投影与视图学案

合集下载

九年级数学《投影与视图》空间想象与绘图技巧教案

九年级数学《投影与视图》空间想象与绘图技巧教案

九年级数学《投影与视图》空间想象与绘图技巧教案一、教学目标通过本节课的学习,学生应能够:1. 理解投影与视图的概念,能够准确描述物体的投影和视图;2. 掌握空间想象与绘图的基本技巧,能够运用这些技巧进行空间图形的绘制和分析;3. 培养学生的空间想象能力,提高解决数学问题的能力。

二、教学重难点1. 教学重点:投影与视图的概念及绘图技巧;2. 教学难点:培养学生的空间思维和想象能力。

三、教学准备1. 教师准备:黑板、彩色粉笔、教案、教学PPT等;2. 学生准备:课本、笔、作业本。

四、教学过程1. 导入通过引发学生对空间想象的思考,激发学生学习的兴趣。

2. 概念解释与讲解(在黑板上画投影与视图的示意图)投影是指三维空间中物体在不同平面上的投射结果,视图是指物体在某一特定方向上的投影结果。

通过透过物体和围绕物体的不同的视点,我们可以得到物体在各个平面上的投影和在不同方向上的视图。

3. 绘图技巧的讲解(在黑板上讲解并示范)a. 正投影:物体在垂直于底面的平面上的投影。

投影与实物图形的形状大小完全相同,但是方向相反。

b. 侧投影:物体在旁侧的一个平面上的投影。

通常是物体在水平方向的投影,所以不同物体的侧投影在同一平面上。

c. 俯视图:物体在上方一个平面上的投影。

通常是物体在垂直于底面的平面上的上视图,所以不同物体的侧投影在同一平面上。

4. 练习与巩固(布置练习题并讲解)通过布置一些投影与视图的练习题,让学生进行练习和巩固所学知识。

在讲解过程中,引导学生运用正确的绘图技巧,并注意投影和视图的对应关系。

5. 拓展与应用(提出拓展问题并讨论)引导学生运用所学知识,解决一些实际问题。

例如,根据给定的物体视图,通过绘制投影图找到物体的实际形状,并进行测量和计算。

6. 归纳与总结(归纳投影与视图的性质)通过学生的总结,归纳出投影与视图的一些性质,帮助他们更好地理解和记忆所学内容。

7. 课堂作业布置相关练习题作为课堂作业,要求学生运用所学知识完成。

人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)

人教版九年级数学教案 第29章《投影与视图》全章导学案(共4课时)

