第一讲 Pawlak粗糙集模型

合集下载

粗糙集理论如何指导模型评估与选择的关键步骤总结

粗糙集理论如何指导模型评估与选择的关键步骤总结

粗糙集理论如何指导模型评估与选择的关键步骤总结引言:在当今数据驱动的社会中,模型评估与选择是数据科学领域中至关重要的一环。

粗糙集理论作为一种有效的数据挖掘方法,可以帮助我们在模型评估与选择过程中进行决策。

本文将介绍粗糙集理论的基本概念,并探讨如何利用它来指导模型评估与选择的关键步骤。

一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的一种数学工具,用于处理不确定性和不完备性的数据。

它通过将数据集划分为等价类来描述数据的粗糙程度,从而实现数据的简化和决策的支持。

二、数据预处理在模型评估与选择之前,数据预处理是必不可少的一步。

粗糙集理论提供了一种有效的方法来处理数据中的不确定性和不完备性。

通过粗糙集理论的等价类划分,我们可以对数据进行简化和规范化,从而提高模型评估与选择的效果。

三、属性约简在模型评估与选择中,属性约简是一个关键的步骤。

通过属性约简,我们可以减少模型中的冗余属性,从而提高模型的效率和准确性。

粗糙集理论提供了一种基于等价类划分的属性约简方法,可以帮助我们找到最具代表性的属性子集。

四、决策规则的生成在模型评估与选择中,决策规则的生成是一个重要的环节。

粗糙集理论通过等价类划分和属性约简,可以生成简洁而有效的决策规则。

这些决策规则可以帮助我们理解数据中的模式和关联,并为模型评估与选择提供指导。

五、模型评估与选择在模型评估与选择中,我们需要根据具体的问题和需求选择适合的模型。

粗糙集理论提供了一种基于等价类划分和属性约简的模型评估与选择方法。

通过比较不同模型的粗糙度和决策规则的质量,我们可以选择最合适的模型。

六、案例分析为了更好地理解粗糙集理论在模型评估与选择中的应用,我们以一个案例来进行分析。

假设我们需要选择一个合适的模型来预测股票市场的涨跌。

我们可以使用粗糙集理论来对历史股票数据进行预处理、属性约简和决策规则生成。

然后,我们可以通过比较不同模型的粗糙度和决策规则的质量来选择最合适的模型。

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建

粗糙集理论的基本原理与模型构建粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

本文将介绍粗糙集理论的基本原理和模型构建方法。

一、粗糙集理论的基本原理粗糙集理论最早由波兰学者Pawlak于1982年提出,它是基于集合论和近似推理的一种数学模型。

粗糙集理论的核心思想是通过对数据集进行分析,找出数据之间的关联和规律,从而进行决策和推理。

粗糙集理论的基本原理包括下近似和上近似。

下近似是指在给定条件下,能够包含所有满足条件的对象的最小集合;上近似是指在给定条件下,能够包含所有满足条件的对象的最大集合。

通过下近似和上近似的计算,可以得到粗糙集的边界区域,进而进行数据分类、决策和模式识别等任务。

二、粗糙集模型的构建方法粗糙集模型的构建方法主要包括属性约简和决策规则提取两个步骤。

属性约简是指从原始数据集中选择出最具代表性和决策能力的属性子集。

属性约简的目标是减少属性的数量,同时保持原始数据集的决策能力。

常用的属性约简方法包括正域约简、核约简和快速约简等。

这些方法通过计算属性的重要性和相关性,从而选择出最优的属性子集。

决策规则提取是指从属性约简后的数据集中提取出具有决策能力的规则。

决策规则是一种描述数据之间关系的形式化表示,它可以用于数据分类、决策和模式识别等任务。

决策规则提取的方法包括基于规则的决策树、基于规则的神经网络和基于规则的关联规则等。

三、粗糙集理论的应用领域粗糙集理论在信息科学、数据挖掘和人工智能等领域具有广泛的应用。

它可以用于数据预处理、特征选择、数据分类和模式识别等任务。

在数据预处理方面,粗糙集理论可以帮助我们对原始数据进行清洗和转换,从而提高数据的质量和可用性。

通过对数据集进行属性约简和决策规则提取,可以减少数据集的维度和复杂度,提高数据挖掘和决策分析的效率和准确性。

在特征选择方面,粗糙集理论可以帮助我们选择出最具代表性和决策能力的属性子集。

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。

粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。

本文将介绍粗糙集理论的基本概念与原理。

1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。

在粗糙集理论中,等价关系是一个重要的概念。

等价关系是指具有自反性、对称性和传递性的关系。

在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。

2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。

下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。

上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。

3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。

约简可以通过删除一些不重要或不相关的属性来实现。

精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。

4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。

模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。

而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。

5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。

在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。

在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。

在决策支持系统领域,粗糙集理论可以用来辅助决策过程。

在模式识别领域,粗糙集理论可以用来提取和分类模式。

总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。

粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。

首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。

粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。

粗糙集的构建是通过等价关系来实现的。

其次,等价关系是粗糙集理论中的一个重要概念。

等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。

等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。

等价关系的划分可以将原始数据进行分类,从而构建粗糙集。

下面,我们来介绍下近似集和上近似集。

下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。

换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。

而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。

上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。

粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。

通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。

粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。

总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。

它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。

粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。

通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。

粗糙集理论的使用方法与步骤详解

粗糙集理论的使用方法与步骤详解

粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。

本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。

一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。

粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。

它主要包括近似集、正域、决策表等概念。

二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。

这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。

2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。

构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。

属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。

3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。

通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。

正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。

4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。

通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。

近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。

5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。

属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。

属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。

6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。

决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。

粗糙集理论及其应用研究

粗糙集理论及其应用研究

粗糙集理论的核心内容
知识的约简与核
知识的约简: 通过删除不重 要的知识,保 留关键信息
核的概念:核 是知识的最小 表示,包含所 有必要信息
核的性质:核 具有独立性、 完备性和最小 性
核的求取方法: 基于信息熵、 信息增益等方 法进行求取
0
0
0
0
1
2
3
4
决策表的简化
决策表:用于描述决策问题的表格 简化目标:减少决策表的规模,提高决策效率 简化方法:合并条件属性,删除冗余属性 简化效果:提高决策表的可读性和可理解性,降低决策复杂度
粗糙集理论在聚类分析中的应用:利用粗糙集理论处理不确定和不完整的数据,提高聚类 分析的准确性和效率。
聚类分析在数据挖掘中的应用:可以帮助发现数据中的模式和趋势,为决策提供支持。
粗糙集理论在其他领域的应用
决策支持系统
粗糙集理论可以帮助决策者 处理不确定性和模糊性
粗糙集理论在决策支持系统 中的应用
粗糙集理论可以提高决策支 持系统的准确性和效率
粗糙集理论在决策支持系统 中的实际应用案例分析
智能控制
粗糙集理论在模糊控制中的 应用
粗糙集理论在智能控制中的 应用
粗糙集理论在神经网络控制 中的应用
粗糙集理论在自适应控制中 的应用
模式识别
粗糙集理论在模式 识别中的应用
粗糙集理论在图像 识别中的应用
粗糙集理论在语音 识别中的应用
粗糙集理论在生物 信息学中的应用
添加标题
添加标题
ห้องสมุดไป่ตู้添加标题
添加标题
机器学习
粗糙集理论在机器学习中的应用 粗糙集理论在数据挖掘中的应用 粗糙集理论在模式识别中的应用 粗糙集理论在自然语言处理中的应用

经典粗糙集理论

经典粗糙集理论
粗糙集理论能够处理不确定性和模糊性,而神经网络则能够通过学习过 程找到数据中的模式。将粗糙集与神经网络结合,可以利用粗糙集对数 据的不确定性进行建模,并通过神经网络进行分类或预测。
粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。

粗糙集理论的使用方法和步骤

粗糙集理论的使用方法和步骤

粗糙集理论的使用方法和步骤粗糙集理论是一种用于处理不完全、不确定和模糊信息的数学工具,它在决策分析、数据挖掘和模式识别等领域具有广泛的应用。

本文将介绍粗糙集理论的使用方法和步骤,帮助读者更好地理解和应用这一理论。

一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak于1982年提出的,它的核心思想是通过对数据集进行粗糙化处理,找出数据集中的重要信息,从而进行决策和分析。

