2013年高考第二轮复习数学全国文科第2讲 填空题技法指导
2013年高考文科数学全国卷2(含详细答案)
数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---2.2||1i=+( )A .22B .2C .2D .13.设x ,y 满足约束条件10,10,3,x y x y x -+⎧⎪+-⎨⎪⎩≥≥≤则23z x y =-的最小值是( )A .7-B .6-C .5-D .3-4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,π6B =,π4C =,则ABC △的面积为( )A .232+B .31+C .232-D .31-5.设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )A .36B .13C .12D .336.已知2sin 23α=,则2πcos ()4α+=( )A .16B .13C .12 D .237.执行如图的程序框图,如果输入的4N =,那么输出的S = ( )A .1111234+++B .1111232432+++⨯⨯⨯ C .111112345++++D .111112324325432++++⨯⨯⨯⨯⨯⨯8.设3log 2a =,5log 2b =,2log 3c =,则( )A .a c b >>B .b a c >>C .c b a >>D .c a b >>9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )ABCD10.设抛物线C :24y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( )A .1y x =-或1y x =-+B .3(1)3y x =-或3(1)3y x =-- C .3(1)y x =-或3(1)y x =--D .2(1)2y x =-或2(1)2y x =-- 11.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=12.若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A .(,)-∞+∞B .(2,)-+∞C .(0,)+∞D .(1,)-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 15.已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.16.函数cos(2)(ππ)y x ϕϕ=+-≤<的图象向右平移π2个单位后,与函数πsin(2)3y x =+的图象重合,则ϕ=________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且1a ,11a ,13a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)18.(本小题满分12分)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为23.(Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.21.(本小题满分12分)已知函数2()e x f x x -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.3 / 124.【答案】B【解析】ππ()π-+64πA B C ⎛ ⎝=-+=由正弦定理得sin sin a bA B=,6.【答案】A【解析】由半角公式可得,cos45 / 12的投影即正视图为,故选10.【答案】C【解析】由题意可得抛物线焦点当直线l 的斜率大于0时,如图所示,过物线定义可得,AM AF =,设3()0AM AF t t ==>,BN =611.【答案】C【解析】若0x 是()f x 的极小值点,则正确.12.【答案】D【解析】由题意可得,x a >7 / 12【答案】2{},AB AD 为基底,则0AB AD ⋅=,而12AE AB AD =+,-BD AD AB =, ∴22111()(-)--222AE BD AB AD AD AB AB AD ⋅=+⋅=+=15.【答案】24π【解析】如图所示,在正四棱锥∴1322OO =,1AO =在1Rt OO A ∆中,OA =|89 / 12又D 是AB 中点,连结1DF 因为1DF ACD ⊂平面,1ACD 平面, 所以11.BC ACD 平面 (2)因为11ABC A B C -是直三棱柱,所以AA AC CB =,D AB A =,于是1011/ 1212。
2013年全国高考新课标卷Ⅱ(文科)答案及考点分析
2013年普通高等学校招生全国统一考试(新课标2)文科数学试题参考答案一、选择题{2,N=-B.5.D【解析】如图所示:∵212PF F F⊥,01230PF F∠=,∴122PF PF=,又因D.,所以7.B【解析】由框图可知第134454k N=>=,终止循环,B.8.D,所以c a b>>,故选D.9.A【解析】根据题意可画出如图所示的四面体O ABC-,以zOx平面为投影面,则A 与'A重合,B与'B重合,故其正视图可以为如图所示,故选A.10.C【解析】如图所示:设11A(,)x y,22(,)B x y,则21122244y xy x⎧=⎪⎨=⎪⎩,作差得:,∴直线l则=3,∴直线3(1)x=-,'()0f x<,所以()f x在(,3)-∞-和(1,)+∞内为增,(3,1)-内为减,则1x=时为极小值点,但在区间(,1)-∞不单调递减,显然错误,故选C.12.D【解析】因为“存在正数x,使2()1x x a-<成立”,的否定为“任意非正数x,使2()1x x a-≥成立”令()2()xf x x a=-,显然()f x在(,0]-∞是单调递增函数,所以max()(0)f x f=,即1a≤-,所以1a≤-的补集为(1,)-+∞,故选D.二、填空题131,2,3,4,5中任取2个数使其为5的情况有(1,4)、(2,3)两种,所以概率14.2【解析】设AB a=,AD b=,则||||2a b==,0a b⋅=,12AE a b=+,BD b a=-,所以1()()2AE BD a b b a⋅=+-=2.15.24π【解析】如图所示:连接BD,AC相交于E,∴,,∴24S Rπ=球=24π16【解析】因为cos(2)y xϕ=+=cos(2)xϕ--=,图像向右平移个单位后为:,与三、解答题17.解析:解:(1)设{a n}的公差为d.