人教版九年级数学《投影与视图》全章导学案第1课时投影的概念和分类知识点1:平行投影【例1】下列光线所形成的是平行投影的是( A )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线,1. 把一个正六棱柱如图1-29-90-1摆放,光线由上向下照射此正六棱柱时的正投影是( A )图1-29-90-1知识点2:中心投影【例2】如图1-29-90-2,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( B )图1-29-90-2A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长,2. 如图1-29-90-3,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( B )图1-29-90-3A. 越长B. 越短C. 一样长D. 随时间变化而变化知识点3:运用投影的知识解决相关问题【例3】如图1-29-90-4,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE的影长为4.5 m,则DE=6m.图1-29-90-4,3. 如图1-29-90-5,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是1.8m.图1-29-90-5A组4. 下列现象不属于投影的是( B )A. 皮影B. 素描画C. 手影D. 树影,5. 一个人离开灯光的过程中人的影长( A )A. 变长B. 变短C. 不变D. 不确定6. 正方形的正投影不可能是( D )A. 线段B. 矩形C. 正方形D. 梯形,7. 在阳光的照射下,一个矩形框的影子的形状不可能是( C )A. 线段B. 平行四边形C. 等腰梯形D. 矩形B组8. 在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律,9. 小红和小花在路灯下的影子一样长,则她们的身高关系是( D )A. 小红比小花高B. 小红比小花矮C. 小红和小花一样高D. 不确定10. 下列图中是在太阳光下形成的影子的是( A ),11. 如图1-29-90-6是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( B )图1-29-90-6A. 1234B. 4312C. 3421D. 4231C组12. 如图1-29-90-7,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为3m.图1-29-90-7,13. 如图1-29-90-8,圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图的圆环形阴影. 已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( D )图1-29-90-8A. 0.324πm2B. 0.288πm2C. 1.08πm2D. 0.72πm2第2课时简单物体的三视图知识点1:简单几何体的三视图【例1】如图1-29-91-1的圆柱体从正面看得到的图形可能是( B )图1-29-91-1,1. 如图1-29-91-2是一个正六棱柱的茶叶盒,其俯视图为( B )图1-29-91-2知识点2:简单组合体的三视图【例2】如图1-29-91-3是由几个相同的正方体搭成的一个几何体,从上面看得到的平面图形是( B )图1-29-91-3,2. 如图1-29-91-4是由一个正方体和一个正四棱锥组成的立体图形,它的俯视图是( C )图1-29-91-4知识点3:三视图的特征及画法【例3】如图1-29-91-5,画出这个几何体的三视图.图1-29-91-5解:如答图29-91-1.答图29-91-1,3. 图1-29-91-6是由大小相同的小立方块搭成的几何体,请在图中的方格纸中画出该几何体的三视图.解:如答图29-91-2.答图29-91-24. 由4个相同的小立方体搭成的几何体如图1-29-91-7,则它的俯视图是( D )图1-29-91-75. 如图1-29-91-8的立体图形,从左面看可能是( A )图1-29-91-86. 如图1-29-91-9的几何体从左面看到的图形是( A )图1-29-91-97. 如图1-29-91-10的几何体的主视图是( B )图1-29-91-10B组8. 在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( B ),9. 如图1-29-91-11的四个几何体中,主视图与左视图相同的几何体有( D )图1-29-91-11A. 1个B. 2个C. 3个D. 4个C组10. 画出图1-29-91-12的空间几何体的三视图.图1-29-91-12答图29-91-3解:如答图29-91-3.,11. 如图1-29-91-13,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体. 请画出这个几何体的三视图.解:如答图29-91-4.第3课时由三视图确定物体的形状【例1】如图1-29-92-1是某个几何体的主视图、左视图、俯视图,该则几何体是( C )图1-29-92-1A. 圆柱B. 球C. 圆锥D. 棱锥,1. 某几何体的三视图如图1-29-92-2,则这个几何体是( D )图1-29-92-2A. 圆柱B. 长方体C. 三棱锥D. 三棱柱知识点2:根据三视图描述物体原来的形状——简单组合体【例2】如图1-29-92-3是由三个相同的小正方体组成的几何体的主视图,那么这个几何体可以是( A )图1-29-92-3,2. 如图1-29-92-4是一个几何体的三视图,则这个几何体是( B )图1-29-92-4知识点3:由三视图确定小正方体的个数【例3】由一些大小相同的小正方体组成的几何体的三视图如图1-29-92-5,那么,组成这个几何体的小正方体有( B )图1-29-92-5A. 6块B. 5块C. 4块D. 3块,3. 如图1-29-92-6是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( D )图1-29-92-6A. 7个B. 8个C. 9个D. 10个知识点4:利用三视图计算几何体的表面积和体积【例4】如图1-29-92-7是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据数据计算这个几何体的表面积.图1-29-92-7解:(1)由三视图得几何体为圆锥.(2)圆锥的表面积是16π. ,4. 如图1-29-92-8是一个包装盒的三视图.(1)写出这个几何体的名称;(2)求这个几何体的体积.(结果保留π)图1-29-92-8解:(1)这个几何体是圆柱.(2)体积是2 000π.A组5. 某几何体的三种视图是全等的,这个几何体可能是( C )A. 圆柱B. 圆锥C. 球D. 三棱柱,6. 如图1-29-92-9是某几何体的三视图,那么该几何体是( D )图1-29-92-9A. 球B. 正方体C. 圆锥D. 圆柱B组7. 已知某物体的三视图如图1-29-92-10,那么与它对应的物体是( B )图1-29-92-10,8. 某几何体的左视图如图1-29-92-11,则该几何体不可能是( D )图1-29-92-119. 如图1-29-92-12,这是一个几何体的三视图,根据图中数据计算这个几何体的侧面积.图1-29-92-12解:几何体的侧面积为10π.,10. 如图1-29-92-13是一个几何体的三视图,其中俯视图是等边三角形. (1)请写出这个几何体的名称; (2)求这个几何体的表面积.图1-29-92-13解:(1)这个几何体为三棱柱.(2)这个几何体的表面积为44 33(cm 2).C 组11. 某一几何体的三视图均如图1-29-92-14,则搭成该几何体的小立方体的个数为( C )图1-29-92-14A. 9B. 5C. 4D. 3,12. 几个相同的小正方体所搭成的几何体的俯视图和左视图如图1-29-92-15,则小正方体的个数最多是( B )图1-29-92-15A. 5个B. 7个C. 8个D. 9个第4课时投影与视图单元复习课知识点1:投影的定义及分类【例1】人往路灯下行走的影子变化情况是( A )A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长,1. 在阳光照射下的升旗广场的旗杆从上午十点到十二点的影子长的变化规律为( B )A. 逐渐变长B. 逐渐变短C. 影子长度不变D. 影子长短变化无规律知识点2:三视图【例2】下列几何体中,主视图、俯视图、左视图都相同的是( B )2. 如图1-29-93-1是某几何体的三视图,该几何体是( B )图1-29-93-1A. 三棱柱B. 长方体C. 圆锥D. 圆柱知识点3:三视图的相关计算【例3】已知圆锥的三视图如图1-29-93-2,则这个圆锥的侧面展开图的面积为( B )图1-29-93-2A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm2,3. 如图1-29-93-3是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是( D )图1-29-93-3A. 200 cm2B. 600 cm2C. 100πcm2D. 200πcm2知识点4:画三视图【例4】画出如图1-29-93-4的几何体的主视图、左视图和俯视图.图1-29-93-4答图29-93-1解:如答图29-93-1.4. 如图1-29-93-5的几何体是由棱长为1的正方体摆放成的形状. 请画出这个几何体的三视图.图1-29-93-5解:如答图29-93-2.答图29-93-2A组5. 在阳光下摆弄一个矩形,它的影子不可能是( C )A. 线段B. 矩形C. 等腰梯形D. 平行四边形,6. 下图的四幅图中,灯光与影子的位置合理的是( B )7. 如图1-29-93-6是一个几何体的主视图和俯视图,则这个几何体是( A )图1-29-93-6A. 三棱柱B. 正方体C. 三棱锥D. 长方体,8. 如图1-29-93-7的正六棱柱的主视图是( A )图1-29-93-7B组9. 用5个棱长为1的正方体组成如图1-29-93-8的几何体. 请在方格纸中用实线画出它的三个视图.图1-29-93-8解:如答图29-93-3.答图29-93-310. 某几何体从正面、左面、上面看到的平面图形如图1-29-93-9,其中从正面看到的图形和从左面看到的图形完全一样.(1)求该几何体的侧面面积(结果保留π);(2)求该几何体的体积(结果保留π).图1-29-93-9解:(1)该几何体的侧面面积为π·6×8=48π.(2)此圆柱体的体积为72π.C组11. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图1-29-93-10,则搭成该几何体的小正方体最多是7个.图1-29-93-1012. 如图1-29-93-11是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).图1-29-93-11答图29-93-4解:如答图29-93-4.。