在粗糙集理论中,数据集由属性和决策组成,属性是描述对象的特征,决策是对对象进行分类或判断的结果。

二、粗糙集理论的步骤1. 数据预处理:在使用粗糙集理论之前,需要对原始数据进行预处理。

预处理包括数据清洗、数据变换和数据归一化等步骤,旨在提高数据的质量和可用性。

2. 属性约简:属性约简是粗糙集理论的核心步骤之一。

在属性约简过程中,需要根据属性的重要性对属性进行选择和优化。

常用的属性约简方法有基于信息熵的属性约简和基于模糊熵的属性约简等。

3. 决策规则的生成:在属性约简完成后,可以根据属性和决策之间的关系生成决策规则。

决策规则是对数据集中的决策进行描述和判断的规则,可以帮助决策者进行决策和分析。

4. 决策规则的评价:生成的决策规则需要进行评价和优化。

常用的决策规则评价方法有支持度和置信度等指标,通过对决策规则进行评价,可以提高决策的准确性和可靠性。

5. 决策与分析:最后一步是根据生成的决策规则进行决策和分析。

根据决策规则,可以对新的数据进行分类和判断,从而帮助决策者做出正确的决策。

三、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。

以电商平台为例,可以使用粗糙集理论对用户行为进行分析和预测。

首先,对用户的行为数据进行预处理,包括清洗和归一化等步骤。

然后,通过属性约简找出用户行为中的关键属性,如浏览时间、购买频率等。

接下来,根据属性和决策之间的关系生成决策规则,如用户购买商品的决策规则。

最后,根据生成的决策规则对新的用户行为进行分类和分析,从而提供个性化的推荐和服务。

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门1.前言Zadeh在1965年创立了模糊集理论[1],Pawlak在1982年又给出了粗糙集的概念[2],模糊集理论和粗糙集理论都是研究信息系统中只是不完全,不确定问题的两种方法,是经典集合论的推广,它们各自具有优点和特点,并且分别在许多领域都有成功的应用,如模式识别、机器学习、决策分析、决策支持、知识获取、知识发现等.模糊理论是简历集合的子集边缘的病态定义模型,隶属函数多数是凭经验给出的,带有明显的主观性;粗糙集理论基于集合中对象间的不可分辨行的思想,作为一种刻画不完整想和不确定性的数学工具,它无需任何先验信息,能邮箱分析处理不精确、不完整等不完备信息,对不确定集合的分析方法是客观的.两种理论之间有着密切的关系和很强的互补性,同事粗糙集理论和模糊集理论可以进行结合,产生粗糙模糊集理论和模糊粗糙集理论,并且发挥着不同的优势.本文在已有的模糊集理论和粗糙集理论的基础之上,分析和总结了模糊集和粗糙集理论,对二者进行了全面的比较.2.基本概念这部分将集中介绍模糊集和粗糙集的基本概念及其性质.2.1模糊集模糊理论[3][4]是一种用以数学模型来描述语意式的模糊信息的方法.模糊概念也是没有明确外延的概念.根据普通集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一;而模糊集则通常用隶属函数表示模糊概念.2.1.1模糊集合的基本定义定义 1 设X是有限非空集合,称为论域,X上的模糊集A用隶属函数表示如下:→→A X x A x:[0,1],()其中()A x表示元素x隶属于模糊集合A的程度,记X上的模糊集合全体为F X.()模糊集合的数学表示方式为A x A x X where A x=∈∈{(,(x))|},()[0,1]2.1.2模糊集合的运算设,A B为X上的两个模糊集,它们的并集,交集和余集都是模糊集,且其隶属函数分别定义为=∀∈A B A x B x x Xmax{(),()}A B A x B x x X=∀∈min{(),()}⌝=-A A12.1.3 模糊集合的关系A xB x作为模糊集合之间关系的表示方式,是以集合所存在的隶属函数(),()集合之间的关系表示的.(1)模糊集合之间的相等:=⇔=∀∈A B A x B x x X()()(2)模糊集合之间的包含:⊂⇔≤∀∈()()A B A x B x x X2.1.4 截集与支集定义2 对于()A F X ∈和任意[0,1]λ∈,定义{}()A x A x λλ=≥{}()s A x A x λλ=>分别为A 的λ截集和A 的λ强截集.特别的,当1λ=时,1A 为A 的核;当0λ=时,0s A 为A 的支集.表示为如下:{}1()()1core A A x A x ==={}0()()0s support A A x A x === 则根据上面截集的概念,模糊子集通过λ截集就变成了普通集合.截集就是将模糊集合转化为普通集合的方法,截集的概念是联系模糊集合与普通集合之间的桥梁.2.2 粗糙集2.2.1粗糙集合的基本定义(1)粗糙集合提出的背景由于经典逻辑只有真假二值之分,而在现实生活中存在许多含糊的现象,并不能简单的用真假值来表示.于是,在1904年,谓词逻辑的创始人G.frege 提出了含糊(vague)一词,他把含糊现象归结到边界线上.1965年,L.A. Zadeh 提出Fuzzy Sets 的概念,试图通过这一理论解决G.frege 的含糊概念.Zadeh 的FS 方法是利用隶属函数描述边界上的不确定对象.1982年,波兰华沙理工大学 Z.Pawlak 教授针对G. frege 的边界线区域思想提出了Rough Sets 理论.Pawlak 的RS 方法:把无法确认的个体都归属于边界区域,把边界区域定义为上近似集和下近似集的差集.(2)粗糙集合的定义粗糙集理论特点是不需要预先给定默写特征或属性的数量描述,直接从给定的问题的描述集合出发,通过不可分辨关系和不可分辨类确定给定问题的近似域,找出问题内在规律.定义 2 设(,,,)K X A V f =是一个知识库,其中X 是一个非空集合,称为论域.A C D =是属性的非空有限集合,C 为D 的决策属性,C D =Φ,a V 是属性a A ∈的值域,:f X A V ⨯→是一个信息函数,它为每个对象赋予一个信息值.定义 3 设X 是一个有限的非空论域,R 为X 上的等价关系,等价关系R 把集合X 划分为多个互不相交的子集,每个子集称为一个等价类,用[]R x 来表示,[]{}R x y X xRy =∈,其中x X ∈,称,x y 为关于R 的等价关系或者不可分辨关系.论域X 上的所有等价类的集合用/X R 来表示.2.2.2 上、下近似集,粗糙度(1)上下近似集的定义定义4 对于任意的Y X ⊆,Y 的R 上、下近似集分别定义为(){/|}R Y Z X R Z Y =∈≠Φ(){/|}R Y Z X R Z Y =∈⊆集合()posR Y 称为集合Y 的正域,()()posR Y R Y =;集合()()negR Y X R X =-称为集合Y 的负域;集合()()()bnR Y R Y R Y =-称为Y 的R 边界域.集合的不确定性是由于边界域的存在,集合的边界域越大,精确性越低,粗糙度越大. 当()()R Y R Y =时,称Y 为R 的精确集;当()()R Y R Y ≠时,称Y 为R 的粗糙集,粗糙集可以近似使用精确集的两个上下近似集来描述.(2) 粗糙度粗糙度是表示知识的不完全程度,由等价关系R 定义的集合X 的粗糙度为:()1R RX X RX ρ=-其中X ≠Φ,X 表示集合X 的基数.3 研究对象、应用领域及研究方法3.1模糊集的研究对象、应用领域及研究方法(1) 模糊集的研究对象模糊集研究不确定性问题,主要着眼于知识的模糊性,强调的是集合边界的不分明性.(2) 模糊集的应用领域模糊集理论[5]广泛应用与现代社会与生活中,主要有以下几个方面:消费电子产品、工业控制器、语音辨识、影像处理、机器人、决策分析、数据探勘、数学规划以及软件工程等等.(3)研究方法模糊集理论的计算方法是知识的表达和简化.从知识的“粒度”的描述上来看,模糊集是通过计算对象关于集合的隶属程度来近似描述不确定性;从集合的关系来看,模糊集强调的是集合边界上的病态定义,也即集合边界的不分明性;从研究的对象来看,模糊集研究属于同一类的不同对象间的隶属关系,强调隶属程度;从隶属函数来看,模糊集的隶属函数反映了概念的模糊性,而且模糊集的隶属函数大多是专家凭经验给出的,带有强烈的主观意志.3.2粗糙集的研究对象、应用领域及研究方法(1)粗糙集的研究对象[6]粗糙集理论研究不确定性问题,基于集合中对象间的不可分辨性思想,建立集合的子集边缘的病态定义模型.(2)粗糙集的应用领域粗糙集理论在近些年得到飞速发展,在数据挖掘,模式识别,粗糙逻辑方面取得较大进展.与粗糙集理论相关的学科主要有以下几方面:人工智能,离散数学,概率论,模糊集理论,神经网络,计算机控制,专家系统等等[7].(3)粗糙集的研究方法粗糙集理论的研究方法就是对知识的含糊度的一个刻画,其计算方法主要是连续特征函数的产生.粗糙集理论研究认知能力产生的集合对象之间的不可分辨性,通过引入一对上下近似集合,用它们的差集来描述不确定的对象.从集合的关系来看,粗糙集强调的是对象间的不可分辨性,与集合上的等价关系相联系;从研究的对象来看,粗糙集研究的是不同类对象组成的集合关系,强调分类;从隶属函数来看,粗糙集的粗糙隶属函数的计算是从被分析的数据中直接获得,是客观的[8].4.基本研究内容4.1 模糊集理论研究的主要内容模糊集理论研究的内容很广泛,主要包括以下几方面:模糊控制,模糊聚类分析,模糊模式识别,模糊综合评判,模糊集的扩展.4.1.1 模糊控制 自从Zadeh 发展出模糊集理论之后,对于不明确系统的控制有极大的贡献,自七十年代以后,便有一些实用的模糊控制器相继的完成,使得我们在控制领域中又向前迈进了一大步,在此将对模糊控制理论做一番浅介[6].模糊控制利用模糊集理论的基本思想和理论的控制方法.在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的.然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想.换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了.所以,模糊集理论便被用来处理这些控制问题.4.1.2模糊聚类分析模糊聚类分析的研究是基于模糊等价关系和以及模糊分类上的[4].主要有以下的定理以及定义.定理1 令R 是一个模糊等价关系,并且01αβ≤<≤,则对y X ∀∈有[][]R R y y βα⊆.定义 5 设数据集12{,,,}n X x x x =,且12,,,c A A A 是其一个分类,若该分类满足以下条件:(1) 对k ∀,存在i 使得k i x A ∈;(2) 对所以i 均有i A ≠Φ;则称该分类是X 的一个模糊划分.基于上面的理论,我们可以用一个划分矩阵()ik c n D d ⨯=来刻画数据集的分类,其中0 , 1 , k i ik k i x A d x A ∉⎧=⎨∈⎩ 定义6 对于上面的矩阵D ,若其满足以下三个条件:(1){}0,1ik d ∈;(2)11, c ik i d k ==∀∑;(3)10, n ik k d i =>∀∑;则称D 是X 上的一个精确的c -划分矩阵.定义7 设c 和n 时两个给定的正整数若模糊矩阵()ik c n D d ⨯=满足以下三个条件:(1) []0,1ik d ∈;(2) 11, c ik i d k ==∀∑;(3) 10, n ik k d n i =<<∀∑;则称D 为X 上的一个模糊的c -划分矩阵.