(通用版)2020版高考物理大二复习 专题强化练(八)动量定理和动量守恒定律(含解析)
2023高考物理二轮专题复习:动量定理与动量守恒定律课件
细研命题点 提升素养
3.一玩具以初速度 v0 从水平地面竖直向上抛出,达到最高点时,用遥控器
将玩具内压缩的轻弹簧弹开,该玩具沿水平方向分裂成质量之比为 1∶4 的
两部分,此时它们的动能之和与玩具从地面抛出时的动能相等.弹簧弹开的
时间极短,不计空气阻力.求:
(1)玩具上升到最大高度34时的速度大小;
专题二 能量与动量
细研命题点 提升素养
解析:过程Ⅰ中动量改变量等于重力的冲量,即为mgt,不为零,故A错误, C正确;运动员进入水前的速度不为零,末速度为零,过程Ⅱ的动量改变量不 等于零,故B错误;过程Ⅱ的动量改变量等于合外力的冲量,此过程中受重力 和水的阻力,则不等于重力的冲量,故D错误.
答案:C
知识归纳 素养奠基
专题二 能量与动量
命题点一 动量定理的应用
应用动量定理解题的基本步骤.
细研命题点 提升素养
专题二 能量与动量
细研命题点 提升素养
(2020·全国卷Ⅰ改编题)如图所示为跳水运动员从起跳到落水过程的示 意图,运动员从最高点到入水前的运动过程记为Ⅰ,运动员入水后到最低点 的运动过程记为Ⅱ,忽略空气阻力,则运动员( ) A.过程Ⅰ的动量改变量等于零 B.过程Ⅱ的动量改变量等于零 C.过程Ⅰ的动量改变量等于重力的冲量 D.过程Ⅱ的动量改变量等于重力的冲量
专题二 能量与动量
细研命题点 提升素养
解析:弹簧弹力对公仔头部做功,故公仔头部的机械能不守恒,故A错误;公 仔头部上升的过程中,开始时弹簧向上的弹力大于重力,合力方向向上,加 速度向上,加速度减小,当弹力等于重力时加速度减为零,速度最大,之后 重力大于弹力,合力向下,且弹力继续减小,合力增大,加速度增大,弹簧 恢复原长时,加速度为g,公仔头部继续上升,弹簧拉长,弹力向下,合力向 下,且弹力增大,合力增大,则加速度增大,故公仔头部上升过程中,加速 度先减小后反向增大,故B错误;公仔头部上升过程中,取向上为正方向,根 据动量定理有:I弹-mgt=0, 则弹簧弹力冲量的大小为:I弹=mgt,故C正确; 公仔头部上升过程中,根据动能定理有:W弹-mgh=0, 则弹簧弹力对头部所做的功为:W弹=mgh≠0,故D错误.故选C. 答案:C
2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)
动量定理与动量守恒定律一、选择题1.高空坠物极易对行人造成伤害。
若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为A .10 NB .102 NC .103 ND .104 N解析 根据自由落体运动和动量定理有2gh =v 2(h 为25层楼的高度,约70 m),Ft =mv ,代入数据解得F ≈1×103 N ,所以C 正确。
答案 C2.(多选)在光滑的水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移L 后,动量变为p 、动能变为E k ,以下说法正确的是A .在力F 的作用下,这个物体若是经过时间3t ,其动量将等于3pB .在力F 的作用下,这个物体若是经过位移3L ,其动量将等于3pC .在力F 的作用下,这个物体若是经过时间3t ,其动能将等于3E kD .在力F 的作用下,这个物体若是经过位移3L ,其动能将等于3E k解析 根据p =mv ,E k =12mv 2 联立解得p =2mE k根据动能定理FL =12mv 2,位移变为原来的3倍,动能变为原来的3倍,根据p =2mE k ,动量变为原来的3倍,故B 错误,D 正确。
根据动量定理Ft =mv ,时间变为原来的3倍,动量变为原来的3倍,根据E k =p 22m,知动能变为原来的9倍,故A 正确,C 错误。
答案 AD3.(多选)质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则A.在压缩弹簧的过程中,两物块组成的系统动量守恒B.当两物块相距最近时,甲物块的速度为零C.甲物块的速率可能为5 m/sD.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s解析在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。
(新课标)2020版高考物理大二轮复习专题强化训练8力学中的动量和能量问题
专题强化训练(八)一、选择题1.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D ,水流速度为v ,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M ,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是( )A .高压水枪单位时间喷出的水的质量为ρv πD 2B .高压水枪的功率为18ρπD 2v 3C .水柱对煤层的平均冲力为14ρπD 2v 2D .手对高压水枪的作用力水平向右[解析] 设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =Sv Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δmv 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=mv ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.[答案] BC2.(2019·河北名校联盟)如图所示,自动称米机已在许多大粮店广泛使用.买者认为:因为米流落到容器中时对容器有向下的冲力而不划算;卖者则认为:当预定米的质量达到要求后时,自动装置即刻切断米流,此刻有一些米仍在空中,这些米是多给买者的,因而双方争执起来,下列说法正确的是( )A .买者说的对B .卖者说的对C .公平交易D .具有随机性,无法判断[解析] 设米流的流量为d ,它是恒定的,米流在出口处速度很小可视为零,若切断米流后,设盛米的容器中静止的那部分米的质量为m 1,空中还在下落的米的质量为m 2,则落到已静止的米堆上的一小部分米的质量为Δm .在极短时间Δt 内,取Δm 为研究对象,这部分米很少,Δm =d ·Δt ,设其落到米堆上之前的速度为v ,经Δt 时间静止,取竖直向上为正方向,由动量定律得(F -Δmg )Δt =Δmv即F =dv +d ·Δt ·g ,因Δt 很小,故F =dv 根据牛顿第三定律知F =F ′,称米机的读数应为M =F ′N g =m 1g +F ′g =m 1+d vg因切断米流后空中尚有t =vg时间内对应的米流在空中,故d vg=m 2可见,称米机读数包含了静止在袋中的部分米的质量m 1,也包含了尚在空中的下落的米的质量m 2,即自动称米机是准确的,不存在哪方划算不划算的问题,选项C 正确.[答案] C3.(多选)(2019·四川绵阳模拟)如图所示,在光滑水平面上有一静止的物体M ,物体上有一光滑的半圆弧形轨道,最低点为C ,两端A 、B 一样高,现让小滑块m 从A 点由静止下滑,则( )A .m 不能到达M 上的B 点B .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动C .m 从A 到B 的过程中M 一直向左运动,m 到达B 的瞬间,M 速度为零D .M 与m 组成的系统机械能定恒,水平方向动量守恒[解析] 根据机械能守恒、动量守恒定律的条件,M 和m 组成的系统机械能守恒,水平方向动量守恒,D 正确;m 滑到右端两者有相同的速度有:0=(m +M )v ,v =0,再根据机械能守恒定律mgR =mgh +12(m +M )v 2可知,m 恰能到达M 上的B 点,且m 到达B 的瞬间,m 、M速度为零,A 错误;m 从A 到C 的过程中M 向左加速运动,m 从C 到B 的过程中M 向左减速运动,B 错误,C 正确.[答案] CD4.(2019·蓉城名校联盟)如图所示,在足够长的固定斜面上有一质量为m 的薄木板A ,木板A 获得初速度v 0后恰好能沿斜面匀速下滑.现将一质量也为m 的小滑块B 无初速度轻放在木板A 的上表面,在滑块B 在木板A 上滑动的过程中(B 始终未从A 的上表面滑出,B 与A 间的动摩擦因数大于A 与斜面间的动摩擦因数),下列说法正确的是( )A .A 、B 组成的系统动量和机械能都守恒 B .A 、B 组成的系统动量和机械能都不守恒C .当B 的速度为13v 0时,A 的速度为23v 0D .当A 的速度为13v 0时,B 的速度为23v 0[解析] 由于木板A 沿斜面体匀速下滑,所以此时木板A 的合力为零,当小滑块B 放在木板A 上表面后,A 、B 组成的系统所受的合力为零,则系统的动量守恒,由于A 、B 间有摩擦力的作用,则系统的机械能一直减小,即机械能不守恒,A 、B 错误;由于B 与A 之间的动摩擦因数大于A 与斜面间的动摩擦因数,所以当A 、B 共速后将沿斜面共同匀速下滑,即B 的速度不可能大于A 的速度,由动量守恒定律知C 正确,D 错误.[答案] C5.