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计

人教版数学九年级下册第29章《投影与视图》课堂教学设计一. 教材分析人教版数学九年级下册第29章《投影与视图》是本册教材中的一个重要章节,主要介绍投影的概念、分类以及投影的基本性质。

通过本章的学习,使学生了解投影在数学、物理、艺术等领域的应用,培养学生的空间想象能力和抽象思维能力。

本章内容主要包括以下几个部分:1.投影的概念和分类2.正投影和斜投影3.投影的基本性质4.平行投影5.中心投影6.投影变换二. 学情分析学生在学习本章内容前,已经掌握了平面几何、立体几何的基本知识,具备了一定的空间想象能力和抽象思维能力。

但投影概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动形象的实例,引导学生直观地理解投影的概念,并通过大量的练习,使学生熟练掌握投影的性质和变换。

三. 教学目标1.了解投影的概念、分类和基本性质。

2.掌握正投影和斜投影的特点。

3.能够运用投影性质解决实际问题。

4.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.投影的概念和分类。

2.投影的基本性质。

3.投影变换。

五. 教学方法1.采用直观演示法,通过实物模型和多媒体动画,引导学生直观地理解投影的概念和性质。

2.运用讲解法,详细讲解投影的分类、基本性质和变换规律。

3.采用练习法,让学生在实践中巩固投影知识。

4.运用小组讨论法,培养学生合作学习的能力。

六. 教学准备1.投影仪、实物模型、多媒体动画。

2.投影习题、测验题。

3.投影实验材料。

七. 教学过程1.导入(5分钟)利用实物模型和多媒体动画,引导学生直观地了解投影的概念。

例如,用一个三角形模型在灯光下投影,让学生观察投影的特点。

2.呈现(10分钟)讲解投影的分类,包括正投影和斜投影。

通过示例,使学生了解正投影和斜投影的特点。

3.操练(10分钟)让学生进行投影练习,掌握投影的基本性质。

例如,让学生根据给定的物体,画出其正投影和斜投影。

4.巩固(10分钟)讲解投影变换,包括平行投影和中心投影。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

新人教版九年级数学下册《投影与视图》全章教案第一节:投影的概念与分类教学目标:1. 了解投影的概念,掌握投影的分类。

2. 能够运用投影的知识解决实际问题。

教学重点:投影的概念,投影的分类。

教学难点:投影的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影的概念。

2. 新课:介绍投影的分类,讲解不同类型的投影特点。

3. 练习:让学生运用投影的知识解决实际问题。

课后作业:1. 复习投影的概念与分类。

2. 运用投影的知识解决实际问题。

第二节:视图的概念与分类教学目标:1. 了解视图的概念,掌握视图的分类。

2. 能够运用视图的知识解决实际问题。

教学重点:视图的概念,视图的分类。

教学难点:视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考视图的概念。

2. 新课:介绍视图的分类,讲解不同类型的视图特点。

3. 练习:让学生运用视图的知识解决实际问题。

课后作业:1. 复习视图的概念与分类。

2. 运用视图的知识解决实际问题。

第三节:三视图教学目标:1. 了解三视图的概念,掌握三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学重点:三视图的概念,三视图的画法。