由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【点评】近几年高考每年必考一数列大题,但新课标高考考查的难度已大为降低,所考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.18.解析:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC -A 1DE =13×12×6×3×2=1.19.解:(1)当X ∈[100,130)时, T =500X -300(130-X ) =800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当 120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.20.解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0),由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.21.解:(1)f (x )的定义域为(-∞,+∞). f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=t -f (t )f ′(t )=t +t t -2=t -2+2t -2+3. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=x +2x (x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[2 2,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[2 2+3,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[2 2+3,+∞).22. 解:(1)因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC FA =DCEA ,故△CDB ∽△AEF ,所以∠DBC =∠EFA .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.图1-11(2)联结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α ,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点24.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c2a ≥1.2013全国新课标卷数学(文)考点分析表湖北大学附属中学高二数学备课组。
(新人教A)高三数学第二轮第2讲数学填空题的常用解法
第2讲 高考填空题的常用方法数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。
常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例1设,)1(,3)1(j m i b i i m a -+=-+=其中i ,j 为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m = 。
解:.)2(,)4()2(j m mi b a j m i m b a +-=--++=+∵)()(b a b a -⊥+,∴0)()(=-⋅+b a b a ∴0)4)(2()]4()2([)2(222=-+-⋅-++-++j m m j i m m m j m m ,而i ,j 为互相垂直的单位向量,故可得,0)4)(2()2(=-+-+m m m m ∴2-=m 。
例2已知函数21)(++=x ax x f 在区间),2(+∞-上为增函数,则实数a 的取值范围是 。
解:22121)(+-+=++=x a a x ax x f ,由复合函数的增减性可知,221)(+-=x ax g 在),2(+∞-上为增函数,∴021<-a ,∴21>a 。
2013高考数学文科选择题+填空题解题技巧总结
题型一 直接对照法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.例1 设定义在R 上的函数f(x)满足f(x)·f(x +2)=13,若f(1)=2,则f(99)等于( ) A .13 B .2 C.132D.213 变式训练1 函数f(x)对于任意实数x 满足条件f(x +2)=1f(x),若f(1)=-5,则f(f(5))的值为( )A .5B .-5 C.15 D .-15例2 设双曲线x 2a 2-y 2b 2=1的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为 ( )A.54 B .5 C.52D. 5 题型二 概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”.例3 已知非零向量a =(x 1,y 1),b =(x 2,y 2),给出下列条件,①a =k b (k ∈R);②x 1x 2+y 1y 2=0;③(a +3b )∥(2a -b );④a ·b =|a ||b |;⑤x 21y 22+x 22y 21≤2x 1x 2y 1y 2.其中能够使得a ∥b 的个数是()A .1B .2C .3D .4题型三 数形结合法“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系、在方法上互相渗透、在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的.在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位置、性质,综合图象的特征,得出结论.