(多选)(2019·华中师大附中五月模拟)如下图所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为4m 的B 球碰撞,碰撞后A 球以v =αv 0(待定系数α<1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数α可以是( )A.12B.25C.23D.17[解析] A 、B 碰撞过程,以v 0的方向为正方向,根据动量守恒定律得,m A v 0=-m A αv 0+m B v B ,A 与挡板P 碰撞后能追上B 发生再次碰撞的条件是αv 0>v B ,解得α>13,碰撞过程中损失的机械能ΔE k =12m A v 20-⎣⎢⎡⎦⎥⎤12m A (αv 0)2+12m B v 2B ≥0,解得-1≤α≤35,所以α满足的条件是13<α≤35,A 、B 正确,C 、D 错误. [答案] AB6.(多选)(2019·武汉外校模拟)质量M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2,则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.5 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m[解析] 可把小球和滑块水平方向的运动看成人船模型.设滑块M 在水平轨道上向右运动了x ,由滑块和小球组成的系统在水平方向上动量守恒,有m M =xL -x,解得x =0.3 m ,A正确,B 错误.根据动量守恒定律有0=(m +M )v ,v =0,由能量守恒定律得12mv 20=mgh +12(m+M )v 2,解得h =0.45 m ,C 错误.小球m 从初始位置到第一次到达最大高度过程中,设滑块M 在水平轨道上向右移动距离为y ,由几何关系得,m 相对于M 移动的水平距离s =L +L 2-h 2=1.35 m ,根据水平方向动量守恒得0=m s -y t -M yt,解得y =0.54 m ,D 正确.[答案] AD7.(多选)(2019·东北师大附中一模)如下图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬间获得水平向右大小为3 m/s 的速度,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得( )A .在t 1、t 3时刻两物块达到共同速度1 m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2=1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶8[解析] 在t 1、t 3时刻两物块达到共同速度1 m/s ,t 1时弹簧处于压缩状态,t 3时弹簧处于拉伸状态,A 、B 错误.由动量守恒定律有m 1v 0=(m 1+m 2)v 共,可得m 1∶m 2=1∶2.并由图可得在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶8,C 、D 正确.[答案] CD8.(多选)(2019·湖北百校大联考)在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞如图甲所示,碰撞前、后两壶运动的v -t 图线如图乙中实线所示,其中红壶碰撞前、后的两段图线相互平行,两冰壶质量均为19 kg ,则( )A .碰后蓝壶速度为0.8 m/sB .碰后蓝壶移动的距离为2.4 mC .碰撞过程两壶损失的动能为7.22 JD .碰后红、蓝两壶所受摩擦力之比为5∶4[解析] 由题图乙可知碰撞前、后红壶的速度分别为v 0=1.0 m/s 和v 1=0.2 m/s ,由系统动量守恒可得mv 0=mv 1+mv 2,解得碰后蓝壶速度为v 2=0.8 m/s ,碰后蓝壶移动的距离为x =12×0.8×5 m=2 m ,碰撞过程中两壶损失的动能为ΔE k =12mv 20-12mv 21-12mv 22=3.04 J ,红壶所受摩擦力f 1=ma 1=19×1.2-1.01 N =3.8 N ,蓝壶所受摩擦力f 2=ma 2=19×0.8-05 N=3.04 N ,碰后红、蓝两壶所受摩擦力之比为f 1∶f 2=5∶4,故A 、D 正确,B 、C 错误.[答案] AD9.(2019·福建省泉州市模拟三)如右图所示,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0[解析] 小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向上,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m xt=0,解得小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向总动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg ⎝ ⎛⎭⎪⎫h 0-34h 0-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于:34h 0-14h 0=12h 0,且小于34h 0,故D 正确.[答案] D 二、非选择题10.(2019·江西南昌十校二模)如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长度略大于弹簧的自然长度.放手后绳在短暂时间内被拉断,之后B 继续向右运动,一段时间后与向左匀速运动、速度为v 0的物块C 发生碰撞,碰后B 、C 立刻形成粘合体并停止运动,C 的质量为2m .求:(1)B 、C 相撞前一瞬间B 的速度大小; (2)绳被拉断过程中,绳对A 所做的功W .[解析] (1)B 与C 碰撞过程中动量守恒,由于碰后均停止,有mv B =2mv 0解得:v B =2v 0(2)弹簧恢复原长时,弹性势能全部转化为物块B 的动能,则E p =12mv 2BO解得:v BO =3v 0绳子拉断过程,A 、B 系统动量守恒mv BO =mv B +mv A解得:v A =v 0 绳对A 所做的功为W =12mv 2A =12mv 2[答案] (1)2v 0 (2)12mv 211.(2019·全国卷Ⅲ)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?[解析] (1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有0=m A v A -m B v B ①E k =12m A v 2A +12m B v 2B ②联立①②式并代入题给数据得v A =4.0 m/s ,v B =1.0 m/s ③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④ s B =v B t -12at 2⑤ v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得s A =1.75 m ,s B =0.25 m ⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为s =0.25 m +0.25 m =0.50 m ⑨(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v 2A =-μm A g (2l +s B )⑩ 联立③⑧⑩式并代入题给数据得v A ′=7 m/s ⑪故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有m A (-v A ′)=m A v A ″+m B v B ″⑫12m A v A ′2=12m A v A ″2+12m B v B ″2⑬ 联立⑪⑫⑬式并代入题给数据得v A ″=375 m/s ,v B ″=-275m/s ⑭ 这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式2as A ′=v A ″2,2as B ′=v B ″2⑮ 由④⑭⑮式及题给数据得s A ′=0.63 m ,s B ′=0.28 m ⑯s A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离 s ′=s A ′+s B ′=0.91 m ⑰[答案] (1)4.0 m/s 1.0 m/s (2)B先停止0.50 m (3)0.91 m。
通用版2020版高考物理大二复习专题三第8讲动量定理和动量守恒定律
考点1 考点2 考点3
2.(多选)(2019山东汶上模拟)如图所示,质量为m的小球从距离地 面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受 到阻力作用,到达距地面深度为h的B点时速度减为零。不计空气阻 力,重力加速度为g。关于小球下落的整个过程,下列说法正确的有(
) A.小球的机械能减小了mg(H+h) B.小球克服阻力做的功为mgh
1234
3.(2019全国卷Ⅰ)最近,我国为“长征九号”研制的大推力新型火箭
发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进 展。若某次实验中该发动机向后喷射 的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间 内喷射的气体质量约为( ) A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg
例2(2019吉林白城通榆期中)如图所示,质量m1=0.3 kg 的足够长
的小车静止在光滑的水平面上,现有质量m2=0.2 kg可视为质点的 物块,以水平向右的速度v0=10 m/s从左端滑上小车,最后在车面上 某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,g取 10 m/s2。求:
C.6.0×102 kg·m/s D.6.3×102 kg·m/s
解析:根据动量守恒定律得:0=Mv1-mv2,故火箭的动量与燃气的动量 等大反向。故p=Mv1=mv2=0.05 kg×600 m/s=30 kg·m/s。 答案:A
1234
2.(2018全国卷Ⅱ)高空坠物极易对行人造成伤害,若一个50 g的鸡
D.小球动量的改变量等于所受阻力的冲量
考点1 考点2 考点3
解析:小球在整个过程中,动能变化量为零,重力势能减小了 mg(H+h),则小球的机械能减小了mg(H+h),选项A正确;对小球下落 的全过程运用动能定理得:mg(H+h)-Wf=0,则小球克服阻力做功
动量定理及碰撞类动量守恒定律的应用-2024年高考物理压轴题专项训练(解析版)
动量定理及碰撞类动量守恒定律的应用1.动量定理及动量守恒定律在高考物理中拥有极其重要的地位,它们不仅是力学知识体系的核心组成部分,也是分析和解决物理问题的重要工具。
2.在高考命题中,动量定理及动量守恒定律的考查形式丰富多样。
这些考点既可能以选择题、计算题的形式直接检验学生对基本原理的掌握情况,也可能通过复杂的计算题、应用题,要求学生运用动量定理和动量守恒定律进行深入分析和计算。
此外,这些考点还经常与其他物理知识点相结合,形成综合性强的题目,以检验学生的综合应用能力。
3.备考时,考生应首先深入理解动量定理和动量守恒定律的基本原理和概念,明确它们的适用范围和条件。
其次,考生需要熟练掌握相关的公式和计算方法,并能够在实际问题中灵活运用。
此外,考生还应注重解题方法的总结和归纳,特别是对于典型题目的解题思路和方法,要进行反复练习和巩固。
考向一:弹簧类问题中应用动量定理1.动量定理的表达式F ·Δt =Δp 是矢量式,在一维的情况下,各个矢量必须以同一个规定的方向为正方向。
运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力。
2.动量定理的应用技巧(1)应用I =Δp 求变力的冲量如果物体受到大小或方向改变的力的作用,则不能直接用I =Ft 求冲量,可以求出该力作用下物体动量的变化Δp ,等效代换得出变力的冲量I 。
(2)应用Δp =F Δt 求动量的变化考向二:流体类和微粒类问题中应用动量定理1.流体类“柱状模型”问题流体及其特点通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ分析步骤1建立“柱状模型”,沿流速v 的方向选取一段柱形流体,其横截面积为S2微元研究,作用时间Δt 内的一段柱形流体的长度为Δl ,对应的质量为Δm =ρSv Δt 3建立方程,应用动量定理研究这段柱状流体2.微粒类“柱状模型”问题微粒及通常电子流、光子流、尘埃等被广义地视为“微粒”,质量具有独立性,通常给出单位体其特点积内粒子数n分析步骤1建立“柱状模型”,沿运动的方向选取一段微元,柱体的横截面积为S2微元研究,作用时间Δt内一段柱形流体的长度为Δl,对应的体积为ΔV=Sv0Δt,则微元内的粒子数N=nv0SΔt3先应用动量定理研究单个粒子,建立方程,再乘以N计算考向三:碰撞类和类碰撞类问题中应用动量守恒定律1.碰撞三原则:(1)动量守恒:即p1+p2=p1′+p2′.(2)动能不增加:即E k1+E k2≥E k1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2.(3)速度要合理①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
2024高考物理二轮复习第8讲动量定理和动量守恒定律专题训练
第8讲动量定理和动量守恒定律一、选择题(每小题6分,共42分)1.(2024海南海口质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,全部的碰撞都是弹性碰撞,且都发生在竖直方向,碰撞时间均可忽视不计。
已知m2=3m1,则A反弹后能达到的高度为( )A.hB.2hC.3hD.4h2.某同学质量为60 kg,在训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓慢驶来的小船上,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上,则( )A.人和小船最终静止在水面上B.该过程人的动量改变量的大小为105 kg·m/sC.船最终速度的大小为0.95 m/sD.船的动量改变量的大小为70 kg·m/s3.在空中相同高度处以相同的速率分别抛出质量相同的三个小球,一个竖直上抛,一个竖直下抛,一个平抛,若不计空气阻力,三个小球从抛出到落地的过程中( )A.三个小球动量的改变量相同B.下抛球和平抛球动量的改变量相同C.上抛球动量改变量最大D.三球落地时的动量相同4.(2024河北石家庄质检)质量分别为m1与m2的甲、乙两球在水平光滑轨道上同向运动,已知它们的动量分别是p1=5 kg·m/s,p2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为8 kg·m/s,则甲、乙两球质量m1与m2的关系可能是( )A.m1=m2B.2m1=m2C.3m1=2m2D.4m1=m25.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙,右侧靠一质量为M 2的物块,今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止起先落下,与半圆槽相切于A 点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽组成的系统在水平方向动量守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒C.小球离开C 点以后,将做竖直上抛运动D.半圆槽将不会再次与墙接触6.(多选)如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,起先时AB 和C 都静止,当突然烧断细绳时,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽视一切摩擦,以下说法正确的是( )A.弹簧伸长过程中C 向右运动,同时AB 也向右运动B.C 与B 碰前,C 与AB 的速率之比为M∶mC.C 与油泥粘在一起后,AB 马上停止运动D.C 与油泥粘在一起后,AB 接着向右运动7.(2024山西太原一模)(多选)如图所示,长为L 的轻杆两端分别固定a 、b 金属球,两球质量均为m,a 放在光滑的水平面上,b 套在竖直固定光滑杆上且离地面高度为√32L,现将b 从图示位置由静止释放,则( )A.在b 球落地前的整个过程中,a 、b 组成的系统水平方向上动量守恒B.从起先到b 球距地面高度为L2的过程中,轻杆对a 球做功为√3-18mgLC.从起先到b 球距地面高度为L2的过程中,轻杆对b 球做功为-√38mgLD.在b 球落地的瞬间,重力对b 球做功的功率为mg √√3gL二、非选择题(共38分)8.(10分)如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能达到C 板的最右端,已知A 、B 、C 质量均相等,木板C 长为L,求:(1)A 物体的最终速度; (2)A 在木板C 上滑行的时间。
2020版高考物理二轮复习第一部分专题复习训练2_5动量定理、动量守恒定律课件
[变式训练] 1.(2019 年宁夏第四次月考)(多选)如图 2-5-2 所示,一质量 m=0.10 kg 的小钢球 以大小为 v0=10 m/s 的速度水平抛出,下落 h=5.0 m 时垂直撞击一钢板,撞后速度恰好 反向,且速度大小不变.已知小钢球与钢板的作用时间极短,g 取 10 m/s2,则( )
且有:m1+m2=m 由平抛运动的规律和题目落地的距离条件有:(v1+v2)t=900 m 设物块落地时竖直速度为 vy,落地时两者的速度相互垂直,如图 2—5—3 所示,
有:tanθ=vvy1=vvy2
代入数据解得:mm12= =14 kkgg对应vv21==31020mm/s/s; 或mm12= =41 kkgg对应vv21==13200mm/s/s
(3)非弹性碰撞 动量守恒:m1v1+m2v2=m1v1′+m2v2′. 机械能有损失,机械能的损失量为:ΔE=(12m1v12+12m2v22)-(12m1v1′2+12动量定理 1.恒力的冲量可应用 I=Ft 直接求解,变力的冲量应用动量定理求解. 2.物体动量变化是由合外力的冲量决定的,物体动能变化是由合外力做的功决定的. 3.动量定理是过程定理,解题时必须明确过程及初末状态的动量. 4.动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.
方向的夹角为 α,则 tanα=vvyx=1100=1,解得α=45°,即钢板与水平面的夹角 θ=45°,
选项 A 错误;小钢球从水平抛出到刚要撞击钢板时所飞行的时间 t= 2gh=1 s,重力冲 量 I=mgt=1 N·s,选项 B 正确;取垂直钢板向上为正方向,小钢球刚要撞击钢板时小钢 球速度的大小为 v1= 2v0=10 2 m/s,动量 p1=-mv1=- 2 kg·m/s;撞后小钢球的速 度 v2=10 2 m/s,动量 p2=mv2= 2 kg·m/s,小钢球的动量变化 Δp=p2-p1=2 2 kg·m/s, 由动量定理可知,钢板对小钢球的冲量大小 I=Δp=2 2 N·s,选项 C 错误,D 正确.