教学难点:三视图的应用。

教学过程:1. 导入:通过展示图片,引导学生思考三视图的概念。

2. 新课:介绍三视图的画法,讲解不同类型的三视图特点。

3. 练习:让学生运用三视图的知识解决实际问题。

课后作业:1. 复习三视图的概念与画法。

2. 运用三视图的知识解决实际问题。

第四节:投影与视图的应用教学目标:1. 了解投影与视图在实际中的应用,掌握投影与视图的转换方法。

2. 能够运用投影与视图的知识解决实际问题。

教学重点:投影与视图的应用,投影与视图的转换方法。

教学难点:投影与视图在实际问题中的应用。

教学过程:1. 导入:通过展示图片,引导学生思考投影与视图在实际中的应用。

2. 新课:介绍投影与视图的转换方法,讲解不同类型的投影与视图应用。

3. 练习:让学生运用投影与视图的知识解决实际问题。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影与视图的概念教学目标:1. 理解投影的概念,掌握平行投影和中心投影的性质。

2. 理解视图的概念,掌握主视图、左视图和俯视图的定义及关系。

3. 学会用投影和视图的方式观察和描述几何体的形状。

教学内容:1. 投影的概念和分类2. 平行投影和中心投影的性质3. 视图的概念和分类4. 主视图、左视图和俯视图的定义及关系5. 用投影和视图观察和描述几何体的形状教学重点:投影与视图的概念及性质教学难点:用投影和视图观察和描述几何体的形状教学方法:采用问题驱动法、案例教学法和小组合作学习法。

教学过程:1. 引入新课:通过展示实际生活中的投影与视图现象,引发学生对投影与视图的兴趣。

2. 讲解投影的概念和分类,引导学生理解投影的性质。

3. 讲解视图的概念和分类,引导学生理解主视图、左视图和俯视图的定义及关系。

4. 通过实例演示,引导学生学会用投影和视图的方式观察和描述几何体的形状。

教学评价:1. 通过课堂问答,检查学生对投影与视图概念的理解程度。

2. 通过练习题,检查学生对投影与视图性质的掌握程度。

3. 通过小组合作学习,评估学生在实际操作中用投影和视图观察和描述几何体形状的能力。

第二章:三视图的绘制教学目标:1. 掌握三视图的绘制方法。

2. 学会通过三视图还原几何体的形状。

教学内容:1. 三视图的概念2. 三视图的绘制方法3. 通过三视图还原几何体的形状教学重点:三视图的绘制方法和通过三视图还原几何体的形状教学难点:通过三视图还原几何体的形状教学方法:采用案例教学法、小组合作学习和实践操作法。

教学过程:1. 引入新课:通过展示实际生活中的三视图现象,引发学生对三视图的兴趣。

2. 讲解三视图的概念,引导学生理解三视图的重要性。

3. 讲解三视图的绘制方法,引导学生学会正确绘制三视图。

4. 通过实例演示,引导学生学会通过三视图还原几何体的形状。

教学评价:1. 通过课堂问答,检查学生对三视图概念的理解程度。

第二十九章 投影与视图 复习学案

第二十九章 投影与视图 复习学案

复习第二十九章投影与视图【学习内容】教材P100-124【学习目标】1、通过本节复习,使学生对本章知识点有一个系统的认识。

2、通过习题演练,达到灵活运用知识点的目的。

3、认识本节内容与生活实际的紧密联系。

【学习重点】掌握本章知识点。

【学习难点】灵活运用本章知识点。

【学习准备】常见的几何体、刻度尺、剪刀、胶水、胶带、硬纸板、马铃薯(或萝卜)等。

【学习过程】【知识梳理】师生共同勾勒出本章知识框架图:【知识运用】1、李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是()2、学校里旗杆的影子整个白天的变化情况是()A、不变B、先变短后变长C、一直在变短D、一直在变长3、晚上,人在马路上走过一盏灯的过程,其影子的长度变化情况是()A、先变短后变长B、先变长后变短C、逐渐变短D、逐渐变长4、如图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是()A、5B、6C、7D、85、如图,上体育课时,甲、乙两名同学分别站在C、D的位置时,乙的影子顶端恰好和甲的影子顶端重合,已知甲、乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是米。

6、一个几何体的三视图如图所示,那么这个几何体是。

8、画出下列几何体的三视图:9、(1)一木杆按如图1所示的方式直立在地面上,请在图中画它在阳光下的影子(用线段CD表示)(2)图2是两根标杆及它们在灯光下的影子。

请在图中画出光源的位置(用点P表示)并在图中画出人在此光源下的影子(用线段EF表示)【知识晋级】1、数学兴趣小组测量一棵树的高度,要阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米。

同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图,其影长为1.2米,落在地面上的影长为2.4米,则树高为米。