例4 设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ x 24+y 216=1,B ={}(x ,y )|y =3x ,则A ∩B 的子集的个数是 ( )A .4B .3C .2D .1例5 函数f(x)=1-|2x -1|,则方程f(x)·2x =1的实根的个数是( ) A .0 B .1 C .2 D .3题型四 特例检验法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例6 已知A 、B 、C 、D 是抛物线y 2=8x 上的点,F 是抛物线的焦点,且F A →+FB →+FC →+FD→=0,则|F A →|+|FB →|+|FC →|+|FD →|的值为 ()A .2B .4C .8D .16变式训练6 已知P 、Q 是椭圆3x 2+5y 2=1上满足∠POQ =90°的两个动点,则1OP 2+1OQ 2等于A .34B .8 C.815 D.34225例7 数列{a n }成等比数列的充要条件是 ( )A .a n +1=a n q (q 为常数)B .a 2n +1=a n ·a n +2≠0 C .a n =a 1q n -1(q 为常数) D .a n +1=a n ·a n +2变式训练7 已知等差数列{a n }的前n 项和为S n ,若a 2n a n =4n -12n -1,则S 2n S n的值为 ( )A .2B .3C .4D .8题型五 筛选法 数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.例8 方程ax 2+2x +1=0至少有一个负根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0变式训练8 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是 ( )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1]题型六 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例9 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是 ( )A.169πB.83πC.4πD.649π 规律方法总结1.解选择题的基本方法有直接法、排除法、特例法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.知能提升演练1.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩(∁N B )等于 ()A .{1,5,7}B .{3,5,7}C .{1,3,9}D .{1,2,3}2.已知向量a ,b 不共线,c =k a +b (k ∈R),d =a -b .如果c ∥d ,那么 ( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向3.已知函数y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0 C .ω≥1 D .ω≤-14.已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是 ( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)7.设x ,y ∈R ,用2y 是1+x 和1-x 的等比中 项,则动点(x ,y )的轨迹为除去x 轴上点的A .一条直线B .一个圆C .双曲线的一支D .一个椭圆10.已知等差数列{a n }满足a 1+a 2+…+a 101=0,则有 ( )A .a 1+a 101>0B .a 2+a 102<0C .a 3+a 99=0D .a 51=5111.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为 ()A .4B .6C .8D .1012.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b >2中,正确的不等式是A .①②B .②③C .①④D .③④第2讲 填空题的解题方法与技巧解题方法例析题型一 直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例 1 在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值________.变式训练1 设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7=________.题型二 特殊值法特殊值法在考试中应用起来比较方便,它的实施过程是从特殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效.例2 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且满足(sin A -sin C )(a +c )b=sin A -sin B ,则C =_______.变式训练2 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a 、b 、c 成等差数列,则cos A +cos C 1+cos A cos C=________. 变式训练3 设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为题型三 图象分析法(数形结合法)依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解的填空题,称为图象分析型填空题,这类问题的几何意义一般较为明显.由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观地分析,加上简单的运算,一般就可以得出正确的答案.事实上许多问题都可以转化为数与形的结合,利用数形结合法解题既浅显易懂,又能节省时间.利用数形结合的思想解决问题能很好地考查考生对基础知识的掌握程度及灵活处理问题的能力,此类问题为近年来高考考查的热点内容.例4 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |的值等于________.变式训练4 不等式(|x |- 2π )·sin x <0,x ∈[-π,2π]的解集为 . 题型四 等价转化法将所给的命题进行等价转化,使之成为一种容易理解的语言或容易求解的模式.通过转化,使问题化繁为简、化陌生为熟悉,将问题等价转化成便于解决的问题,从而得出正确的结果.例6 设函数f (x )=⎩⎨⎧x 2-4x +6, x ≥03x +4, x <0,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围是________.变式训练6 已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪(-12,+∞),则a 的值______. 规律方法总结1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果.2.