高考物理动量守恒定律专题训练答案及解析
高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
2020版高考物理大二轮复习试题:动量定理和动量守恒定律(含答案)
回扣练8:动量定理和动量守恒定律1.将一个光滑的半圆形槽置于光滑的水平面上如图,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A 点正上方由静止开始落下,从A 点落入槽内,则下列说法中正确的是( )A .小球在半圆槽内运动的过程中,机械能守恒B .小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C .小球在半圆槽内由B 点向C 点运动的过程中,小球与半圆槽组成的系统动量守恒D .小球从C 点离开半圆槽后,一定还会从C 点落回半圆槽解析:选D.只有重力做功时物体机械能守恒,小球在半圆槽内运动由B 到C 过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,故A 错误.小球在槽内运动的前半过程中,左侧物体对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B 错误.小球自半圆槽的最低点B 向C 点运动的过程中,系统在水平方向所受合外力为零,故小球与半圆槽在水平方向动量守恒,故C 错误.小球离开C 点以后,既有竖直向上的分速度,又有与槽相同的水平分速度,小球做斜上抛运动,然后可以从C 点落回半圆槽,故D 正确.故选D.2.如图所示,质量为m 的A 球在水平面上静止放置,质量为2m的B 球向左运动速度大小为v 0,B 球与A 球碰撞且无机械能损失,碰后A 球速度大小为v 1,B 球的速度大小为v 2,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0,下列选项正确的是( ) A .e =1B .e =12C .e =13D .e =14解析:选A.AB 在碰撞的过程中,根据动量守恒可得,2mv 0=mv 1+2mv 2,在碰撞的过程中机械能守恒,可得12·2mv 20=12mv 21+12·2mv 22,解得v 1=43v 0,v 2=13v 0,碰后相对速度与碰前相对速度的比值定义为恢复系数e =v 1-v 2v 0-0=1,故A 正确,BCD 错误;故选A. 3.如图所示,AB 两小球静止在光滑水平面上,用轻弹簧相连接,A 球的质量小于B 球的质量.若用锤子敲击A 球使A 得到v 的速度,弹簧压缩到最短时的长度为L 1;若用锤子敲击B 球使B 得到v 的速度,弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定解析:选C.若用锤子敲击A 球,两球组成的系统动量守恒,当弹簧最短时,两者共速,则m A v =(m A +m B )v ′,解得v ′=m A v m A +m B ,弹性势能最大,最大为ΔE p =12m A v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B );若用锤子敲击B 球,同理可得m B v =(m A +m B )v ″,解得v ″=m B v m A +m B ,弹性势能最大为ΔE p =12m B v 2-12(m A +m B )v ′2=m A m B v 22(m A +m B ),即两种情况下弹簧压缩最短时,弹性势能相等,故L 1=L 2,C 正确.4.如图所示,足够长的传送带以恒定的速率v 1逆时针运动,一质量为m 的物块以大小为v 2的初速度从左轮中心正上方的P 点冲上传送带,从此时起到物块再次回到P 点的过程中,下列说法正确的是( )A .合力对物块的冲量大小一定为2mv 2B .合力对物块的冲量大小一定为2mv 1C .合力对物块的冲量大小可能为零D .合力对物块做的功可能为零解析:选D.若v 2>v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,达到速度v 1后做匀速直线运动,可知物块再次回到P 点的速度大小为v 1,规定向左为正方向,根据动量定理得,合外力的冲量I 合=mv 1-m (-v 2)=mv 1+mv 2.根据动能定理知,合外力做功W 合=12mv 21-12mv 22;若v 2<v 1,物块在传送带上先向右做匀减速直线运动,速度减为零后再返回做匀加速直线运动,物块再次回到P 点的速度大小为v 2,规定向左为正方向,根据动量定理得,合外力的冲量为:I 合=mv 2-m (-v 2)=2mv 2;根据动能定理知,合外力做功为:W 合=12mv 22-12mv 22=0.故D 正确,ABC 错误.故选D. 5.如图甲所示,工人利用倾斜钢板向车内搬运货物,用平行于钢板向上的力将货物从静止开始由钢板底端推送到顶端,到达顶端时速度刚好为零.若货物质量为100 kg ,钢板与地面的夹角为30°,钢板与货物间的滑动摩擦力始终为50 N ,整个过程中货物的速度—时间图象如图乙所示,重力加速度g 取10 m/s 2.下列说法正确的是( )A .0~2 s 内人对货物做的功为600 JB .整个过程中人对货物的推力的冲量为1 000 N·sC .0~2 s 和2~3 s 内货物所受推力之比为1∶2D .整个过程中货物始终处于超重状态解析:选A.0~2 s 内货物的加速度a 1=Δv Δt=0.5 m/s 2,根据牛顿第二定律:F 1-f -mg sin 30°=ma 1,解得F 1=600 N ;0~2 s 内货物的位移:x 1=12×2×1 m=1 m ;则人对货物做的功为W F =Fx 1=600 J ,选项A 正确;整个过程中,根据动量定理:I F -(f +mg sin 30°)t =0,解得整个过程中人对货物的推力的冲量为I F =(f +mg sin 30°)t =(50+100×10×0.5)×3=1 650 N·s,选项B 错误;2~3 s 内货物的加速度大小a 2=1 m/s 2,根据牛顿第二定律:f +mg sin 30°-F 2=ma 2所受推力F 2=450 N ;则0~2 s 和2~3 s 内货物所受推力之比为F 1∶F 2=600∶450=4∶3,选项C 错误;整个过程中货物的加速度先沿斜面向上,后向下,先超重后失重,选项D 错误;故选A.6.(多选)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.规定向右为正方向,碰撞前A 、B 两球的动量均为6 kg·m/s,说明A 、B 两球的速度方向向右,两球质量关系为m B =2m A ,所以碰撞前v A >v B ,所以左方是A 球.碰撞后A 球的动量增量为-4 kg·m/s,所以碰撞后A 球的动量是2 kg·m/s;碰撞过程系统总动量守恒:m A v A +m B v B =-m A v A ′+m B v B ′所以碰撞后B 球的动量是10 kg·m/s,根据m B =2m A ,所以碰撞后A 、B 两球速度大小之比为2∶5,故C 正确,D 错误.碰撞前系统动能:p 2A 2m A +p 2B 2m B=622m A +622×2m A =27m A ,碰撞后系统动能为:p A ′22m A +p B ′22m B =222m A +1022×2m A =27m A,则碰撞前后系统机械能不变,碰撞是弹性碰撞,故A 正确,B 错误;故选AC.7.(多选)质量为M =3 kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量为m =2 kg 的小球(视为质点)通过长L =0.75 m 的轻杆与滑块上的光滑轴O 连接,开始时滑块静止,轻杆处于水平状态.现给小球一个v 0=3 m/s 的竖直向下的初速度,取g =10 m/s 2.则( )A .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.3 mB .小球m 从初始位置到第一次到达最低点的过程中,滑块M 在水平轨道上向右移动了0.2 mC .小球m 相对于初始位置可以上升的最大高度为0.27 mD .小球m 从初始位置到第一次到达最大高度的过程中,滑块M 在水平轨道上向右移动了0.54 m解析:选AD.可把小球和滑块水平方向的运动看作人船模型,设滑块M 在水平轨道上向右运动了x ,由滑块和小球系统在水平方向上动量守恒,有m M =x L -x,解得:x =0.3 m ,选项A 正确、B 错误.根据动量守恒定律,小球m 相对于初始位置上升到最大高度时小球和滑块速度都为零,由能量守恒定律可知,小球m 相对于初始位置可以上升的最大高度为0.45 m ,选项C 错误.此时杆与水平面的夹角为cos α=0.8,设小球从最低位置上升到最高位置过程中滑块M 在水平轨道上又向右运动了x ′,由滑块和小球系统在水平方向时动量守恒,有m M =x ′L cos α-x ′,解得:x ′=0.24 m .小球m 从初始位置到第一次到达最大高度的过程中,滑块在水平轨道上向右移动了x +x ′=0.3 m +0.24 m =0.54 m ,选项D 正确.8.(多选)如图所示,一辆质量为M =3 kg 的平板小车A 停靠在竖直光滑墙壁处,地面水平且光滑,一质量为m =1 kg 的小铁块B (可视为质点)放在平板小车A 最右端,平板小车A 上表面水平且与小铁块B 之间的动摩擦因数μ=0.5,平板小车A 的长度L =0.9 m .现给小铁块B 一个v 0=5 m/s 的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,重力加速度g =10 m/s 2.下列说法正确的是( )A .小铁块B 向左运动到达竖直墙壁时的速度为2 m/sB .小铁块B 与墙壁碰撞过程中所受墙壁的冲量为8 N·sC .小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为4 JD .小铁块B 在平板小车A 上运动的整个过程中系统损失的机械能为9 J解析:选BD.