数学北师大版八年级下册分式及分式方程

合集下载

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

北师大版八年级数学下册第五章分式与分式方程

北师大版八年级数学下册第五章分式与分式方程

八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。

例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。

(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。

检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件
分式方程 去分母 整式方程
知1-讲
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
例1 解方程
1 = 3. x- 2 x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
解得x=2.
检验:当x=2时,( x+2)( x-2)=0,
所以x=2是原方程的增根,即原方程无解.
易错总结:
分式方程转化为整式方程后,由于去分母使未 知数的取值范围发生了变化,有可能产生增根, 因此在解分式方程时一定要验根,如果不验根, 有可能误将x=2当成原分式方程的根.
2 易错小结
2.当k为何值时,关于x的方程
综上可知,当k<3且k≠-12时,原分式方程的
解为负数.
易错总结:
在解分式方程时,要注意出现未知数的取值使 原分式方程中的分式的分母为零,即产生增根 的情况.因此本题中要使方程的解为负数,除 了k<3外,还必须考虑原分式方程的分母不等 于0.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
2+ x-1
a 1-x
=4
的解为正数,且使关于y的不等式组
ìïïïíïïïî
y+2- y 32
2( y-a) £
> 0
1,
的解集为y<-2,则符合条件的所有整数a的和为
( A) A.10
B.12
C.14
D.16
知识点 3 分式方程的增根
议一议
在解方程
1x-
x= 2
12- x
2 时,小亮的解法如下:
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).

5.1+认识分式++课件+ +2023—2024学年北师大版数学八年级下册

5.1+认识分式++课件+ +2023—2024学年北师大版数学八年级下册

, ,
+
A.2 个
B.3 个
C.4 个
D.5 个
2.(2022 凉山)分式


B.x≠-3
C.x≠3
D.x≠0


,-3x ,

.其中是分式的有( B )
有意义的条件是( B )
+
A.x=-3
,
2
-
3.(2023 凉山)分式
-
的值为 0,则 x 的值是( A )
A.0 B.-1

(1)看形式:是否是 的形式(A,B 为整式);

(2)看分母:分母B中是否含有字母,其中π是常数,不是字母.
新知应用
1.下列式子是分式的是( C )
A.



B. +y

C.


D.
+

2.上等米每千克售价为 x 元,次等米每千克售价为 y 元,取上等米 a kg
和次等米 b kg,混合后的大米每千克售价为( C )
-
中的 x,y 的值都扩大为原来的 8 倍,则分
式的值( B )
A.不变
B.为原分式值的
C.为原分式值的 8 倍
D.为原分式值的




5.若

=

,则 M=
x+1
;
,则 N=
x+y
.
- -
(-)


-
=
-

-
.-. +
当 m=1,n=3 时,原式=


=- .


(2)

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。

北师大版八年级下册数学《认识分式》分式与分式方程教学说课(第2课时)

北师大版八年级下册数学《认识分式》分式与分式方程教学说课(第2课时)

活动探究
问题2:化简下列分式:
1
a2bc ab
解:a2bc ab
= ab ac ab
=ac
2
x2 -1 x2 -2x+1
解: x2 -1 x2 -2x+1
= x+1 x-1 x-12
= x+1 x-1
约分:把分式的分子和分母的公因式约去,这种变形叫做约分.
活动探究
探究点三 问题1:在约分时,小颖和小明出现了分歧.你对他们两人的做法有什么看法?
的值( B )
A.扩大两倍
B.不变
C.缩小两倍
D.缩小四倍
4.若把分式
xy x y
中的x 和y 都扩大3倍,那么分

A
的A.值扩( 大3).倍 B.扩大9倍
C.扩大4倍 D.不变
5.下列各分式,哪些是最简分式?哪些不是最简分式?
1
m2 2m 1 m2
1
;
2
a b
b2 a4
;
3
x2
y2
y2
;
4
分析:约分时,分子或分母若是多项式,能分解
则必须先进行因式分解.再找出分子和分母的
公因式进行约分.
解:(2)x2
x2
9 6x
9
(x
3)(x (x 3)2
3)
x 3. x3
做一做
约分:(1)a2bc ; ab
解:(1)a2bc ab ac ac.
ab
ab
(2) x2 1 . x2 2x 1
分数的分子与分母同时乘以(或除以)一个 不等于零的数,分数的值不变.
讲授新课
✓ 典例精讲 ✓ 归纳总结
讲授新 课分式的基本性质

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)