解填空题不要求求解过程,从而结论是判断是否正确的 唯一标准,因此解填空题时要注意如下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;(2)要尽量利用已知的定理、性质及已有的结论;(3)要重视对所求结果的检验.知能提升演练1.在各项均为正数的等比数列{a n}中,若a5·a6=9,则log3a1+log3a2+…+log3a10=________. 2.在数列{a n}中,若a1=1,a n+1=2a n+3(n≥1),则该数列的通项a n=________.3.设非零向量a,b,c满足|a|=|b|=|c|,a+b=c,则cos〈a,b〉=________.4.直线y=kx+3k-2与直线y=-14x+1的交点在第一象限,则k的取值范围是________5.(2010·陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.6.已知最小正周期为2的函数y=f(x),当x∈[-1,1]时,f(x)=x2,则方程f(x)=|log5x|的解的个数为________.。
2013年高考第二轮复习数学全国理科第2讲填空题技法指导
第2讲填空题技法指导填空题是高考三大题型之一,主要考查基础知识、基本方法以及分析问题、解决问题的能力,试题多数是教材例题、习题的改编或综合,体现了对通性通法的考查.该题型的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方法比较灵活;(3)从填写内容看,主要有两类:一类是定量填写型:要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型:要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.近几年出现了定性型的具有多重选择的填空题.1.直接法与定义法数学填空题,绝大多数都能直接利用有关定义、性质、定理、公式和一些规律性的结论,经过变形、计算得出结论.使用直接法和定义法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的变换.解题时,对概念要有合理的分析和判断;计算时,要求推理、运算的每一步骤都应正确无误,还要求将答案书写准确、完整.少算多思是快速准确地解答填空题的基本要求.【例1】在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过点F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为__________.【例2】已知圆A:(x+2)2+y2=1与定直线l:x=1,且动圆P和圆A外切并与直线l 相切,则动圆的圆心P的轨迹方程是__________.变式训练1已知a=(m+1)i-3j,b=i+(m-1)j,其中i,j为互相垂直的单位向量,且(a+b)⊥(a-b),则实数m=__________.2.特殊化法当题目中暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效.【例3】已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成立.数列{a n}满足a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=__________.变式训练2在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=__________.3.数形结合法依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解填空题,称为数形结合型填空题,这类问题的几何意义一般较为明显.由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观的分析,加上简单的运算,便可得出正确的答案.【例4】曲线方程|x2-1|=x+k的实根随k的变化而变化,那么方程的实根的个数最多为__________.变式训练3若方程2x-x2=kx-2k+2有两个不同的实数根,则实数k的取值范围为__________.4.构造法构造法就是通过对已知的条件和结论进行深入、细致的分析,抓住问题的本质特征,再联想与之有关的数学模型,恰当地构造辅助元素,将待证(求)问题进行等价转化,从而架起已知与未知的桥梁,使问题得以解决.构造法在函数、方程、不等式等方面有着广泛的应用,特别是与数列、三角、空间几何体、复数等知识密不可分.【例5】若锐角α,β,γ满足cos 2α+cos 2β+cos 2γ=1,那么tan α·tan β·tan γ的最小值为__________.变式训练4 如果sin 3θ-cos 3θ>cos θ-sin θ,且θ∈(0,2π),那么角θ的取值范围是__________.5.等价转化法从题目出发,把复杂的、生疏的、抽象的、困难的或未知的问题通过等价转化为简单的、熟悉的、具体的、容易的或已知的问题来解决,从而得出正确的结果.【例6】已知函数f (x )=x 3+x -6,若不等式f (x )≤m 2-2m +3对于所有x ∈[-2,2]恒成立,则实数m 的取值范围是__________.变式训练5 对于任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则实数x 的取值范围为__________.参考答案方法例析【例1】x 216+y 28=1 解析:∵△ABF 2的周长为16, ∴4a =16,解得a =4.∵离心率e =22,∴c =2 2.∴b 2=8. ∵椭圆的焦点在x 轴上,∴椭圆的标准方程为x 216+y 28=1. 【例2】y 2=-8x 解析:利用抛物线的定义,先判断出点P 的轨迹再求方程.由题意可知,点P 到直线x =1的距离比它到点A 的距离小1,即点P 到直线x =2的距离与到点A 的距离相等,所以点P 的轨迹是以A 为焦点,直线x =2为准线的抛物线,其方程为y 2=-8x .【变式训练1】-2【例3】n ·2n 解析:根据数列满足的关系式,进行恰当的赋值.∵a 1=2,∴2=f (21)=f (2).令x =2n ,y =2,∴f (2n +1)=2f (2n )+2n +1.∴f (2n +1)2n +1=f (2n )2n +1,f (2n +1)2n +1-f (2n )2n =1. ∴f (2n )2n =f (2)2+(n -1)×1=n .∴a n =n ·2n . 