设小铁块B 向左运动到达竖直墙壁时的速度为v 1,根据动能定理得:-μmgL =12mv 21-12mv 20,解得:v 1=4 m/s ,选项A 错误.与竖直墙壁发生弹性碰撞,反弹速度为-4 m/s ,由动量定理可知,小铁块B 与墙壁碰撞过程中所受墙壁的冲量为I =2mv 1=8 N·s,选项B 正确.小铁块B 向左运动到达竖直墙壁的过程中损失的机械能为μmgL =4.5 J ,选项C 错误.假设发生弹性碰撞后小铁块B 最终和平板小车A 达到的共同速度为v 2,根据动量守恒定律得:mv 1=(M +m )v 2,解得:v 2=1 m/s.设小铁块B 在平板小车A 上相对滑动的位移为x 时与平板小车A 达到共同速度v 2,则根据功能关系得:-μmgx =12(M +m )v 22-12mv 21,解得:x =1.2 m ,由于x >L ,说明小铁块B 在没有与平板小车A 达到共同速度时就滑出平板小车A ,所以小铁块B 在平板小车上运动的整个过程中系统损失的机械能为ΔE =2μmgL =9 J ,选项D 正确.9.(多选)在地面上以大小为v 1的初速度竖直向上抛出一质量为m 的皮球,皮球落地时速度大小为v 2.若皮球运动过程中所受空气阻力的大小与其速率成正比,重力加速度为g .下列判断正确的是( )A .皮球上升的最大高度为v 212gB .皮球从抛出到落地过程中克服阻力做的功为12mv 21-12mv 22 C .皮球上升过程经历的时间为v 1gD .皮球从抛出到落地经历的时间为v 1+v 2g解析:选BD.减速上升的过程中受重力、阻力作用,故加速度大于g ,则上升的高度小于v 212g ,上升的时间小于v 1g,故AC 错误;皮球从抛出到落地过程中重力做功为零,根据动能定理得克服阻力做功为W f =12mv 21-12mv 22,故B 正确;用动量定理,结合数学知识,假设向下为正方向,设上升阶段的平均速度为v ,则:mgt 1+kvt 1=mv 1,由于平均速度乘以时间等于上升的高度,故有:h =vt 1,即:mgt 1+kh =mv 1 ①,同理,设下降阶段的平均速度为v ′,则下降过程:mgt 2-kv ′t 2=mv 2,即:mgt 2-kh =mv 2 ②,由①②得:mg (t 1+t 2)=m (v 1+v 2),解得:t =t 1+t 2=v 1+v 2g,故D 正确;故选BD. 10.(多选)如图所示,足够长的光滑水平导轨间距为2 m ,电阻不计,垂直导轨平面有磁感应强度为1 T 的匀强磁场,导轨上相隔一定距离放置两根长度略大于间距的金属棒,a 棒质量为1 kg ,电阻为5 Ω,b 棒质量为2 kg ,电阻为10 Ω.现给a 棒一个水平向右的初速度8 m/s ,当a 棒的速度减小为4 m/s 时,b 棒刚好碰到了障碍物,经过很短时间0.5 s 速度减为零(不反弹,且a 棒始终没有与b 棒发生碰撞),下列说法正确的是( )A .从上向下看回路产生逆时针方向的电流B .b 棒在碰撞前瞬间的速度大小为2 m/sC .碰撞过程中障碍物对b 棒的平均冲击力大小为6 ND .b 棒碰到障碍物后,a 棒继续滑行的距离为15 m解析:选ABD.根据右手定则可知,从上向下看回路产生逆时针方向的电流,选项A 正确;系统动量守恒,由动量守恒定律可知:m a v 0=m a v a +m b v b 解得v b =2 m/s ,选项B 正确;b 碰到障碍物时,回路的感应电动势:E =BL (v a -v b )=4 V ;回路的电流:I =E R a +R b =415 A ;b 棒所受的安培力:F b =BIL =815N ;b 与障碍物碰撞时,由动量定理:(F b -F )t =0-m b v b 解得:F =8.5 N ,选项C 错误;b 碰到障碍物后,a 继续做减速运动,直到停止,此时由动量定理:B IL Δt =m a v a ,其中I Δt =q =ΔΦR a +R b =BLx R a +R b联立解得x =15 m ,选项D 正确;故选ABD. 11.(多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m/s(设为正),B 的速度v 2=-3 m/s ,则它们发生正碰后,其速度可能分别是( )A .均为1 m/sB .+4 m/s 和-5 m/sC .+2 m/s 和-1 m/sD .-1 m/s 和5 m/s解析:选AD.由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 21+12m 2v 22=12×4×9 J+12×2×9 J=27 J E k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A、B沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A′>0,v B′<0),这显然是不符合实际的,因此C错误.验证选项A、D均满足E k≥E k′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).。
高考物理专题复习05:动量、动量守恒定律
动量守恒定律一:复习要点1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。
2.一般数学表达式:''11221122m v m v m v m v +=+3.动量守恒定律的适用条件 :①系统不受外力或受到的外力之和为零(∑F 合=0);②系统所受的外力远小于内力(F外F 内),则系统动量近似守恒;③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒)4.动量恒定律的五个特性①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷二:典题分析1.放在光滑水平面上的A 、B 两小车中间夹了一压缩轻质弹簧,用两手控制小车处于静止状态,下列说法正确的是 ( )A.两手同时放开,两车的总动量等于零B .先放开右手,后放开左手,两车的总动量向右C .先放开右手,后放开左手,两车的总动量向左D .先放开右手,后放开左手,两车的总动量为零 解析:该题考查动量守恒的条件,答案为 AB2.A、B两滑块在一水平长直气垫导轨上相碰.用频闪照相机在t0=0,t1=Δt,t2=2Δt,t3=3Δt各时刻闪光四次,摄得如图所示照片,其中B像有重叠,mB=(3/2)mA,由此可判断 ( )A.碰前B静止,碰撞发生在60cm处,t=2.5Δt时刻 B.碰后B静止,碰撞发生在60cm处,t=0.5Δt时刻 C.碰前B静止,碰撞发生在60cm处,t=0.5Δt时刻 D.碰后B静止,碰撞发生在60cm处,t=2.5Δt时刻解析:该题重点考查根据照片建立碰撞的物理图景,答案为 B3.质量为50㎏的人站在质量为150㎏(不包括人的质量)的船头上,船和人以0.20m/s 的速度向左在水面上匀速运动,若人用t =10s 的时间匀加速从船头走到船尾,船长L =5m ,则船在这段时间内的位移是多少?(船所受水的阻力不计)分析:(该题利用动量守恒重点考查了人、船模型中速度关系、位移关系) 解析:设人走到船尾时,人的速度为x v ,船的速度为y v对系统分析:动量守恒()y x Mv mv v M m +=+0 对船分析:(匀加速运动) S =t v v y⋅+2对人分析:(匀加速运动) t v v L S x⋅+=-20 得:S = 3.25 m.4.如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右并非放有序号是1,2,3,…,n 的物体,所有物块的质量均为m ,与木板间的动摩擦因数都相同,开始时,木板静止不动,第1,2,3,…n 号物块的初速度分别是v 0,2 v 0,3 v 0,…nv 0,方向都向右,木板的质量与所有物块的总质量相等 ,最终所有物块与木板以共同速度匀速运动。
2020年高考物理一轮复习专题强化卷:动量和动量定理
2020年高考物理一轮复习专题强化卷----动量与动量定理一、单选题(共8题,40分)1、1966年,在地球的上空完成了用动力学方法测质量的实验.实验时,用“双子星号”宇宙飞船去接触正在轨道上运行的火箭组(后者的发动机已熄火),接触以后,开动“双子星号”飞船的推进器,使飞船和火箭组共同加速.推进器的平均推力F=895 N,推进器开动时间Δt=7 s.测出飞船和火箭组的速度变化Δv =0.91 m/s.已知“双子星号”飞船的质量m1=3 400 kg.由以上实验数据可测出火箭组的质量m2为() A.3 400 kg B.3 485 kg C.6 265 kg D.6 885 kg【答案】B.2、在光滑水平面上,原来静止的物体在水平力F作用下,经过时间t后,动量为p,动能为E k;若该物体在此光滑水平面上由静止出发,仍在水平力F的作用下,则经过时间2t后物体的()A.动量为4p B.动量为2p C.动能为4E k D.动能为2E k【答案】C3、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,下列说法正确的是() A.掉在水泥地上的玻璃杯动量小,而掉在草地上的玻璃杯动量大B.掉在水泥地上的玻璃杯动量改变小,掉在草地上的玻璃杯动量改变大C.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小D.掉在水泥地上的玻璃杯动量改变量与掉在草地上的玻璃杯动量改变量相等【答案】D.4、质量为0.2 kg的小球竖直向下以6 m/s的速度落至水平地面上,再以4 m/s的速度反向弹回.取竖直向上为正方向,在小球与地面接触的时间内,关于球动量变化量Δp和合外力对小球做的功W,下列说法正确的是()A.Δp=2 kg·m/s W=-2 J B.Δp=-2 kg·m/s W=2 JC.Δp=0.4 kg·m/s W=-2 J D.Δp=-0.4 kg·m/s W=2 J【答案】A5、如图所示,自动称米机已在许多大粮店广泛使用.