定义8 设12{,,,}m n X x x x =⊆,12{,,,}m c V v v v =⊆,()ik c n D d ⨯=()c n ≤是X 上的一个模糊的c -划分矩阵,则 ()211(,)c n p ik i k i k J D V d v x ===-∑∑(p ∈)称为模糊划分上的一个聚类准则函数,这里()12()21[]m i i x x===∑ 定义9 如果对于任意的12{,,,}mn X x x x =⊆,存在****12{,,,}m c V v v v =⊆以及模糊的c -划分矩阵*D 使得 **(,)(,)J D V J D V ≤对所有的12{,,,}m n X x x x =⊆以及模糊的c -划分矩阵D 都成立,则称*D 为最优模糊c -划分矩阵,*V 为一个模糊聚类中心.4.1.3模糊模式识别模糊模式识别是利用模糊集理论对行为的识别.根据识别模式的性质,可以将模式识别分为两类:具体事物的识别,如对文字,音乐,语言等周围事物的识别;抽象事物的识别,如对已知的一个论点或者一个问题的理解等.下面介绍一些基本的定理及定义.定义10 清晰度增强因子:令()A F X ∈是X 上的一个模糊集,定义另外一个模糊集(2)()()I A F X ∈,其中 2(2)22() , ()[0,0.5]()()12(1()), ()(0.5,1]A x A x I A x A x A x ⎧∈⎪⎨--∈⎪⎩ 称(2)()()I A x 为清晰度增强因子.4.1.4模糊综合评判模糊综合评判是利用模糊集理论对一个事物进行评价.具体的过程为:将评价目标看成是由多种因素组成的模糊集合X ,再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集V ),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵D ),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值.定义11 设:[0,1][0,1]n f →满足以下几个条件:(1)1212(,,,)n n x x x x f x x x x ====⇒=; (2)(1)(2)(1)(2)111111(,,,,,,)(,,,,,,)i i i i i n i i i n x x f x x x x x f x x x x x -+-+≤⇒≤,i ∀; (3)12(,,,)n f x x x 对每个变量都是连续的;则称f 为n -维综合函数. 常用的n -维综合函数主要有加权平均函数,几何平均函数,单因素决策函数,显著因素准则函数等等.4.2粗糙集理论研究的主要内容粗糙集理论作为一种数据分析处理理论,无论是在理论方面还是在应用实践方面都取得了很大的进展,展示了它光明的前景,因而其研究内容以及领域也是非常广泛的,主要包括以下几方面:变精度粗糙集,集值信息系统,粗糙集理论的应用,支持向量基等.4.2.1变精度粗糙集变精度粗糙集模型[9]是Pawlak 粗糙集模型的扩充,它是在基本粗糙集模型的基础上引入了β(00.5β≤<),即允许一定的错误分类率存在,这一方面完善了近似空间的概率,另一方面也有利于用粗糙集理论从认为不相关的数据集中发现相关的数据.当然,变精度粗糙集模型的主要任务是解决属性间无函数或不确定关系的数据分类问题.当0β=时,Pawlak 粗糙集模型是变精度粗糙集模型的一个特例.4.2.2集值信息系统集值信息系统[5]是信息系统的一般化模型,在实际应用中信息系统随着对象的变化而不断地动态变化.(,)S X AT =是信息系统,其中X 是对象的非空有限集合,AT 是属性的非空有限集合,对于每个a AT ∈有:a a X V →,其中a V 称为a 的值域.每个属性子集A AT ⊆决定了一个不可区分关系()ind A :(){(,)|,()()}ind A x y X X a A a x a y =∈⨯∀∈=.关系()ind A (A AT ⊆)构成了X 的划分,用/()X ind A 来表示.对于一个对象,一些属性值可能是缺省的.为了表明这种情况,通常给定一个区分值(即空值 null value )给出这些属性定义12 如果至少有一个属性a AT ∈使得a V 含有空值,则称S 是一个不完备信息系统[5],否则称它是完备的,我们用*表示空值.设S 是一个不完备信息系统,a AT ∈使得a V 含有空值*时,并且该空值*的取值为一个集合,该集合的元素是这个属性中其他所有可能值的集合,则S 就是集值信息系统.下面是一个不完备信息系统的例子:4.2.3 支持向量基支持向量机(Support Vector Machine,SVM)[10][11]是Corinna Cortes和Vapnik8等于1995年首先提出的.SVM起初是广泛应用在神经信息处理系统(Neural Information Processing Systems,NIPS), 但是,现今,SVM 已经在所有的机器学习研究领域中起着重要作用.SVM是一种学习系统,他利用高维空间中的线性分类器,在这个空间中建立一个最大的间隔超平面,这里的最大是基于最优化理论的.广义的SVM起源于统计学习理论[12].5.模糊集与粗糙集的结合由上面的讨论可知,模糊集理论与粗糙集理论各具特点,两种理论有着很强的联系与互补性,因此将两者的特点结合起来形成研究不完全数据集的有效方法.此外,通过模糊聚类和粗糙集两种方法进行属性的对象约简和属性约简,可以使数据得到横向和纵向两个方向上的约简,对象约简是引入了相似性的概念进行模糊聚类的过程,对象约简改变了标准粗糙集模型的不可分辨关系的确定条件;由于粗糙集所处理的都是离散数据,所以在数据分析中需要应用模糊聚类或隶属函数离散化,进而应用粗糙集理论属性约简、提取规则.所以结合模糊集、粗糙集理论能够有效地分析数据,提高生成规则的可信性和和合理性,倒出可信的规则集.5.1模糊粗糙集及粗糙模糊集结合模糊集和粗糙集两种理论可以得到模糊粗糙集及粗糙模糊集模型,当知识库中的知识模块是清晰的概念,而被描述的概念是一个模糊的概念,人们建立粗糙模糊集模型来解决此类问题的近似推理;当知识库中的知识模块是模糊知识,而被近似的概念是模糊概念时,则需要建立模糊粗糙集模型,也有人将普通关系推广称模糊关系或者模糊划分而获得模糊粗糙集模型.定义13 设R 是X 上的一个等价关系,()A F X ∈,[0,1]λ∈,模糊集A 、A λ以及s A λ的上下近似分别为:(){|[]},(){|[]}RR R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆ (){|[]},(){|[]}s s s s R R R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆(){|[]},(){|[]}RR R A x X x A R A x X x A =∈≠Φ=∈⊆ 可以验证,当A 是X 上的经典集合时,上面所介绍的上下近似就是Pawlak 意义下的上下近似. 定义14 设R 是X 上的等价关系,A 是X 的一个模糊集合,()A F X ∈,则A 关于R 的上下近似分别定义如下:()sup{()|[]},()inf{()|[]}R R R R A x A y y x A x A y y x =∈=∈可以看出,模糊集()A F X ∈关于等价关系R 的上下近似仍为模糊集合,若 R R A A =,则称A 是可定义的,否则称A 是粗糙集,称R A 是A 关于近似空间(,)X R 的正域,称~R A 是A 关于(,)X R 的负域,称(~)R R A A 为A 的边界.R A 可以理解为对象x 肯定属于模糊集A 的隶属程度;R A 理解为对象x 可能属于模糊集A 的隶属程度,同样可以验证,当A 时X 上的经典集合时,就是Pawlak 意义下的上下近似.在标准粗糙集模型中引入变精度,提高了相对近似精度,而在粗糙模糊集引入变精度,得到新定义:()sup{()|[]()1}R R A x A y y x A y ββ=∈∧>-()inf{()|[]()}R R A x A y y x A y ββ=∈∧≥这样下近似集合中元素隶属度降低,而上近似的隶属度提高,提高了相对精度.5.2粗糙隶属函数粗糙隶属函数式借助模糊理论来研究粗糙集理论的方法,通过粗糙隶属度函数可以将粗糙集理论与模糊集理论联系起来,建立一种粗糙集理论与模糊集理论的关系,并得到一些性质.定义15 设R 是论域X 上的一个相似关系,若A 是X 上的一个模糊集合,则A 关于R 的一个下近似()R A 和上近似()R A 分别定义为X 上的一个模糊集合,称为粗糙隶属度函数[5],定义为 |[]|()|[]|R R A x A x x = 粗糙隶属函数表示的是一个模糊概念,一般不是Zadeh 意义下的隶属函数.粗糙隶属函数()A x 表示的是x 的等价类[]R x 隶属于A 的程度.由定义14和定义15可以得到:模糊集A 的下近似且关于等价关系R 的等价类隶属于A 的程度为1;模糊集A 的上近似且关于等价关系R 的等价类隶属于A 的程度为大于0小于1,因此有:性质1 1(){|()1,/}Core A A x A x x X R RA ===∈=0(){|()0,/}s support A A x A x x X R ==>∈(){|0()1,/}bnR A RA RA x A x x X R =-=<<∈(){|()0,/}negR A X RA x A x x X R =-==∈性质2 []()()R y x A x A y ∈⇒=[]()1R x A A x ⊆⇒=[]()0R x A A x =Φ⇒=[] []()(0,1)R Rx A and x A A x ⊄≠Φ⇒∈ 6 总结本文系统的介绍了模糊集理论与粗糙集理论,二者研究的主要内容,以及二者的结合的相关理论.是对本学期所学的模糊计算和粗糙计算的一个简单的小结,也是我本人对该学科的一个简单的入门.参考文献[1] L.A.Zadeh, Fuzzy sets[J], Information and Control, 1965,8:338-353.[2]Pawlak Z, Rough sets[J], International Journal of Computer andInformation science, 1982,1(11):341-356.[3]胡宝清,模糊理论基础,武汉:武汉大学出版社,2010.[4]张文修,模糊数学基础,西安:西安交通大学出版社,1984.[5]张文修,粗糙集理论与方法,北京:科学出版社,2001[6] /view/87377.htm[7]K. Y. Chan, C.K. Kwong, B.Q. Hu, Market segmentation and ideal pointidentification for new product design using fuzzy data compression and fuzzy clustering methods[J], Applied Soft Computing, 2012, 12, 1371-1378.[8]Z.Pawlak, Rough sets and fuzzy sets [J], Fuzzy sets and Systems,1985,17,99-102.[9]Beynon M.Reducts within the variable precision rough sets model: afurther investigation[J], European Journal of Operational Research, 2001,134:592-605.[10]邓乃扬,田英杰,数据挖掘中的新方法:支持向量基,北京:科学出版社,2004.[11]邓乃扬,田英杰,支持向量基-理论、算法与拓展,北京:科学出版社,2009.[12]V.Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.。