【变式训练2】45【例4】4 解析:如图所示,参数k 是直线y =x +k 在y 轴上的截距,通过观察直线y =x +k 与y =|x 2-1|的公共点的变化情况,并通过计算可知,当k <-1时,曲线方程有0个实根;当k =-1时,有1个实根;当-1<k <1时,有2个实根;当k =1时,有3个实根;当1<k <54时,有4个实根;当k =54时,有3个实根;当k >54时,有2个实根.综上所述,可知实根的个数最多为4.【变式训练3】⎝⎛⎦⎤34,1【例5】22 解析:如图,设AB =a ,AD =b ,AA 1=c ,令α,β,γ为∠BAC 1,∠C 1AD ,∠C 1AA 1,从而有tan α·tan β·tan γ=b 2+c 2a ·a 2+c 2b ·a 2+b 2c ≥2bc ·2ac ·2ab abc=2 2. 当且仅当a =b =c 时,tan α·tan β·tan γ有最小值2 2.【变式训练4】⎝⎛⎭⎫π4,5π4 【例6】(-∞,1-2]∪[1+2,+∞)解析:∵f′(x )=3x 2+1>0,∴f (x )在x ∈[-2,2]内是增函数.∴f (x )在[-2,2]上的最大值是f (2)=4.∴m 2-2m +3≥4,解得m ≤1-2或m ≥1+ 2.【变式训练5】⎝ ⎛⎭⎪⎫7-12,3+12 解析:对于任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即当|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).∴⎩⎪⎨⎪⎧ g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0. 解得7-12<x <3+12. 即x 的取值范围为⎝⎛⎭⎪⎫7-12,3+12.。
2013高考数学二轮备考指南
2013高考数学二轮备考指南新学期开始,高考就进入了第二轮复习。
从此前发布的《2013年普通高等学校招生全国统一考试北京卷考试说明》来看,在保持整体风格稳定之余,今年的高考内容呈现出“一增一减一调整”特点——物理学科考试范围增加热学知识点,历史学科考试范围减少“选修二”知识点,语文学科调整试卷结构。
针对这些最新的变化,高考专家给出了中肯的备考指导和建议。
北京新东方优能中学教育数学教师孟祥飞分析,第一轮复习主要梳理知识,夯实基础,建立以知识板块为体系的知识和方法系统。
第二轮复习则要找到各板块间的联系,在综合分析时要求能产生联想,提取知识和方法。
因此,二轮复习以中档题为主,注重概括,落实大脑中似是而非的知识网络、方法体系和对症下药。
不要盲目地练习外省市的压轴题,要把知识的交汇点打通,建立一套基于问题的方法检索系统,要能针对自己的问题迅速调整备考和学习方法。
也有不少家长急于借助课外辅导班来提高孩子的学习成绩,对此,朴贞玉认为,通常学习成绩中等或者偏弱的学生此时接受额外的辅导效果会更好,但也不是所有的学生都适合上辅导班。
如果要上辅导班,要充分了解自身情况,与老师进行沟通,有的放矢。
同时,还要安排好学校计划、自身计划的学习时间,以免让过多的学习安排打乱了阵脚。
数学切忌将大量时间放在难题上孟祥飞指出,在历年的高考数学试题中,大部分试题均注重考查基础知识、基本技能和基本方法,今年也不例外。
各位考生在复习过程中切忌将大量时间放在难题的钻研上,而忽略了基础题目的巩固。
选择题和填空题考查的一个很大特点是涵盖范围广,文理都有的集合、等差、等比数列、均值不等式、线性规划、平面向量、统计、几何概型等。
这些小的知识板块,不容易引起学生的重视,但都是考纲要求的重点内容,也是每年高考的必考考点。
所以考生一定要认真对待选择填空,抓住这些最好得分的点。
历年北京的8、14、20三个题,都成为北京试题的亮点,题目难度确实很大。
建议考生可以专项研究下8、14、20三个题的多角度处理,看能不能用其他方法侧面解答出来。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考文科数学全国卷2-答案
O-ABCD
中, VO-ABCD=13
S正方形ABCD
OO1
=1 3
(
3)2
OO1
=3
2 2
,
∴
OO1
=3 2 2
,
AO1 =
6, 2
在 RtOO1A 中, OA=
| OO1 |2 | AO1 |2
2
2
3 2 2
6 2
6 ,即 R
6,
当直线 l 的斜率小于 0 时,如图所示,同理可得直线方程为 y=- 3(x-1) ,故选 C.
11.【答案】C
【解析】若 x0 是 f x 的极小值点,则 y=f x 的图像大致如下图所示,则在 (-,x0 ) 上不单调,故 C 不
正确.
12.【答案】D
【解析】由题意可得,
a
x
-
2013 年普通高等学校招生全国统一考试(全国新课标卷 2)
文科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C 【解析】由题意可得, M N={-2,-1,0}。故选 C.
2.【答案】C
【解析】∵ 2 =1-i ,∴ 2 = 1-i = 3 。故选 C.
1+i
1+i
3.【答案】B
【解析】如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为
所以 T
800X - 39000,100 X 65000,130 X 150.
130,
(2)由(1)知利润 T 不少于 57 000 元当且仅当120 X 150 . 由直方图知需求量 X [120,150] 的频率为 0.7,所以下一个销售季度内的利润 T 不少于 57 000 元的概率的 估计值为 0.7. 20.【答案】(1) y2-x2=1
【2013年高考数学复习重点】高中新课程数学(人教)二轮复习专题第二部分《 巧解填空题的四大技法 》课件
工具
二轮新课标文科数学 第二部分 第三篇
(2012·江西卷)等比数列{an}的前n项和为Sn,公
比不为1.若a1=1,则对任意的n∈N*,都有an+2+an+1-2an=
0,则S5=________.
解析: 由题意知 a3+a2-2a1=0,设公比为 q,则 a1(q2 +q-2)=0.由 q2+q-2=0 解得 q=-2 或 q=1(舍去),则 S5 a1(1-q5) 1-(-2)5 = = =11. 3 1-q
第二讲 巧解填空题的四大技法
工具
二轮新课标文科数学 第二部分 第三篇
1.填空题在高考试卷中不同省份的试卷所占分值
的比重有所不同,其基本特点是:
(1)小巧灵活、结构简单、概念性强; (2)运算量不大,不需要写出求解过程而只需写 出结论; (3)从内容上看主要有两类:一类是定量填写,
一类是定性填写.
工具
工具
二轮新课标文科数学 第二部分 第三篇
解析:
用正方体ABCD-A1B1C1D1 实例说明A1D1 与BC1
在平面ABCD上的射影互相平行,AB1与BC1在平面ABCD上的
射影互相垂直,BC1 与DD1 在平面ABCD上的射影是一条直线
及其外一点.