北师版八年级下册第五章分式和分式方程复习课件(28张PPT)
解分式方程一定要 验根 。
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0

北师大版八年级数学下册第五章 分式与分式方程4 第1课时 分式方程的概念及列分式方程

北师大版八年级数学下册第五章 分式与分式方程4 第1课时 分式方程的概念及列分式方程
4800 5000
x x 20
1400 1400 9 1400 2.8 1400
x 2.8x
y
y9
4800 5000 x x 20
思考 由上面的问题,我们得到了三个方程,它们有 什么共同特点?
分母中都含有未知数.
知识要点
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特征 (1)是等式; (2)方程中含有分式; (3)分母中含有未知数.
归纳总结
列分式方程的步骤: (1)审清题意,适当设出未知数; (2)根据题意找等量关系,列出分式方程.
概念
分母中含有未知数的方程叫做分式 方程
分式 方程
列方程 步骤
1. 审清题意,适当设出未知数; 2. 根据题意找等量关系,列出分式 方程
1. 下列属于分式方程的是( A )
A. 1 3 x2 x
___x ___x__3__.
3. 某市为处理污水,需要铺设一条长为 5000 m 的管 道,为了尽量减少施工对交通所造成的影响,实际
施工时每天比原计划多铺设 20 m,结果提前 15 天 完成任务.设原计划每天铺设管道 x m,则可得方 程 5000 5000 15
____x____x___2_0______.
y9
1400 1400
关系式 高铁列车平均速度 = 2.8×特快列车平均速度
做一做 为了帮助遭受自然灾害的地区重建家园,某校 团总支号召同学们自愿捐款.已知第一次捐款总额为 4800元,第二次捐款总额为 5000 元,第二次捐款人数 比第一次多 20 人,而且两次人均捐款额恰好相等. 如果 设第一次捐款人数为 x 人, 那么 x 应满足怎样的方程?
典例精析
例1 下列式子中,哪些是分式方程?哪些整式方程?

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)