粗糙集约简方法

粗糙集约简方法

粗糙集约简方法简介粗糙集约简方法是数据挖掘领域中一种常用的特征选择方法。

在众多特征选择方法中,粗糙集约简方法以其简单快速、易于理解的特点而受到广泛关注。

它通过粗糙集理论的基本原理,对原始数据集进行约简,从而得到一个更精简的特征子集,提高数据挖掘效率。

粗糙集理论基础粗糙集理论是由波兰学者Pawlak于1982年提出的,是一种处理不确定性信息的方法。

它基于集合论和近似推理,并尝试解决数据集中存在的不确定性和模糊性问题。

在粗糙集理论中,将数据集划分为对象的集合和属性的集合,并使用近似关系来描述属性与对象之间的关系。

约简的概念与意义约简是指通过对原始数据集进行操作,得到一个特征子集,该子集包含了原始数据集中的重要、有用的特征信息,而丢弃了无关、冗余的特征信息。

约简的过程就是在保持数据集中信息完整性和准确性的基础上,减少特征的数量,提高数据挖掘的效率。

约简所起到的作用有以下几个方面: - 减少特征的数量,提高数据挖掘算法的效率和性能; - 去除冗余信息,减少数据挖掘模型的复杂度; - 提高数据可视化效果,减少特征数量可以降低维度,更方便数据的可视化和分析。