答案: ①②④
工具
二轮新课标文科数学 第二部分 第三篇
解析: 由题意知|AF1|=a-c,|F1F2|=2c,|F1B|=a+c, 且三者成等比数列,则|F1F2|2=|AF1|· 1B|,即4c2=a2-c2,a2 |F 1 5 =5c ,所以e = ,所以e= . 5 5
2 2
答案:
工具
5 5
二轮新课标文科数学 第二部分 第三篇
当填空题已知条件中含有某些不确定的量,但填空题的 结论唯一或题设条件中提供的信息暗示答案是一个定值时, 可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊
(完整版)2013年高考文科数学全国新课标卷2试题与答案
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1}2. 21i+=( ). A. B .2 CD ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2 D 15.设椭圆C :2222=1x y a b +(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .6B .13C .12 D .36.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .23 7.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a =log 32,b =log 52,c =log 23,则().A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ). A .y =x -1或y =-x +1 B .y=1)x -或y=1)x -C .y=(1)3x -或y=(1)3x -- D .y=(1)2x -或y=(1)2x --11.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=012.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞) B.(-2,+∞) C .(0,+∞) D .(-1,+∞) 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅u u u r u u u r =__________.15.已知正四棱锥O -ABCD的体积为2,则以O 为球心,OA 为半径的球的表面积为__________. 16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.18. (本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1) 证明:BC 平行面CD A 1 (2) 设,22,21====AB CB AC AA 求三棱锥DE A C 1-的体积19. (本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20. (本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221. (本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22. (本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23. (本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b c b c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C.2.答案:C解析:∵21i +=1-i ,∴21i +=|1-i|. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭, 由正弦定理得sin sin a b A B=,则7π2sin sin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||23PF x F F c ==,得3x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A 解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4,T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°.∴斜率k y 1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =1)x -,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12x a x ⎛⎫>- ⎪⎝⎭(x >0). 令f (x )=12x x ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。
2013年高考文科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,文1)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( ).A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2,-1,0} D..{-3,-2,-1}2.(2013课标全国Ⅱ,文2)21i+=( ).A. B.2 CD..13.(2013课标全国Ⅱ,文3)设x,y满足约束条件10,10,3,x yx yx-+≥⎧⎪+-≥⎨⎪≤⎩则z=2x-3y的最小值是( ).A.-7 B.-6 C.-5 D.-34.(2013课标全国Ⅱ,文4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,π6B=,π4C=,则△ABC的面积为( ).A. BC.2 D15.(2013课标全国Ⅱ,文5)设椭圆C:2222=1x ya b+(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( ).A. B.13 C.12 D.6.(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos4α⎛⎫+⎪⎝⎭=( ).A.16 B.13 C.12 D.237.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N=4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.(2013课标全国Ⅱ,文8)设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.(2013课标全国Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .)1(3-±=x yC .y =(1)3x -或y =(1)3x -- D .y =(1)2x -或y =1)2x --11.(2013课标全国Ⅱ,文11)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f (x)的图像是中心对称图形C .若x0是f(x )的极小值点,则f (x )在区间(-∞,x0)单调递减D .若x0是f (x)的极值点,则f ′(x0)=012.(2013课标全国Ⅱ,文12)若存在正数x 使2x(x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.(2013课标全国Ⅱ,文14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________。