变式训练:小亮想利用太阳光下的影子测量校园内一棵大树的高,小亮发现大树的影子恰好落在斜坡CD和地面BC上,如图所示。

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案

人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。

这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。

本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。

但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。

另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。

三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。

2.让学生掌握视图的分类,学会画一视图、二视图、三视图。

3.培养学生空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。

2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。

3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。

六. 教学准备1.准备投影仪、实物、模型等教学道具。

2.准备相关的练习题和测试题。

3.准备黑板和粉笔。

七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。

2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。

3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。

教师巡回指导,解答学生疑问。

4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。

九年级数学下册投影与视图全章教案新人教版

九年级数学下册投影与视图全章教案新人教版

九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。

2. 能够运用投影的知识解决实际问题。

教学内容:1. 投影的概念:平行投影、中心投影。

2. 投影的分类:正投影、斜投影。

3. 投影的基本性质。

教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。

2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。

3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。

4. 引导学生总结投影的基本性质,如相似性、形状不变等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述投影的概念和分类。

2. 学生能够运用投影的知识解决实际问题。

第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。

2. 能够运用视图的知识解决实际问题。

教学内容:1. 视图的定义:主视图、左视图、俯视图。

2. 视图的分类:正视图、侧视图、俯视图。

3. 视图的基本性质。

教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。

2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。

3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。

4. 引导学生总结视图的基本性质,如相互补充、完整性等。

5. 布置练习题,让学生巩固所学内容。

教学评价:1. 学生能够准确描述视图的定义和分类。

2. 学生能够运用视图的知识解决实际问题。

第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。

2. 能够运用三视图的知识解决实际问题。

教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。

2. 三视图的画法与特点。

教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。

2. 引导学生动手画出各种几何体的三视图,并观察其特点。

投影与视图教案

投影与视图教案

投影与视图教案投影与视图教案一、教学目标1.了解投影与视图的基本概念和用途。

2.掌握正交投影的方法和技巧。

3.能够正确绘制物体在不同视图中的投影。

二、教学重点1.正交投影的方法和技巧。

2.绘制物体在不同视图中的投影。

三、教学难点1.理解正交投影的原理。

2.掌握绘制物体在不同视图中的投影的技巧。

四、教学过程1.导入(5分钟)教师简要介绍投影和视图的概念,并引发学生对物体投影和视图的思考。

2.知识讲解(15分钟)(1)投影的概念和用途。

(2)视图的概念和种类。

3.示范与讲解(15分钟)(1)正交投影的方法和技巧。

(2)物体在不同视图中的投影绘制方法。

4.练习与巩固(15分钟)学生进行正交投影和视图绘制的练习。

(1)绘制物体在正面视图中的投影。

(2)绘制物体在侧面视图中的投影。

(3)绘制物体在俯视图中的投影。

5.拓展与应用(10分钟)学生尝试绘制物体在不同视图中的复杂投影,并与同学交流和比较。

教师引导学生进行思考和探索,培养学生的创造力和独立解决问题的能力。

6.总结与评价(10分钟)教师对学生的学习情况进行总结评价,提出必要的改进意见。

五、教学资源1.教科书和教学参考资料。

2.投影仪和白板等教学设备。

六、教学手段1.讲授与示范相结合。

2.练习与巩固相结合。

3.拓展与应用相结合。

4.个别指导和小组合作相结合。

七、教学评价1.观察学生对于投影与视图的理解与应用情况。

2.提出问题进行学生的回答和讨论。

3.布置作业,检查学生的掌握程度。

八、教学反思针对学生的不同水平和掌握情况,灵活调整教学内容和方法,注重培养学生的应用能力和创新思维。

第四章投影和视图单元教案

第四章投影和视图单元教案

第四章投影和视图单元教案第一节教学目标。

1. 了解投影和视图的概念和基本原理。

2. 掌握投影和视图的绘制方法。

3. 理解不同视图之间的关系。

4. 能够应用投影和视图的知识解决实际问题。

第二节教学重点和难点。

1. 投影和视图的概念和基本原理。

2. 投影和视图的绘制方法。

3. 不同视图之间的关系。

第三节教学内容。

1. 投影和视图的概念和基本原理。

1.1 投影的概念。

投影是指将三维空间中的物体投射到二维平面上的过程。

在工程制图中,常用投影的方法来表示物体的形状和尺寸。

1.2 视图的概念。

视图是指从不同方向观察物体所得到的投影。