粗糙集约简方法的步骤粗糙集约简方法一般包括以下几个步骤:1.确定属性集合和决策集合:首先确定数据集中的属性集合和决策集合。

属性集合是指数据集中待选择的特征集合,决策集合是指用于分类或预测的结果集合。

2.计算属性间的依赖度:使用粗糙集理论中的依赖度指标,计算属性集合中各个属性之间的依赖程度。

具体来说,可以计算属性集合中每个属性与决策集合之间的依赖度,衡量该属性对于分类结果的贡献程度。

3.确定依赖度阈值:根据需求和实际情况,确定一个依赖度阈值。

该阈值可以根据经验选择,也可以通过交叉验证等方法进行确定。

4.生成约简的特征子集:根据依赖度阈值,从属性集合中选择具有较高依赖度的特征,构成约简的特征子集。

5.验证约简的质量:使用约简的特征子集,进行数据挖掘任务,比如分类、预测等。

粗糙集理论的使用方法与建模步骤详解

粗糙集理论的使用方法与建模步骤详解

粗糙集理论的使用方法与建模步骤详解粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具。

它是由波兰数学家Pawlak于1982年提出的,被广泛应用于数据挖掘、模式识别、决策分析等领域。

本文将详细介绍粗糙集理论的使用方法和建模步骤。

一、粗糙集理论的基本概念粗糙集理论的核心思想是通过对数据进行粗糙划分,找出数据之间的相似性和差异性,从而进行有效的分类和决策。

在使用粗糙集理论进行建模之前,我们首先需要了解一些基本概念。

1.1 上近似集和下近似集上近似集是指在给定条件下,能够包含所有与目标属性有关的样本的集合;下近似集是指在给定条件下,能够完全确定与目标属性有关的样本的集合。

1.2 等价类和不可区分关系等价类是指在相同条件下,具有相同目标属性的样本所构成的集合;不可区分关系是指在给定条件下,无法通过已有的属性来区分不同的样本。

二、粗糙集建模的步骤在使用粗糙集理论进行建模时,我们可以按照以下步骤进行操作。

2.1 数据预处理在进行粗糙集建模之前,我们需要对原始数据进行预处理。

预处理包括数据清洗、数据转换、数据归一化等操作,以确保数据的质量和可用性。

2.2 属性约简属性约简是粗糙集建模中的关键步骤。

通过属性约简,我们可以从原始数据中选择出最具代表性的属性,减少冗余信息,提高模型的效率和准确性。

2.3 确定目标属性在进行粗糙集建模时,我们需要明确目标属性。

目标属性是我们希望通过建模来预测或分类的属性。

2.4 确定条件属性条件属性是用来描述和区分不同样本的属性。

在确定条件属性时,我们需要根据实际问题和数据特点选择合适的属性。

2.5 构建上近似集和下近似集通过已知的条件属性和目标属性,我们可以构建上近似集和下近似集。

上近似集包含了所有与目标属性有关的样本,下近似集则包含了能够完全确定与目标属性有关的样本。

2.6 确定等价类和不可区分关系根据上近似集和下近似集,我们可以确定等价类和不可区分关系。

等价类是具有相同目标属性的样本集合,不可区分关系则是无法通过已有的属性来区分不同的样本。

粗糙集理论简介及应用案例解析

粗糙集理论简介及应用案例解析

粗糙集理论简介及应用案例解析引言:在信息时代的背景下,数据的爆炸式增长给人们的决策和分析带来了巨大的挑战。

而粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。

本文将对粗糙集理论进行简要介绍,并通过实际案例来解析其应用。

一、粗糙集理论的基本原理粗糙集理论是由波兰学者Pawlak于1982年提出的一种数据分析方法,它主要通过对数据集中的不确定性进行处理,从而提取出其中的规律和知识。

粗糙集理论的核心思想是基于近似和不确定性,通过构建等价关系和约简操作来实现对数据的分析。

二、粗糙集理论的应用案例解析1. 医学领域在医学领域,粗糙集理论可以用于辅助医生进行疾病诊断和预测。

例如,通过对患者的病历数据进行分析,可以建立一个疾病与症状之间的关联模型。

通过这个模型,医生可以根据患者的症状快速判断出可能的疾病,并采取相应的治疗措施。

2. 金融领域在金融领域,粗糙集理论可以用于风险评估和投资决策。

例如,通过对股票市场的历史数据进行分析,可以建立一个股票价格与各种因素之间的关联模型。

通过这个模型,投资者可以根据市场的变化预测股票的价格走势,并做出相应的投资决策。

3. 交通领域在交通领域,粗糙集理论可以用于交通流量预测和交通优化。

例如,通过对交通数据进行分析,可以建立一个交通流量与各种因素之间的关联模型。

通过这个模型,交通管理者可以根据不同的因素预测交通流量的变化,并采取相应的措施来优化交通。

4. 教育领域在教育领域,粗糙集理论可以用于学生评估和课程推荐。

例如,通过对学生的学习数据进行分析,可以建立一个学生能力与学习成绩之间的关联模型。

通过这个模型,教育者可以根据学生的能力评估学生的学习状况,并推荐适合的课程来提高学生的学习效果。

结论:粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。

通过对数据集中的不确定性进行处理,粗糙集理论可以提取出其中的规律和知识,为决策和分析提供有力的支持。

理解粗糙集理论的核心概念与基本原理

理解粗糙集理论的核心概念与基本原理

理解粗糙集理论的核心概念与基本原理粗糙集理论是一种基于不确定性的数学模型,由波兰学者Zdzisław Pawlak于1982年提出。

它是一种处理模糊和不完全信息的方法,被广泛应用于数据挖掘、模式识别、决策分析等领域。

本文将介绍粗糙集理论的核心概念与基本原理,帮助读者更好地理解这一理论的应用。

粗糙集理论的核心概念之一是决策属性。

在一个数据集中,决策属性是用来划分数据对象的属性,也是我们要研究的主要目标。

例如,在一个汽车销售数据集中,决策属性可以是“是否购买了汽车”。

决策属性的不同取值将决定数据对象的分类。

另一个核心概念是条件属性。

条件属性是用来描述数据对象的特征的属性。

在汽车销售数据集中,条件属性可以包括“年龄”、“收入”、“婚姻状况”等。

条件属性的取值将决定数据对象的特征。

粗糙集理论的基本原理是基于等价关系和粗糙集的概念。

等价关系是指在给定条件属性下,具有相同决策属性的数据对象被认为是等价的。

例如,在汽车销售数据集中,如果两个人的年龄、收入、婚姻状况等条件属性相同,并且他们都购买了汽车,那么我们可以认为他们是等价的。

粗糙集是指在给定条件属性下,具有相同决策属性的数据对象的集合。

粗糙集可以用来描述数据对象之间的相似性和差异性。

通过对粗糙集的分析,我们可以发现数据对象之间的规律和模式。

在粗糙集理论中,还有一个重要的概念是约简。

约简是指从一个包含大量条件属性的数据集中,找到一个最小的子集,使得在这个子集上仍然能够保持数据对象的等价关系。

约简的目的是简化数据集,减少冗余信息,提高数据的可解释性。

粗糙集理论的应用非常广泛。

在数据挖掘中,粗糙集可以用来进行特征选择,从而提高模型的准确性和可解释性。

在模式识别中,粗糙集可以用来发现数据对象之间的相似性和差异性,从而帮助我们理解和分析数据。

在决策分析中,粗糙集可以用来辅助决策,提供决策的依据和参考。

总之,粗糙集理论是一种处理模糊和不完全信息的方法,它的核心概念包括决策属性、条件属性、等价关系和粗糙集。

模糊软集合与软粗糙集模型研究

模糊软集合与软粗糙集模型研究

Science &Technology Vision科技视界0引言Pawlak 粗糙集理论是研究病态数据的集合理论的推广[1],它主要研究不完备信息数据。

在粗糙集理论中,论域的子集通过上、下近似来描述。

集合的下近似是包含在集合中的所有等价类的并集,上近似是所有与集合有非空交的集合的并集。

等价类是粗糙集理论中构造上、下近似的基本单元。

集合的划分导出了等价类,反之亦然。

因此,既可以通过集合的划分也可通过集合的等价关系来研究粗糙集的属性。

模糊集理论由Zadeh 于1965开创,它主要研究模糊不确定性问题。

在文献[2]中,Chakrabarty 等讨论了粗糙集的模糊度,他们介绍了粗糙集模糊度的度量概念。

Molodtsov 定义的软集合理论[3],是讨论模糊性的新方法,正在成为学者研究的热点[4-6]。

软集合中的元素由完备参数确定,粗糙集中由等价类确定,而模糊集中由隶属度决定。

三种理论尽管不同但均可处理模糊性,论文将主要集中研究软集合与模糊软集合、软集合与软粗糙集之间的关系。

1预备知识全文中除开特殊的声明外,U 表示非空的有限集。

定义1设U 是一个非空的有限集,E 是一个参数集,A ⊂E ,P (U )是U 的幂集。

若F :A →P (U ),则称(F ,A )为U 上的软集合,即U 上的软集合是U 的参数化子集族。

定义2设(F ,A )与(G ,B )是U 上的任意两个软集合。

若1)B ⊆A ;2)∀β∈B ,G (β)⊆F (β);则称(G ,B )是(F ,A )的一个软子集。

U ×U 上的任何子集称为U 上的二元关系。

设R 是U 上的一个二元关系,若:1)∀x ∈U ,有(x ,x )∈R ,则称R 是自反的;2)∀x ,y ∈U ,当(x ,y )∈R 时,有(y ,x )∈R ,则称R 是对称的;3)∀x ,y ,z ∈U ,当(x ,y )∈R 且(y ,z )∈R 时,有(x ,z )∈R ,则称R 是传递的。