2013年高考文科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,文1)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 2.(2013课标全国Ⅱ,文2)21i+=( ). A. B .2 CD ..13.(2013课标全国Ⅱ,文3)设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.(2013课标全国Ⅱ,文4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A. BC.2 D15.(2013课标全国Ⅱ,文5)设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A. B .13 C .12 D.6.(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.(2013课标全国Ⅱ,文8)设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >aC .c >b >aD .c >a >b 9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.(2013课标全国Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y=(1)3x -或y=1)x -C.y=(1)3x-或y=(1)3x--D.y=(1)2x-或y=(1)2x--11.(2013课标全国Ⅱ,文11)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(2013课标全国Ⅱ,文12)若存在正数x使2x(x-a)<1成立,则a的取值范围是( ).A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.(2013课标全国Ⅱ,文14)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=__________.15.(2013课标全国Ⅱ,文15)已知正四棱锥O-ABCD的体积为2,则以O为球心,OA为半径的球的表面积为__________.16.(2013课标全国Ⅱ,文16)函数y=cos(2x+φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y=πsin23x⎛⎫+⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅱ,文17)(本小题满分12分)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.18.(2013课标全国Ⅱ,文18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.19.(2013课标全国Ⅱ,文19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20.(2013课标全国Ⅱ,文20)(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221.(2013课标全国Ⅱ,文21)(本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22.(2013课标全国Ⅱ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23.(2013课标全国Ⅱ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(2013课标全国Ⅱ,文24)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b cb c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2. 答案:C 解析:∵21i+=1-i ,∴21i +=|1-i|.3. 答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233zy x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4. 答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+= ⎪⎝⎭, 由正弦定理得sin sin a bA B=,则7π2sinsin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x , 由tan 30°=212||||23PF x F F c ==,得3x =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8. 答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9. 答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A. 10. 答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+,解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率ky1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y=1)x -,故选C.11. 答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12. 答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。
2013高考全国二卷文科数学试卷与答案复习过程
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x (5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
广东省高考数学第二轮复习 第2讲 填空题技法指导 文
第2讲填空题技法指导填空题是高考三大题型之一,主要考查基础知识、基本方法以及分析问题、解决问题的能力,试题多数是教材例题、习题的改编或综合,体现了对通性通法的考查.该题型的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点;(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方式比较灵活.(3)从填写内容看,主要有两类:一类是定量填写型:要求考生填写数值、数集或数量关系.由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,即要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.近几年出现了定性型的具有多重选择的填空题.1.直接法与定义法数学中的填空题,绝大多数都能直接利用有关定义、性质、定理、公式和一些规律性的结论,经过变形、计算得出结论.使用直接法和定义法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的变换.解题时,对概念要有合理的分析和判断;计算时,要求推理、运算的每一步骤都应正确无误,还要求将答案书写准确、完整.少算多思是快速、准确地解答填空题的基本要求.【例1】在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过点F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为__________.【例2】已知圆A:(x+2)2+y2=1与定直线l:x=1,且动圆P和圆A外切并与直线l相切,则动圆的圆心P的轨迹方程是__________.变式训练1 已知a=(m+1)i-3j,b=i+(m-1)j,其中i,j为互相垂直的单位向量,且(a+b)⊥(a-b),则实数m=__________.2.特殊化法当题目中暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效.【例3】已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成立.数列{a n}满足a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=__________.变式训练2 在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=__________.3.数形结合法依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解填空题,称为数形结合型填空题,这类问题的几何意义一般较为明显.由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观的分析,加上简单的运算,便可得出正确的答案.【例4】曲线方程|x2-1|=x+k的实根随k的变化而变化,那么方程的实根的个数最多为__________.变式训练3 若方程2x-x2=kx-2k+2有两个不同的实数根,则实数k的取值范围为__________.4.构造法构造法就是通过对已知的条件和结论进行深入、细致地分析,抓住问题的本质特征,再联想与之有关的数学模型,恰当地构造辅助元素,将待证(求)问题进行等价转化,从而架起已知与未知的桥梁,使问题得以解决.构造法在函数、方程、不等式等方面有着广泛的应用,特别是与数列、三角、空间几何体、复数等知识密不可分.