买者认为:因为米流落到容器中时对容器有向下的冲力而不划算;卖者则认为:当预定米的质量达到要求时,自动装置即刻切断米流,此刻有一些米仍在空中,这些米是多给买者的,因而双方争执起来.下列说法正确的是()A.买者说的对B.卖者说的对C.公平交易D.具有随机性,无法判断【答案】C.6、将一个质量为m的小木块放在光滑的固定斜面上,使木块从斜面的顶端由静止开始向下滑动,滑到底端总共用时t,如图所示,设在下滑的前一半时间内木块的动量变化为Δp1,在后一半时间内其动量变化为Δp2,则Δp1∶Δp2为()A.1∶2B.1∶3 C.1∶1 D.2∶1【答案】C7、一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s.则这一过程中动量的变化量为()A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右【答案】D8、高空坠物极易对行人造成伤害.若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms,则该鸡蛋对地面产生的冲击力约为()A.10 N B.102 N C.103 N D.104 N【答案】C二、不定项选择题(共5题30分)9、有关实际中的现象,下列说法正确的是()A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好【答案】ABC10、一艘帆船在湖面上顺风航行,在风力的推动下做速度为v0=4 m/s的匀速直线运动.已知帆船在该运动状态下突然失去风的推力的作用,此后帆船在湖面上做匀减速直线运动,经过t=8 s静止;该帆船的帆面正对风的有效面积为S=10 m2,帆船的总质量约为M=936 kg,若帆船在行驶过程中受到的阻力恒定不变,空气的密度为ρ=1.3 kg/m3,下列说法正确的是()A.风停止后帆船的加速度大小是1 m/s B.帆船在湖面上顺风航行所受水的阻力大小为468 N C.帆船匀速运动受到风的推力的大小为936 D.风速的大小为10 m/s【答案】BD.11、如图所示,足够长的固定光滑斜面倾角为θ,质量为m的物体以速度v从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t.对于这一过程,下列判断正确的是()A.斜面对物体的弹力的冲量为零B.物体受到的重力的冲量大小为mgtC.物体受到的合力的冲量大小为零D.物体动量的变化量大小为mg sin θ·t【答案】BD.12、质量为m 的物体, 以v 0的初速度沿斜面上滑,到达最高点后返回原处的速度大小为v t ,且v t =0.5v 0,则( )A .上滑过程中重力的冲量比下滑时小B .上滑时和下滑时支持力的冲量都等于零C .合力的冲量在整个过程中大小为32mv 0D .整个过程中物体的动量变化量为12mv 0 【答案】AC13、如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C 、D 、E 处,三个过程中重力的冲量依次为I 1、I 2、I 3,动量变化量的大小依次为Δp 1、Δp 2、Δp 3,则有( )A .三个过程中,合力的冲量相等,动量的变化量相等B .三个过程中,合力做的功相等,动能的变化量相等C .I 1<I 2<I 3,Δp 1=Δp 2=Δp 3D .I 1<I 2<I 3,Δp 1<Δp 2<Δp 3【答案】ABC三、计算题(共2题 30分)14、一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.一物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力F 的大小;(3)求物块在反向运动过程中克服摩擦力所做的功W .【答案】(1)0.32 (2)130 N (3)9 J【解析】(1)由动能定理有-μmgx =12mv 2-12mv 20可得μ=0.32. (2)由动量定理有F Δt =mv ′-mv 可得F =130 N.(3)由能量守恒定律有W =12mv ′2=9 J. 15、一高空作业的工人重为600 N ,系一条长为L =5 m 的安全带,若工人不慎跌落时安全带的缓冲时间t =1 s(工人最终悬挂在空中),则缓冲过程中安全带受的平均冲力是多少?(g 取10 m/s 2,忽略空气阻力的 影响)【答案】 1 200 N【解析】 法一 分段列式法:依题意作图,如图所示.设工人刚要拉紧安全带时的速度为v 1,v 21=2gL ,得v 1=2gL经缓冲时间t =1 s 后速度变为0,取向下为正方向,对工人由动量定理知,工人受两个力作用,即拉力F 和重力mg ,所以(mg -F )t =0-mv 1,F =mgt +mv 1t将数值代入得F =1 200 N.由牛顿第三定律,工人给安全带的平均冲力F ′为1 200 N ,方向竖直向下.法二 全程列式法:在整个下落过程中对工人应用动量定理,重力的冲量大小为mg ( 2L g +t ),拉力F 的冲量大小为Ft .初、末动量都是零,取向下为正方向,由动量定理知mg ( 2L g+t )-Ft =0 解得F =mg 2L g+t t =1 200 N由牛顿第三定律知工人给安全带的平均冲力F ′=F =1 200 N ,方向竖直向下.。
2020高考冲刺物理重难点:动量守恒定律(附答案解析)
重难点07 动量守恒定律【知识梳理】一、动量守恒定律的条件及应用1.动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
2.动量守恒定律的适用条件(1)前提条件:存在相互作用的物体系;(2)理想条件:系统不受外力;(3)实际条件:系统所受合外力为0;(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力;(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
3.动量守恒定律的表达式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和;(2)Δp1=–Δp2,相互作用的两个物体动量的增量等大反向;(3)Δp=0,系统总动量的增量为零。
4.动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性。
5.应用动量守恒定律解题的步骤:(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明。
二、碰撞与动量守恒定律1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律3.关于弹性碰撞的分析两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2221101v m v m v m +=①222211201212121v m v m v m +=② 由①②可得:021211v m m m m v +-=③021122v m m m v +=④利用③式和④式,可讨论以下五种特殊情况:a .当21m m >时,01>v ,02>v ,两钢球沿原方向原方向运动;b .当21m m <时,01<v ,02>v ,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当21m m =时,01=v ,02v v =,两钢球交换速度。
2020届高考物理二轮复习疯狂专练10动量定理动量守恒定律(含解析)
A .地面对他的冲量为 mv +mg Δ t ,地面对他做的功为 mv 2C .地面对他的冲量为 mv ,地面对他做的功为 mv 2动量定理 动量守恒定律(1)用动量定理求冲量、动量变化、平均作用力等问题;(2)动量守恒定律处理系统内物体的相互作用;(3)碰撞、打击、反冲等“瞬间作用”问题。
1.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。
若某次实验中该发动机向后喷射的气体速度约为 3 km/s ,产生的推力约为 4.8×106 N ,则它在 1 s 时间内喷射的气体质量约为()A .1.6×102 kgB .1.6×103 kgC .1.6×105 kgD .1.6×106 kg2.一位质量为 m 的运动员从下蹲状态向上起跳,经 Δ t 时间,身体伸直并刚好离开地面,速度为 v 。
在此过程中()12B .地面对他的冲量为 mv +mg Δ t ,地面对他做的功为零12D .地面对他的冲量为 mv -mg Δ t ,地面对他做的功为零3.一质量为 2 kg 的物体受水平拉力 F 作用,在粗糙水平面上做加速直线运动时的 a -t 图像如图所示,t =0时其速度大小为 2 m/s 。
滑动摩擦力大小恒为 2 N ,则()A .在 t =6 s 时刻,物体的速度为 18 m/sB .在 0~6 s 时间内,合力对物体做的功为 400 JC .在 0~6 s 时间内,拉力对物体的冲量为 36 N·sD .在 t =6 s 时刻,拉力 F 的功率为 200 W4.(多选)在 2016 年里约奥运跳水比赛中,中国跳水梦之队由吴敏霞领衔包揽全部 8 枚金牌。
假设质量为 m3g 3A .ρ vSB .2D .ρ v S 2的跳水运动员从跳台上以初速度 v 0 向上跳起,跳水运动员在跳台上从起跳到入水前重心下降 H ,入水后受水阻力而减速为零,不计跳水运动员水平方向的运动,运动员入水后到速度为零时重心下降h ,不计空气阻力,则()A .运动员起跳后在空中运动过程中受到合外力冲量大小为 m v 02+2gH +mv 0B .水对运动员阻力的冲量大小为 m v 02+2gH 1C .运动员克服水的阻力做功为 mgH +2mv 021 D .运动员从跳起到入水后速度减为零的过程中机械能减少量为 mg (H +h )+2mv 025.如图所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,底端与竖直墙壁接触。
动量定理及动量守恒定律专题复习(附参考答案).