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门1.前言Zadeh在1965年创立了模糊集理论[1],Pawlak在1982年又给出了粗糙集的概念[2],模糊集理论和粗糙集理论都是研究信息系统中只是不完全,不确定问题的两种方法,是经典集合论的推广,它们各自具有优点和特点,并且分别在许多领域都有成功的应用,如模式识别、机器学习、决策分析、决策支持、知识获取、知识发现等.模糊理论是简历集合的子集边缘的病态定义模型,隶属函数多数是凭经验给出的,带有明显的主观性;粗糙集理论基于集合中对象间的不可分辨行的思想,作为一种刻画不完整想和不确定性的数学工具,它无需任何先验信息,能邮箱分析处理不精确、不完整等不完备信息,对不确定集合的分析方法是客观的.两种理论之间有着密切的关系和很强的互补性,同事粗糙集理论和模糊集理论可以进行结合,产生粗糙模糊集理论和模糊粗糙集理论,并且发挥着不同的优势.本文在已有的模糊集理论和粗糙集理论的基础之上,分析和总结了模糊集和粗糙集理论,对二者进行了全面的比较.2.基本概念这部分将集中介绍模糊集和粗糙集的基本概念及其性质.2.1模糊集模糊理论[3][4]是一种用以数学模型来描述语意式的模糊信息的方法.模糊概念也是没有明确外延的概念.根据普通集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一;而模糊集则通常用隶属函数表示模糊概念.2.1.1模糊集合的基本定义定义 1 设X是有限非空集合,称为论域,X上的模糊集A用隶属函数表示如下:→→A X x A x:[0,1],()其中()A x表示元素x隶属于模糊集合A的程度,记X上的模糊集合全体为F X.()模糊集合的数学表示方式为A x A x X where A x=∈∈{(,(x))|},()[0,1]2.1.2模糊集合的运算设,A B为X上的两个模糊集,它们的并集,交集和余集都是模糊集,且其隶属函数分别定义为=∀∈A B A x B x x Xmax{(),()}A B A x B x x X=∀∈min{(),()}⌝=-A A12.1.3 模糊集合的关系A xB x作为模糊集合之间关系的表示方式,是以集合所存在的隶属函数(),()集合之间的关系表示的.(1)模糊集合之间的相等:=⇔=∀∈A B A x B x x X()()(2)模糊集合之间的包含:⊂⇔≤∀∈()()A B A x B x x X2.1.4 截集与支集定义2 对于()A F X ∈和任意[0,1]λ∈,定义{}()A x A x λλ=≥{}()s A x A x λλ=>分别为A 的λ截集和A 的λ强截集.特别的,当1λ=时,1A 为A 的核;当0λ=时,0s A 为A 的支集.表示为如下:{}1()()1core A A x A x ==={}0()()0s support A A x A x === 则根据上面截集的概念,模糊子集通过λ截集就变成了普通集合.截集就是将模糊集合转化为普通集合的方法,截集的概念是联系模糊集合与普通集合之间的桥梁.2.2 粗糙集2.2.1粗糙集合的基本定义(1)粗糙集合提出的背景由于经典逻辑只有真假二值之分,而在现实生活中存在许多含糊的现象,并不能简单的用真假值来表示.于是,在1904年,谓词逻辑的创始人G.frege 提出了含糊(vague)一词,他把含糊现象归结到边界线上.1965年,L.A. Zadeh 提出Fuzzy Sets 的概念,试图通过这一理论解决G.frege 的含糊概念.Zadeh 的FS 方法是利用隶属函数描述边界上的不确定对象.1982年,波兰华沙理工大学 Z.Pawlak 教授针对G. frege 的边界线区域思想提出了Rough Sets 理论.Pawlak 的RS 方法:把无法确认的个体都归属于边界区域,把边界区域定义为上近似集和下近似集的差集.(2)粗糙集合的定义粗糙集理论特点是不需要预先给定默写特征或属性的数量描述,直接从给定的问题的描述集合出发,通过不可分辨关系和不可分辨类确定给定问题的近似域,找出问题内在规律.定义 2 设(,,,)K X A V f =是一个知识库,其中X 是一个非空集合,称为论域.A C D =是属性的非空有限集合,C 为D 的决策属性,C D =Φ,a V 是属性a A ∈的值域,:f X A V ⨯→是一个信息函数,它为每个对象赋予一个信息值.定义 3 设X 是一个有限的非空论域,R 为X 上的等价关系,等价关系R 把集合X 划分为多个互不相交的子集,每个子集称为一个等价类,用[]R x 来表示,[]{}R x y X xRy =∈,其中x X ∈,称,x y 为关于R 的等价关系或者不可分辨关系.论域X 上的所有等价类的集合用/X R 来表示.2.2.2 上、下近似集,粗糙度(1)上下近似集的定义定义4 对于任意的Y X ⊆,Y 的R 上、下近似集分别定义为(){/|}R Y Z X R Z Y =∈≠Φ(){/|}R Y Z X R Z Y =∈⊆集合()posR Y 称为集合Y 的正域,()()posR Y R Y =;集合()()negR Y X R X =-称为集合Y 的负域;集合()()()bnR Y R Y R Y =-称为Y 的R 边界域.集合的不确定性是由于边界域的存在,集合的边界域越大,精确性越低,粗糙度越大. 当()()R Y R Y =时,称Y 为R 的精确集;当()()R Y R Y ≠时,称Y 为R 的粗糙集,粗糙集可以近似使用精确集的两个上下近似集来描述.(2) 粗糙度粗糙度是表示知识的不完全程度,由等价关系R 定义的集合X 的粗糙度为:()1R RX X RX ρ=-其中X ≠Φ,X 表示集合X 的基数.3 研究对象、应用领域及研究方法3.1模糊集的研究对象、应用领域及研究方法(1) 模糊集的研究对象模糊集研究不确定性问题,主要着眼于知识的模糊性,强调的是集合边界的不分明性.(2) 模糊集的应用领域模糊集理论[5]广泛应用与现代社会与生活中,主要有以下几个方面:消费电子产品、工业控制器、语音辨识、影像处理、机器人、决策分析、数据探勘、数学规划以及软件工程等等.(3)研究方法模糊集理论的计算方法是知识的表达和简化.从知识的“粒度”的描述上来看,模糊集是通过计算对象关于集合的隶属程度来近似描述不确定性;从集合的关系来看,模糊集强调的是集合边界上的病态定义,也即集合边界的不分明性;从研究的对象来看,模糊集研究属于同一类的不同对象间的隶属关系,强调隶属程度;从隶属函数来看,模糊集的隶属函数反映了概念的模糊性,而且模糊集的隶属函数大多是专家凭经验给出的,带有强烈的主观意志.3.2粗糙集的研究对象、应用领域及研究方法(1)粗糙集的研究对象[6]粗糙集理论研究不确定性问题,基于集合中对象间的不可分辨性思想,建立集合的子集边缘的病态定义模型.(2)粗糙集的应用领域粗糙集理论在近些年得到飞速发展,在数据挖掘,模式识别,粗糙逻辑方面取得较大进展.与粗糙集理论相关的学科主要有以下几方面:人工智能,离散数学,概率论,模糊集理论,神经网络,计算机控制,专家系统等等[7].(3)粗糙集的研究方法粗糙集理论的研究方法就是对知识的含糊度的一个刻画,其计算方法主要是连续特征函数的产生.粗糙集理论研究认知能力产生的集合对象之间的不可分辨性,通过引入一对上下近似集合,用它们的差集来描述不确定的对象.从集合的关系来看,粗糙集强调的是对象间的不可分辨性,与集合上的等价关系相联系;从研究的对象来看,粗糙集研究的是不同类对象组成的集合关系,强调分类;从隶属函数来看,粗糙集的粗糙隶属函数的计算是从被分析的数据中直接获得,是客观的[8].4.基本研究内容4.1 模糊集理论研究的主要内容模糊集理论研究的内容很广泛,主要包括以下几方面:模糊控制,模糊聚类分析,模糊模式识别,模糊综合评判,模糊集的扩展.4.1.1 模糊控制 自从Zadeh 发展出模糊集理论之后,对于不明确系统的控制有极大的贡献,自七十年代以后,便有一些实用的模糊控制器相继的完成,使得我们在控制领域中又向前迈进了一大步,在此将对模糊控制理论做一番浅介[6].模糊控制利用模糊集理论的基本思想和理论的控制方法.在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的.然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想.换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了.所以,模糊集理论便被用来处理这些控制问题.4.1.2模糊聚类分析模糊聚类分析的研究是基于模糊等价关系和以及模糊分类上的[4].主要有以下的定理以及定义.定理1 令R 是一个模糊等价关系,并且01αβ≤<≤,则对y X ∀∈有[][]R R y y βα⊆.定义 5 设数据集12{,,,}n X x x x =,且12,,,c A A A 是其一个分类,若该分类满足以下条件:(1) 对k ∀,存在i 使得k i x A ∈;(2) 对所以i 均有i A ≠Φ;则称该分类是X 的一个模糊划分.基于上面的理论,我们可以用一个划分矩阵()ik c n D d ⨯=来刻画数据集的分类,其中0 , 1 , k i ik k i x A d x A ∉⎧=⎨∈⎩ 定义6 对于上面的矩阵D ,若其满足以下三个条件:(1){}0,1ik d ∈;(2)11, c ik i d k ==∀∑;(3)10, n ik k d i =>∀∑;则称D 是X 上的一个精确的c -划分矩阵.定义7 设c 和n 时两个给定的正整数若模糊矩阵()ik c n D d ⨯=满足以下三个条件:(1) []0,1ik d ∈;(2) 11, c ik i d k ==∀∑;(3) 10, n ik k d n i =<<∀∑;则称D 为X 上的一个模糊的c -划分矩阵.定义8 设12{,,,}m n X x x x =⊆,12{,,,}m c V v v v =⊆,()ik c n D d ⨯=()c n ≤是X 上的一个模糊的c -划分矩阵,则 ()211(,)c n p ik i k i k J D V d v x ===-∑∑(p ∈)称为模糊划分上的一个聚类准则函数,这里()12()21[]m i i x x===∑ 定义9 如果对于任意的12{,,,}mn X x x x =⊆,存在****12{,,,}m c V v v v =⊆以及模糊的c -划分矩阵*D 使得 **(,)(,)J D V J D V ≤对所有的12{,,,}m n X x x x =⊆以及模糊的c -划分矩阵D 都成立,则称*D 为最优模糊c -划分矩阵,*V 为一个模糊聚类中心.4.1.3模糊模式识别模糊模式识别是利用模糊集理论对行为的识别.根据识别模式的性质,可以将模式识别分为两类:具体事物的识别,如对文字,音乐,语言等周围事物的识别;抽象事物的识别,如对已知的一个论点或者一个问题的理解等.下面介绍一些基本的定理及定义.定义10 清晰度增强因子:令()A F X ∈是X 上的一个模糊集,定义另外一个模糊集(2)()()I A F X ∈,其中 2(2)22() , ()[0,0.5]()()12(1()), ()(0.5,1]A x A x I A x A x A x ⎧∈⎪⎨--∈⎪⎩ 称(2)()()I A x 为清晰度增强因子.4.1.4模糊综合评判模糊综合评判是利用模糊集理论对一个事物进行评价.具体的过程为:将评价目标看成是由多种因素组成的模糊集合X ,再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集V ),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵D ),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值.定义11 设:[0,1][0,1]n f →满足以下几个条件:(1)1212(,,,)n n x x x x f x x x x ====⇒=; (2)(1)(2)(1)(2)111111(,,,,,,)(,,,,,,)i i i i i n i i i n x x f x x x x x f x x x x x -+-+≤⇒≤,i ∀; (3)12(,,,)n f x x x 对每个变量都是连续的;则称f 为n -维综合函数. 常用的n -维综合函数主要有加权平均函数,几何平均函数,单因素决策函数,显著因素准则函数等等.4.2粗糙集理论研究的主要内容粗糙集理论作为一种数据分析处理理论,无论是在理论方面还是在应用实践方面都取得了很大的进展,展示了它光明的前景,因而其研究内容以及领域也是非常广泛的,主要包括以下几方面:变精度粗糙集,集值信息系统,粗糙集理论的应用,支持向量基等.4.2.1变精度粗糙集变精度粗糙集模型[9]是Pawlak 粗糙集模型的扩充,它是在基本粗糙集模型的基础上引入了β(00.5β≤<),即允许一定的错误分类率存在,这一方面完善了近似空间的概率,另一方面也有利于用粗糙集理论从认为不相关的数据集中发现相关的数据.当然,变精度粗糙集模型的主要任务是解决属性间无函数或不确定关系的数据分类问题.当0β=时,Pawlak 粗糙集模型是变精度粗糙集模型的一个特例.4.2.2集值信息系统集值信息系统[5]是信息系统的一般化模型,在实际应用中信息系统随着对象的变化而不断地动态变化.(,)S X AT =是信息系统,其中X 是对象的非空有限集合,AT 是属性的非空有限集合,对于每个a AT ∈有:a a X V →,其中a V 称为a 的值域.每个属性子集A AT ⊆决定了一个不可区分关系()ind A :(){(,)|,()()}ind A x y X X a A a x a y =∈⨯∀∈=.关系()ind A (A AT ⊆)构成了X 的划分,用/()X ind A 来表示.对于一个对象,一些属性值可能是缺省的.为了表明这种情况,通常给定一个区分值(即空值 null value )给出这些属性定义12 如果至少有一个属性a AT ∈使得a V 含有空值,则称S 是一个不完备信息系统[5],否则称它是完备的,我们用*表示空值.设S 是一个不完备信息系统,a AT ∈使得a V 含有空值*时,并且该空值*的取值为一个集合,该集合的元素是这个属性中其他所有可能值的集合,则S 就是集值信息系统.下面是一个不完备信息系统的例子:4.2.3 支持向量基支持向量机(Support Vector Machine,SVM)[10][11]是Corinna Cortes和Vapnik8等于1995年首先提出的.SVM起初是广泛应用在神经信息处理系统(Neural Information Processing Systems,NIPS), 但是,现今,SVM 已经在所有的机器学习研究领域中起着重要作用.SVM是一种学习系统,他利用高维空间中的线性分类器,在这个空间中建立一个最大的间隔超平面,这里的最大是基于最优化理论的.广义的SVM起源于统计学习理论[12].5.模糊集与粗糙集的结合由上面的讨论可知,模糊集理论与粗糙集理论各具特点,两种理论有着很强的联系与互补性,因此将两者的特点结合起来形成研究不完全数据集的有效方法.此外,通过模糊聚类和粗糙集两种方法进行属性的对象约简和属性约简,可以使数据得到横向和纵向两个方向上的约简,对象约简是引入了相似性的概念进行模糊聚类的过程,对象约简改变了标准粗糙集模型的不可分辨关系的确定条件;由于粗糙集所处理的都是离散数据,所以在数据分析中需要应用模糊聚类或隶属函数离散化,进而应用粗糙集理论属性约简、提取规则.所以结合模糊集、粗糙集理论能够有效地分析数据,提高生成规则的可信性和和合理性,倒出可信的规则集.5.1模糊粗糙集及粗糙模糊集结合模糊集和粗糙集两种理论可以得到模糊粗糙集及粗糙模糊集模型,当知识库中的知识模块是清晰的概念,而被描述的概念是一个模糊的概念,人们建立粗糙模糊集模型来解决此类问题的近似推理;当知识库中的知识模块是模糊知识,而被近似的概念是模糊概念时,则需要建立模糊粗糙集模型,也有人将普通关系推广称模糊关系或者模糊划分而获得模糊粗糙集模型.定义13 设R 是X 上的一个等价关系,()A F X ∈,[0,1]λ∈,模糊集A 、A λ以及s A λ的上下近似分别为:(){|[]},(){|[]}RR R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆ (){|[]},(){|[]}s s s s R R R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆(){|[]},(){|[]}RR R A x X x A R A x X x A =∈≠Φ=∈⊆ 可以验证,当A 是X 上的经典集合时,上面所介绍的上下近似就是Pawlak 意义下的上下近似. 定义14 设R 是X 上的等价关系,A 是X 的一个模糊集合,()A F X ∈,则A 关于R 的上下近似分别定义如下:()sup{()|[]},()inf{()|[]}R R R R A x A y y x A x A y y x =∈=∈可以看出,模糊集()A F X ∈关于等价关系R 的上下近似仍为模糊集合,若 R R A A =,则称A 是可定义的,否则称A 是粗糙集,称R A 是A 关于近似空间(,)X R 的正域,称~R A 是A 关于(,)X R 的负域,称(~)R R A A 为A 的边界.R A 可以理解为对象x 肯定属于模糊集A 的隶属程度;R A 理解为对象x 可能属于模糊集A 的隶属程度,同样可以验证,当A 时X 上的经典集合时,就是Pawlak 意义下的上下近似.在标准粗糙集模型中引入变精度,提高了相对近似精度,而在粗糙模糊集引入变精度,得到新定义:()sup{()|[]()1}R R A x A y y x A y ββ=∈∧>-()inf{()|[]()}R R A x A y y x A y ββ=∈∧≥这样下近似集合中元素隶属度降低,而上近似的隶属度提高,提高了相对精度.5.2粗糙隶属函数粗糙隶属函数式借助模糊理论来研究粗糙集理论的方法,通过粗糙隶属度函数可以将粗糙集理论与模糊集理论联系起来,建立一种粗糙集理论与模糊集理论的关系,并得到一些性质.定义15 设R 是论域X 上的一个相似关系,若A 是X 上的一个模糊集合,则A 关于R 的一个下近似()R A 和上近似()R A 分别定义为X 上的一个模糊集合,称为粗糙隶属度函数[5],定义为 |[]|()|[]|R R A x A x x = 粗糙隶属函数表示的是一个模糊概念,一般不是Zadeh 意义下的隶属函数.粗糙隶属函数()A x 表示的是x 的等价类[]R x 隶属于A 的程度.由定义14和定义15可以得到:模糊集A 的下近似且关于等价关系R 的等价类隶属于A 的程度为1;模糊集A 的上近似且关于等价关系R 的等价类隶属于A 的程度为大于0小于1,因此有:性质1 1(){|()1,/}Core A A x A x x X R RA ===∈=0(){|()0,/}s support A A x A x x X R ==>∈(){|0()1,/}bnR A RA RA x A x x X R =-=<<∈(){|()0,/}negR A X RA x A x x X R =-==∈性质2 []()()R y x A x A y ∈⇒=[]()1R x A A x ⊆⇒=[]()0R x A A x =Φ⇒=[] []()(0,1)R Rx A and x A A x ⊄≠Φ⇒∈ 6 总结本文系统的介绍了模糊集理论与粗糙集理论,二者研究的主要内容,以及二者的结合的相关理论.是对本学期所学的模糊计算和粗糙计算的一个简单的小结,也是我本人对该学科的一个简单的入门.参考文献[1] L.A.Zadeh, Fuzzy sets[J], Information and Control, 1965,8:338-353.[2]Pawlak Z, Rough sets[J], International Journal of Computer andInformation science, 1982,1(11):341-356.[3]胡宝清,模糊理论基础,武汉:武汉大学出版社,2010.[4]张文修,模糊数学基础,西安:西安交通大学出版社,1984.[5]张文修,粗糙集理论与方法,北京:科学出版社,2001[6] /view/87377.htm[7]K. Y. Chan, C.K. Kwong, B.Q. Hu, Market segmentation and ideal pointidentification for new product design using fuzzy data compression and fuzzy clustering methods[J], Applied Soft Computing, 2012, 12, 1371-1378.[8]Z.Pawlak, Rough sets and fuzzy sets [J], Fuzzy sets and Systems,1985,17,99-102.[9]Beynon M.Reducts within the variable precision rough sets model: afurther investigation[J], European Journal of Operational Research, 2001,134:592-605.[10]邓乃扬,田英杰,数据挖掘中的新方法:支持向量基,北京:科学出版社,2004.[11]邓乃扬,田英杰,支持向量基-理论、算法与拓展,北京:科学出版社,2009.[12]V.Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.。