2023-2024学年北师大版八年级数学下册《第5章分式与分式方程》期末复习综合练习题(附答案)一、单选题1.下列代数式:①1;②3B24;③56+;④7+8;⑤9r43.其中分式的个数是()A.1B.2C.3D.4 2.要使分式r1K2有意义,的取值范围是()A.≠−2B.≠2C.≠−1D.≥230,则x的值为()A.±3B.0C.−3D.34.把分式2r中的和均扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍5.下列各式从左到右的变形正确的是()A.K121 2r =2K r2B.0.2r r0.2=2r r2C.r1K=K1K D.r K=K r6.化简K−K的结果是()A.+B.−C.2−2D.1 7.解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是()A.−2+(2−1)=−1.5B.−2+1=1.5(2−1)C.−2+1=−1.5(2−1)D.−2+(2−1)=1.58.一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.求前一小时的行驶速度.若设前一小时的行驶速度为Jkm/h,则可列方程为()A.180+4060=1+180−1.5B.180−4060=1+180−1.5 C.180+4060=180−1.5D.180−4060=180−1.5二、填空题9.请写出一个只含有字母的分式,且当=1时,此分式的值为0,这个分式可以是.10.在括号里填上适当的整式:(1)32B=;.(2)3B2−2;.(3)3B r=..11.将分式12−9和9−3进行通分时,最简公分母是12.化简:r1÷22−1=.13.已知+=3,则代数式K B÷.14=K5+r2,则=.15.已知关于的分式方程r2r1=−1的解是非正数,则的取值范围是.16.物业为了进一步优化小区环境,计划对小区内总长1500米步道旁的绿植进行修剪,原计划x小时完工,为减少对居民的影响,实际修剪时提高了效率,结果提前2小时完工,则实际比原计划每小时多修剪米.(结果化为最简形式)三、解答题17.计算:(1)(r3)22+33+÷2K1r118.解方程:(1)1K1=12−1(2)2−K3+413−.191÷1−−1K1,然后从±1,0,±12这五个数中选一个合适的数代入求值.20.已知关于的分式方程1K2+3=1+B2−,(1)若分式方程无解,求的值;(2)若分式方程的解为正数,求的取值范围.21.某中铁集团有甲乙两个施工队,该集团承担一条高速铁路的施工任务,甲工程队单独施工10个月后,为了加快进度,乙工程队也加人施工,这样又用了20个月完成了任务.已知乙工程队单独施工该项任务需要40个月才能完成.(1)求甲工程队单独施工完成该项任务需要多少个月?(2)如果两个施工队从一开始就合作完成此项施工任务,需要多少个月?22.福安葡萄享有“北有吐鲁番,南有闽福安”的美誉,某农场分别种植甲、乙两种葡萄,去年甲种葡萄总产量3万千克,乙种葡萄总产量2万千克,原计划甲、乙两种葡萄都按元/千克出售,实际因成熟时间不同,甲种葡萄8折出售,乙种葡萄加价3元出售,实际总收入与计划总收入相同.(1)求去年甲、乙两种葡萄的实际销售单价分别是多少元?(2)今年农场改进技术,两种葡萄品质提升、产量增加,农场准备在去年实际售价的基础上,单价都增加元(>0)后全部出售给某经销商,该经销商提供了以下两种收购方案:方案一:甲、乙两种葡萄都按产量万千克收购;方案二:甲、乙两种葡萄都按总价万元收购.通过计算甲、乙两种葡萄的总平均单价,说明农场选用哪种方案合算.参考答案1.解:①1是分式,符合题意;②3B 24不是分式,不符合题意;③56+是分式,符合题意;④7+8不是分式,不符合题意;⑤9r43不是分式,不符合题意;∴分式一共有2个,故选:B .2.解:∵分式r1K2有意义,∴−2≠0,即≠2,故选:B .30,∴|U −3=0+3≠0,解得=3,故选D .4.解:把分式2r 中的和均扩大3倍为36r3=33(2rp =2r ,所以分式的值不变,故选:A .5.解:A 、K 1212r ==2K r2,计算正确,故符合题意;B 、0.2r r0.2=2r1010r2≠2r r2,变形错误,故不符合题意;C 、r1K ≠K1K 变形错误,故不符合题意;D 、r K=−K −r原式变形错误,故不符合题意;故选:A .6.解:K −K =−−=1.故选:D.7.解:解分式方程K22K1+1=1.51−2时,去分母后得到的整式方程是−2+(2−1)=−1.5.故选:A.8.解:设前一小时的行驶速度为Dm/h,则一小时后的速度为1.5Dm/h,由题意得:180−4060=1+180−1.5,故选:B.9.解:由题意得,满足题意的分式可以为K1,故答案为;K1(答案不唯一).10.解:(1)32B=3δ52B⋅5=15B102;故答案为:102(2)3B2−2==3K2;故答案为:3;(3)3Br=r=故答案为:2+.11.解:∵2−9=+3−3,9−3=−3−3,∴最简公分母是−3+3−3,故答案为:−3+3−3.12.解:原式=r1=−1故答案为:K113.解:K B÷=−B2−2B=−B=1r,当+=3时,原式=13.故答案为:13.14.解:K5+r2=o+2)(−5)(+2)(−5)(+2)+o−5)=B+B+2−5(−5)(+2)=(rpr2K5(K5)(r2),∵5K4(K5)(r2)=K5+r2,∴5K4(K5)(r2)=(rpr2K5(K5)(r2),∴+=52−5=−4,解得=3=2.故答案为:215.解:去分母,得+2=−−1,解得:=−−3,∵≤0,∴−−3≤0,∴≥−3,∵≠−1,即−−3≠−1,∴≠−2,∴≥−3且≠−2,故答案为:≥−3且≠−2.16.解:由题意可得,实际比原计划每小时多修剪:1500K2−1500=30002−2(米),故答案为:30002−2.17.(1)解:原式=(r3)2r23=r3−3=r3−3=1(2)解:原式=+÷2K1r1=(+1+−2)÷2K1r1=(2−1)·r12K1=+1.18.(1)解:方程1K1=12−1两边同时乘以+1−1得+1=1,解得=0,检验:把=0代入+1−1=−1≠0.∴原方程的解为:=0;(2)解:方程2−K3+4=13−两边同时乘以−3,得2−+4−3=−1,解得:=3,检验:把=3代入−3得−3=0,∴=3是原分式方程的增根,原分式方程无解.19.解:原式=rr1r11−2−321−2−1K1=2+1+1÷12121−1−1=2+1+1112−1−1=1−1−2−1K1=由题意,得≠±1,±12,取=0,则原式=2.20.(1)解:去分母,得1+3−2=−1−B,移项、合并同类项,得+3=4,∵分式方程无解,∴①当方程有增根时,原方程无解,即=2,2+3=4,解得=−1;②当+3=0时,原方程无解,即=−3,综合①②,若分式方程无解,的值为−1或−3.(2))由(1)可得+3=4,∵原分式方程的解为正数,∴>0,−2≠0,∴+3>0,且2+3≠4,∴>−3且≠−1.21.(1)解:设甲工程队单独完成此项工程需要x天,根据题意得:10++×20=1,解得:=60,经检验,=60是所列方程的解,且符合题意.答:甲工程队单独完成此项工程需要60天;(2)1÷=1÷5120=24(天).答:如果两队一开始就合作完成此项工程,需要24天.22.(1)解:根据题意,得(3+2)=3×0.8+2(+3),解得=10,∴甲种葡萄的实际销售单价为10×0.8=8(元),乙种葡萄的实际销售单价为10+3=13(元).答:甲种葡萄的实际销售单价是8元,乙种葡萄的实际销售单价是13元.(2)解:由题意知,方案一的平均单价为(8+pr(13+p2=21+22.方案二的平均单价为2÷+=2(8+p(13+p21+2,∵21+22−2(8+p(13+p21+2=252(21+2p>0.∴农场选择方案一更合算.。