常用的视图有主视图、俯视图和侧视图等。

1.3 投影和视图的基本原理。

投影和视图的绘制是基于投影的原理,通过投影将物体的形状和尺寸投射到平面上,再根据需要绘制不同的视图。

2. 投影和视图的绘制方法。

2.1 正投影和斜投影。

正投影是指投影线垂直于投影面的投影方法,斜投影是指投影线与投影面不垂直的投影方法。

在工程制图中常用正投影来表示物体的形状和尺寸。

2.2 视图的选择和布置。

在进行投影和视图的绘制时,需要根据物体的形状和尺寸选择合适的视图,并合理布置在图纸上。

3. 不同视图之间的关系。

3.1 主视图、俯视图和侧视图的关系。

主视图是指从正面观察物体所得到的视图,俯视图是指从上方观察物体所得到的视图,侧视图是指从侧面观察物体所得到的视图。

这三个视图之间具有一定的关系,可以通过它们来全面地了解物体的形状和尺寸。

第四节教学过程。

1. 投影和视图的概念和基本原理。

1.1 通过实物或图片等形式,让学生了解投影和视图的概念和基本原理。

1.2 讲解投影和视图的基本原理,引导学生理解投影和视图的绘制方法。

2. 投影和视图的绘制方法。

2.1 展示正投影和斜投影的绘制方法,让学生掌握投影的基本技巧。

2.2 给学生提供一些实例,让他们在老师的指导下进行投影和视图的绘制。

3. 不同视图之间的关系。

3.1 通过实例讲解主视图、俯视图和侧视图之间的关系,引导学生理解不同视图之间的联系。

人教版九年级数学下册《第二十九章投影与视图》教学设计

人教版九年级数学下册《第二十九章投影与视图》教学设计

人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。

本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。

通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。

但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。

此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。

三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。

2.学会用三视图观察几何体,提高空间想象力。

3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。

4.能运用投影与视图的知识解决实际问题。

四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。

2.三视图的作法及应用。

3.斜二测画法的原理及应用。

五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。

2.采用示范法,展示三视图的作法,引导学生动手实践。

3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。

4.采用小组讨论法,分组探讨,提高学生的合作能力。

六. 教学准备1.准备投影仪、几何模型等教具。

2.制作多媒体课件,包括投影原理、三视图作法等教学内容。

3.准备实际问题案例,用于课堂讨论。

七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。

2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。

3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。

北师版数学九年级上册第5章投影与视图(教案)

北师版数学九年级上册第5章投影与视图(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解投影与视图的基本概念。投影是通过光线将物体的形状和大小映射到一个平面上的方法。视图则是从不同方向看到的物体形状的平面表示。它们在工程设计、艺术创作等领域有着重要的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过三视图来理解一个复杂的几何体,以及这些视图如何帮助我们解决实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用手电筒在暗室中照射物体,观察不同角度下的投影变化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“投影与视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
北师版数学九年级上册第5章投影与视图(教案)
一、教学内容
北师版数学九年级上册第5章《投影与视图》主要包括以下内容:
1.投影的概念与分类:中心投影与平行投影的特点与应用。
2.视图的概念与分类:正视图、侧视图、俯视图的概念及其在几何体中的应用。
3.几何体的三视图:学会绘制简单几何体的三视图,理解视图之间的相互关系。
2.教学难点
-空间想象能力的培养:学生在理解几何体的三视图时,往往难以在脑海中形成准确的空间模型。
-投影与视图的应用:学生可能难以将理论知识与实际问题结合起来,如在实际建筑图纸中识别和应用视图。
-视图之间的转换与识别:学生可能会混淆不同视图的表示方法,以及它们之间的转换关系。
举例:
-难点突破:通过使用教具、立体图形的模型或计算机软件,帮助学生直观地理解几何体与其三视图之间的关系,提高空间想象能力。

导学案九(下)29投影与视图

导学案九(下)29投影与视图

人教版数学九年级上导学案第二十九章投影与视图第1课时:§29.1.1 投影第2课时:§29.1.2 投影第3课时:§29.1.2 投影习题课第4课时:§29.2.1 三视图(1)第5课时:§29.2.2三视图(2)第6课时:§29.2.3三视图(3)第7课时:§29.2.4三视图(4)第8课时:§29 全章复习第9课时:§29 全章测试2§29.1.1投影学习目标1.了解投影、投影面、平行投影和中心投影的概念;2.了解角平行投影和中心投影的区别;自主学习一、课前准备(预习教材P106~ P107,找出疑惑之处)二、新课导学※互动探究探究任务一:什么叫做物体的投影问题探究:学生先独立阅读课本第106页,再彼此交流结果,举例。

教师点拨:一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.探究任务二:平行投影和中心投影是什么?问题探究:学生先独立阅读课本第106,107页,再交流结果。

教师点拨:有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.探究任务三:平行投影与中心投影的区别与联系问题探究:学生以数学习小组为单位,观察在太阳光线和灯光下,木杆和三角形纸板在地面的投影。

教师点拨:平行投影与中心投影的区别与联系新知:1、物体的投影的概念;2、平行投影和中心投影的概念3、平行投影与中心投影的区别与联系学生反思本节课未理解的知识点,写在下面:※探究升华(学生独立完成,并自己总结,教师点拨)例1、地面上直立一根标杆AB如图,杆长为2cm。

