4),点的坐标为(0,-2),设直线G的解析式为y=kx+b,则,解得k=6,b=-2,所以函数的解析式为y=6x-2,令y=0,则x=,所以点E 的坐标为(,0),所以点F的坐标为(+2,0)即F的坐标为(,0)。

相关文档
最新文档