动量定理及动量守恒定律专题复习(附参考答案).动量定理及动量守恒定律专题复习⼀、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的⼀个状态量,它与时刻相对应。
(3)动量是⽮量,它的⽅向和速度的⽅向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因⽽动量具有相对性。
题中没有特别说明的,⼀般取地⾯或相对地⾯静⽌的物体为参考系。
(5)动量的变化:0p p p t -=?.由于动量为⽮量,则求解动量的变化时,其运算遵循平⾏四边形定则。
A 、若初末动量在同⼀直线上,则在选定正⽅向的前提下,可化⽮量运算为代数运算。
B 、若初末动量不在同⼀直线上,则运算遵循平⾏四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是⽮量,动能是标量,动量改变,动能不⼀定改变,但动能改变动量是⼀定要变的。
2、深刻理解冲量的概念(1)定义:⼒和⼒的作⽤时间的乘积叫做冲量:I =Ft(2)冲量是描述⼒的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是⽮量,它的⽅向由⼒的⽅向决定(不能说和⼒的⽅向相同)。
如果⼒的⽅向在作⽤时间内保持不变,那么冲量的⽅向就和⼒的⽅向相同。
如果⼒的⽅向在不断变化,如绳⼦拉物体做圆周运动,则绳的拉⼒在时间t 内的冲量,就不能说是⼒的⽅向就是冲量的⽅向。
对于⽅向不断变化的⼒的冲量,其⽅向可以通过动量变化的⽅向间接得出。
(4)⾼中阶段只要求会⽤I=Ft 计算恒⼒的冲量。
对于变⼒的冲量,⾼中阶段只能利⽤动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒⼒在⼀段时间内可能不作功,但⼀定有冲量。
特别是⼒作⽤在静⽌的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外⼒的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发⽣变化的原因,冲量是物体动量变化的量度。
2020届通用高考物理大二复习专题强化练八动量定理和动量守恒定律含解析
专题强化练(八) 动量定理和动量守恒定律(满分:100分时间:50分钟)一、选择题(共7小题,每小题8分,共56分)1.(考点1)(2019广西南宁模拟)跳水运动员在跳台上由静止直立落下,落入水中后在水中减速运动到速度为零时并未到达池底,不计空气阻力,则关于运动员从静止落下到水中向下运动到速度为零的过程中,下列说法不正确的是()A.运动员在空中动量的改变量等于重力的冲量B.运动员整个向下运动过程中合外力的冲量为零C.运动员在水中动量的改变量等于水的作用力的冲量D.运动员整个运动过程中重力冲量与水的作用力的冲量等大反向,运动员在空中动量的改变量等于重力的冲量,选项A正确;运动员整个向下运动过程中,初速度为零,末速度为零,因此合外力的冲量为零,选项B正确;运动员在水中动量的改变量等于重力和水的作用力的合力的冲量,选项C错误;由于整个过程合外力的冲量为零,因此运动员整个过程中重力冲量与水的作用力的冲量等大反向,选项D正确。
2.(考点2)(2019江苏徐州八校联考)如图所示,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。
若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中()A.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量守恒,A、B、C及弹簧组成的系统动量不守恒B.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量不守恒D.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒A、B两物体及弹簧组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力。
当A、B与C之间的摩擦力大小不相等时,A、B及弹簧组成的系统所受合外力不为零,动量不守恒;当A、B与C之间的摩擦力大小相等时,A、B及弹簧组成的系统所受合外力为零,动量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化练(八) 动量定理和动量守恒定律(满分:100分时间:50分钟)一、选择题(共7小题,每小题8分,共56分)1.(考点1)(2019广西南宁模拟)跳水运动员在跳台上由静止直立落下,落入水中后在水中减速运动到速度为零时并未到达池底,不计空气阻力,则关于运动员从静止落下到水中向下运动到速度为零的过程中,下列说法不正确的是()A.运动员在空中动量的改变量等于重力的冲量B.运动员整个向下运动过程中合外力的冲量为零C.运动员在水中动量的改变量等于水的作用力的冲量D.运动员整个运动过程中重力冲量与水的作用力的冲量等大反向,运动员在空中动量的改变量等于重力的冲量,选项A正确;运动员整个向下运动过程中,初速度为零,末速度为零,因此合外力的冲量为零,选项B正确;运动员在水中动量的改变量等于重力和水的作用力的合力的冲量,选项C错误;由于整个过程合外力的冲量为零,因此运动员整个过程中重力冲量与水的作用力的冲量等大反向,选项D正确。
2.(考点2)(2019江苏徐州八校联考)如图所示,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。
若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中()A.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量守恒,A、B、C及弹簧组成的系统动量不守恒B.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量不守恒D.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒A、B两物体及弹簧组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力。
当A、B与C之间的摩擦力大小不相等时,A、B及弹簧组成的系统所受合外力不为零,动量不守恒;当A、B与C之间的摩擦力大小相等时,A、B及弹簧组成的系统所受合外力为零,动量守恒。
对A、B、C及弹簧组成的系统,弹簧的弹力及A、B与C之间的摩擦力均属于内力,无论A、B与C之间的摩擦力大小是否相等,系统所受的合外力均为零,系统的动量守恒。
故选项D正确。
3.(考点1)(2019广东佛山二模)拍皮球是大家都喜欢的体育活动,既能强身又能健体。
已知皮球质量为0.4 kg,为保证皮球与地面碰撞后自然跳起的最大高度均为1.25 m,小明需每次在球到达最高点时拍球,每次拍球作用距离为0.25 m,使球在离手时获得一个竖直向下4 m/s的初速度。
若不计空气阻力及球的形变,g取10 m/s2,则每次拍球()A.手给球的冲量为1.6 kg·m/sB.手给球的冲量为2.0 kg·m/sC.人对球做的功为3.2 JD.人对球做的功为2.2 J,使球在离手时获得一个竖直向下4m/s的初速度,根据动量定理,合外力给皮球的冲量为I=mv=0.4×4kg·m/s=1.6kg·m/s,选项A错误;手给球的冲量与重力冲量之和等于合外力冲量,手给球的冲量小于1.6kg ·m/s,选项B 错误;设人对球做的功为W ,由动能定理,W+mgh=12mv 2,解得W=2.2J,选项C 错误、D 正确。