认识投影与视图教案

认识投影与视图教案

认识投影与视图教案教案标题:认识投影与视图教学目标:1. 理解投影与视图的概念及其在几何学和工程图纸中的应用。

2. 能够识别和绘制常见的投影与视图。

3. 培养学生观察和分析的能力,提高几何思维和空间想象能力。

教学准备:1. 教师准备:a. 熟悉投影与视图的概念和应用。

b. 准备投影与视图的示例和练习题。

c. 准备投影与视图的教学素材,如幻灯片或投影仪。

2. 学生准备:a. 准备几何工具,如直尺、铅笔和量角器。

b. 复习前面学过的几何知识。

教学步骤:引入(5分钟):1. 引发学生对投影与视图的兴趣,提出问题:“你们知道什么是投影与视图吗?它们在哪些领域中有应用?”2. 让学生讨论并分享他们对投影与视图的理解和应用经验。

概念讲解(15分钟):1. 通过幻灯片或投影仪展示投影与视图的定义和概念,并解释其在几何学和工程图纸中的重要性。

2. 介绍常见的投影与视图类型,如平面投影、正投影、侧视图等,并解释它们的特点和用途。

示例演示(15分钟):1. 展示几个具体的实例,比如一个简单的立方体或圆柱体,演示如何绘制它们的投影与视图。

2. 详细解释每个步骤和技巧,引导学生理解和模仿。

练习与实践(20分钟):1. 分发练习题,让学生根据给定的图形或描述,绘制其投影与视图。

2. 监督学生的练习过程,提供指导和帮助。

3. 鼓励学生相互合作,共同解决问题。

总结与反思(5分钟):1. 总结投影与视图的重要性和应用。

2. 让学生回顾本节课所学内容,分享他们的收获和体会。

3. 解答学生提出的问题,澄清疑惑。

拓展活动:1. 鼓励学生在日常生活中观察和分析投影与视图的应用,如建筑物、家具等。

2. 提供更多的练习题和挑战性问题,以巩固和拓展学生的知识。

评估方式:1. 观察学生在课堂练习中的表现和参与程度。

2. 收集学生完成的练习题,检查其准确性和完整性。

3. 针对学生的问题和困难,进行个别辅导和指导。

教学反思:1. 教师应根据学生的实际情况和反馈,调整教学步骤和内容的难易程度。

投影与视图导学案

投影与视图导学案

活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。

总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。

活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。

归纳总结:由形成的投影叫做平行投影。

试举出平行投影在生活中的应用实例。

活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?归纳总结:由发出的光线形成的投影叫做中心投影。

试举出中心投影在生活中的应用实例。

活动4:出示教材101页练习:将物体与它们的投影用线连接起来。

活动5:问题1:出示两幅图,观察中心投影与平行投影的区别与联系。

联系:。

区别:。

问题2:图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?联系:图中的投影都是投影。

区别:总结出正投影的概念:。

正投影的概念:投影线 于投影面产生的投影叫正投影。

【自主探究】活动6如图29.1—7中,把一根直的细铁丝(记为线段AB )放在三个不同位置: (1) 铁丝平行于投影面; (2) 铁丝倾斜于投影面:(3) 铁丝垂直于投影面(铁丝不一定要与投影面有公共点)。

三种情形下铁丝的正投影各是什么形状?通过观察、讨论可知: (1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段与它的投影的大小关系为AB A 1B 1; (2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段与它的投影的大小关系为AB A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是 。

设计意图:用细铁丝表示一条线段,通过实验观察,分析它的正投影简单直观,易于发现结论。

活动7如图,把一块正方形硬纸板P (记为正方形ABCD )放在三个不同位置: (1) 纸板平行于投影面; (2) 纸板倾斜于投影面;(3)纸板垂直于投影面。

投影和视图导学案

投影和视图导学案

第二十九章投影与视图执教人,29.1投影【学习目标】(一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。