【例5】若锐角α,β,γ满足cos 2α+cos 2β+cos 2γ=1,那么tan α·tan β·tan γ的最小值为__________.变式训练4 如果sin 3θ-cos 3θ>cos θ-sin θ,且θ∈(0,2π),那么角θ的取值范围是__________.5.等价转化法从题目出发,把复杂的、生疏的、抽象的、困难的或未知的问题通过等价转化为简单的、熟悉的、具体的、容易的或已知的问题来解决,从而得出正确的结果.【例6】已知函数f (x )=x 3+x -6,若不等式f (x )≤m 2-2m +3对于所有x ∈[-2,2]恒成立,则实数m 的取值范围是__________.变式训练5 对于任意的|m |≤2,函数f (x )=mx 2-2x +1-m 的值恒为负,则实数x 的取值范围为__________.参考答案方法例析【例1】 x 216+y 28=1 解析:∵△ABF 2的周长为16,∴4a =16,解得a =4.∵离心率e =22,∴c =22.∴b 2=8.∵椭圆的焦点在x 轴上,∴椭圆的标准方程为x 216+y 28=1.【例2】 y 2=-8x 解析:利用抛物线的定义,先判断出点P 的轨迹再求方程.由题意可知,点P 到直线x =1的距离比它到点A 的距离小1,即点P 到直线x =2的距离与到点A 的距离相等,所以点P 的轨迹是以A 为焦点,直线x =2为准线的抛物线,其方程为y 2=-8x .【变式训练1】 -2 解析:a +b =(m +2)i +(m -4)j ,a -b =m i -(m +2)j , ∵(a +b )⊥(a -b ),∴(a +b )·(a -b )=0.∴m (m +2)i 2+[-(m +2)2+m (m -4)]i ·j -(m +2)(m -4)j 2=0. ∵i ,j 为互相垂直的单位向量,∴i ·j =0,i 2=1,j 2=1.从而可得m (m +2)-(m +2)(m -4)=0,解得m =-2.【例3】 n ·2n解析:根据数列满足的关系式,进行恰当的赋值.∵a 1=2,∴2=f (21)=f (2).令x =2n ,y =2,∴f (2n +1)=2f (2n )+2n +1. ∴f (2n +1)2n +1=f (2n )2n +1,f (2n +1)2n +1-f (2n )2n =1.∴f (2n)2n =f (2)2+(n -1)×1=n .∴a n =n ·2n .【变式训练2】 45解析:令a =3,b =4,c =5,则△ABC 为直角三角形,且cos A =45,cos C =0,代入所求式子,得cos A +cos C1+cos A cos C =45+01+45×0=45. 【例4】 4 解析:如图所示,参数k 是直线y =x +k 在y 轴上的截距,通过观察直线y=x +k 与y =|x 2-1|的公共点的变化情况,并通过计算可知,当k <-1时,曲线方程有0个实根;当k =-1时,有1个实根;当-1<k <1时,有2个实根;当k =1时,有3个实根;当1<k <54时,有4个实根;当k =54时,有3个实根;当k >54时,有2个实根.综上所述,可知实根的个数最多为4.【变式训练3】 ⎝ ⎛⎦⎥⎤34,1 解析:方程2x -x 2=kx -2k +2有两个不同的实数根,就是y=2x -x 2与y =kx -2k +2有两个不同的交点.由y =2x -x 2得(x -1)2+y 2=1(y ≥0),所以曲线y =2x -x 2是以(1,0)为圆心,以1为半径的位于x 轴上方的半圆.由y =kx -2k +2,得y -2=k (x -2),它是经过点P (2,2),斜率为k 的直线.如图,连接PO ,k OP =2-02-0=1.过P 作圆的切线PQ ,由|-k +2|1+k2=1,得k PQ =34, 所以34<k ≤1.【例5】 2 2 解析:如图,设AB =a ,AD =b ,AA 1=c , 令α,β,γ分别为∠BAC 1,∠C 1AD ,∠C 1AA 1,从而有tan α·tan β·tan γ=b 2+c 2a ·a 2+c 2b ·a 2+b 2c ≥2bc ·2ac ·2ababc=2 2.当且仅当a =b =c 时,tan α·tan β·tan γ取最小值2 2.【变式训练4】 ⎝ ⎛⎭⎪⎫π4,5π4 解析:不等式sin 3θ-cos 3θ>cos θ-sin θ⇔sin 3θ+sin θ>cos 3θ+cos θ.构造函数f (x )=x 3+x ,∵f ′(x )=3x 2+1>0,∴函数f (x )在R 上是增函数,故当sin θ>cos θ时,sin 3θ+sin θ>cos 3θ+cos θ成立.又θ∈(0,2π),∴π4<θ<5π4.【例6】 (-∞,1-2]∪[1+2,+∞) 解析:∵f ′(x )=3x 2+1>0,∴f (x )在x ∈[-2,2]内是增函数.∴f (x )在[-2,2]上的最大值是f (2)=4.∴m 2-2m +3≥4,解得m ≤1-2或m ≥1+ 2.【变式训练5】 ⎝ ⎛⎭⎪⎫7-12,3+12 解析:对于任意的|m |≤2,有mx 2-2x +1-m <0恒成立,即当|m |≤2时,(x 2-1)m -2x +1<0恒成立.设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).∴⎩⎪⎨⎪⎧ g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0. 解得7-12<x <3+12. 即x 的取值范围为⎝ ⎛⎭⎪⎫7-12,3+12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.特殊化法
当题目中暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效.
已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)
n*成立.数列{an}满足an=f(2)(n∈N),且a1=2.则数列的通项公式an=__________.
变式训练2在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,cosA+cosC则__________.1+cosAcosC
第2讲填空题技法指导填空题是高考三大题型之一,主要考查基础知识、基本方法以及分析问题、解决问题的能力,试题多数是教材例题、习题的改编或综合,体现了对通性通法的考查.该题型的基本特点是:(1)具有考查目标集中、跨度大、知识覆盖面广、形式灵活、答案简短、明确、具体,不需要写出求解过程而只需要写出结论等特点.(2)填空题与选择题有质的区别:①填空题没有备选项,因此,解答时不受诱误干扰,但同时也缺乏提示;②填空题的结构往往是在正确的命题或断言中,抽出其中的一些内容留下空位,让考生独立填上,考查方式比较灵活.(3)从填写内容看,主要有两类:一类是定量填写型,即要求考生填写数值、数集或数量关系,由于填空题缺少选项的信息,所以高考题中多数是以定量型问题出现;另一类是定性填写型,即要求填写的是具有某种性质的对象或填写给定的数学对象的某种性质,如命题真假的判断等.近几年出现了定性型的具有多重选择的填空题.1.直接法与定义法
3.数形结合法
依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解填空题,称为数形结合型填空题,这类问题的几何意义一般较为明显.由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观的分析,加上简单的运算,便可得出正确的答案.
2曲线方程|x-1|=x+k的实根随k的变化而变化,那么方程的实根的个数最多为
数学中的填空题,绝大多数都能直接利用有关定义、性质、定理、公式和一些规律性的结论,经过变形、计算得出结论.使用直接法和定义法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的变换.解题时,对概念要有合理的分析和判断;计算时,要求推理、运算的每一步骤都应正确无误,还要求将答案书写准确、完整.少算多思是快速、准确地解答填空题的基本要求.
__________.
2变式训练32x-x=kx-2k+2有两个不同的实数根,则实数k的取值范围为
__________.
4.构造法
构造法就是通过对已知的条件和结论进行深入、细致的分析,抓住问题的本质特征,题进行等价转化,从而架起已知与未知的桥梁,使问题得以解决.构造法在函数、方程、不等式等方面有着广泛的应用,
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x2
过点F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为__________.
已知圆A:(x+2)2+y2=1与定直线l:x=1,且动圆P和圆A外切并与直线l相切,则动圆的圆心P的轨迹方程是__________.