4.(考点3)(多选)(2019江西高安中学模拟)质量为m 的小球A 沿光滑水平面以速度v 0与质量为2m 的静止小球B 发生正碰,碰撞后,A 球的动能变为原来的19,那么,小球B 的速度可能是( )A.v 03B.2v 03C.4v 09D.5v 09A 球的动能恰好变为原来的19,得12mv 2=19×12vv 02,可得v=±13v 0;碰撞过程中AB 动量守恒,则有mv 0=mv+2mv B ;解得v B =13v 0或v B =23v 0,故选项A 、B 正确,选项C 、D 错误。
5.(考点1、2、3)(多选)(2019山东寿光模拟)如图所示,带有挡板的小车质量为m ,上表面光滑,静止于光滑水平面上。
轻质弹簧左端固定在小车上,右端处于自由伸长状态。
质量也为m 的小球,以速度v 从右侧滑上小车,在小球刚接触弹簧至与弹簧分离过程中,以下判断正确的是( )A.弹簧的最大弹性势能为14mv 2B.弹簧对小车做的功为14mv 2C.弹簧对小球冲量的大小为mvD.弹簧对小球冲量的大小为12mv,小球和小车有共同的速度,由动量守恒可知mv=2mv 共,由能量关系可得E p =12mv 2-12×2m v 共2=14mv 2,选项A 正确;弹簧对小车做的功等于小车得到的动能E k =12vv 共2=12v (v 2)2=18mv 2,选项B 错误;弹簧对小球冲量的大小为I=m ·v 2-mv=-12mv ,即弹簧对小球冲量的大小为12mv ,选项C 错误,D 正确。
6.(考点2、3)(多选)(2019福建莆田第一中学月考)如图所示,水平光滑轨道宽和弹簧自然长度均为d 。
m 2的左边有一固定挡板。
m 1由图示位置静止释放,当m 1与m 2相距最近时m 1速度为v 1,则在以后的运动过程中( ) A.m 1的最小速度是0 B.m 1的最小速度是v 1-v 2v 1+v 2v 1 C.m 2的最大速度是v 1D.m 2的最大速度是2v 1v 1+v 2v 1m 1与小球m 1到达最近位置后继续前进,此后拉着m 2前进,m 1减速,m 2加速,达到共同速度时两者相距最远。
此后m 1继续减速,m 2加速,当两球再次相距最近时,m 1达到最小速度,m 2达最大速度,两小球水平方向动量守恒,速度相同时保持稳定,一直向右前进,m 1v 1=m 1v 1'+m 2v 2,12m 1v 12=12m 1v 1'2+12m 2v 22;解得v 1'=v 1-v2v 1+v2v 1,v 2=2v 1v 1+v2v 1,故m 2的最大速度为2v 1v1+v 2v 1,m 1的最小速度为v 1-v2v 1+v2v 1,选项B 、D 正确。
7.(考点2、3)(2019福建南平第二次综合质量检查)在2018年平昌冬奥会冰壶比赛中,某队员利用红壶去碰撞对方静止的蓝壶,如图a 所示,两壶发生对心正碰,碰后运动员用冰壶刷擦蓝壶前进方向上的冰面来减小阻力,碰撞前后两壶的速度时间图象如图b 中的实线所示,两冰壶质量相同,则( )A.两壶碰撞为弹性碰撞B.碰后两壶相距的最远距离为1.1 mC.碰后红、蓝两壶的滑动摩擦力相同D.碰后蓝壶的加速度大小为0.10 m/s 2v 0=1.0m/s,碰后速度为v 0'=0.4m/s,设碰后蓝壶的速度为v ,取碰撞前红壶的速度方向为正方向,根据动量守恒定律可得mv 0=mv 0'+mv ,解得v=0.6m/s,碰撞前的总动能为E k =12vv 02=12m ,碰撞后的总动能E k '=12mv 0'2+12mv 2=12m ×0.52<E k ,故两壶碰撞为非弹性碰撞,选项A 错误;由图可知,若红壶不碰撞,则加速度为a 1=1-1.21m/s 2=-0.2m/s 2,经时间t s 速度变为零,则t=0-1.2v 1=0-1.2-0.2s =6s,即图中红壶和蓝壶图线横坐标交点为t=6s;碰撞后红壶移动的位移为x 1=0.42×2m =0.4m,蓝壶移动的位移为x 1=0.62×5m =1.5m,故碰后两壶相距的最远距离为Δx=x 2-x 1=1.5m -0.4m =1.1m,选项B正确;根据图象的斜率表示加速度,知碰后红壶的加速度大于蓝壶的加速度,两者的质量相等,由牛顿第二定律知碰后红壶所受摩擦力大于蓝壶所受的摩擦力,选项C 错误;碰后蓝壶的加速度大小为a=0.65m/s 2=0.12m/s 2,选项D 错误。
二、计算题(第8题10分,第9题14分,第10题20分,共44分) 8.(考点2、3)(2019河南洛阳二模)如图,“冰雪游乐场”滑道上的B点左侧水平面粗糙,右侧是光滑的曲面,左右两侧平滑连接。
质量m=30 kg的小孩从滑道顶端A点由静止开始下滑,经过B点时被静止的质量为M=60 kg的家长抱住,一起滑行到C点停下(C点未画出)。
已知A点高度h=5 m,人与水平滑道间的动摩擦因数μ=0.2,g取10 m/s2,求:(1)小孩刚到B点时的速度大小v B;(2)B、C间的距离s。
vv v2小孩从最高点到最低点,根据机械能守恒定律得mgh=12得:v B=10m/s。
(2)家长抱住小孩瞬间由动量守恒定律有mv B=(m+M)vm/s解得:v=103接着以共同速度v向左做匀减速直线运动,由动能定理得-μ(m+M)gs=0-1(m+M)v22m。
解得:s=259m(2)2599.(考点2、3)(2019广东揭阳揭东一中检测)如图,水平面上相距为L=5 m的P、Q两点分别固定一竖直挡板,一质量为M=2 kg的小物块B静止在O点,OP段光滑,OQ段粗糙且长度为d=3 m。
一质量为m=1 kg的小物块A以v0=6 m/s的初速度从OP段的某点向右运动,并与B发生弹性碰撞。
两物块与OQ段的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能。
重力加速度g 取10 m/s2,求:(1)A与B在O点碰后瞬间各自的速度;(2)两物块各自停止运动时的时间间隔。
设A、B在O点碰后的速度分别为v1和v2,以向右为正方向。
由动量守恒定律得:mv0=mv1+Mv2碰撞前后动能相等,则得:12vv02=12vv12+12vv22解得:v1=-2m/s,方向向左,v2=4m/s,方向向右。
(2)碰后,两物块在OQ段减速时加速度大小均为:a=μg=2m/s2。
B经过t1时间与Q处挡板相碰,由运动学公式:v2t1-12vv12=d得:t1=1s(t1=3s舍去)与挡板碰后,B的速度大小v3=v2-at1=2m/s,反弹后减速时间t2=v3v=1s反弹后经过位移s1=v322v=1m,B停止运动。
物块A与P处挡板碰后,以v4=2m/s的速度滑上O点,经过s2=v422v=1m停止。
所以最终A、B的距离s=d-s1-s2=1m,两者不会碰第二次。
在AB碰后,A运动总时间t A=2(v-v)|v1|+v4v=3sB运动总时间t B=t1+t2=2s, 则时间间隔Δt AB=t A-t B=1s。
方向向左 4 m/s,方向向右(2)1 s10.(考点2、3)(2019安徽1号卷A10联盟高三开学考试)如图所示,一根劲度系数为k的轻质弹簧竖直放置,上下两端各固定质量均为M的物体A和B(均视为质点),物体B置于水平地面上,整个装置M的小球P从物体A正上方距其高度h处由静止自由下落,与物体A发处于静止状态,一个质量m1=12生碰撞(碰撞时间极短),碰后A和P粘在一起共同运动,不计空气阻力,重力加速度为g。