粗糙集理论的入门指南

粗糙集理论的入门指南

粗糙集理论的入门指南粗糙集理论是数学领域中的一种理论,它源于20世纪80年代的波兰学者Zdzisław Pawlak的研究工作。

粗糙集理论被广泛应用于数据挖掘、模式识别、决策分析等领域,它提供了一种处理不完备、模糊和不确定信息的方法。

一、粗糙集理论的基本概念在了解粗糙集理论之前,我们需要了解一些基本概念。

粗糙集理论主要涉及到以下几个概念:1. 上近似和下近似:粗糙集理论中的一个核心概念是近似。

给定一个数据集,上近似是指用最少的信息来描述数据集中的对象,下近似是指用最多的信息来描述数据集中的对象。

2. 等价关系:在粗糙集理论中,等价关系是指将数据集中的对象划分为不同的等价类。

等价关系可以用来描述数据集中的相似性。

3. 决策属性:决策属性是指在数据集中用来区分不同类别的属性。

在粗糙集理论中,决策属性是决策规则的基础。

二、粗糙集理论的应用粗糙集理论在实际应用中具有广泛的应用价值。

以下是一些常见的应用领域:1. 数据挖掘:粗糙集理论可以用于数据挖掘中的特征选择和分类问题。

通过分析数据集中的属性之间的关系,可以找到最具有代表性的属性,从而提高数据挖掘的效果。

2. 模式识别:粗糙集理论可以用于模式识别中的特征提取和模式分类。

通过对数据集中的特征进行分析,可以提取出最具有代表性的特征,从而实现模式的识别。

3. 决策分析:粗糙集理论可以用于决策分析中的决策规则的生成和评估。

通过对数据集中的属性进行分析,可以生成一组决策规则,从而帮助决策者做出正确的决策。

三、粗糙集理论的优点和局限性粗糙集理论作为一种处理不完备、模糊和不确定信息的方法,具有以下优点:1. 简单易懂:粗糙集理论的基本概念和方法相对简单,易于理解和应用。

2. 适用范围广:粗糙集理论可以应用于各种领域,包括数据挖掘、模式识别、决策分析等。

然而,粗糙集理论也存在一些局限性:1. 计算复杂度高:在处理大规模数据集时,粗糙集理论的计算复杂度较高,需要消耗大量的计算资源。

10.粗糙集方法

10.粗糙集方法

可知有:

A ( X ) { f }
A ( X ) {a, b, c} { f } {a, b, c, f }
PosA ( X ) A ( X ) { f }
NEGA ( X ) U A ( X ) {d , e}
BNDA ( X ) A ( X ) A ( X ) {a, b, c}
计算减少一个条件属性相对决策属性的正域
Pos(C \{a1}) (D) {2,5,9,10,11 U } Pos(C \{a2 }) (D) U Posc (D) Pos(C \{a3 }) (D) U Posc (D)
Pos(C \{a4 }) (D) {1,2,3,7,8,9,10,11,12,13} U
a R, x U , fa ( x) Va
(2)等价关系定义
对 于 a A A 中 包 含 一 个 或 多 个 属 ( A 性), R, x U , y U ,它们的属性值相同, f ( x) f ( y ) 即: 成立,称对象x和y是对属性A的等价关系, 表示为:
a a
(2)集合X的上近似定义
对任意一个子集 X U ,属性A的等价类 Ei [ x]A 有: A ( X ) Ei | Ei A Ei X 或 A ( X ) x | [ x] A X 表示等价类 Ei [ x]A 中的元素x可能属于X, 即x A (X ),则x可能属于X,也可能不属于X。
第 8 章 集合论方法 (一) 粗糙集方法
8.1粗糙集方法

8.1.1粗糙集概念 8.1.2属性约简的粗糙集理论 8.1.3属性约简的粗糙集方法 8.1.4粗糙集方法的规则获取 8.1.5粗糙集方法的应用实例

粗糙集理论

粗糙集理论

定义六


,R是一个等价关系,称 RX={ x |x U |,且[x]R X } 为集合X的R下近似集; 称 RX={ x |x U |,且[x]R X} 为集合X的R上近似集; 称集合 BNR ( X ) RX RX 为X的R边界域; 称 POSR (X)=RX 为X的R正域; 称 NEGR (X)=U-RX 为X的R负域。
©
第11章
粗糙集理论: 13
上、下近似集


给定论域U,一族等价关系R将U划分为互不相交的 基本等价类U/R。令 XgU为R上的一个等价关系。 当能表达成某些基本等价类的并集时,称为可定义 的;否则称为不可定义的。R可定义集能在这个知 识库中被精确地定义,所以又称为R精确集。 R不可定义集不能在这个知识库中被精确定义,只 能通过集合逼近的方式来刻画,因此也称为R粗糙 集 (Roughset)。
©
第11章
粗糙集理论: 12


定义五 设U是一个论域,R是U上的等价关系,U/R 表示U上由R导出的所有等价类。 [ x]R 表示包含元素x∈U的R等价类。一个知识库就是 一个关系系统K ={U ,P},其中U是论域,P是U上的 一个等价类簇。如果 Q P 且 Q ,则 Q (Q的 所有等价类的交也是一个等价关系),称Q为不可分 辨关系,记作IND(Q)。
粗糙集理论
粗糙集的基本概念 知识表达 粗糙集在数据预处理中的应用
©
第11章
粗糙集理论: 1

粗糙集理论是由波兰华沙理工大学 Pawlak 教 授于 20 世纪 80 年代初提出的一种研究不完整、 不确定知识和数据的表达、学习、归纳的理 论方法,它是一种刻画不完整性和不确定性 的数学工具,能有效地分析不精确、不一致 (inconslsteni)、不完整 (incomPlete) 等各 种不完备的信息,还可以对数据进行分析和 推理,从中发现隐含的知识,揭示潜在的规 律。