北师大数学 八年级下册 第五章 分式与分式方程 认识分式 2

北师大数学 八年级下册 第五章 分式与分式方程 认识分式 2
整式 有理式 分式 到本节课,我们一共学习了哪些 代数式呢?请同学们讨论一下!
单项式 多项式
整式和分式统称为有理式。
下列各式中,哪些是整式?哪些是分式?
1 1 3 ab 1 ① 2 ,② ( x y ),③ ,④ 0,⑤ , x 5 x 2 c x x y 1 2x y 1 ⑥ y ,⑦ ,⑧ 5 x ,⑨ ,⑩ 2, 2 2 3 a a 1 4 ⑾ ,⑿ ( x y ),⒀ 3 3 x
这一问题中有哪些等量关系?
2400 那么原计划完成一期工程需要 个月, x 2400 实际完成一期工程用了 x 30 个月. 依据题意,可列出方程 2400 2400 4. x x 30
如果设原计划每月固沙造林x公顷,
做一做
(1)长方形的面积为10cm2,长为7cm,宽应为
长方形的面积为S,长为a,宽应为
200 33 S a 10 7
cm;
.
(2)把体积为200cm3的水倒入底面积为33cm2的圆柱 形容器中,水面的高度为
V S
cm;把体积为v
的水倒入底面积为S的圆柱形容器中,水面的高度为
cm.
议一议
分式、有理式的定义
1、上面的问题出现了代数式: V 90 , 60 m 2400 2400 , S , , , S x 30 a x x6 n x 它们有什么共同特征? 类似分数 , 分母中都有字母. 它们与分数有什么相同点和不同点? A 相同点: 这些式子与分数一样都是 B (即
答案:
x x y
千克
• 二、分式的求值 a 1 • 例题3:(1)当 a=1,2时,分别求分式 2a 的值; •
• • • • •
a 1 1 1 解:(1)当 a=1时 1 2a 2 1

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)
分析:此题的主要等量关系是:
小丽家今年7月的用水量-小丽家去年12月的用水量 =5m3.
解:设该市去年居民用水的价格为x元/m3,则
今年的水价为
1
1 3
x
元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得
x 3. 2
经检验, x 3 是原方程的根.
2
3 2
1
1 3
2(元/m3
).
答:该市今年居民用水的价格为2元/m3.
解得x=10. 经检验,x=10是原方程的解,
答:原计划平均每月的绿化面积为10 km2.
随堂练习
6.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知 A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水 中的速度. 解:设船在静水中的速度为x千米/小时,根据题意得
80 80 1. x2 x2
方程两边同乘(x-2)(x+2)得 80x+160 -80x+160=x2 -4. 解得 x=±18.
x=-18(不合题意,舍去),
经检验,x=18是原方程的根. 答:船在静水中的速度为18千米/小时.
课堂小结
分式方程的 应用
常见类型
行程问题、工程问题、数字问题、 顺逆问题、利润问题等
一般解题步骤
课程讲授
1 分式方程的应用
解:设该市去年居民用水的价格为x元/m3,则今年的
水价为
1
1 3
x元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得 x 3 .
2
经检验,x 3 是原方程的根.
2
3 2