2、了解平行投影和中心投影的区别。

3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

(二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。

(三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。

(四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。

【学习重点】了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。

【学习难点】归纳正投影的性质,正确画出简单平面图形的正投影。

【学习准备】手电筒、三角尺、作图工具等。

【学习过程】【情境引入】活动1设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。

学生讨论、发表观点;教师归纳。

总结出投影、投影线、投影面的概念。

总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。

【自主探究】活动2教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?学生观察、思考、归纳,教师指导。

归纳总结:由形成的投影叫做平行投影。

试举出平行投影在生活中的应用实例。

活动3出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。

归纳总结:由发出的光线形成的投影叫做中心投影。

试举出中心投影在生活中的应用实例。

活动4出示教材101页练习:将物体与它们的投影用线连接起来。

【合作探究】活动5:问题1问题2图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。

联系:图中的投影都是投影。

第五章投影与视图 教案

第五章投影与视图  教案

做俯视图
第三环节:合作学习
(1)下图中物体的形状分别可以看成什么样
的几何体?与同伴交流。(2)在下图中分别找出几何体的主视图。
下图中物体的形状分别可以看成什么样 的几何体?
7
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
圆柱、圆锥和球的三种视图
第四环节:练习提高 如图是一个蒙古包的照片,你认为它可以看成是那些几何体的组合?你能画出该蒙古包 的三种视图吗?
午餐肉
(1)
(2)
(3)
(4)
(a)
(b)
(c)
(d)
2、画出下列几何体的三种视图:
第二环节:探索实践
9
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
如右图,出示一个三棱柱(最好有实物模型) 1.提问:你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你能画出它们吗?
二、教学重难点 重点:理解投影和中心投影的概念。
难点:中心投影条件下物体与其投影之间的相互转化
三、教学过程分析 第一环节 综合调查,创设资源
成影现象调查(提前一周布置)以 4 人合作小组为单位,开展调查活动: (1)尽所能收集生活中各类成影现象、(用电子图片形式呈现). (2)小组长整理所收集图片,统一规格要求,交给数学教师
第五环节:随堂练习 P136 第六环节:小结 作业布置:习题 5.3 第 1.2.
8
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
2.视图(二)
一、教学目标:
① 使学生想象直三棱柱和直四棱柱的三种视图,经历由直三棱柱和直四棱柱到其 三种视图的转化过程;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影与视图学案(1)
一、学习目标:了解投影的概念,能分辨投影的类型
二、重难点:会利用投影知识解决实际问题
三、学习过程:
如图4,小明身高1.60米,在路灯下发现自己的影长为2米,距灯 4米,求路灯的高度. 解:设AB 为人高,CD 为路灯高度,
由题意得PB=2,PD=PB+BD=6,AB=1.6.
设CG=x 米,由AB ∥CD 得△PAB ∽△PCD, ∴
,CD
AB CD PB =即,626.1=x x=4.8, 即路灯高度为4.8米..
(三)、双基训练(新知识内容的练习题:书本能做的写在书本上,重要的留空做在学案上)
2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )
A 、小明的影子比小强的影子长
B 、小明的影子比小强的影子短
C 、小明的影子和小强的影子一样长
D 、无法判断谁的影子长
3. 张明同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为
1.2米.当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约____米.
4.探照灯、手电筒、路灯等的光线可以看成是从______个点发出的,像这样的光线所形成的投影称为________.
5.在太阳光的照射下,矩形窗框在地面上的影子常常是______形,在不同时刻,这些形状一般不一样.
6.下列物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是( )
A.①②
B.①③
C.①②③
D.①②⑤
7.太阳发出的光照在物体上是______,车灯发出的光照在物体上是_____( )
A.中心投影,平行投影
B.平行投影,中心投影
C.平行投影,平行投影
D.中心投影,中心投影
8.在都市紧张的生活中,许多人选择在早晨五六点钟晨练,假设某一天早晨天空晴朗,当太阳出现,直射在人身上时,其影子方向应是( )
A.朝东
B.朝西
C.朝南
D.朝北
9.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是 ( )
(A)两竿都垂直于地面. (B)两竿平行斜插在地上.
(C)两根竿子不平行. (D)一根竿倒在地上.
10.平行投影中的光线是 ( )
(A)平行的. (B)聚成一点的. (C)不平行的. (D)向四面发散的.
11.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是
( )
(A)相等. (B)长的较长. (C)短的较长. (D)不能确定.
12.人离窗子越远,向外眺望时此人的盲区是 ( )
(A)变小. (B)变大. (C)不变. (D)以上都有可能.
(四)、拓展提高(考点链接:重点题目提高练习、变式训练等)
2.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m.
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
C B A 斜边c 对边a
b C B A 第22课时:《锐角三角函数》学案(1)
课型:新授课 主备人:鄢吉明 成员:朱贤芳 皮文飞 廖礼奎 审
核人:黄益明
一、复习目标:
经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即
正弦值不变)这一事实。

能根据正弦概念正确进行计算
二、重难点:
理解正弦(sinA )概念,知道当直角三角形的锐角固定时,它的对
边与斜边的比值是固定值这一事实.
三、学习过程:
(一)、预习导学
规定:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,
∠C 的对边记作c .
在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做
∠A 的 ,
记作sinA ,即sinA= =a c . sinA =A a A c
∠=∠的对边的斜边 (二)、互动疏通(典型例题讲解,示范解答)
问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山
坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现
测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,
那么需要准备多长的水管?
思考1:如果使出水口的高度为50m ,那么需要准备多长的水
管? ; 如果使出水口的高度为a m ,那么需要准备
多长的水管? ;
结论:直角三角形中,30°角的对边与斜边的比值
思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比
值是一个定值吗?•如果是,是多少?
结论:直角三角形中,45°角的对边与斜边的比值
从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C=90
°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;。

相关文档
最新文档