如何使用粗糙集理论进行数据分析

如何使用粗糙集理论进行数据分析

如何使用粗糙集理论进行数据分析粗糙集理论是一种用于数据分析的方法,它可以帮助我们处理不完美或者不确定的数据。

在这篇文章中,我将介绍粗糙集理论的基本原理和应用,以及如何使用它进行数据分析。

首先,让我们来了解粗糙集理论的基本概念。

粗糙集理论是由波兰学者Pawlak 于1982年提出的,它是一种处理不确定性和模糊性的数学工具。

在粗糙集理论中,我们将数据集划分为不同的等价类,每个等价类代表了一种决策规则。

这种划分是基于属性之间的关系和相似性来进行的。

在使用粗糙集理论进行数据分析时,我们首先需要进行数据的预处理。

这包括数据的清洗、去除噪声和缺失值的处理等。

然后,我们可以根据数据的属性进行等价类划分。

这个过程可以通过计算属性之间的依赖度来实现。

依赖度越高,表示属性之间的关系越紧密。

接下来,我们可以利用粗糙集理论进行特征选择。

特征选择是指从原始数据中选择出最具有代表性和相关性的属性。

通过粗糙集理论,我们可以计算每个属性对决策规则的贡献度,然后选择贡献度最高的属性作为特征。

除了特征选择,粗糙集理论还可以用于数据分类和聚类分析。

在数据分类中,我们可以根据属性之间的关系和相似性将数据分为不同的类别。

而在聚类分析中,我们可以根据数据的属性将数据分为不同的簇。

这些分析结果可以帮助我们更好地理解数据的结构和特征。

此外,粗糙集理论还可以用于决策支持系统的构建。

决策支持系统是指通过收集、整理和分析数据来辅助决策的工具。

通过粗糙集理论,我们可以提取出数据中的关键信息,帮助决策者做出更准确和可靠的决策。

总结起来,粗糙集理论是一种用于数据分析的有效工具。

它可以帮助我们处理不完美或者不确定的数据,提取出数据中的关键信息,并辅助决策和问题解决。

通过对数据的等价类划分、特征选择、数据分类和聚类分析等操作,我们可以更好地理解和利用数据。

希望本文对您理解和应用粗糙集理论有所帮助。

第一讲 Pawlak粗糙集模型

第一讲 Pawlak粗糙集模型

目前已发展成为人工智能的一个重要研究方向,在 数据挖掘 (data mining) 与信息系统知识发现 (KDD) 中具有非常广泛的潜在的应用背景,并已获得许多 成功的应用。
IRSS: International Rough Set Society, 1997 中国人工智能学会,粗糙集与 软计算专业委员会,2003,11
讨论题3:粗糙集与非经典逻辑代数
N ( A) {( X ,Y );( X ,Y ) A A, X Y ,(Y X ) S }.
对于任意 ( X1 ,Y1 ),( X 2 ,Y2 ) N ( A) 令
( X1 , Y1 ) ( X 2 , Y2 ) ( X1 X 2 , Y1 Y2 )
在近似空间中,若 X 能表示为某些 R 等价类的并, 则称 X 是 R 精确集,或 R 可定义的,简称为可定义的; 否则称 X 是 R 不可定义的,或 R 粗糙集。粗糙集所表示的概念 具有不确定性。对于粗糙集 X ,可以借助两个精确集 R( X ) 与 R( X ) 近似地刻画。
关于粗糙集的概念,还有另外一种观点。有些文献将上、下近似集 构成的二元组 (R( X ), R( X )) 称为近似空间 (U , R) 中的粗糙集。
a b a c bc; (3) 是 L 上的一个二元运算且与 构成伴随对,即对于
任意 a, b, c L , a b c 当且仅当 a b c.
六 信息系统知识发现
定义 一个信息系统是一个四元组 S (U , A,V , f ) ,其中 (1) U 是非空有限集合,称为论域,其中元素称为对象; (2) A 是非空有限集合,其中元素称为属性; (3) V Va , Va 是属性 a 的取值构成的集合,称为 a 的值域;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( x, y) ind (a) 当且仅当: f ( x, a) f ( y, a).
因此,信息系统本质上就是数据库,每一个属性决定一个知识。类似地,对于任意
第一讲: Pawlak粗糙集模型
粗糙集理论是一种新的处理不确定性知识的数学工 具,是由波兰科学家Pawlak在1982年首先提出的:
Pawlak Z, Rough sets, International Journal of Computer and Information Sciences, 11(1982)
粗糙集与软计算学术年会 (2001)
主要参考书:
Pawlak Z, Rough sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, 1991 刘清,Rough集与Rough推理,科学出版社,2001 王国胤,Rough集理论与知识获取,西安交通大学出版社, 2001 张文修等,粗糙集理论与方法,科学出版社,2001 张文修等,信息系统与知识发现,科学出版社,2003 张文修等,基于粗糙集的不确定决策,清华大学出版社, 2005 张小红等,模糊数学与Rough集理论,清华大学出版社, 2013
在近似空间中,若 X 能表示为某些 R 等价类的并,则称 X 是 R 精确集, 或 R 可定义的,简称为可定义的;否则称 X 是 R 不可定义的,或 R 粗糙集。 粗糙集所表示的概念具有不确定性。对于粗糙集 X ,可以借助两个精确集
R( X ) 与 R( X ) 近似地刻画。
(1) R( X ) X R( X ). (2) 设 R1, R2 为 U 上两个等价关系, R1 R2 ,则对于任意 X U ,
一 知识与知识库
1 粗糙集理论的基本观点: 知识是对对象进行分类的能力,即区分对象的能力。
例 考虑玩具积木的集合 U {x1, x2 , 按颜色分类: 红颜色积木: x1, x2 , x3 黄颜色积木: x4 , x5 , x6 蓝颜色积木: x7 , x8
, x8}。
按形状分类: 三角形积木: x1 , x2 , x4 , x8 园形积木: x3 , x5 方形积木: x6 , x7 按体积大小分类: 大: x1 , x2 , x4 , x6 , x8 小: x3 , x5 , x7
讨论题1:粗糙集的拓扑结构
定理 设 (U , R) 是一ቤተ መጻሕፍቲ ባይዱ近似空间,则
T {R( X ); X U } 是 U 上的一个拓扑。
证明 (1)由 R(U ) U , R() 即知 U T , T . (2)由 R( X ) R(Y ) R( X Y ) 知 T 对于有限交封闭。 (3)设对于任意 i I , X i U ,其中 I 是一指标集。 由于 R ( X i ) 是可定义集,故 R ( R ( X i )) R ( X i ) ,
的充分必要条件是 X , Y A , X Y 且 (Y X ) S . 其中 A 是所有 可定义集的集合, S {x U ;[ x]R {x}} 。 注: ( A, , , ~,U , ) 是幂集布尔代数 B ( P(U ), , , ~,U , ) 的子代数。
, X m}
五 近似分类的不精确性度量
对于近似分类 {X1, X 2 , , X m} 的近似分类精度
R
( )
m i 1 m i 1
R( X i ) R( X i )
近似分类质量
R
( )
m i 1
R( X i ) U
不确定性问题的数学工具
1 概率论 随机性:所研究事件本身有明确含义;由于条件不充分,使得 在条件与事件之间不能出现确定性的因果关系。 2 粗糙集理论(Pawlak, 1982) 粗糙性:知识的粒度性;使得使用已有知识不能精确地表示某些 概念,与人们对客观事物的认识水平有关,大多通过信息系统中的 不确定性表示。
R( X ) {x U ;[ x]R X } ,
R( X ) {x U ;[ x]R X } 。
下近似、上近似具有下面的等价表达形式:
R( X ) {Y U ; Y X } , R R( X ) {Y U ; Y X } 。 R
其中 [ x]R { y;( x, y) R} 是 x 关于 R 的等价类,
按此定义,30 岁的人的年轻程度为 A(30) 0.5 ,35 岁的人的年轻程度为 A(35) 0.2 ,50 岁的 人的年轻程度约为 A(50) 0.04.
粗糙集理论的基本特点:(李德毅院士:不确定性人工智能, 国防工业出版社,2005) 1. 粗糙集理论认为,知识是有粒度的。知识的粒度性是造成使用已有知识 不能精确表示某些概念的原因;属性集合的不同子集对论域构成不同的划分, 形成不同的知识粒度。 2. 不可区分关系是粗糙集理论的基础。由于我们对问题认识的深入程度有限, 使得我们缺乏足够的知识去区分论域中的某些对象。通过不可区分关系构造 上、下近似,边界等,可以有效地表达和计算分类问题中的不确定性。 3. 模糊集理论研究模糊性(客观事物差异的中介过度性) ,从集合与元素的 关系入手,从概念内涵的角度进行研究;粗糙集理论从知识分类入手, 从概念外延的角度研究不确定性,粗糙集理论中的成员关系是客观计算的, 只和已知数据有关。 4. 不足之处:背景知识库是完全确定的,对样本本身的随机性和模糊性缺乏 处理能力。
按颜色、形状分类: 红颜色三角形积木: x1 , x2 红颜色园形积木: x3 黄颜色三角形积木: x4 黄颜色园形积木: x5 黄颜色方形积木: x6 兰颜色三角形积木: x8 兰颜色方形积木: x7
知识越多、越强,分类越细。
2 知识的数学表示:等价关系
设 U 是对象构成的非空有限集合,以下称为论域。 Pawlak 粗糙集理论仅讨论能对论域形成划分的知识。由于划分与 等价关系可以互相确定,因此,一个知识就是 U 上的一个等价关系。 设 R 是 U 上的一个等价关系,等价类集合为:
U
R
{[ x]R ; x U }
称等价类 [ x]R 为 R 初等概念。 若 X U ,则称 X 为一概念。
二 基本定义
设 U 是一个非空有限集合,称为论域, R 为 U 上的一个等价关系, 称二元组 (U , R) 为一个 Pawlak 近似空间,简称为近似空间。 对于任意 X U , X 关于近似空间 (U , R) 的下近似 R( X ) 与上近似 R( X ) 分别定义为:
iI iI iI
从而 R ( X i ) T ,即 T 对于任意并封闭。
iI
讨论题2:粗糙集的表示
定理 设 (U , R) 是一个 Pawlak 近似空间。对于任意 ( X , Y ) P(U ) P(U ) ,
( X , Y ) 是一个粗糙集表示(即存在 Z U 使得 R( Z ) X , R(Z ) Y )
3 模糊集理论(Zadeh, 1965) 模糊性:产生于对客观事物的分类与识别;表现为概念外延的不确定性(或客观事物差异 的中介过度性) 。 设论域 U [0,200] 是年龄的集合。Zadeh 给出 表示“年轻”的模糊集 A 如下:
1,0 x 25 。 A( x) x 25 2 1 (1 ( ) ) ,25 x 200 5
R2 ( X ) R1 ( X ) X R1 ( X ) R2 ( X ).
三 性质
设 (U , R) 为一近似空间,对于任意 X , Y U (1) R( X ) X R( X ) (2) R() R() R(U ) R(U ) U (3) X Y R( X ) R(Y ) X Y R( X ) R(Y ) (4) R( X Y ) R( X ) R(Y ) R( X Y ) R( X ) R(Y ) (5) R( X Y ) R( X ) R(Y ) R( X Y ) R( X ) R(Y ) R(~ X ) ~ R( X ) (6) R(~ X ) ~ R( X )
一般情况下,下列等式不成立:
R( X Y ) R( X ) R(Y )
R( X Y ) R( X ) R(Y )
四 粗糙集的不确定性度量
X的近似精度:
R (X )
R( X ) R( X )
X的粗糙度
R ( X ) 1 R ( X )
{ X1 , X 2 ,
a b a c bc; (3) 是 L 上的一个二元运算且与 构成伴随对,即对于
任意 a, b, c L , a b c 当且仅当 a b c.
六 信息系统知识发现
定义 一个信息系统是一个四元组 S (U , A,V , f ) ,其中 (1) U 是非空有限集合,称为论域,其中元素称为对象; (2) A 是非空有限集合,其中元素称为属性; (3) V Va , Va 是属性 a 的取值构成的集合,称为 a 的值域;
讨论题3:粗糙集与非经典逻辑代数
N ( A) {( X ,Y );( X ,Y ) A A, X Y ,(Y X ) S }.
对于任意 ( X1 ,Y1 ),( X 2 ,Y2 ) N ( A) 令
( X1 , Y1 ) ( X 2 , Y2 ) ( X1 X 2 , Y1 Y2 )
则 ( N ( A), , , , ,(, ),(U ,U )) 为剩余格.
( N ( A), , , , , , I ) 是正则双Stone代数。
剩余格是一个代数系统 ( L, , , , ,0,1) ,其中 (1) ( L, , ,0,1) 为有界格, 0,1 分别为其最小元与最大元; (2) ( L, ,1) 是以 1 为单位元的交换半群且对于任意 a, b, c L ,
相关文档
最新文档