北师大版八年级数学下册第五章 分式与分式方程1 第1课时 分式的有关概念

北师大版八年级数学下册第五章 分式与分式方程1 第1课时 分式的有关概念
2;
解:(1)当 a = 1时,
2a 1 2 1 1
a 1
当 a = 2 时,
2a 1
a 1
当 a = -1 时,
2a 1
2 1
2 2 1
1;
1 1
0;
2 ( 1) 1
(2)当分母的值等于零时,分式没有意义,
除此之外,分式都有意义.
由分母 2a -1 = 0,得 a
所以,当 a
1
.
2
a 1
1
时,分式 2a 1 有意义.
=
造林的面积
2400
实际完成造林任务
=
所需的时间(月)
x 30
1
分式的概念
合作探究
(1) 2010年上海世博会吸引了成千上万的参观者,某一
时段内的统计结果显示,前 a 天日均参观人数 35 万人,
后 b 天日均参观人数 45 万人 . 这 ( a + b ) 天日均参观
人数为多少万人?
35a 45b
新知一览
认识分式
分式的乘除法


分式的加减法
分式方程
分式的有关概念
分式的基本性质
同分母分式的加减
异分母分式的加减
分式的混合运算
分式方程的概念及列分式方程
分式方程的解法
分式方程的应用
第五章
5.1
分 式
认识分式
第1课时 分式的有关概念
面对日益严重的土地沙化问题,某县决定在一定期
内固沙造林 2400 hm2 ,实际每月固沙造林的面积比原
计划多 30 hm2 ,结果提前完成任务.
如果设原计划每月固沙造林 x hm²,
(1) 那么原计划完成造林任务需要多少

北师大版初二数学下册第五章 分式与分式方程 回顾与思考

北师大版初二数学下册第五章 分式与分式方程  回顾与思考

北师大版八年级(下)数学第五章回顾与思考(一)教学设计西安高新第一学校车大鹏一、教材分析本节是第五章《分式与分式方程》的最后一节,占两个课时,这是第一课时,它主要让学生回顾在学习分式的基本概念与分式的运算时用到的几种法则,熟练掌握分式的运算法则,通过螺旋式上升的认识,让学生逐步熟悉运用分式运算的基本技能,培养学生的代数表达能力,通过本节课的教学使学生对分式的运算能有更深的认识.二、教学目标●知识与技能(1)学生进一步熟悉分式的意义及分式的运算;(2)提高学生分式的基本运算技能.●过程与方法(1)通过制作思维导图,将头脑中零散的知识点用思维导图有机地组合起来,形成知识网络。

(2)通过典例分析,学生在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。

●情感、态度与价值观(1)提高学生的运算能力,发展学生的合情推理能力;(2)注重学生对分式的理解,提高学生分析问题的能力.三、教学重点、难点教学重点:进一步熟悉分式的意义及分式的运算;教学难点:提高学生分式的基本运算技能.四、教学方法●学生学习现状分析学生的技能基础:学生已经学习了分式及分式的运算等有关概念,对分式及其运算有了初步的认识,但对技巧性较高的运算题还不熟悉.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.●教法分析在本章的学习中,学生已经掌握了分式的概念与分式加减乘除法的运算,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。

因此采用“回顾、反思、应用”有机结合的教学法。

北师大版八年级数学下册第五章分式与分式方程课件

北师大版八年级数学下册第五章分式与分式方程课件

X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.列分式方程解应用题。
(1).列方程解应用题的关键是什么?
(2).列分式方程解应用题时,结果需进行检验,为什么?
(3)为了方便列方程及计算,注意直接设元与间接设元。 巩固提高:书P132 1. 问题解决9 (列出分式) 。 2. 10 、 11、 12 、13、14 (只需列出方程,注:要求在 书本上画出等量关系所在的语句。)
作业:
练习册:P73-74.《第五章回顾与、自主学习:
1.书P131 1. (1) (2) (3) 2. (2) (4) 3. (2) (5) 4.(1) (2) 5.(选做)
小结:
(1)分式化简,怎样才能约分。何为最简? (2)解分式方程,通过第一步是要怎样?去分母 时是根据等式的性质,两边乘以什么?
二、讲学过程:
2.分式与分式方程的概念
(1)分式: 一般地,用A,B表示两个整式, 可以表示成的 形式,如果B中含有字母,那么 称为分式
(2)分式方程: 分母中含有未知数的方程叫做分式方程。
巩固练习2: 下列是分式方程的有哪些?
3.分式有无意义、分式的值为零。
(1)分式有无意义:当分母等于零时,分式无意义。
(2)当分子的值为零,且分母有意义时,分式的值为零。
相关文档
最新文档